View Single Post
Old 07-09-2012, 01:06 PM   #49
twobob
( ͡° ͜ʖ ͡°){ʇlnɐɟ ƃǝs}Týr
twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.twobob ought to be getting tired of karma fortunes by now.
 
twobob's Avatar
 
Posts: 6,586
Karma: 6299993
Join Date: Jun 2012
Location: uti gratia usura (Yao ying da ying; Mo ying da yieng)
Device: PW-WIFI|K5-3G+WIFI| K4|K3-3G|DXG|K2| Rooted Nook Touch
Sound Buffers and Data Transfer

as outlined at http://www.linuxjournal.com/article/6735

A sound card has a hardware buffer that stores recorded samples. When the buffer is sufficiently full, it generates an interrupt. The kernel sound driver then uses direct memory access (DMA) to transfer samples to an application buffer in memory. Similarly, for playback, another application buffer is transferred from memory to the sound card's hardware buffer using DMA.

These hardware buffers are ring buffers, meaning the data wraps back to the start when the end of the buffer is reached. A pointer is maintained to keep track of the current positions in both the hardware buffer and the application buffer. Outside of the kernel, only the application buffer is of interest, so from here on we discuss only the application buffer.

The size of the buffer can be programmed by ALSA library calls. The buffer can be quite large, and transferring it in one operation could result in unacceptable delays, called latency. To solve this, ALSA splits the buffer up into a series of periods (called fragments in OSS/Free) and transfers the data in units of a period.

A period stores frames, each of which contains the samples captured at one point in time. For a stereo device, the frame would contain samples for two channels. Figure 1 illustrates the breakdown of a buffer into periods, frames and samples with some hypothetical values. Here, left and right channel information is stored alternately within a frame; this is called interleaved mode. A non-interleaved mode, where all the sample data for one channel is stored followed by the data for the next channel, also is supported.

.... ELIDED


FIGURE 1

This gives us a tidy overview of the way to do our frame maths.
We generally use the interleaved format as this is the default it would see, on our setup.

There is a wordy explanation of this and corner cases here:
http://www.alsa-project.org/main/ind.../FramesPeriods

Last edited by twobob; 07-09-2012 at 03:47 PM. Reason: added extra - somewhat wordy - reference
twobob is offline   Reply With Quote