

Ansible for DevOps
Server and configuration management for
humans

Jeff Geerling

This book is for sale at http://leanpub.com/ansible-for-devops

This version was published on 2016-11-23

ISBN 978-0-9863934-0-2

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2016 Jeff Geerling

Ansible for DevOps
Server and configuration management for
humans

Jeff Geerling

This book is for sale at http://leanpub.com/ansible-for-devops

This version was published on 2016-11-23

ISBN 978-0-9863934-0-2

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook
using lightweight tools and many iterations to get reader feedback, pivot until you
have the right book and build traction once you do.

© 2014 - 2016 Jeff Geerling

Tweet This Book!
Please help Jeff Geerling by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just purchased @Ansible4DevOps by @geerlingguy on @leanpub -
https://leanpub.com/ansible-for-devops #ansible

The suggested hashtag for this book is #ansible.

Find out what other people are saying about the book by clicking on this link to
search for this hashtag on Twitter:

https://twitter.com/search?q=#ansible

This book is dedicated to my wife, Natalie, and my children.

Editing by Margie Newman and Katherine Geerling.

Cover photograph and illustration © 2011 Jeff Geerling.

Ansible is a software product distributed under the GNU GPLv3 open source license.

This book is dedicated to my wife, Natalie, and my children.

Editing by Margie Newman and Katherine Geerling.

Cover photograph and illustration © 2011 Jeff Geerling.

Ansible is a software product distributed under the GNU GPLv3 open source license.

Contents

Foreword . 1

Preface . 3
Who is this book for? . 4
Typographic conventions . 4
Please help improve this book! . 5
About the Author . 6

Introduction . 7
In the beginning, there were sysadmins 7
Modern infrastructure management . 7
Ansible and Ansible, Inc. 8
Ansible Examples . 10
Other resources . 10

Chapter 1 - Getting Started with Ansible 12
Ansible and Infrastructure Management 12

On snowflakes and shell scripts . 12
Configuration management . 13

Installing Ansible . 14
Creating a basic inventory file . 17
Running your first Ad-Hoc Ansible command 18
Summary . 19

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant . . . 20
Prototyping and testing with local virtual machines 20
Your first local server: Setting up Vagrant 21

Contents

Foreword . 1

Preface . 3
Who is this book for? . 4
Typographic conventions . 4
Please help improve this book! . 5
About the Author . 6

Introduction . 7
In the beginning, there were sysadmins 7
Modern infrastructure management . 7
Ansible and Ansible, Inc. 8
Ansible Examples . 10
Other resources . 10

Chapter 1 - Getting Started with Ansible 12
Ansible and Infrastructure Management 12

On snowflakes and shell scripts . 12
Configuration management . 13

Installing Ansible . 14
Creating a basic inventory file . 17
Running your first Ad-Hoc Ansible command 18
Summary . 19

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant . . . 20
Prototyping and testing with local virtual machines 20
Your first local server: Setting up Vagrant 21

CONTENTS

Using Ansible with Vagrant . 22
Your first Ansible playbook . 24
Cleaning Up . 27
Summary . 27

Foreword
Over the last few years, Ansible has rapidly become one of the most popular IT
automation tools in the world. We’ve seen the open source community expand from
the beginning of the project in early 2012 to over 1200 individual contributors today.
Ansible’s modular architecture and broad applicability to a variety of automation
and orchestration problems created a perfect storm for hundreds of thousands of
users worldwide.

Ansible is a general purpose IT automation platform, and it can be used for a variety
of purposes. From configuration management: enforcing declared state across your
infrastructure, to procedural application deployment, to broad multi-component and
multi-system orchestration of complicated interconnected systems. It is agentless, so
it can coexist with legacy tools, and it’s easy to install, configure, and maintain.

Ansible had its beginnings in 2012, when Michael DeHaan, the project’s founder,
took inspiration from several tools he had written prior, along with some hands-on
experience with the state of configuration management at the time, and launched the
project in February of 2012. Some of Ansible’s unique attributes like its module-based
architecture and agentless approach quickly attracted attention in the open source
world.

In 2013, Said Ziouani, Michael DeHaan, and I launched Ansible, Inc. We wanted
to harness the growing adoption of Ansible in the open source world, and create
products to fill the gaps in the IT automation space as we saw them. The existing
tools were complicated, error-prone, and hard to learn. Ansible gave users across
an IT organization a low barrier of entry into automation, and it could be deployed
incrementally, solving as few or as many problems as the team needed without a big
shift in methodology.

This book is about using Ansible in a DevOps environment. I’m not going to try to
define what DevOps is or isn’t, or who’s doing it or not. My personal interpretation
of the idea is that DevOps is meant to shorten the distance between the developers
writing the code, and the operators running the application. Now, I don’t believe

Foreword
Over the last few years, Ansible has rapidly become one of the most popular IT
automation tools in the world. We’ve seen the open source community expand from
the beginning of the project in early 2012 to over 1200 individual contributors today.
Ansible’s modular architecture and broad applicability to a variety of automation
and orchestration problems created a perfect storm for hundreds of thousands of
users worldwide.

Ansible is a general purpose IT automation platform, and it can be used for a variety
of purposes. From configuration management: enforcing declared state across your
infrastructure, to procedural application deployment, to broad multi-component and
multi-system orchestration of complicated interconnected systems. It is agentless, so
it can coexist with legacy tools, and it’s easy to install, configure, and maintain.

Ansible had its beginnings in 2012, when Michael DeHaan, the project’s founder,
took inspiration from several tools he had written prior, along with some hands-on
experience with the state of configuration management at the time, and launched the
project in February of 2012. Some of Ansible’s unique attributes like its module-based
architecture and agentless approach quickly attracted attention in the open source
world.

In 2013, Said Ziouani, Michael DeHaan, and I launched Ansible, Inc. We wanted
to harness the growing adoption of Ansible in the open source world, and create
products to fill the gaps in the IT automation space as we saw them. The existing
tools were complicated, error-prone, and hard to learn. Ansible gave users across
an IT organization a low barrier of entry into automation, and it could be deployed
incrementally, solving as few or as many problems as the team needed without a big
shift in methodology.

This book is about using Ansible in a DevOps environment. I’m not going to try to
define what DevOps is or isn’t, or who’s doing it or not. My personal interpretation
of the idea is that DevOps is meant to shorten the distance between the developers
writing the code, and the operators running the application. Now, I don’t believe

Foreword 2

adding a new “DevOps” team in between existing development and operations teams
achieves that objective! (Oops, now I’m trying for a definition, aren’t I?)

Well, definitions aside, one of the first steps towards a DevOps environment is
choosing tools that can be consumed by both developers and operations engineers.
Ansible is one of those tools: you don’t have to be a software developer to use it, and
the playbooks that you write can easily be self-documenting. There have been a lot
of attempts at “write once, run anywhere” models of application development and
deployment, but I think Ansible comes the closest to providing a common language
that’s useful across teams and across clouds and different datacenters.

The author of this book, Jeff, has been a long-time supporter, contributor, and
advocate of Ansible, and he’s maintained a massive collection of impressive Ansible
roles in Galaxy, the public role-sharing service maintained by Ansible, Inc. Jeff has
used Ansible extensively in his professional career, and is eminently qualified to
write to the end-to-end book on Ansible in a DevOps environment.

As you read this book, I hope you enjoy your journey into IT automation as much
as we have. Be well, do good work, and automate everything.

Tim Gerla
Ansible, Inc. Co-Founder & CTO

Preface
Growing up, I had access to a world that not many kids ever get to enter. At the
local radio stations where my dad was chief engineer, I was fortunate to get to see
networks and IT infrastructure up close: Novell servers and old Mac and Windows
workstations in the ’90s; Microsoft and Linux-based servers; and everything in
between. Best of all, he brought home decommissioned servers and copies of Linux
burned to CD.

I began working with Linux and small-scale infrastructures before I started high
school, and my passion for infrastructure grew as I built a Cat5 wired network
and a small rack of networking equipment for a local grade school. When I started
developing full-time, what was once a hobby became a necessary part of my job, so
I invested more time in managing infrastructure efficiently. Over the past ten years,
I’ve gone from manually booting and configuring physical and virtual servers; to
using relatively complex shell scripts to provision and configure servers; to using
configuration management tools to manage many cloud-based servers.

When I began converting my infrastructure to code, some of the best tools for testing,
provisioning, andmanagingmy servers were still in their infancy, but they have since
matured into fully-featured, robust tools that I use every day. Vagrant is an excellent
tool for managing local virtual machines to mimic real-world infrastructure locally
(or in the cloud), and Ansible — the subject of this book — is an excellent tool for
provisioning servers, managing their configuration, and deploying applications, even
on my local workstation!

These tools are still improving rapidly, and I’m excited for what the future holds.
The time I invest in learning new infrastructure tools well will be helpful for years to
come. (Ansible, Docker, and Vagrant seem a potent combination for both local and
production infrastructure, but that’s a little outside of this book’s scope.)

In these pages, I’ll share with you all I’ve learned about Ansible: my favorite tool for
server provisioning, configuration management, and application deployment. I hope
you enjoy reading this book as much as I did writing it!

— Jeff Geerling, 2015

Preface
Growing up, I had access to a world that not many kids ever get to enter. At the
local radio stations where my dad was chief engineer, I was fortunate to get to see
networks and IT infrastructure up close: Novell servers and old Mac and Windows
workstations in the ’90s; Microsoft and Linux-based servers; and everything in
between. Best of all, he brought home decommissioned servers and copies of Linux
burned to CD.

