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Welcome to the Yahoo! Hadoop Tutorial. This CD includes the
following materials designed to teach you how to use the Hadoop
distributed data processing environment:


  	Hadoop 0.18.0 distribution (includes full source code)

  	A virtual machine image running Ubuntu Linux and preconfigured
with Hadoop

  	VMware Player software to run the virtual machine image

  	A tutorial which will guide you through many aspects of Hadoop's
installation and operation.



The tutorial is divided into seven modules, designed to be worked
through in order. They can be accessed from the links below. 


  	Tutorial Introduction

  	The Hadoop Distributed File System

  	Getting Started With Hadoop

  	MapReduce

  	Advanced MapReduce Features

  	Related Topics

  	Managing a Hadoop Cluster

  	Pig Tutorial








Module 1: Tutorial Introduction
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[bookmark: intro]Introduction

[bookmark: intro] 
[bookmark: intro]Welcome to the Yahoo! Hadoop tutorial! This series
of tutorial documents will walk you through many aspects of the Apache
Hadoop system. You will be shown how to set up simple and advanced
cluster configurations, use the distributed file system, and develop
complex Hadoop MapReduce applications. Other related systems are also
reviewed.

[bookmark: intro] [bookmark: goals] 

[bookmark: goals]Goals for this Module:

[bookmark: goals] 

  [bookmark: goals] 
  	[bookmark: goals]Understand the scope of problems applicable to
Hadoop

  [bookmark: goals] 
  	[bookmark: goals]Understand how Hadoop addresses these problems
differently from other distributed systems.

  [bookmark: goals] 


[bookmark: goals] [bookmark: outline] 

[bookmark: outline]Outline

[bookmark: outline] 

  [bookmark: outline] 
  	Introduction

  	Goals for this Module

  	Outline

  	Problem Scope

  
    	Challenges at Large Scale

    	Moore's Law

  

  	The Hadoop Approach

  
    	Comparison to Existing Techniques

    	Data Distribution

    	MapReduce: Isolated Processes

    	Flat Scalability

  

  	The Rest of the Tutorial



[bookmark: scope] 

[bookmark: scope]Problem Scope

[bookmark: scope] 
[bookmark: scope]Hadoop is a large-scale distributed batch processing
infrastructure. While it can be used on a single machine, its true
power lies in its ability to scale to hundreds or thousands of
computers, each with several processor cores. Hadoop is also designed
to efficiently distribute large amounts of work across a set of
machines. 

[bookmark: scope] 
[bookmark: scope]How large an amount of work? Orders of
magnitude larger than many existing systems work with. Hundreds of
gigabytes of data constitute the low end of Hadoop-scale.
Actually Hadoop is built to process "web-scale" data on the order of
hundreds of gigabytes to terabytes or petabytes. At this scale, it is
likely that the input data set will not even fit on a single computer's
hard drive, much less in memory. So Hadoop includes a distributed file
system which breaks up input data and sends fractions of the original
data to several machines in your cluster to hold. This results in the
problem being processed in parallel using all of the machines in the
cluster and computes output results as efficiently as possible.

[bookmark: scope] [bookmark: challenges] 
[bookmark: challenges]Challenges at Large Scale

[bookmark: challenges] 
[bookmark: challenges]Performing large-scale computation is
difficult. To work with this volume of data requires distributing parts
of the problem to multiple machines to handle in parallel. Whenever
multiple machines are used in cooperation with one another, the
probability of failures rises. In a single-machine environment, failure
is not something that program designers explicitly worry about very
often: if the machine has crashed, then there is no way for the program
to recover anyway.

[bookmark: challenges] 
[bookmark: challenges]In a distributed environment, however, partial
failures are an expected and common occurrence. Networks can experience
partial or total failure if switches and routers break down. Data may
not arrive at a particular point in time due to unexpected network
congestion. Individual compute nodes may overheat, crash, experience
hard drive failures, or run out of memory or disk space. Data may be
corrupted, or maliciously or improperly transmitted. Multiple
implementations or versions of client software may speak slightly
different protocols from one another. Clocks may become desynchronized,
lock files may not be released, parties involved in distributed atomic
transactions may lose their network connections part-way through, etc.
In each of these cases, the rest of the distributed system should be
able to recover from the component failure or transient error condition
and continue to make progress. Of course, actually providing such
resilience is a major software engineering challenge.

[bookmark: challenges] 
[bookmark: challenges]Different distributed systems specifically
address certain modes of failure, while worrying less about others.
Hadoop provides no security model, nor safeguards against maliciously
inserted data. For example, it cannot detect a man-in-the-middle attack
between nodes. On the other hand, it is designed to handle hardware
failure and data congestion issues very robustly. Other distributed
systems make different trade-offs, as they intend to be used for
problems with other requirements (e.g., high security).

[bookmark: challenges] 
[bookmark: challenges]In addition to worrying about these sorts of
bugs and challenges, there is also the fact that the compute hardware
has finite resources available to it. The major resources include:

[bookmark: challenges] 

  [bookmark: challenges] 
  	[bookmark: challenges]Processor time

  [bookmark: challenges] 
  	[bookmark: challenges]Memory

  [bookmark: challenges] 
  	[bookmark: challenges]Hard drive space

  [bookmark: challenges] 
  	[bookmark: challenges]Network bandwidth

  [bookmark: challenges] 


[bookmark: challenges] 
[bookmark: challenges]Individual machines typically only have a few
gigabytes of memory. If the input data set is several terabytes, then
this would require a thousand or more machines to hold it in RAM -- and
even then, no single machine would be able to process or address all of
the data.

[bookmark: challenges] 
[bookmark: challenges]Hard drives are much larger; a single machine
can now hold multiple terabytes of information on its hard drives. But
intermediate data sets generated while performing a large-scale
computation can easily fill up several times more space than what the
original input data set had occupied. During this process, some of the
hard drives employed by the system may become full, and the distributed
system may need to route this data to other nodes which can store the
overflow.

[bookmark: challenges] 
[bookmark: challenges]Finally, bandwidth is a scarce resource even on
an internal network. While a set of nodes directly connected by a
gigabit Ethernet may generally experience high throughput between them,
if all of the machines were transmitting multi-gigabyte data sets, they
can easily saturate the switch's bandwidth capacity. Additionally if
the machines are spread across multiple racks, the bandwidth available
for the data transfer would be much less. Furthermore RPC requests and
other data transfer requests using this channel may be delayed or
dropped.

[bookmark: challenges] 
[bookmark: challenges]To be successful, a large-scale distributed
system must be able to manage the above mentioned resources
efficiently. Furthermore, it must allocate some of these resources
toward maintaining the system as a whole, while devoting as much time
as possible to the actual core computation.