I began working with Linux and small-scale infrastructures before I started high
school, and my passion for infrastructure grew as I built a Cat5 wired network
and a small rack of networking equipment for a local grade school. When I started
developing full-time, what was once a hobby became a necessary part of my job, so
I invested more time in managing infrastructure efficiently. Over the past ten years,
I’ve gone from manually booting and configuring physical and virtual servers; to
using relatively complex shell scripts to provision and configure servers; to using
configuration management tools to manage many cloud-based servers.

When I began converting my infrastructure to code, some of the best tools for testing,
provisioning, andmanagingmy servers were still in their infancy, but they have since
matured into fully-featured, robust tools that I use every day. Vagrant is an excellent
tool for managing local virtual machines to mimic real-world infrastructure locally
(or in the cloud), and Ansible — the subject of this book — is an excellent tool for
provisioning servers, managing their configuration, and deploying applications, even
on my local workstation!

These tools are still improving rapidly, and I’m excited for what the future holds.
The time I invest in learning new infrastructure tools well will be helpful for years to
come. (Ansible, Docker, and Vagrant seem a potent combination for both local and
production infrastructure, but that’s a little outside of this book’s scope.)

In these pages, I’ll share with you all I’ve learned about Ansible: my favorite tool for
server provisioning, configuration management, and application deployment. I hope
you enjoy reading this book as much as I did writing it!

— Jeff Geerling, 2015

Preface 4

Who is this book for?

Many of the developers and sysadmins I work with are at least moderately comfort-
able administering a Linux server via SSH, and manage between 1-100 servers.

Some of these people have a little experience with configuration management tools
(usually with Puppet or Chef), and maybe a little experience with deployments and
continuous integration using tools like Jenkins, Capistrano, or Fabric. I am writing
this book for these friends who, I think, are representative of most people who have
heard of and/or are beginning to use Ansible.

If you are interested in both development and operations, and have at least a passing
familiarity with managing a server via the command line, this book should provide
you with an intermediate- to expert-level understanding of Ansible and how you can
use it to manage your infrastructure.

Typographic conventions

Ansible uses a simple syntax (YAML) and simple command-line tools (using common
POSIX conventions) for all its powerful abilities. Code samples and commands will
be highlighted throughout the book either inline (for example: ansible [command]),
or in a code block (with or without line numbers) like:

1 ---

2 # This is the beginning of a YAML file.

Some lines of YAML and other code examples require more than 70 characters per
line, resulting in the code wrapping to a new line. Wrapping code is indicated by a \
at the end of the line of code. For example:

1 # The line of code wraps due to the extremely long URL.

2 wget http://www.example.com/really/really/really/long/path/in/the/ur\

3 l/causes/the/line/to/wrap

Preface 4

Who is this book for?

Many of the developers and sysadmins I work with are at least moderately comfort-
able administering a Linux server via SSH, and manage between 1-100 servers.

Some of these people have a little experience with configuration management tools
(usually with Puppet or Chef), and maybe a little experience with deployments and
continuous integration using tools like Jenkins, Capistrano, or Fabric. I am writing
this book for these friends who, I think, are representative of most people who have
heard of and/or are beginning to use Ansible.

If you are interested in both development and operations, and have at least a passing
familiarity with managing a server via the command line, this book should provide
you with an intermediate- to expert-level understanding of Ansible and how you can
use it to manage your infrastructure.

Typographic conventions

Ansible uses a simple syntax (YAML) and simple command-line tools (using common
POSIX conventions) for all its powerful abilities. Code samples and commands will
be highlighted throughout the book either inline (for example: ansible [command]),
or in a code block (with or without line numbers) like:

1 ---

2 # This is the beginning of a YAML file.

Some lines of YAML and other code examples require more than 70 characters per
line, resulting in the code wrapping to a new line. Wrapping code is indicated by a \
at the end of the line of code. For example:

1 # The line of code wraps due to the extremely long URL.

2 wget http://www.example.com/really/really/really/long/path/in/the/ur\

3 l/causes/the/line/to/wrap

Preface 5

When using the code, don’t copy the \ character, and make sure you don’t use a
newline between the first line with the trailing \ and the next line.

Links to pertinent resources and websites are added inline, like the following link to
Ansible¹, and can be viewed directly by clicking on them in eBook formats, or by
following the URL in the footnotes.

Sometimes, asides are added to highlight further information about a specific topic:

Informational asides will provide extra information.

Warning asides will warn about common pitfalls and how to avoid them.

Tip asides will give tips for deepening your understanding or optimizing
your use of Ansible.

When displaying commands run in a terminal session, if the commands are run under
your normal/non-root user account, the commands will be prefixed by the dollar sign
($). If the commands are run as the root user, they will be prefixed with the pound
sign (#).

Please help improve this book!

New revisions of this book are published on a regular basis (you’re reading version
1.14). If you think a particular section needs improvement or find something missing,
please contact me via Twitter (@geerlingguy²), a comment on this book’s Feedback
page on LeanPub³, or whatever method is convenient for you.

¹http://www.ansible.com/
²https://twitter.com/geerlingguy
³https://leanpub.com/ansible-for-devops/feedback

Preface 5

When using the code, don’t copy the \ character, and make sure you don’t use a
newline between the first line with the trailing \ and the next line.

Links to pertinent resources and websites are added inline, like the following link to
Ansible¹, and can be viewed directly by clicking on them in eBook formats, or by
following the URL in the footnotes.

Sometimes, asides are added to highlight further information about a specific topic:

Informational asides will provide extra information.

Warning asides will warn about common pitfalls and how to avoid them.

Tip asides will give tips for deepening your understanding or optimizing
your use of Ansible.

When displaying commands run in a terminal session, if the commands are run under
your normal/non-root user account, the commands will be prefixed by the dollar sign
($). If the commands are run as the root user, they will be prefixed with the pound
sign (#).

Please help improve this book!

New revisions of this book are published on a regular basis (you’re reading version
1.14). If you think a particular section needs improvement or find something missing,
please contact me via Twitter (@geerlingguy²), a comment on this book’s Feedback
page on LeanPub³, or whatever method is convenient for you.

¹http://www.ansible.com/
²https://twitter.com/geerlingguy
³https://leanpub.com/ansible-for-devops/feedback

Preface 6

All known issues with Ansible for DevOps will be aggregated on the book’s online
Errata⁴ page.

About the Author

Jeff Geerling is a developer who has worked in programming and reliability engi-
neering for companies with anywhere between one to thousands of servers. He also
manages many virtual servers for services offered by Midwestern Mac, LLC and has
been using Ansible to manage infrastructure since early 2013.

⁴https://www.ansiblefordevops.com/errata

Introduction
In the beginning, there were sysadmins

Since the beginning of networked computing, deploying and managing servers
reliably and efficiently has been a challenge. Historically, system administrators
were walled off from the developers and users who interact with the systems
they administer, and they managed servers by hand, installing software, changing
configurations, and administering services on individual servers.

As data centers grew, and hosted applications became more complex, administrators
realized they couldn’t scale their manual systems management as fast as the
applications they were enabling. That’s why server provisioning and configuration
management tools came to flourish.

Server virtualization brought large-scale infrastructure management to the fore, and
the number of servers managed by one admin (or by a small team of admins), has
grown by an order of magnitude. Instead of deploying, patching, and destroying
every server by hand, admins now are expected to bring up new servers, either
automatically or with minimal intervention. Large-scale IT deployments now may
involve hundreds or thousands of servers; in many of the largest environments,
server provisioning, configuration, and decommissioning are fully automated.

Modern infrastructure management

As the systems that run applications become an ever more complex and integral part
of the software they run, application developers themselves have begun to integrate
their work more fully with operations personnel. In many companies, development
and operations work is integrated. Indeed, this integration is a requirement for
modern test-driven application design.

As a software developer by trade, and a sysadmin by necessity, I have seen the power
in uniting development and operations—more commonly referred to now as DevOps

Introduction
In the beginning, there were sysadmins

Since the beginning of networked computing, deploying and managing servers
reliably and efficiently has been a challenge. Historically, system administrators
were walled off from the developers and users who interact with the systems
they administer, and they managed servers by hand, installing software, changing
configurations, and administering services on individual servers.

As data centers grew, and hosted applications became more complex, administrators
realized they couldn’t scale their manual systems management as fast as the
applications they were enabling. That’s why server provisioning and configuration
management tools came to flourish.

Server virtualization brought large-scale infrastructure management to the fore, and
the number of servers managed by one admin (or by a small team of admins), has
grown by an order of magnitude. Instead of deploying, patching, and destroying
every server by hand, admins now are expected to bring up new servers, either
automatically or with minimal intervention. Large-scale IT deployments now may
involve hundreds or thousands of servers; in many of the largest environments,
server provisioning, configuration, and decommissioning are fully automated.

Modern infrastructure management

As the systems that run applications become an ever more complex and integral part
of the software they run, application developers themselves have begun to integrate
their work more fully with operations personnel. In many companies, development
and operations work is integrated. Indeed, this integration is a requirement for
modern test-driven application design.

As a software developer by trade, and a sysadmin by necessity, I have seen the power
in uniting development and operations—more commonly referred to now as DevOps

Introduction 8

or Reliability Engineering. When developers begin to think of infrastructure as part
of their application, stability and performance become normative. When sysadmins
(most of whom have intermediate to advanced knowledge of the applications
and languages being used on servers they manage) work tightly with developers,
development velocity is improved, and more time is spent doing ‘fun’ activities like
performance tuning, experimentation, and getting things done, and less time putting
out fires.