[bookmark: challenges] 
[bookmark: challenges]Synchronization between multiple machines
remains the biggest challenge in distributed system design. If nodes in
a distributed system can explicitly communicate with one another, then
application designers must be cognizant of risks associated with such
communication patterns. It becomes very easy to generate more remote
procedure calls (RPCs) than the system can satisfy! Performing
multi-party data exchanges is also prone to deadlock or race
conditions. Finally, the ability to continue computation in the face of
failures becomes more challenging. For example, if 100 nodes are
present in a system and one of them crashes, the other 99 nodes should
be able to continue the computation, ideally with only a small penalty
proportionate to the loss of 1% of the computing power. Of course, this
will require re-computing any work lost on the unavailable node.
Furthermore, if a complex communication network is overlaid on the
distributed infrastructure, then determining how best to restart the
lost computation and propagating this information about the change in
network topology may be non trivial to implement.

[bookmark: challenges] [bookmark: moore] 
[bookmark: moore]Moore's Law

[bookmark: moore] 
[bookmark: moore]So why use a distributed system at all? They seem
like more trouble than they're worth. And with the fast pace of
computer hardware design, it seems inevitable that single-chip hardware
will be able to "grow up" to handle the larger volumes of data. After
all, Moore's Law (named after Gordon Moore, the founder of Intel)
states that the number of transistors that can be placed in a
processor will double approximately every two years, for half the cost.
But trends in chip design are changing to face new realities. While we
can still double the number of transistors per unit area at this pace,
this does not necessarily result in faster single-threaded performance.
New processors such as Intel Core 2 and Itanium 2 architectures now
focus on embedding many smaller CPUs or "cores" onto the same
physical device. This allows multiple threads to process twice as much
data in parallel, but at the same speed at which they operated
previously.

[bookmark: moore] 
[bookmark: moore]Even if hundreds or thousands of CPU cores are
placed on a single machine, it would not be possible to deliver input
data to these cores fast enough for processing. Individual hard drives
can only sustain read speeds between 60-100 MB/second. These speeds
have been increasing over time, but not at the same breakneck pace as
processors. Optimistically assuming the upper limit of 100 MB/second,
and assuming four independent I/O channels are available to the
machine, that provides 400 MB of data every second. A 4 terabyte data
set would thus take over 10,000 seconds to read--about three hours just
to load the data! With 100 separate machines each with two I/O channels
on the job, this drops to three minutes.

[bookmark: moore] [bookmark: hadoop] 

[bookmark: hadoop]The Hadoop Approach

[bookmark: hadoop] 
[bookmark: hadoop]Hadoop is designed to efficiently process large
volumes of information by connecting many commodity computers together
to work in parallel. The theoretical 1000-CPU machine described earlier
would cost a very large amount of money, far more than 1,000 single-CPU
or 250 quad-core machines. Hadoop will tie these smaller and more
reasonably priced machines together into a single cost-effective
compute cluster.

[bookmark: hadoop] [bookmark: comparison] 
[bookmark: comparison]Comparison to Existing Techniques

[bookmark: comparison] 
[bookmark: comparison]Performing computation on large volumes of data
has been done before, usually in a distributed setting. What makes
Hadoop unique is its simplified programming model which allows
the user to quickly write and test distributed systems, and its efficient,
automatic distribution of data and work across machines and in turn
utilizing the underlying parallelism of the CPU cores.

[bookmark: comparison] 
[bookmark: comparison]Grid scheduling of computers can be done with
existing systems such as Condor. But Condor does not automatically
distribute data: a separate SAN must be managed in addition to the
compute cluster. Furthermore, collaboration between multiple compute
nodes must be managed with a communication system such as MPI. This
programming model is challenging to work with and can lead to the
introduction of subtle errors.

[bookmark: comparison] [bookmark: data] 
[bookmark: data]Data Distribution

[bookmark: data] 
[bookmark: data]In a Hadoop cluster, data is distributed to all the
nodes of the cluster as it is being loaded in. The Hadoop Distributed
File System (HDFS) will split large data files into chunks which are
managed by different nodes in the cluster. In addition to this each
chunk is replicated across several machines, so that a single machine
failure does not result in any data being unavailable. An active
monitoring system then re-replicates the data in response to system
failures which can result in partial storage. Even though the file
chunks are replicated and distributed across several machines, they
form a single namespace, so their contents are universally accessible.

[bookmark: data] 
[bookmark: data]Data is conceptually record-oriented in the
Hadoop programming framework. Individual input files are broken into
lines or into other formats specific to the application logic. Each
process running on a node in the cluster then processes a subset of
these records. The Hadoop framework then schedules these processes in
proximity to the location of data/records using knowledge from the
distributed file system. Since files are spread across the distributed
file system as chunks, each compute process running on a node operates
on a subset of the data. Which data operated on by a node is chosen
based on its locality to the node: most data is read from the local
disk straight into the CPU, alleviating strain on network bandwidth and
preventing unnecessary network transfers. This strategy of moving
computation to the data, instead of moving the data to the
computation allows Hadoop to achieve high data locality which in turn
results in high performance. 

[bookmark: data] 
[bookmark: data]  
[bookmark: data]Figure 1.1: Data is distributed across nodes at
load time.

[bookmark: data] 

[bookmark: data] [bookmark: #mapreduce] 
[bookmark: #mapreduce]MapReduce: Isolated Processes

[bookmark: #mapreduce] 
[bookmark: #mapreduce]Hadoop limits the amount of communication which
can be performed by the processes, as each individual record is
processed by a task in isolation from one another. While this sounds
like a major limitation at first, it makes the whole framework much
more reliable. Hadoop will not run just any program and distribute it
across a cluster. Programs must be written to conform to a particular
programming model, named "MapReduce."

[bookmark: #mapreduce] 
[bookmark: #mapreduce]In MapReduce, records are processed in
isolation by tasks called Mappers. The output from the Mappers
is then brought together into a second set of tasks called Reducers,
where results from different mappers can be merged together.

[bookmark: #mapreduce] 
[bookmark: #mapreduce]  
[bookmark: #mapreduce]Figure 1.2: Mapping and reducing tasks run
on nodes where individual records of data are already present.

[bookmark: #mapreduce] 

[bookmark: #mapreduce] 
[bookmark: #mapreduce]Separate nodes in a Hadoop cluster still
communicate with one another. However, in contrast to more conventional
distributed systems where application developers explicitly marshal
byte streams from node to node over sockets or through MPI buffers,
communication in Hadoop is performed implicitly. Pieces of data
can be tagged with key names which inform Hadoop how to send related
bits of information to a common destination node. Hadoop internally
manages all of the data transfer and cluster topology issues.

[bookmark: #mapreduce] 
[bookmark: #mapreduce]By restricting the communication between nodes,
Hadoop makes the distributed system much more reliable. Individual node
failures can be worked around by restarting tasks on other machines.
Since user-level tasks do not communicate explicitly with one another,
no messages need to be exchanged by user programs, nor do nodes need to
roll back to pre-arranged checkpoints to partially restart the
computation. The other workers continue to operate as though nothing
went wrong, leaving the challenging aspects of partially restarting the
program to the underlying Hadoop layer.

[bookmark: #mapreduce] [bookmark: scalability] 
[bookmark: scalability]Flat Scalability

[bookmark: scalability] 
[bookmark: scalability]One of the major benefits of using Hadoop in
contrast to other distributed systems is its flat scalability curve.
Executing Hadoop on a limited amount of data on a small number of nodes
may not demonstrate particularly stellar performance as the overhead
involved in starting Hadoop programs is relatively high. Other
parallel/distributed programming paradigms such as MPI (Message Passing
Interface) may perform much better on two, four, or perhaps a dozen
machines. Though the effort of coordinating work among a small number
of machines may be better-performed by such systems, the price paid in
performance and engineering effort (when adding more hardware as a
result of increasing data volumes) increases non-linearly.

[bookmark: scalability] 
[bookmark: scalability] A program written in distributed frameworks
other than Hadoop may require large amounts of refactoring when scaling
from ten to one hundred or one thousand machines. This may involve
having the program be rewritten several times; fundamental elements of
its design may also put an upper bound on the scale to which the
application can grow.

[bookmark: scalability] 
[bookmark: scalability]Hadoop, however, is specifically designed to
have a very flat scalability curve. After a Hadoop program is written
and functioning on ten nodes, very little--if any--work is required for
that same program to run on a much larger amount of hardware. Orders of
magnitude of growth can be managed with little re-work required for
your applications. The underlying Hadoop platform will manage the data
and hardware resources and provide dependable performance growth
proportionate to the number of machines available.

[bookmark: scalability] [bookmark: rest] 

[bookmark: rest]The Rest of the Tutorial

[bookmark: rest] 
[bookmark: rest]This module of the tutorial has highlighted the major
benefits of using a system such as Hadoop. The rest of the tutorial is
designed to show you how to effectively use it.

[bookmark: rest] 

  [bookmark: rest] 
  	[bookmark: rest]In Module 2,
you'll learn how the Hadoop Distributed File System (HDFS) stores vast
quantities of information, how to configure HDFS, and how to use it to
store and retrieve your data.

  	Module 3 shows you how to get started
setting up a Hadoop environment to experiment with. It reviews how to
install a Hadoop virtual machine (included in this resource CD) so that
you can run Hadoop regardless of what operating system you are running.

  	Module 4 explains the Hadoop MapReduce
programming model itself, and how to write some MapReduce programs.

  	Module 5 goes into further detail
about the specifics of Hadoop MapReduce, and how to use advanced
features for more powerful control over a program's execution.

  	Module 6 describes some other
components of the Hadoop ecosystem which can add further capabilities
to your distributed system.

  	Module 7 describes how to configure
Hadoop clusters of different sizes. It describes what particular
parameters of Hadoop need to be tuned for setting up clusters of
various sizes. In addition it describes the various performance
monitoring tools available in Hadoop for monitoring the health of your
cluster.

  	And to expand upon the Pig section described in Module 6, a separate Pig Tutorial is included in this package
at the end as Module 8.



Good luck!
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[bookmark: intro]
  Introduction

  HDFS, the Hadoop Distributed File System, is a
  distributed file system designed to hold very large amounts
  of data (terabytes or even petabytes), and provide high-throughput
  access to this information. Files are stored in a redundant
  fashion across multiple machines to ensure their
  durability to failure and high availability to very parallel
  applications. This module introduces the design of this
  distributed file system and instructions on how to operate
  it.


  
[bookmark: goals]
  Goals for this Module:

  
    	Understand the basic design of HDFS and how it relates
        to basic distributed file system concepts

    	Learn how to set up and use HDFS from the command line

    	Learn how to use HDFS in your applications

  


  
[bookmark: outline]
  Outline


  [bookmark: outline]
    	[bookmark: outline]Introduction

    	Goals for this Module

    	Outline

    	Distributed File System Basics

    	Configuring HDFS

    	Interacting With HDFS

    
      	Common Example Operations

      	HDFS Command Reference

      	DFSAdmin Command Reference

    

    	Using HDFS in MapReduce

    	Using HDFS Programmatically

    	HDFS Permissions and Security

    	Additional HDFS Tasks

    
      	Rebalancing Blocks

      	Copying Large Sets of Files

      	Decommissioning Nodes

      	Verifying File System Health

      	Rack Awareness

    

    	HDFS Web Interface

    	References

  


  
[bookmark: basics]
  Distributed File System Basics


  A distributed file system is designed to hold a large amount
  of data and provide access to this data to many
  clients distributed across a network.
  There are a number of distributed file systems that solve
  this problem in different ways.


  NFS, the Network File System, is the most
  ubiquitous distributed file system. It is one of the
  oldest still in use. While its design is straightforward,
  it is also very constrained. NFS
  provides remote access to a single logical volume stored on a
  single machine. An NFS server makes a portion of its
  local file system visible to external clients. The clients
  can then mount this remote file system directly into their
  own Linux file system, and interact with it as though it
  were part of the local drive.


  One of the primary advantages of this model is its
  transparency. Clients do not need to be particularly
  aware that they are working on files stored remotely.
  The existing standard library methods like open(),
  close(), fread(), etc. will work
  on files hosted over NFS.


  But as a distributed file system, it is limited in its
  power. The files in an NFS volume all reside on a single
  machine. This means that it will only store as much
  information as can be stored in one machine, and does
  not provide any reliability guarantees if that machine
  goes down (e.g., by replicating the files to other
  servers). Finally, as all the data is stored on a single
  machine, all the clients must go to this machine to
  retrieve their data. This can overload the server if
  a large number of clients must be handled. Clients must
  also always copy the data to their local machines before they
  can operate on it.


  HDFS is designed to be robust to a number of the problems
  that other DFS's such as NFS are vulnerable to. In
  particular:

  
    	HDFS is designed to store a very large amount of
    information (terabytes or petabytes). This requires spreading
    the data across a large number of machines. It also supports
    much larger file sizes than NFS.