DevOps is a loaded word; some people argue using the word to identify
both the movement of development and operations working more closely
to automate infrastructure-related processes, and the personnel who skew
slightly more towards the system administration side of the equation,
dilutes the word’s meaning. I think the word has come to be a rallying
cry for the employees who are dragging their startups, small businesses,
and enterprises into a new era of infrastructure growth and stability. I’m
not too concerned that the term has becomemore of a catch-all for modern
infrastructure management. My advice: spend less time arguing over the
definition of the word, and more time making it mean something to you.

Ansible and Ansible, Inc.

Ansible was released in 2012 by Michael DeHaan (@laserllama⁵ on Twitter), a
developer who has been working with configuration management and infrastructure
orchestration in one form or another for many years. Through his work with Puppet
Labs and Red Hat (where he worked on Cobbler⁶, a configuration management tool
and Func⁷, a tool for communicating commands to remote servers), and some other
projects⁸, he experienced the trials and tribulations of many different organizations
and individual sysadmins on their quest to simplify and automate their infrastructure
management operations.

⁵https://twitter.com/laserllama
⁶http://www.cobblerd.org/
⁷https://fedorahosted.org/func/
⁸https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible

Introduction 8

or Reliability Engineering. When developers begin to think of infrastructure as part
of their application, stability and performance become normative. When sysadmins
(most of whom have intermediate to advanced knowledge of the applications
and languages being used on servers they manage) work tightly with developers,
development velocity is improved, and more time is spent doing ‘fun’ activities like
performance tuning, experimentation, and getting things done, and less time putting
out fires.

DevOps is a loaded word; some people argue using the word to identify
both the movement of development and operations working more closely
to automate infrastructure-related processes, and the personnel who skew
slightly more towards the system administration side of the equation,
dilutes the word’s meaning. I think the word has come to be a rallying
cry for the employees who are dragging their startups, small businesses,
and enterprises into a new era of infrastructure growth and stability. I’m
not too concerned that the term has becomemore of a catch-all for modern
infrastructure management. My advice: spend less time arguing over the
definition of the word, and more time making it mean something to you.

Ansible and Ansible, Inc.

Ansible was released in 2012 by Michael DeHaan (@laserllama⁵ on Twitter), a
developer who has been working with configuration management and infrastructure
orchestration in one form or another for many years. Through his work with Puppet
Labs and Red Hat (where he worked on Cobbler⁶, a configuration management tool
and Func⁷, a tool for communicating commands to remote servers), and some other
projects⁸, he experienced the trials and tribulations of many different organizations
and individual sysadmins on their quest to simplify and automate their infrastructure
management operations.

⁵https://twitter.com/laserllama
⁶http://www.cobblerd.org/
⁷https://fedorahosted.org/func/
⁸https://www.ansible.com/blog/2013/12/08/the-origins-of-ansible

Introduction 9

Additionally, Michael foundmany shops were using separate tools⁹ for configuration
management (Puppet, Chef, cfengine), server deployment (Capistrano, Fabric), and
ad-hoc task execution (Func, plain SSH), and wanted to see if there was a better way.
Ansible wraps up all three of these features into one tool, and does it in a way that’s
actually simpler and more consistent than any of the other task-specific tools!

Ansible aims to be:

1. Clear - Ansible uses a simple syntax (YAML) and is easy for anyone (develop-
ers, sysadmins, managers) to understand. APIs are simple and sensible.

2. Fast - Fast to learn, fast to set up—especially considering you don’t need to
install extra agents or daemons on all your servers!

3. Complete - Ansible does three things in one, and does them very well.
Ansible’s ‘batteries included’ approach means you have everything you need
in one complete package.

4. Efficient - No extra software on your servers means more resources for your
applications. Also, since Ansible modules work via JSON, Ansible is extensible
with modules written in a programming language you already know.

5. Secure - Ansible uses SSH, and requires no extra open ports or potentially-
vulnerable daemons on your servers.

Ansible also has a lighter side that gives the project a little personality. As an example,
Ansible’s major releases are named after Led Zeppelin songs (e.g. 2.0 was named
after 1973’s “Over the Hills and Far Away”, 1.x releases were named after Van Halen
songs). Additionally, Ansible will use cowsay, if installed, to wrap output in an ASCII
cow’s speech bubble (this behavior can be disabled in Ansible’s configuration).

Ansible, Inc.¹⁰ was founded by Saïd Ziouani (@SaidZiouani¹¹ on Twitter) and
Michael DeHaan, and oversees core Ansible development and provides services
(such as Automation Jump Start¹²) and extra tooling (such as Ansible Tower¹³) to
organizations using Ansible. Hundreds of individual developers have contributed

⁹http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html
¹⁰http://www.ansible.com/
¹¹https://twitter.com/SaidZiouani
¹²http://www.ansible.com/services
¹³https://www.ansible.com/tower

Introduction 9

Additionally, Michael foundmany shops were using separate tools⁹ for configuration
management (Puppet, Chef, cfengine), server deployment (Capistrano, Fabric), and
ad-hoc task execution (Func, plain SSH), and wanted to see if there was a better way.
Ansible wraps up all three of these features into one tool, and does it in a way that’s
actually simpler and more consistent than any of the other task-specific tools!

Ansible aims to be:

1. Clear - Ansible uses a simple syntax (YAML) and is easy for anyone (develop-
ers, sysadmins, managers) to understand. APIs are simple and sensible.

2. Fast - Fast to learn, fast to set up—especially considering you don’t need to
install extra agents or daemons on all your servers!

3. Complete - Ansible does three things in one, and does them very well.
Ansible’s ‘batteries included’ approach means you have everything you need
in one complete package.

4. Efficient - No extra software on your servers means more resources for your
applications. Also, since Ansible modules work via JSON, Ansible is extensible
with modules written in a programming language you already know.

5. Secure - Ansible uses SSH, and requires no extra open ports or potentially-
vulnerable daemons on your servers.

Ansible also has a lighter side that gives the project a little personality. As an example,
Ansible’s major releases are named after Led Zeppelin songs (e.g. 2.0 was named
after 1973’s “Over the Hills and Far Away”, 1.x releases were named after Van Halen
songs). Additionally, Ansible will use cowsay, if installed, to wrap output in an ASCII
cow’s speech bubble (this behavior can be disabled in Ansible’s configuration).

Ansible, Inc.¹⁰ was founded by Saïd Ziouani (@SaidZiouani¹¹ on Twitter) and
Michael DeHaan, and oversees core Ansible development and provides services
(such as Automation Jump Start¹²) and extra tooling (such as Ansible Tower¹³) to
organizations using Ansible. Hundreds of individual developers have contributed

⁹http://highscalability.com/blog/2012/4/18/ansible-a-simple-model-driven-configuration-management-and-c.html
¹⁰http://www.ansible.com/
¹¹https://twitter.com/SaidZiouani
¹²http://www.ansible.com/services
¹³https://www.ansible.com/tower

Introduction 10

patches to Ansible, and Ansible is the most starred infrastructure management tool
on GitHub (with over 10,000 stars as of this writing).

In October 2015, Red Hat acquired Ansible, Inc., and has proven itself to be a good
steward and promoter of Ansible. I see no indication of this changing in the future.

Ansible Examples

There are many Ansible examples (playbooks, roles, infrastructure, configuration,
etc.) throughout this book. Most of the examples are in the Ansible for DevOps
GitHub repository¹⁴, so you can browse the code in its final state while you’re reading
the book. Some of the line numbering may not match the book exactly (especially if
you’re reading an older version of the book!), but I will try my best to keep everything
synchronized over time.

Other resources

We’ll explore all aspects of using Ansible to provision and manage your infrastruc-
ture in this book, but there’s no substitute for the wealth of documentation and
community interaction that make Ansible great. Check out the links below to find
out more about Ansible and discover the community:

• Ansible Documentation¹⁵ - Covers all Ansible options in depth. There are few
open source projects with documentation as clear and thorough.

• Ansible Glossary¹⁶ - If there’s ever a term in this book you don’t seem to fully
understand, check the glossary.

• Ansible Mailing List¹⁷ - Discuss Ansible and submit questions with Ansible’s
community via this Google group.

• Ansible on GitHub¹⁸ - The official Ansible code repository, where the magic
happens.

¹⁴https://github.com/geerlingguy/ansible-for-devops
¹⁵https://docs.ansible.com/ansible/
¹⁶https://docs.ansible.com/ansible/glossary.html
¹⁷https://groups.google.com/forum/#!forum/ansible-project
¹⁸https://github.com/ansible/ansible

Introduction 10

patches to Ansible, and Ansible is the most starred infrastructure management tool
on GitHub (with over 10,000 stars as of this writing).

In October 2015, Red Hat acquired Ansible, Inc., and has proven itself to be a good
steward and promoter of Ansible. I see no indication of this changing in the future.

Ansible Examples

There are many Ansible examples (playbooks, roles, infrastructure, configuration,
etc.) throughout this book. Most of the examples are in the Ansible for DevOps
GitHub repository¹⁴, so you can browse the code in its final state while you’re reading
the book. Some of the line numbering may not match the book exactly (especially if
you’re reading an older version of the book!), but I will try my best to keep everything
synchronized over time.

Other resources

We’ll explore all aspects of using Ansible to provision and manage your infrastruc-
ture in this book, but there’s no substitute for the wealth of documentation and
community interaction that make Ansible great. Check out the links below to find
out more about Ansible and discover the community:

• Ansible Documentation¹⁵ - Covers all Ansible options in depth. There are few
open source projects with documentation as clear and thorough.

• Ansible Glossary¹⁶ - If there’s ever a term in this book you don’t seem to fully
understand, check the glossary.

• Ansible Mailing List¹⁷ - Discuss Ansible and submit questions with Ansible’s
community via this Google group.

• Ansible on GitHub¹⁸ - The official Ansible code repository, where the magic
happens.

¹⁴https://github.com/geerlingguy/ansible-for-devops
¹⁵https://docs.ansible.com/ansible/
¹⁶https://docs.ansible.com/ansible/glossary.html
¹⁷https://groups.google.com/forum/#!forum/ansible-project
¹⁸https://github.com/ansible/ansible

Introduction 11

• Ansible Example Playbooks on GitHub¹⁹ - Many examples for common server
configurations.

• Getting Started with Ansible²⁰ - A simple guide to Ansible’s community and
resources.

• Ansible Blog²¹

I’d like to especially highlight Ansible’s documentation (the first resource listed
above); one of Ansible’s greatest strengths is its well-written and extremely relevant
documentation, containing a large number of relevant examples and continously-
updated guides. Very few projects—open source or not—have documentation as
thorough, yet easy-to-read. This book is meant as a supplement to, not a replacement
for, Ansible’s documentation!

¹⁹https://github.com/ansible/ansible-examples
²⁰https://www.ansible.com/get-started
²¹https://www.ansible.com/blog

Introduction 11

• Ansible Example Playbooks on GitHub¹⁹ - Many examples for common server
configurations.

• Getting Started with Ansible²⁰ - A simple guide to Ansible’s community and
resources.

• Ansible Blog²¹

I’d like to especially highlight Ansible’s documentation (the first resource listed
above); one of Ansible’s greatest strengths is its well-written and extremely relevant
documentation, containing a large number of relevant examples and continously-
updated guides. Very few projects—open source or not—have documentation as
thorough, yet easy-to-read. This book is meant as a supplement to, not a replacement
for, Ansible’s documentation!

¹⁹https://github.com/ansible/ansible-examples
²⁰https://www.ansible.com/get-started
²¹https://www.ansible.com/blog

Chapter 1 - Getting Started with
Ansible
Ansible and Infrastructure Management

On snowflakes and shell scripts

Many developers and system administrators manage servers by logging into them via
SSH, making changes, and logging off. Some of these changes would be documented,
some would not. If an admin needed to make the same change to many servers (for
example, changing one value in a config file), the admin would manually log into
each server and repeatedly make this change.

If there were only one or two changes in the course of a server’s lifetime, and if
the server were extremely simple (running only one process, with one configuration,
and a very simple firewall), and if every change were thoroughly documented, this
process wouldn’t be a problem.

But for almost every company in existence, servers are more complex—most run
tens, sometimes hundreds of different applications or application containers. Most
servers have complicated firewalls and dozens of tweaked configuration files. And
even with change documentation, the manual process usually results in some servers
or some steps being forgotten.

If the admins at these companies wanted to set up a new server exactly like one that
is currently running, they would need to spend a good deal of time going through
all of the installed packages, documenting configurations, versions, and settings; and
they would spend a lot of unnecessary time manually reinstalling, updating, and
tweaking everything to get the new server to run close to how the old server did.

Some admins may use shell scripts to try to reach some level of sanity, but I’ve yet to
see a complex shell script that handles all edge cases correctly while synchronizing
multiple servers’ configuration and deploying new code.

Chapter 1 - Getting Started with
Ansible
Ansible and Infrastructure Management

On snowflakes and shell scripts

Many developers and system administrators manage servers by logging into them via
SSH, making changes, and logging off. Some of these changes would be documented,
some would not. If an admin needed to make the same change to many servers (for
example, changing one value in a config file), the admin would manually log into
each server and repeatedly make this change.

If there were only one or two changes in the course of a server’s lifetime, and if
the server were extremely simple (running only one process, with one configuration,
and a very simple firewall), and if every change were thoroughly documented, this
process wouldn’t be a problem.

But for almost every company in existence, servers are more complex—most run
tens, sometimes hundreds of different applications or application containers. Most
servers have complicated firewalls and dozens of tweaked configuration files. And
even with change documentation, the manual process usually results in some servers
or some steps being forgotten.

If the admins at these companies wanted to set up a new server exactly like one that
is currently running, they would need to spend a good deal of time going through
all of the installed packages, documenting configurations, versions, and settings; and
they would spend a lot of unnecessary time manually reinstalling, updating, and
tweaking everything to get the new server to run close to how the old server did.

Some admins may use shell scripts to try to reach some level of sanity, but I’ve yet to
see a complex shell script that handles all edge cases correctly while synchronizing
multiple servers’ configuration and deploying new code.

Chapter 1 - Getting Started with Ansible 13

Configuration management

Lucky for you, there are tools to help you avoid having these snowflake servers—
servers that are uniquely configured and impossible to recreate from scratch because
they were hand-configured without documentation. Tools like CFEngine²², Puppet²³
and Chef²⁴ became very popular in the mid-to-late 2000s.

But there’s a reason why many developers and sysadmins stick to shell scripting and
command-line configuration: it’s simple and easy-to-use, and they’ve had years of
experience using bash and command-line tools. Why throw all that out the window
and learn a new configuration language and methodology?

Enter Ansible. Ansible was built (and continues to be improved) by developers and
sysadmins who know the command line—and want to make a tool that helps them
manage their servers exactly the same as they have in the past, but in a repeatable
and centrally managed way. Ansible also has other tricks up its sleeve, making it a
true Swiss Army knife for people involved in DevOps (not just the operations side).

One of Ansible’s greatest strengths is its ability to run regular shell commands
verbatim, so you can take existing scripts and commands and work on converting
them into idempotent playbooks as time allows. For someone (like me) who was
comfortable with the command line, but never became proficient in more compli-
cated tools like Puppet or Chef (which both required at least a slight understanding
of Ruby and/or a custom language just to get started), Ansible was a breath of fresh
air.

Ansible works by pushing changes out to all your servers (by default), and requires
no extra software to be installed on your servers (thus no extra memory footprint,
and no extra daemon tomanage), unlikemost other configurationmanagement tools.

²²http://cfengine.com/
²³http://puppetlabs.com/
²⁴http://www.getchef.com/chef/

Chapter 1 - Getting Started with Ansible 13

Configuration management

Lucky for you, there are tools to help you avoid having these snowflake servers—
servers that are uniquely configured and impossible to recreate from scratch because
they were hand-configured without documentation. Tools like CFEngine²², Puppet²³
and Chef²⁴ became very popular in the mid-to-late 2000s.

But there’s a reason why many developers and sysadmins stick to shell scripting and
command-line configuration: it’s simple and easy-to-use, and they’ve had years of
experience using bash and command-line tools. Why throw all that out the window
and learn a new configuration language and methodology?

Enter Ansible. Ansible was built (and continues to be improved) by developers and
sysadmins who know the command line—and want to make a tool that helps them
manage their servers exactly the same as they have in the past, but in a repeatable
and centrally managed way. Ansible also has other tricks up its sleeve, making it a
true Swiss Army knife for people involved in DevOps (not just the operations side).

One of Ansible’s greatest strengths is its ability to run regular shell commands
verbatim, so you can take existing scripts and commands and work on converting
them into idempotent playbooks as time allows. For someone (like me) who was
comfortable with the command line, but never became proficient in more compli-
cated tools like Puppet or Chef (which both required at least a slight understanding
of Ruby and/or a custom language just to get started), Ansible was a breath of fresh
air.

Ansible works by pushing changes out to all your servers (by default), and requires
no extra software to be installed on your servers (thus no extra memory footprint,
and no extra daemon tomanage), unlikemost other configurationmanagement tools.

²²http://cfengine.com/
²³http://puppetlabs.com/
²⁴http://www.getchef.com/chef/

Chapter 1 - Getting Started with Ansible 14

Idempotence is the ability to run an operation which produces the same
result whether run once or multiple times (source²⁵).

An important feature of a configuration management tool is its ability
to ensure the same configuration is maintained whether you run it once
or a thousand times. Many shell scripts have unintended consequences
if run more than once, but Ansible deploys the same configuration to a
server over and over again without making any changes after the first
deployment.

In fact, almost every aspect of Ansible modules and commands is idem-
potent, and for those that aren’t, Ansible allows you to define when the
given command should be run, and what constitutes a changed or failed
command, so you can easily maintain an idempotent configuration on all
your servers.

Installing Ansible

Ansible’s only real dependency is Python. Once Python is installed, the simplest way
to get Ansible running is to use pip, a simple package manager for Python.

If you’re on a Mac, installing Ansible is a piece of cake:

1. Install Homebrew²⁶ (get the installation command from the Homebrew web-
site).

2. Install Python 2.7.x (brew install python).
3. Install Ansible (pip install ansible).

You could also install Ansible via Homebrew with brew install ansible. Either
way (pip or brew) is fine, but make sure you update Ansible using the same system
with which it was installed!

If you’re running Windows (i.e. you work for a large company that forces you to
use Windows), it will take a little extra work to everything set up. There are two
ways you can go about using Ansible if you use Windows:

²⁵http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
²⁶http://brew.sh/

Chapter 1 - Getting Started with Ansible 14

Idempotence is the ability to run an operation which produces the same
result whether run once or multiple times (source²⁵).