    	HDFS should store data reliably. If individual machines
    in the cluster malfunction, data should still be available.

    	HDFS should provide fast, scalable access to this information.
    It should be possible to serve a larger number of clients by
    simply adding more machines to the cluster.

    	HDFS should integrate well with Hadoop MapReduce, allowing
    data to be read and computed upon locally when possible.

  


  But while HDFS is very scalable, its high performance
  design also restricts it to a particular class of applications;
  it is not as general-purpose as NFS.
  There are a large number of additional decisions and trade-offs
  that were made with HDFS. In particular:

  
    	Applications that use HDFS are assumed to perform long
    sequential streaming reads from files. HDFS is optimized
    to provide streaming read performance; this comes at the
    expense of random seek times to arbitrary positions in files.

    	Data will be written to the HDFS once and then read
    several times; updates to files after they have already
    been closed are not supported. (An extension to
    Hadoop will provide support for appending new data to the ends
    of files; it is scheduled to be included in Hadoop 0.19 but
    is not available yet.)

    	Due to the large size of files, and the sequential
    nature of reads, the system does not provide a mechanism
    for local caching of data. The overhead of caching is
    great enough that data should simply be re-read from HDFS
    source.

    	Individual machines are assumed to fail on a
    frequent basis, both permanently and
    intermittently. The cluster must be able to withstand the complete
    failure of several machines, possibly many happening
    at the same time (e.g., if a rack fails all together).
    While performance may degrade proportional
    to the number of machines lost, the system as a whole should
    not become overly slow, nor should information be lost.
    Data replication strategies combat this problem.

  



  [bookmark: basics]The design of HDFS is based on the design of GFS,
  the Google File System. Its design was
  described in a paper published by Google.
  


  HDFS is a block-structured file system: individual
  files are broken into blocks of a fixed size. These blocks
  are stored across a cluster of one or more machines with
  data storage capacity. Individual machines in the cluster
  are referred to as DataNodes. A file can be made of
  several blocks, and they are not necessarily stored on the same
  machine; the target machines which hold each block are chosen
  randomly on a block-by-block basis. Thus access to a
  file may require the cooperation
  of multiple machines, but supports file sizes far larger
  than a single-machine DFS; individual files can require
  more space than a single hard drive could hold.


  If several machines must be involved in the serving of
  a file, then a file could be rendered unavailable by the
  loss of any one of those machines. HDFS combats this
  problem by replicating each block across a number of
  machines (3, by default).


  
    [bookmark: fig2-1]
    
    

    Figure 2.1: DataNodes holding blocks of multiple files
    with a replication factor of 2. The NameNode maps the
    filenames onto the block ids.
  
[bookmark: fig2-1]

  [bookmark: fig2-1]Most block-structured file systems use a block size on
  the order of 4 or 8 KB. By contrast, the default block size
  in HDFS is 64MB -- orders of magnitude larger. This
  allows HDFS to decrease the amount of metadata storage
  required per file (the list of blocks per file will be
  smaller as the size of individual blocks increases).
  Furthermore, it allows for fast streaming reads of data,
  by keeping large amounts of data sequentially laid out
  on the disk.
  The consequence of this decision is that HDFS expects
  to have very large files, and expects them to be
  read sequentially. Unlike a file system such
  as NTFS or EXT, which see many very small files,
  HDFS expects to store a modest number of very large
  files: hundreds of megabytes, or gigabytes each. After
  all, a 100 MB file is not even two full blocks. Files on your computer
  may also frequently be accessed "randomly,"
  with applications cherry-picking small amounts of information
  from several different locations in a file which are not
  sequentially laid out.
  By contrast, HDFS expects to read a block
  start-to-finish for a program. This makes it particularly
  useful to the MapReduce style of programming described
  in Module 4. That having
  been said, attempting to use HDFS as a general-purpose
  distributed file system for a diverse set of applications
  will be suboptimal.


  Because HDFS stores files as a set of large blocks
  across several machines, these files are not part of the
  ordinary file system. Typing ls on a machine
  running a DataNode daemon will display the contents of the
  ordinary Linux file system being used to host the
  Hadoop services -- but it will not include any of the files
  stored inside the HDFS. This is because HDFS runs in
  a separate namespace, isolated from the contents
  of your local files. The files inside HDFS (or more
  accurately: the blocks that make them up) are stored in a
  particular directory managed by the DataNode service, but
  the files will named only with block ids. You cannot
  interact with HDFS-stored files using ordinary Linux file
  modification tools (e.g., ls, cp,
  mv, etc). However, HDFS does come with its own
  utilities for file management, which act very similar
  to these familiar tools. A later section in this
  tutorial will introduce you to these commands and their
  operation.




  It is important for this file system to store its
  metadata reliably. Furthermore, while the file data is accessed in a
  write once and read many model, the metadata structures (e.g., the
  names of files and directories) can be modified by a large
  number of clients concurrently. It is important that this
  information is never desynchronized. Therefore, it is all
  handled by a single machine, called the NameNode.
  The NameNode stores all the metadata for the file system.
  Because of the relatively low amount of metadata per file
  (it only tracks file names, permissions, and the locations
  of each block of each file), all of this information
  can be stored in the main memory of the NameNode machine,
  allowing fast access to the metadata.


  To open a file, a client contacts the NameNode and
  retrieves a list of locations for the blocks that comprise
  the file. These locations identify the DataNodes which
  hold each block.
  Clients then read file data directly from the DataNode
  servers, possibly in parallel. The NameNode is not directly
  involved in this bulk data transfer, keeping its overhead
  to a minimum.


  Of course, NameNode information must be preserved even
  if the NameNode machine fails; there are multiple redundant
  systems that allow the NameNode to preserve the file system's
  metadata even if the NameNode itself crashes irrecoverably.
  NameNode failure is more severe for the cluster than DataNode
  failure. While individual DataNodes may crash and the entire
  cluster will continue to operate, the loss of the NameNode
  will render the cluster inaccessible until it is manually
  restored. Fortunately, as the NameNode's involvement is
  relatively minimal, the odds of it failing are considerably
  lower than the odds of an arbitrary DataNode failing at any
  given point in time.
  


  A more thorough overview of the architectural
  decisions involved in the design and implementation of
  HDFS is given in this
  document in the official Hadoop documentation. Before
  continuing in this tutorial, it is advisable that you
  read and understand the information presented there.


  
[bookmark: config]
  Configuring HDFS


  The HDFS for your cluster can be configured in a very short
  amount of time. First we will fill out the relevant sections
  of the Hadoop configuration file, then format the NameNode.