An important feature of a configuration management tool is its ability
to ensure the same configuration is maintained whether you run it once
or a thousand times. Many shell scripts have unintended consequences
if run more than once, but Ansible deploys the same configuration to a
server over and over again without making any changes after the first
deployment.

In fact, almost every aspect of Ansible modules and commands is idem-
potent, and for those that aren’t, Ansible allows you to define when the
given command should be run, and what constitutes a changed or failed
command, so you can easily maintain an idempotent configuration on all
your servers.

Installing Ansible

Ansible’s only real dependency is Python. Once Python is installed, the simplest way
to get Ansible running is to use pip, a simple package manager for Python.

If you’re on a Mac, installing Ansible is a piece of cake:

1. Install Homebrew²⁶ (get the installation command from the Homebrew web-
site).

2. Install Python 2.7.x (brew install python).
3. Install Ansible (pip install ansible).

You could also install Ansible via Homebrew with brew install ansible. Either
way (pip or brew) is fine, but make sure you update Ansible using the same system
with which it was installed!

If you’re running Windows (i.e. you work for a large company that forces you to
use Windows), it will take a little extra work to everything set up. There are two
ways you can go about using Ansible if you use Windows:

²⁵http://en.wikipedia.org/wiki/Idempotence#Computer_science_meaning
²⁶http://brew.sh/

Chapter 1 - Getting Started with Ansible 15

1. The easiest solution would be to use a Linux virtual machine (with something
like VirtualBox) to do your work. For detailed instructions, see Appendix A -
Using Ansible on Windows workstations.

2. Ansible runs (somewhat) within an appropriately-configured Cygwin²⁷ en-
vironment. For setup instructions, please see my blog post Running Ansible
within Windows²⁸), and note that running Ansible directly within Windows is
unsupported and prone to breaking.

If you’re running Linux, chances are you already have Ansible’s dependencies
installed, but we’ll cover the most common installation methods.

If you have python-pip and python-devel (python-dev on Debian/Ubuntu) in-
stalled, use pip to install Ansible (this assumes you also have the ‘Development Tools’
package installed, so you have gcc, make, etc. available):

$ sudo pip install ansible

Using pip allows you to upgrade Ansible with pip install --upgrade ansible.

Fedora/Red Hat Enterprise Linux/CentOS:

The easiest way to install Ansible on a Fedora-like system is to use the official yum
package. If you’re running Red Hat Enterprise Linux (RHEL) or CentOS, you need
to install EPEL’s RPM before you install Ansible (see the info section below for
instructions):

$ yum -y install ansible

²⁷http://cygwin.com/
²⁸https://servercheck.in/blog/running-ansible-within-windows

Chapter 1 - Getting Started with Ansible 15

1. The easiest solution would be to use a Linux virtual machine (with something
like VirtualBox) to do your work. For detailed instructions, see Appendix A -
Using Ansible on Windows workstations.

2. Ansible runs (somewhat) within an appropriately-configured Cygwin²⁷ en-
vironment. For setup instructions, please see my blog post Running Ansible
within Windows²⁸), and note that running Ansible directly within Windows is
unsupported and prone to breaking.

If you’re running Linux, chances are you already have Ansible’s dependencies
installed, but we’ll cover the most common installation methods.

If you have python-pip and python-devel (python-dev on Debian/Ubuntu) in-
stalled, use pip to install Ansible (this assumes you also have the ‘Development Tools’
package installed, so you have gcc, make, etc. available):

$ sudo pip install ansible

Using pip allows you to upgrade Ansible with pip install --upgrade ansible.

Fedora/Red Hat Enterprise Linux/CentOS:

The easiest way to install Ansible on a Fedora-like system is to use the official yum
package. If you’re running Red Hat Enterprise Linux (RHEL) or CentOS, you need
to install EPEL’s RPM before you install Ansible (see the info section below for
instructions):

$ yum -y install ansible

²⁷http://cygwin.com/
²⁸https://servercheck.in/blog/running-ansible-within-windows

Chapter 1 - Getting Started with Ansible 16

On RHEL/CentOS systems, python-pip and ansible are available via the
EPEL repository²⁹. If you run the command yum repolist | grep epel

(to see if the EPEL repo is already available) and there are no results, you
need to install it with the following commands:

If you're on RHEL/CentOS 6:

$ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/\

epel-release-6-8.noarch.rpm

If you're on RHEL/CentOS 7:

$ yum install epel-release

Debian/Ubuntu:

The easiest way to install Ansible on a Debian or Ubuntu system is to use the official
apt package.

$ sudo apt-add-repository -y ppa:ansible/ansible

$ sudo apt-get update

$ sudo apt-get install -y ansible

If you get an error like “sudo: add-apt-repository: command not found”,
you’re probably missing the python-software-properties package. In-
stall it with the command:

$ sudo apt-get install python-software-properties

Once Ansible is installed, make sure it’s working properly by entering ansible

--version on the command line. You should see the currently-installed version:

²⁹https://fedoraproject.org/wiki/EPEL

Chapter 1 - Getting Started with Ansible 16

On RHEL/CentOS systems, python-pip and ansible are available via the
EPEL repository²⁹. If you run the command yum repolist | grep epel

(to see if the EPEL repo is already available) and there are no results, you
need to install it with the following commands:

If you're on RHEL/CentOS 6:

$ rpm -ivh http://dl.fedoraproject.org/pub/epel/6/x86_64/\

epel-release-6-8.noarch.rpm

If you're on RHEL/CentOS 7:

$ yum install epel-release

Debian/Ubuntu:

The easiest way to install Ansible on a Debian or Ubuntu system is to use the official
apt package.

$ sudo apt-add-repository -y ppa:ansible/ansible

$ sudo apt-get update

$ sudo apt-get install -y ansible

If you get an error like “sudo: add-apt-repository: command not found”,
you’re probably missing the python-software-properties package. In-
stall it with the command:

$ sudo apt-get install python-software-properties

Once Ansible is installed, make sure it’s working properly by entering ansible

--version on the command line. You should see the currently-installed version:

²⁹https://fedoraproject.org/wiki/EPEL

Chapter 1 - Getting Started with Ansible 17

$ ansible --version

ansible 2.1.0.0

Creating a basic inventory file

Ansible uses an inventory file (basically, a list of servers) to communicate with your
servers. Like a hosts file (at /etc/hosts) that matches IP addresses to domain names,
an Ansible inventory file matches servers (IP addresses or domain names) to groups.
Inventory files can do a lot more, but for now, we’ll just create a simple file with
one server. Create a file at /etc/ansible/hosts (the default location for Ansible’s
inventory file), and add one server to it:

$ sudo mkdir /etc/ansible

$ sudo touch /etc/ansible/hosts

Edit this hosts file with nano, vim, or whatever editor you’d like, but note you’ll need
to edit it with sudo as root. Put the following into the file:

1 [example]

2 www.example.com

…where example is the group of servers you’remanaging and www.example.com is the
domain name (or IP address) of a server in that group. If you’re not using port 22 for
SSH on this server, you will need to add it to the address, like www.example.com:2222,
since Ansible defaults to port 22 and won’t get this value from your ssh config file.

This first example assumes you have a server set up that you can test with;
if you don’t already have a spare server somewhere that you can connect
to, youmight want to create a small VM using DigitalOcean, AmazonWeb
Services, Linode, or some other service that bills by the hour. That way you
have a full server environment to work with when learning Ansible—and
when you’re finished testing, delete the server and you’ll only be billed a
few pennies!

Replace the www.example.com in the above example with the name or IP
address of your server.

Chapter 1 - Getting Started with Ansible 17

$ ansible --version

ansible 2.1.0.0

Creating a basic inventory file

Ansible uses an inventory file (basically, a list of servers) to communicate with your
servers. Like a hosts file (at /etc/hosts) that matches IP addresses to domain names,
an Ansible inventory file matches servers (IP addresses or domain names) to groups.
Inventory files can do a lot more, but for now, we’ll just create a simple file with
one server. Create a file at /etc/ansible/hosts (the default location for Ansible’s
inventory file), and add one server to it:

$ sudo mkdir /etc/ansible

$ sudo touch /etc/ansible/hosts

Edit this hosts file with nano, vim, or whatever editor you’d like, but note you’ll need
to edit it with sudo as root. Put the following into the file:

1 [example]

2 www.example.com

…where example is the group of servers you’remanaging and www.example.com is the
domain name (or IP address) of a server in that group. If you’re not using port 22 for
SSH on this server, you will need to add it to the address, like www.example.com:2222,
since Ansible defaults to port 22 and won’t get this value from your ssh config file.

This first example assumes you have a server set up that you can test with;
if you don’t already have a spare server somewhere that you can connect
to, youmight want to create a small VM using DigitalOcean, AmazonWeb
Services, Linode, or some other service that bills by the hour. That way you
have a full server environment to work with when learning Ansible—and
when you’re finished testing, delete the server and you’ll only be billed a
few pennies!

Replace the www.example.com in the above example with the name or IP
address of your server.

Chapter 1 - Getting Started with Ansible 18

Running your first Ad-Hoc Ansible command

Now that you’ve installed Ansible and created an inventory file, it’s time to run a
command to see if everything works! Enter the following in the terminal (we’ll do
something safe so it doesn’t make any changes on the server):

$ ansible example -m ping -u [username]

…where [username] is the user you use to log into the server. If everything worked,
you should see a message that shows www.example.com | success >>, then the
result of your ping. If it didn’t work, run the command again with -vvvv on the end
to see verbose output. Chances are you don’t have SSH keys configured properly—if
you login with ssh username@www.example.com and that works, the above Ansible
command should work, too.

Ansible assumes you’re using passwordless (key-based) login for SSH
(e.g. you login by entering ssh username@example.com and don’t have
to type a password). If you’re still logging into your remote servers
with a username and password, or if you need a primer on Linux
remote authentication and security best practices, please read Chapter 10
- Server Security and Ansible. If you insist on using passwords, add the
--ask-pass (-k) flag to Ansible commands (you may also need to install
the sshpass package for this towork). This entire book is written assuming
passwordless authentication, so you’ll need to keep this inmind every time
you run a command or playbook.

Need a primer on SSH key-based authentication? Please read through
Ubuntu’s community documentation on SSH/OpenSSH/Keys³⁰.

Let’s run a more useful command:

³⁰https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Chapter 1 - Getting Started with Ansible 18

Running your first Ad-Hoc Ansible command

Now that you’ve installed Ansible and created an inventory file, it’s time to run a
command to see if everything works! Enter the following in the terminal (we’ll do
something safe so it doesn’t make any changes on the server):

$ ansible example -m ping -u [username]

…where [username] is the user you use to log into the server. If everything worked,
you should see a message that shows www.example.com | success >>, then the
result of your ping. If it didn’t work, run the command again with -vvvv on the end
to see verbose output. Chances are you don’t have SSH keys configured properly—if
you login with ssh username@www.example.com and that works, the above Ansible
command should work, too.

Ansible assumes you’re using passwordless (key-based) login for SSH
(e.g. you login by entering ssh username@example.com and don’t have
to type a password). If you’re still logging into your remote servers
with a username and password, or if you need a primer on Linux
remote authentication and security best practices, please read Chapter 10
- Server Security and Ansible. If you insist on using passwords, add the
--ask-pass (-k) flag to Ansible commands (you may also need to install
the sshpass package for this towork). This entire book is written assuming
passwordless authentication, so you’ll need to keep this inmind every time
you run a command or playbook.

Need a primer on SSH key-based authentication? Please read through
Ubuntu’s community documentation on SSH/OpenSSH/Keys³⁰.

Let’s run a more useful command:

³⁰https://help.ubuntu.com/community/SSH/OpenSSH/Keys

Chapter 1 - Getting Started with Ansible 19

$ ansible example -a "free -m" -u [username]

In this example, we quickly seememory usage (in a human readable format) on all the
servers (for now, just one) in the example group. Commands like this are helpful for
quickly finding a server that has a value out of a normal range. I often use commands
like free -m (to see memory statistics), df -h (to see disk usage statistics), and the
like to make sure none of my servers is behaving erratically. While it’s good to track
these details in an external tool like Nagios³¹, Munin³², or Cacti³³, it’s also nice to
check these stats on all your servers with one simple command and one terminal
window!

Summary

That’s it! You’ve just learned about configuration management and Ansible, installed
it, told it about your server, and ran a couple commands on that server through
Ansible. If you’re not impressed yet, that’s okay—you’ve only seen the tip of the
iceberg.

/ A doctor can bury his mistakes but an \

| architect can only advise his clients |

\ to plant vines. (Frank Lloyd Wright) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

³¹http://www.nagios.org/
³²http://munin-monitoring.org/
³³http://www.cacti.net/

Chapter 1 - Getting Started with Ansible 19

$ ansible example -a "free -m" -u [username]

In this example, we quickly seememory usage (in a human readable format) on all the
servers (for now, just one) in the example group. Commands like this are helpful for
quickly finding a server that has a value out of a normal range. I often use commands
like free -m (to see memory statistics), df -h (to see disk usage statistics), and the
like to make sure none of my servers is behaving erratically. While it’s good to track
these details in an external tool like Nagios³¹, Munin³², or Cacti³³, it’s also nice to
check these stats on all your servers with one simple command and one terminal
window!

Summary

That’s it! You’ve just learned about configuration management and Ansible, installed
it, told it about your server, and ran a couple commands on that server through
Ansible. If you’re not impressed yet, that’s okay—you’ve only seen the tip of the
iceberg.

/ A doctor can bury his mistakes but an \

| architect can only advise his clients |

\ to plant vines. (Frank Lloyd Wright) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

³¹http://www.nagios.org/
³²http://munin-monitoring.org/
³³http://www.cacti.net/

Chapter 2 - Local Infrastructure
Development: Ansible and
Vagrant
Prototyping and testing with local virtual
machines

Ansible works well with any server to which you can connect—remote or local. For
speedier testing and development of Ansible playbooks, and for testing in general, it’s
a very good idea to work locally. Local development and testing of infrastructure is
both safer and faster than doing it on remote/live machines—especially in production
environments!

In the past decade, test-driven development (TDD), in one form or another,
has become the norm for much of the software industry. Infrastructure
development hasn’t been as organized until recently, and best practices
dictate that infrastructure (which is becoming more and more important
to the software that runs on it) should be thoroughly tested as well.

Changes to software are tested either manually or in some automated
fashion; there are now systems that integrate both with Ansible and
with other deployment and configuration management tools, to allow
some amount of infrastructure testing as well. Even if it’s just testing a
configuration change locally before applying it to production, that ap-
proach is a thousand times better than what, in the software development
world, would be called ‘cowboy coding’—working directly in a production
environment, not documenting or encapsulating changes in code, and not
having a way to roll back to a previous version.

The past decade has seen the growth of many virtualization tools that allow for
flexible and very powerful infrastructure emulation, all from your local workstation!

Chapter 2 - Local Infrastructure
Development: Ansible and
Vagrant
Prototyping and testing with local virtual
machines

Ansible works well with any server to which you can connect—remote or local. For
speedier testing and development of Ansible playbooks, and for testing in general, it’s
a very good idea to work locally. Local development and testing of infrastructure is
both safer and faster than doing it on remote/live machines—especially in production
environments!

In the past decade, test-driven development (TDD), in one form or another,
has become the norm for much of the software industry. Infrastructure
development hasn’t been as organized until recently, and best practices
dictate that infrastructure (which is becoming more and more important
to the software that runs on it) should be thoroughly tested as well.

Changes to software are tested either manually or in some automated
fashion; there are now systems that integrate both with Ansible and
with other deployment and configuration management tools, to allow
some amount of infrastructure testing as well. Even if it’s just testing a
configuration change locally before applying it to production, that ap-
proach is a thousand times better than what, in the software development
world, would be called ‘cowboy coding’—working directly in a production
environment, not documenting or encapsulating changes in code, and not
having a way to roll back to a previous version.

The past decade has seen the growth of many virtualization tools that allow for
flexible and very powerful infrastructure emulation, all from your local workstation!

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 21

It’s empowering to be able to play around with a config file, or to tweak the order
of a server update to perfection, over and over again, with no fear of breaking an
important server. If you use a local virtual machine, there’s no downtime for a server
rebuild; just re-run the provisioning on a new VM, and you’re back up and running
in minutes—with no one the wiser.

Vagrant³⁴, a server provisioning tool, and VirtualBox³⁵, a local virtualization envi-
ronment, make a potent combination for testing infrastructure and individual server
configurations locally. Both applications are free and open source, and work well on
Mac, Linux, or Windows hosts.

We’re going to set up Vagrant and VirtualBox for easy testing with Ansible to
provision a new server.

Your first local server: Setting up Vagrant

To get started with your first local virtual server, you need to download and install
Vagrant and VirtualBox, and set up a simple Vagrantfile, which will describe the
virtual server.

1. Download and install Vagrant and VirtualBox (whichever version is appro-
priate for your OS): - Download Vagrant³⁶ - Download VirtualBox³⁷ (when
installing, make sure the command line tools are installed, so Vagrant work
with it)

2. Create a new folder somewhere on your hard drive where you will keep your
Vagrantfile and provisioning instructions.

3. Open a Terminal or PowerShell window, then navigate to the folder you just
created.

4. Add aCentOS 7.x 64-bit ‘box’ using the vagrant box add³⁸ command: vagrant
box add geerlingguy/centos7 (note: HashiCorp’s Atlas³⁹ has a comprehen-

³⁴http://www.vagrantup.com/
³⁵https://www.virtualbox.org/
³⁶http://www.vagrantup.com/downloads.html
³⁷https://www.virtualbox.org/wiki/Downloads
³⁸http://docs.vagrantup.com/v2/boxes.html
³⁹https://atlas.hashicorp.com/boxes/search

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 21

It’s empowering to be able to play around with a config file, or to tweak the order
of a server update to perfection, over and over again, with no fear of breaking an
important server. If you use a local virtual machine, there’s no downtime for a server
rebuild; just re-run the provisioning on a new VM, and you’re back up and running
in minutes—with no one the wiser.

Vagrant³⁴, a server provisioning tool, and VirtualBox³⁵, a local virtualization envi-
ronment, make a potent combination for testing infrastructure and individual server
configurations locally. Both applications are free and open source, and work well on
Mac, Linux, or Windows hosts.

We’re going to set up Vagrant and VirtualBox for easy testing with Ansible to
provision a new server.

Your first local server: Setting up Vagrant

To get started with your first local virtual server, you need to download and install
Vagrant and VirtualBox, and set up a simple Vagrantfile, which will describe the
virtual server.