  Cluster configuration


  [bookmark: config]These instructions for cluster configuration assume that you have
  already downloaded and unzipped a copy of Hadoop.
  Module 3 discusses getting started
  with Hadoop for this tutorial. Module 7
  discusses how to set up a larger cluster and
  provides preliminary setup instructions for
  Hadoop, including downloading prerequisite software.


  The HDFS configuration is located in a set of XML files
  in the Hadoop configuration directory; conf/ under
  the main Hadoop install directory (where you unzipped Hadoop to).
  The conf/hadoop-defaults.xml file contains default values
  for every parameter in Hadoop. This file is considered read-only.
  You override this configuration by setting new values in
  conf/hadoop-site.xml. This file should be replicated
  consistently across all machines in the cluster. (It is also
  possible, though not advisable, to host it on NFS.)


  Configuration settings are a set of key-value pairs of the
  format:


    <property>
    <name>property-name</name>
    <value>property-value</value>
  </property>



  Adding the line <final>true</final> inside
  the property body
  will prevent properties from being overridden by user applications.
  This is useful for most system-wide configuration options.


  The following settings are necessary to configure HDFS:


  
  	key	value	example

  	fs.default.name
      	protocol://servername:port
      	hdfs://alpha.milkman.org:9000
  

  	dfs.data.dir
      	pathname
      	/home/username/hdfs/data
  

  	dfs.name.dir
      	pathname
      	/home/username/hdfs/name
  

  



  These settings are described individually below:


  fs.default.name - This is the URI (protocol specifier,
  hostname, and port) that describes
  the NameNode for the cluster. Each node in the system on which Hadoop
  is expected to operate needs to know the address of the NameNode. The
  DataNode instances will register with this NameNode, and make their
  data available through it. Individual client programs will connect
  to this address to retrieve the locations of actual file blocks.


  dfs.data.dir - This is the path on the local file system
  in which the DataNode instance should store its data. It is not
  necessary that all DataNode instances store their data under the
  same local path prefix, as they will all be on separate machines;
  it is acceptable that these machines are heterogeneous. However, it
  will simplify configuration if this directory is standardized throughout
  the system. By default, Hadoop will place this under /tmp.
  This is fine for testing purposes, but is an easy way to lose actual
  data in a production system, and thus must be overridden.


  dfs.name.dir - This is the path on the local file system of
  the NameNode instance where the NameNode metadata is stored. It is
  only used by the NameNode instance to find its information, and does
  not exist on the DataNodes. The caveat above about /tmp
  applies to this as well; this setting must be overridden in a
  production system.


  Another configuration parameter, not listed above, is
  dfs.replication. This is the default replication factor
  for each block of data in the file system. For a production cluster,
  this should usually be left at its default value of  3.
  (You are free to increase your
  replication factor, though this may be unnecessary and use more
  space than is required. Fewer than three replicas impact the
  high availability of information, and possibly the reliability
  of its storage.)


  The following information can be pasted into the hadoop-site.xml
  file for a single-node configuration:

  <configuration>
  <property>
    <name>fs.default.name</name>
    <value>hdfs://your.server.name.com:9000</value>
  </property>
  <property>
    <name>dfs.data.dir</name>
    <value>/home/username/hdfs/data</value>
  </property>
  <property>
    <name>dfs.name.dir</name>
    <value>/home/username/hdfs/name</value>
  </property>
</configuration>



  Of course, your.server.name.com needs to be changed,
  as does username.
  Using port 9000 for the NameNode is arbitrary.
  


  After copying this information into your conf/hadoop-site.xml
  file, copy this to the conf/ directories on all machines
  in the cluster.


  The master node needs to know the addresses of all the machines
  to use as DataNodes; the startup scripts depend on this. Also
  in the conf/ directory, edit the file slaves
  so that it contains a list of fully-qualified hostnames
  for the slave instances, one host per line. On a multi-node
  setup, the master node (e.g., localhost) is not usually
  present in this file.


  Then make the directories necessary:


    user@EachMachine$ mkdir -p $HOME/hdfs/data

  user@namenode$ mkdir -p $HOME/hdfs/name



  The user who owns the Hadoop instances will need to have read
  and write access to each of these directories. It is not necessary
  for all users to have access to these directories.
  Set permissions with chmod as appropriate. In a large-scale
  environment, it is
  recommended that you create a user named "hadoop" on each node
  for the express
  purpose of owning and running Hadoop tasks. For a single individual's
  machine, it is perfectly acceptable to run Hadoop under your own
  username. It is not recommended that you run Hadoop as root.
  


  Starting HDFS


  Now we must format the file system that we just configured:


    user@namenode:hadoop$ bin/hadoop namenode -format



  This process should only be performed once. When it is
  complete, we are free to start the distributed file system:


    user@namenode:hadoop$ bin/start-dfs.sh



  This command will start the NameNode server on the master
  machine (which is where the start-dfs.sh script was
  invoked). It will also start the DataNode instances on each
  of the slave machines. In a single-machine "cluster,"
  this is the same machine as the NameNode instance. On a real
  cluster of two or more machines, this script will ssh into
  each slave machine and start a DataNode instance.
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  Interacting With HDFS


  This section will familiarize you with the commands necessary
  to interact with HDFS, loading and retrieving data, as well as
  manipulating files. This section makes extensive use of the
  command-line.

  
The bulk of commands that communicate with the cluster are
  performed by a monolithic script named bin/hadoop. This
  will load the Hadoop system with the Java virtual machine
  and execute a user command.
  The commands are specified in the following form:


    user@machine:hadoop$ bin/hadoop moduleName -cmd args...



  The moduleName tells the program which subset of Hadoop
  functionality to use. -cmd is the name of a specific
  command within this module to execute. Its arguments follow
  the command name.


  Two such modules are relevant to HDFS: dfs and
  dfsadmin. Their use is described in the sections below.


  [bookmark: commonops]
  Common Example Operations


  The dfs module, also known as "FsShell,"
  provides basic file manipulation operations. Their usage is
  introduced here.


  A cluster is only useful if it contains data of interest.
  Therefore, the first operation to perform is loading information
  into the cluster. For purposes of this example, we will assume
  an example user named "someone" -- but substitute your own
  username where it makes sense. Also note that any operation
  on files in HDFS can be performed from any node with access
  to the cluster, whose conf/hadoop-site.xml is
  configured to set fs.default.name to your cluster's
  NameNode. We will call the fictional machine on which we
  are operating anynode. Commands are being run from
  the "hadoop" directory where you installed Hadoop.
  This may be /home/someone/src/hadoop on your
  machine, or /home/foo/hadoop on someone else's.
  These initial commands are centered around loading information
  into HDFS, checking that it's there, and getting information
  back out of HDFS.