1. Download and install Vagrant and VirtualBox (whichever version is appro-
priate for your OS): - Download Vagrant³⁶ - Download VirtualBox³⁷ (when
installing, make sure the command line tools are installed, so Vagrant work
with it)

2. Create a new folder somewhere on your hard drive where you will keep your
Vagrantfile and provisioning instructions.

3. Open a Terminal or PowerShell window, then navigate to the folder you just
created.

4. Add aCentOS 7.x 64-bit ‘box’ using the vagrant box add³⁸ command: vagrant
box add geerlingguy/centos7 (note: HashiCorp’s Atlas³⁹ has a comprehen-

³⁴http://www.vagrantup.com/
³⁵https://www.virtualbox.org/
³⁶http://www.vagrantup.com/downloads.html
³⁷https://www.virtualbox.org/wiki/Downloads
³⁸http://docs.vagrantup.com/v2/boxes.html
³⁹https://atlas.hashicorp.com/boxes/search

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 22

sive list of different pre-made Linux boxes. Also, check out the ‘official’
Vagrant Ubuntu boxes in Vagrant’s Boxes documentation⁴⁰.

5. Create a default virtual server configuration using the box you just down-
loaded: vagrant init geerlingguy/centos7

6. Boot your CentOS server: vagrant up

Vagrant has downloaded a pre-built 64-bit CentOS 7 virtual machine (you can build
your own⁴¹ virtual machine ‘boxes’, if you so desire), loaded it into VirtualBox with
the configuration defined in the default Vagrantfile (which is now in the folder you
created earlier), and booted the virtual machine.

Managing this virtual server is extremely easy: vagrant halt will shut down the
VM, vagrant up will bring it back up, and vagrant destroy will completely delete
the machine from VirtualBox. A simple vagrant up again will re-create it from the
base box you originally downloaded.

Now that you have a running server, you can use it just like you would any other
server, and you can connect via SSH. To connect, enter vagrant ssh from the folder
where the Vagrantfile is located. If you want to connect manually, or connect from
another application, enter vagrant ssh-config to get the required SSH details.

Using Ansible with Vagrant

Vagrant’s ability to bring up preconfigured boxes is convenient on its own, but you
could do similar things with the same efficiency using VirtualBox’s (or VMWare’s,
or Parallels’) GUI. Vagrant has some other tricks up its sleeve:

• Network interface management⁴²: You can forward ports to a VM, share the
public network connection, or use private networking for inter-VM and host-
only communication.

• Shared folder management⁴³: Vagrant sets up shares between your host
machine and VMs using NFS or (much slower) native folder sharing in
VirtualBox.

⁴⁰https://www.vagrantup.com/docs/boxes.html
⁴¹https://www.vagrantup.com/docs/virtualbox/boxes.html
⁴²https://www.vagrantup.com/docs/networking/index.html
⁴³https://www.vagrantup.com/docs/synced-folders/index.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 22

sive list of different pre-made Linux boxes. Also, check out the ‘official’
Vagrant Ubuntu boxes in Vagrant’s Boxes documentation⁴⁰.

5. Create a default virtual server configuration using the box you just down-
loaded: vagrant init geerlingguy/centos7

6. Boot your CentOS server: vagrant up

Vagrant has downloaded a pre-built 64-bit CentOS 7 virtual machine (you can build
your own⁴¹ virtual machine ‘boxes’, if you so desire), loaded it into VirtualBox with
the configuration defined in the default Vagrantfile (which is now in the folder you
created earlier), and booted the virtual machine.

Managing this virtual server is extremely easy: vagrant halt will shut down the
VM, vagrant up will bring it back up, and vagrant destroy will completely delete
the machine from VirtualBox. A simple vagrant up again will re-create it from the
base box you originally downloaded.

Now that you have a running server, you can use it just like you would any other
server, and you can connect via SSH. To connect, enter vagrant ssh from the folder
where the Vagrantfile is located. If you want to connect manually, or connect from
another application, enter vagrant ssh-config to get the required SSH details.

Using Ansible with Vagrant

Vagrant’s ability to bring up preconfigured boxes is convenient on its own, but you
could do similar things with the same efficiency using VirtualBox’s (or VMWare’s,
or Parallels’) GUI. Vagrant has some other tricks up its sleeve:

• Network interface management⁴²: You can forward ports to a VM, share the
public network connection, or use private networking for inter-VM and host-
only communication.

• Shared folder management⁴³: Vagrant sets up shares between your host
machine and VMs using NFS or (much slower) native folder sharing in
VirtualBox.

⁴⁰https://www.vagrantup.com/docs/boxes.html
⁴¹https://www.vagrantup.com/docs/virtualbox/boxes.html
⁴²https://www.vagrantup.com/docs/networking/index.html
⁴³https://www.vagrantup.com/docs/synced-folders/index.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 23

• Multi-machine management⁴⁴: Vagrant is able to configure and control
multiple VMs within one Vagrantfile. This is important because, as stated in
the documentation, “Historically, running complex environments was done by
flattening them onto a single machine. The problem with that is that it is an
inaccurate model of the production setup, which behaves far differently.”

• Provisioning⁴⁵: When running vagrant up the first time, Vagrant automati-
cally provisions the newly-minted VM using whatever provisioner you have
configured in the Vagrantfile. You can also run vagrant provision after the
VM has been created to explicitly run the provisioner again.

It’s this last feature that is most important for us. Ansible is one of many provisioners
integrated with Vagrant (others include basic shell scripts, Chef, Docker, Puppet,
and Salt). When you call vagrant provision (or vagrant up) the first time, Vagrant
passes off the VM to Ansible, and tells Ansible to run a defined Ansible playbook.
We’ll get into the details of Ansible playbooks later, but for now, we’re going to edit
our Vagrantfile to use Ansible to provision our virtual machine.

Open the Vagrantfile that was created when we used the vagrant init command
earlier. Add the following lines just before the final ‘end’ (Vagrantfiles use Ruby
syntax, in case you’re wondering):

1 # Provisioning configuration for Ansible.

2 config.vm.provision "ansible" do |ansible|

3 ansible.playbook = "playbook.yml"

4 end

This is a very basic configuration to get you started using Ansible with Vagrant.
There are many other Ansible options⁴⁶ you can use once we get deeper into using
Ansible. For now, we just want to set up a very basic playbook—a simple file you
create to tell Ansible how to configure your VM.

⁴⁴https://www.vagrantup.com/docs/multi-machine/index.html
⁴⁵https://www.vagrantup.com/docs/provisioning/index.html
⁴⁶https://www.vagrantup.com/docs/provisioning/ansible.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 23

• Multi-machine management⁴⁴: Vagrant is able to configure and control
multiple VMs within one Vagrantfile. This is important because, as stated in
the documentation, “Historically, running complex environments was done by
flattening them onto a single machine. The problem with that is that it is an
inaccurate model of the production setup, which behaves far differently.”

• Provisioning⁴⁵: When running vagrant up the first time, Vagrant automati-
cally provisions the newly-minted VM using whatever provisioner you have
configured in the Vagrantfile. You can also run vagrant provision after the
VM has been created to explicitly run the provisioner again.

It’s this last feature that is most important for us. Ansible is one of many provisioners
integrated with Vagrant (others include basic shell scripts, Chef, Docker, Puppet,
and Salt). When you call vagrant provision (or vagrant up) the first time, Vagrant
passes off the VM to Ansible, and tells Ansible to run a defined Ansible playbook.
We’ll get into the details of Ansible playbooks later, but for now, we’re going to edit
our Vagrantfile to use Ansible to provision our virtual machine.

Open the Vagrantfile that was created when we used the vagrant init command
earlier. Add the following lines just before the final ‘end’ (Vagrantfiles use Ruby
syntax, in case you’re wondering):

1 # Provisioning configuration for Ansible.

2 config.vm.provision "ansible" do |ansible|

3 ansible.playbook = "playbook.yml"

4 end

This is a very basic configuration to get you started using Ansible with Vagrant.
There are many other Ansible options⁴⁶ you can use once we get deeper into using
Ansible. For now, we just want to set up a very basic playbook—a simple file you
create to tell Ansible how to configure your VM.

⁴⁴https://www.vagrantup.com/docs/multi-machine/index.html
⁴⁵https://www.vagrantup.com/docs/provisioning/index.html
⁴⁶https://www.vagrantup.com/docs/provisioning/ansible.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 24

Your first Ansible playbook

Let’s create the Ansible playbook.yml file now. Create an empty text file in the same
folder as your Vagrantfile, and put in the following contents:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - name: Ensure NTP (for time synchronization) is installed.

6 yum: name=ntp state=present

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

I’ll get into what this playbook is doing in a minute. For now, let’s run the playbook
on our VM. Make sure you’re in the same directory as the Vagrantfile and new
playbook.yml file, and enter vagrant provision. You should see status messages
for each of the ‘tasks’ you defined, and then a recap showing what Ansible did on
your VM—something like the following:

PLAY RECAP **

default : ok=3 changed=1 unreachable=0 failed=0

Ansible just took the simple playbook you defined, parsed the YAML syntax, and
ran a bunch of commands via SSH to configure the server as you specified. Let’s go
through the playbook, step by step:

1 ---

This first line is a marker showing that the rest of the document will be formatted in
YAML (read a getting started guide for YAML⁴⁷).

⁴⁷http://www.yaml.org/start.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 24

Your first Ansible playbook

Let’s create the Ansible playbook.yml file now. Create an empty text file in the same
folder as your Vagrantfile, and put in the following contents:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - name: Ensure NTP (for time synchronization) is installed.

6 yum: name=ntp state=present

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

I’ll get into what this playbook is doing in a minute. For now, let’s run the playbook
on our VM. Make sure you’re in the same directory as the Vagrantfile and new
playbook.yml file, and enter vagrant provision. You should see status messages
for each of the ‘tasks’ you defined, and then a recap showing what Ansible did on
your VM—something like the following:

PLAY RECAP **

default : ok=3 changed=1 unreachable=0 failed=0

Ansible just took the simple playbook you defined, parsed the YAML syntax, and
ran a bunch of commands via SSH to configure the server as you specified. Let’s go
through the playbook, step by step:

1 ---

This first line is a marker showing that the rest of the document will be formatted in
YAML (read a getting started guide for YAML⁴⁷).

⁴⁷http://www.yaml.org/start.html

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 25

2 - hosts: all

This line tells Ansible to which hosts this playbook applies. all works here, since
Vagrant is invisibly using its own Ansible inventory file (instead of the one we
created earlier in /etc/ansible/hosts), which just defines the Vagrant VM.

3 become: yes

Since we need privileged access to install NTP and modify system configuration, this
line tells Ansible to use sudo for all the tasks in the playbook (you’re telling Ansible
to ‘become’ the root user with sudo, or an equivalent).

4 tasks:

All the tasks after this line will be run on all hosts (or, in our case, our one VM).

5 - name: Ensure NTP daemon (for time synchronization) is installed.

6 yum: name=ntp state=present

This command is the equivalent of running yum install ntp, but is much more
intelligent; it will check if ntp is installed, and, if not, install it. This is the equivalent
of the following shell script:

if ! rpm -qa | grep -qw ntp; then

yum install ntp

fi

However, the above script is still not quite as robust as Ansible’s yum command.What
if ntpdate is installed, but not ntp? This script would require extra tweaking and
complexity to match the simple Ansible yum command, especially after we explore
the yum module more intimately (or the apt module for Debian-flavored Linux, or
package for OS-agnostic package installation).

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 25

2 - hosts: all

This line tells Ansible to which hosts this playbook applies. all works here, since
Vagrant is invisibly using its own Ansible inventory file (instead of the one we
created earlier in /etc/ansible/hosts), which just defines the Vagrant VM.

3 become: yes

Since we need privileged access to install NTP and modify system configuration, this
line tells Ansible to use sudo for all the tasks in the playbook (you’re telling Ansible
to ‘become’ the root user with sudo, or an equivalent).

4 tasks:

All the tasks after this line will be run on all hosts (or, in our case, our one VM).

5 - name: Ensure NTP daemon (for time synchronization) is installed.

6 yum: name=ntp state=present

This command is the equivalent of running yum install ntp, but is much more
intelligent; it will check if ntp is installed, and, if not, install it. This is the equivalent
of the following shell script:

if ! rpm -qa | grep -qw ntp; then

yum install ntp

fi

However, the above script is still not quite as robust as Ansible’s yum command.What
if ntpdate is installed, but not ntp? This script would require extra tweaking and
complexity to match the simple Ansible yum command, especially after we explore
the yum module more intimately (or the apt module for Debian-flavored Linux, or
package for OS-agnostic package installation).

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 26

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

This final task both checks and ensures that the ntpd service is started and running,
and sets it to start at system boot. A shell script with the same effect would be:

Start ntpd if it's not already running.

if ps aux | grep -v grep | grep "[n]tpd" > /dev/null

then

echo "ntpd is running." > /dev/null

else

systemctl start ntpd.service > /dev/null

echo "Started ntpd."

fi

Make sure ntpd is enabled on system startup.

systemctl enable ntpd.service

You can see how things start getting complex in the land of shell scripts! And this shell
script is still not as robust as what you get with Ansible. To maintain idempotency
and handle error conditions, you’ll have to do a lot more extra work with basic shell
scripts than you do with Ansible.

We could be even more terse (and really demonstrate Ansible’s powerful simplicity)
and not use Ansible’s namemodule to give human-readable names to each command,
resulting in the following playbook:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - yum: name=ntp state=present

6 - service: name=ntpd state=started enabled=yes

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 26

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

This final task both checks and ensures that the ntpd service is started and running,
and sets it to start at system boot. A shell script with the same effect would be:

Start ntpd if it's not already running.

if ps aux | grep -v grep | grep "[n]tpd" > /dev/null

then

echo "ntpd is running." > /dev/null

else

systemctl start ntpd.service > /dev/null

echo "Started ntpd."

fi

Make sure ntpd is enabled on system startup.

systemctl enable ntpd.service

You can see how things start getting complex in the land of shell scripts! And this shell
script is still not as robust as what you get with Ansible. To maintain idempotency
and handle error conditions, you’ll have to do a lot more extra work with basic shell
scripts than you do with Ansible.

We could be even more terse (and really demonstrate Ansible’s powerful simplicity)
and not use Ansible’s namemodule to give human-readable names to each command,
resulting in the following playbook:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - yum: name=ntp state=present

6 - service: name=ntpd state=started enabled=yes

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 26

7 - name: Ensure NTP is running.

8 service: name=ntpd state=started enabled=yes

This final task both checks and ensures that the ntpd service is started and running,
and sets it to start at system boot. A shell script with the same effect would be:

Start ntpd if it's not already running.

if ps aux | grep -v grep | grep "[n]tpd" > /dev/null

then

echo "ntpd is running." > /dev/null

else

systemctl start ntpd.service > /dev/null

echo "Started ntpd."

fi

Make sure ntpd is enabled on system startup.

systemctl enable ntpd.service

You can see how things start getting complex in the land of shell scripts! And this shell
script is still not as robust as what you get with Ansible. To maintain idempotency
and handle error conditions, you’ll have to do a lot more extra work with basic shell
scripts than you do with Ansible.

We could be even more terse (and really demonstrate Ansible’s powerful simplicity)
and not use Ansible’s namemodule to give human-readable names to each command,
resulting in the following playbook:

1 ---

2 - hosts: all

3 become: yes

4 tasks:

5 - yum: name=ntp state=present

6 - service: name=ntpd state=started enabled=yes

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 27

Just as with code and configuration files, documentation in Ansible
(e.g. using the name function and/or adding comments to the YAML
for complicated tasks) is not absolutely necessary. However, I’m a firm
believer in thorough (but concise) documentation, so I almost always
document what my tasks will do by providing a name for each one. This
also helps when you’re running the playbooks, so you can seewhat’s going
on in a human-readable format.

Cleaning Up

Once you’re finished experimenting with the CentOS Vagrant VM, you can remove it
from your system by running vagrant destroy. If you want to rebuild the VM again,
run vagrant up. If you’re like me, you’ll soon be building and rebuilding hundreds
of VMs and containers per week using Vagrant and Ansible!

Summary

Your workstation is on the path to becoming an “infrastructure-in-a-box,” and you
can now ensure your infrastructure is as well-tested as the code that runs on top if it.
With one small example, you’ve got a glimpse at the simple-yet-powerful Ansible
playbook. We’ll dive deeper into Ansible playbooks later, and we’ll also explore
Vagrant a little more as we go.

/ I have not failed, I've just found \

| 10,000 ways that won't work. (Thomas |

\ Edison) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

Chapter 2 - Local Infrastructure Development: Ansible and Vagrant 27

Just as with code and configuration files, documentation in Ansible
(e.g. using the name function and/or adding comments to the YAML
for complicated tasks) is not absolutely necessary. However, I’m a firm
believer in thorough (but concise) documentation, so I almost always
document what my tasks will do by providing a name for each one. This
also helps when you’re running the playbooks, so you can seewhat’s going
on in a human-readable format.

Cleaning Up

Once you’re finished experimenting with the CentOS Vagrant VM, you can remove it
from your system by running vagrant destroy. If you want to rebuild the VM again,
run vagrant up. If you’re like me, you’ll soon be building and rebuilding hundreds
of VMs and containers per week using Vagrant and Ansible!

Summary

Your workstation is on the path to becoming an “infrastructure-in-a-box,” and you
can now ensure your infrastructure is as well-tested as the code that runs on top if it.
With one small example, you’ve got a glimpse at the simple-yet-powerful Ansible
playbook. We’ll dive deeper into Ansible playbooks later, and we’ll also explore
Vagrant a little more as we go.

/ I have not failed, I've just found \

| 10,000 ways that won't work. (Thomas |

\ Edison) /

\ ^__^

\ (oo)_______

(__)\)\/\

||----w |

|| ||

	Table of Contents
	Foreword
	Preface
	Who is this book for?
	Typographic conventions
	Please help improve this book!
	About the Author

	Introduction
	In the beginning, there were sysadmins
	Modern infrastructure management
	Ansible and Ansible, Inc.
	Ansible Examples
	Other resources

	Chapter 1 - Getting Started with Ansible
	Ansible and Infrastructure Management
	On snowflakes and shell scripts
	Configuration management

	Installing Ansible
	Creating a basic inventory file
	Running your first Ad-Hoc Ansible command
	Summary

	Chapter 2 - Local Infrastructure Development: Ansible and Vagrant
	Prototyping and testing with local virtual machines
	Your first local server: Setting up Vagrant
	Using Ansible with Vagrant
	Your first Ansible playbook
	Cleaning Up
	Summary