  Listing files


  If we attempt to inspect HDFS, we will not find anything
  interesting there:


    someone@anynode:hadoop$ bin/hadoop dfs -ls
  someone@anynode:hadoop$



  The "-ls" command returns silently. Without any
  arguments, -ls will attempt to show the contents of your
  "home" directory inside HDFS. Don't forget,
  this is not the same as /home/$USER (e.g.,
  /home/someone) on
  the host machine (HDFS keeps a separate namespace from the
  local files). There is no concept of a "current working
  directory" or cd command in HDFS.
  


  If you provide -ls with an argument, you may see some
  initial directory contents:


    someone@anynode:hadoop$ bin/hadoop dfs -ls /
  Found 2 items
  drwxr-xr-x   - hadoop supergroup          0 2008-09-20 19:40 /hadoop
  drwxr-xr-x   - hadoop supergroup          0 2008-09-20 20:08 /tmp



  [bookmark: commonops]These entries are created by the system.
  This example output assumes that "hadoop" is the username
  under which the Hadoop daemons (NameNode, DataNode, etc) were started.
  "supergroup" is a special group whose membership includes
  the username under which the HDFS instances were started (e.g.,
  "hadoop").
  These directories exist to allow the Hadoop MapReduce system to move
  necessary data to the different job nodes; this is explained in more
  detail in Module 4.


  So we need to create our home directory, and then populate it
  with some files.

  
Inserting data into the cluster


  Whereas a typical UNIX or Linux system stores individual users'
  files in /home/$USER, the Hadoop DFS stores these in
  /user/$USER. For some commands like ls, if a
  directory name is required and is left blank, this is
  the default directory name assumed. (Other commands require
  explicit source and destination paths.)
  Any relative paths used as arguments to HDFS,
  Hadoop MapReduce, or other components of the system are assumed to be
  relative to this base directory.


  Step 1: Create your home directory if it does not
  already exist.


    someone@anynode:hadoop$ bin/hadoop dfs -mkdir /user



  If there is no /user directory, create that first.
  It will be automatically created later if necessary, but for
  instructive purposes, it makes sense to create it manually
  ourselves this time.

  
Then we are free to add our own home directory:


    someone@anynode:hadoop$ bin/hadoop dfs -mkdir /user/someone



  Of course, replace /user/someone with
  /user/yourUserName.


  Step 2: Upload a file.
  To insert a single file into HDFS, we can use the put
  command like so:


    someone@anynode:hadoop$ bin/hadoop dfs -put /home/someone/interestingFile.txt /user/yourUserName/



  This copies /home/someone/interestingFile.txt from
  the local file system into
  /user/yourUserName/interestingFile.txt on HDFS.


  Step 3: Verify the file is in HDFS.
  We can verify that the operation worked with either of the
  two following (equivalent) commands:


    someone@anynode:hadoop$ bin/hadoop dfs -ls /user/yourUserName
  someone@anynode:hadoop$ bin/hadoop dfs -ls



  You should see a listing that starts with Found 1 items
  and then includes information about the file you inserted.


  The following table demonstrates example uses of the
  put command, and their effects:



  
  	Command:	Assuming:	Outcome:

  	bin/hadoop dfs -put foo bar
      	No file/directory named /user/$USER/bar exists
          in HDFS
      	Uploads local file foo to a file named
          /user/$USER/bar
  

  	bin/hadoop dfs -put foo bar
      	/user/$USER/bar is a directory
      	Uploads local file foo to a file named
          /user/$USER/bar/foo
  

  	bin/hadoop dfs -put foo somedir/somefile
      	/user/$USER/somedir does not exist in HDFS
      	Uploads local file foo to a file named
          /user/$USER/somedir/somefile, creating
          the missing directory
  

  	bin/hadoop dfs -put foo bar
      	/user/$USER/bar is already a file
          in HDFS
      	No change in HDFS, and an error is returned to the user.
  

  



  When the put command operates on a file, it is all-or-nothing.
  Uploading a file into HDFS first copies the data onto the DataNodes.
  When they all acknowledge that they have received all the data and
  the file handle is closed, it is then made visible to the rest of
  the system. Thus based on the return value of the put command, you
  can be confident that a file has either been successfully uploaded,
  or has "fully failed;" you will never get into a state
  where a file is partially uploaded and the partial contents are
  visible externally, but the upload disconnected and did not complete
  the entire file contents. In a case like this, it will be as though
  no upload took place.



  Step 4: Uploading multiple files at once.
  The put command is more powerful than moving a single
  file at a time. It can also be used to upload entire directory
  trees into HDFS.


  Create a local directory and put some files into it using
  the cp command. Our example user may have a situation
  like the following:


    someone@anynode:hadoop$ ls -R myfiles
  myfiles:
  file1.txt  file2.txt  subdir/

  myfiles/subdir:
  anotherFile.txt
  someone@anynode:hadoop$



  This entire myfiles/ directory can be copied into
  HDFS like so:


    someone@anynode:hadoop$ bin/hadoop -put myfiles /user/myUsername
  someone@anynode:hadoop$ bin/hadoop -ls
  Found 1 items
  /user/someone/myfiles   <dir>    2008-06-12 20:59    rwxr-xr-x    someone    supergroup
  user@anynode:hadoop bin/hadoop -ls myfiles
  Found 3 items
  /user/someone/myfiles/file1.txt   <r 1>   186731  2008-06-12 20:59        rw-r--r--       someone   supergroup
  /user/someone/myfiles/file2.txt   <r 1>   168     2008-06-12 20:59        rw-r--r--       someone   supergroup
  /user/someone/myfiles/subdir      <dir>           2008-06-12 20:59        rwxr-xr-x       someone   supergroup



  Thus demonstrating that the tree was correctly uploaded recursively.
  You'll note that in addition to the file path, ls also reports
  the number of replicas of each file that exist (the "1" in
  <r 1>), the file size, upload time, permissions, and owner
  information.


  Another synonym for -put is -copyFromLocal. The
  syntax and functionality are identical.


  Retrieving data from HDFS


  There are multiple ways to retrieve files from the distributed
  file system. One of the easiest is to use cat to display
  the contents of a file on stdout. (It can, of course, also be used
  to pipe the data into other applications or destinations.)


  Step 1: Display data with cat.


  If you have not
  already done so, upload some files into HDFS. In this example,
  we assume that a file named "foo" has been loaded into
  your home directory on HDFS.


    someone@anynode:hadoop$ bin/hadoop dfs -cat foo
  (contents of foo are displayed here)
  someone@anynode:hadoop$



  Step 2: Copy a file from HDFS to the local file system.


  The get command is the inverse operation of put; it
  will copy a file or directory (recursively) from HDFS into the target
  of your choosing on the local file system. A synonymous operation
  is called -copyToLocal.
  


    someone@anynode:hadoop$ bin/hadoop dfs -get foo localFoo
  someone@anynode:hadoop$ ls
  localFoo
  someone@anynode:hadoop$ cat localFoo
  (contents of foo are displayed here)




  Like the put command, get will operate on directories in addition
  to individual files.



  Shutting Down HDFS

  If you want to shut down the HDFS functionality of your
  cluster (either because you do not want Hadoop occupying memory
  resources when it is not in use, or because you want to restart
  the cluster for upgrading, configuration changes, etc.), then
  this can be accomplished by logging in to the NameNode machine
  and running:


    someone@namenode:hadoop$ bin/stop-dfs.sh



  This command must be performed by the same user who started
  HDFS with bin/start-dfs.sh.


  [bookmark: commandref]
  HDFS Command Reference


  There are many more commands in bin/hadoop dfs than
  were demonstrated here, although these basic operations will
  get you started. Running bin/hadoop dfs with no additional
  arguments will list all commands which can be run with the
  FsShell system. Furthermore, bin/hadoop dfs -help
  commandName will display a short usage summary for
  the operation in question, if you are stuck.


  A table of all operations is reproduced below. The
  following conventions are used for parameters:


  
    	italics denote variables to be filled out by the user.

    	"path" means any file or directory name.

    	"path..." means one or more file or directory names.

    	"file" means any filename.
	
    
	"src" and "dest" are path names in a
       directed operation.

    	"localSrc" and "localDest" are paths as
    above, but on the local file system. All other file and path names
    refer to objects inside HDFS.

    	Parameters in [brackets] are optional.

  


  
  	Command	Operation

  	-ls path
      	Lists the contents of the directory specified by path,
      showing the names, permissions, owner, size and modification date
      for each entry.
  

  	-lsr path
      	Behaves like -ls, but recursively displays entries
      in all subdirectories of path.
  

  	-du path
      	Shows disk usage, in bytes, for all files which match
      path; filenames are reported with the full HDFS
      protocol prefix.
  

  	-dus path
      	Like -du, but prints a summary of disk usage
      of all files/directories in the path.
  

  	-mv src dest
      	Moves the file or directory indicated by src
      to dest, within HDFS.
  

  	-cp src dest
      	Copies the file or directory identified by src
      to dest, within HDFS.
  

  	-rm path
      	Removes the file or empty directory identified by
      path.
  

  	-rmr path
      	Removes the file or directory identified by path.
      Recursively deletes any child entries (i.e., files or
      subdirectories of path).
  

  	-put localSrc dest
      	Copies the file or directory from the local file system
      identified by localSrc to dest within the
      DFS.
  

  	-copyFromLocal localSrc dest
      	Identical to -put
  

  	-moveFromLocal localSrc dest
      	Copies the file or directory from the local file system
      identified by localSrc to dest within
      HDFS, then deletes the local copy on success.
      
  

  	-get [-crc] src localDest
      	Copies the file or directory in HDFS identified
      by src to the local file system path identified
      by localDest.
  

  	-getmerge src localDest [addnl]
      	Retrieves all files that match the path src
      in HDFS, and copies them to a single, merged file
      in the local file system identified by localDest.
  

  	-cat filename
      	Displays the contents of filename on stdout.
  

  	-copyToLocal [-crc] src localDest
      	Identical to -get
  

  	-moveToLocal [-crc] src localDest
      	Works like -get, but deletes the HDFS copy
      on success.
  

  	-mkdir path
      	Creates a directory named path in
      HDFS. Creates any parent directories in path that
      are missing (e.g., like mkdir -p in Linux).
  

  	-setrep [-R] [-w] rep path
      	Sets the target replication factor for files identified by
      path to rep. (The actual replication factor
      will move toward the target over time)
  

  	-touchz path
      	Creates a file at path containing the current
      time as a timestamp. Fails if a file already exists at
      path, unless the file is already size 0.
  

  	-test -[ezd] path
      	Returns 1 if path exists; has
      zero length; or is a directory, or
      0 otherwise.
  

  	-stat [format] path
      	Prints information about path. format
      is a string which accepts file size in blocks (%b), filename (%n),
      block size (%o), replication (%r), and modification date (%y, %Y).
      
  

  	-tail [-f] file
      	Shows the lats 1KB of file on stdout.
  

  	-chmod [-R] mode,mode,... path...
      	Changes the file permissions associated with one or
      more objects identified by path.... Performs
      changes recursively with -R. mode is
      a 3-digit octal mode, or {augo}+/-{rwxX}.
      Assumes a if no scope is specified and does not
      apply a umask.
  

  	-chown [-R] [owner][:[group]] path...
      	Sets the owning user and/or group for files
      or directories identified by path.... Sets owner
      recursively if -R is specified.
  

  	-chgrp [-R] group path...
      	Sets the owning group for files or directories
      identified by path.... Sets group recursively
      if -R is specified.
  

  	-help cmd
      	Returns usage information for one of the commands
      listed above. You must omit the leading '-' character
      in cmd
  

  


  [bookmark: admincommandref]
  DFSAdmin Command Reference


  While the dfs module for bin/hadoop provides
  common file and directory manipulation commands, they all work with
  objects within the file system. The dfsadmin module manipulates
  or queries the file system as a whole. The operation of the commands
  in this module is described in this section.


  Getting overall status: A brief status report for
  HDFS can be retrieved with bin/hadoop dfsadmin -report.
  This returns basic information about the overall health of the
  HDFS cluster, as well as some per-server metrics.


  More involved status: If you need to know more details
  about what the state of the NameNode's metadata is, the command
  bin/hadoop dfsadmin -metasave filename will
  record this information in filename. The metasave command
  will enumerate lists of blocks which are under-replicated, in the
  process of being replicated, and scheduled for deletion.
  NB: The help for this command states that it "saves
  NameNode's primary data structures," but this is a misnomer;
  the NameNode's state cannot be restored from this information.
  However, it will provide good information about how the NameNode
  is managing HDFS's blocks.


  Safemode: Safemode is an HDFS state in which the file system
  is mounted read-only; no replication is performed, nor can files
  be created or deleted. This is automatically entered as the NameNode
  starts, to allow all DataNodes time to check in with the NameNode
  and announce which blocks they hold, before the NameNode determines
  which blocks are under-replicated, etc. The NameNode waits until
  a specific percentage of the blocks are present and accounted-for;
  this is controlled in the configuration by the
  dfs.safemode.threshold.pct parameter. After this threshold
  is met, safemode is automatically exited, and HDFS allows
  normal operations. The bin/hadoop dfsadmin -safemode what
  command allows the user to manipulate safemode based on
  the value of what, described below:
  

    	enter - Enters safemode

    	leave - Forces the NameNode to exit safemode

    	get - Returns a string indicating whether
                       safemode is ON or OFF

    	wait - Waits until safemode has exited and returns

  

  


  [bookmark: admincommandref]Changing HDFS membership - When decommissioning nodes,
  it is important to disconnect nodes from HDFS gradually to ensure
  that data is not lost. See the section on decommissioning later in this document
  for an explanation of the use of the -refreshNodes dfsadmin
  command.
  


  Upgrading HDFS versions - When upgrading from one
  version of Hadoop to the next, the file formats used by the NameNode
  and DataNodes may change. When you first start the new version of
  Hadoop on the cluster, you need to tell Hadoop to change the
  HDFS version (or else it will not mount), using the command:
  bin/start-dfs.sh -upgrade. It will then begin upgrading the
  HDFS version. The status of an ongoing upgrade operation can be
  queried with the bin/hadoop dfsadmin -upgradeProgress status
  command. More verbose information can be retrieved with
  bin/hadoop dfsadmin -upgradeProgress details. If the
  upgrade is blocked and you would like to force it to continue,
  use the command: bin/hadoop dfsadmin -upgradeProgress force.
  (Note: be sure you know what you are doing if you use this last
  command.)


  When HDFS is upgraded, Hadoop retains backup information
  allowing you to downgrade to the original HDFS version in case you
  need to revert Hadoop versions. To back out the changes, stop the
  cluster, re-install the older version of Hadoop, and then use
  the command: bin/start-dfs.sh -rollback. It will restore
  the previous HDFS state.


  Only one such archival copy can be kept at a time. Thus, after
  a few days of operation with the new version (when it is deemed
  stable), the archival copy can be removed with the command
  bin/hadoop dfsadmin -finalizeUpgrade. The rollback command
  cannot be issued after this point. This must be performed before
  a second Hadoop upgrade is allowed.


  Getting help - As with the dfs module, typing
  bin/hadoop dfsadmin -help cmd will provide more
  usage information about the particular command.
  


  
[bookmark: mapreduce]
  Using HDFS in MapReduce


  [bookmark: mapreduce]The HDFS is a powerful companion to Hadoop MapReduce. By setting
  the fs.default.name configuration option to point to
  the NameNode (as was done above), Hadoop MapReduce jobs will
  automatically draw their input files from HDFS. Using the regular
  FileInputFormat subclasses, Hadoop will automatically draw its
  input data sources from file paths within HDFS, and will distribute
  the work over the cluster in an intelligent fashion to exploit
  block locality where possible. The mechanics of Hadoop MapReduce
  are discussed in much greater detail in Module
  4.
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  Using HDFS Programmatically


  [bookmark: programmatically]While HDFS can be manipulated explicitly through user commands,
  or implicitly as the input to or output from a Hadoop MapReduce job,
  you can also work with HDFS inside your own Java applications.
  (A JNI-based wrapper, libhdfs also provides
  this functionality in C/C++ programs.)


  This section provides a short tutorial on using the Java-based
  HDFS API. It will be based on the following code listing:


  1:  import java.io.File;
2:  import java.io.IOException;
3:
4:  import org.apache.hadoop.conf.Configuration;
5:  import org.apache.hadoop.fs.FileSystem;
6:  import org.apache.hadoop.fs.FSDataInputStream;
7:  import org.apache.hadoop.fs.FSDataOutputStream;
8:  import org.apache.hadoop.fs.Path;
9:
10: public class HDFSHelloWorld {
11:
12:   public static final String theFilename = "hello.txt";
13:   public static final String message = "Hello, world!\n";
14:
15:   public static void main (String [] args) throws IOException {
16:
17:     Configuration conf = new Configuration();
18:     FileSystem fs = FileSystem.get(conf);
19:
20:     Path filenamePath = new Path(theFilename);
21:
22:     try {
23:       if (fs.exists(filenamePath)) {
24:         // remove the file first
25:         fs.delete(filenamePath);
26:       }
27:
28:       FSDataOutputStream out = fs.create(filenamePath);
29:       out.writeUTF(message;
30:       out.close();
31:
32:       FSDataInputStream in = fs.open(filenamePath);
33:       String messageIn = in.readUTF();
34:       System.out.print(messageIn);
35:       in.close();
46:     } catch (IOException ioe) {
47:       System.err.println("IOException during operation: " + ioe.toString());
48:       System.exit(1);
49:     }
40:   }
41: }



  This program creates a file named hello.txt, writes
  a short message into it, then reads it back and prints it to
  the screen. If the file already existed, it is deleted first.


  First we get a handle to an abstract FileSystem object,
  as specified by the application configuration. The Configuration
  object created uses the default parameters.

17:     Configuration conf = new Configuration();
18:     FileSystem fs = FileSystem.get(conf);



  The FileSystem interface actually provides a generic
  abstraction suitable for use in several file systems. Depending on
  the Hadoop configuration, this may use HDFS or the local file system
  or a different one altogether. If this test program is launched
  via the ordinary 'java classname' command line, it may
  not find conf/hadoop-site.xml and will use the local
  file system. To ensure that it uses the proper Hadoop configuration,
  launch this program through Hadoop by putting it in a jar and running:

  
$HADOOP_HOME/bin/hadoop jar yourjar HDFSHelloWorld



  Regardless of how you launch the program and which file system
  it connects to, writing to a file is done in the same way:

  28:       FSDataOutputStream out = fs.create(filenamePath);
29:       out.writeUTF(message);
30:       out.close();



  First we create the file with the fs.create() call,
  which returns an FSDataOutputStream used to write data
  into the file. We then write the information using ordinary
  stream writing functions; FSDataOutputStream extends the
  java.io.DataOutputStream class. When we are done with
  the file, we close the stream with out.close().


  This call to fs.create() will overwrite the file if it
  already exists, but for sake of example, this program explicitly
  removes the file first anyway (note that depending on this explicit
  prior removal is technically a race condition). Testing for
  whether a file exists and removing an existing file are performed
  by lines 23-26:


  23:       if (fs.exists(filenamePath)) {
24:         // remove the file first
25:         fs.delete(filenamePath);
26:       }



  Other operations such as copying, moving, and renaming are
  equally straightforward operations on Path objects
  performed by the FileSystem.


  Finally, we re-open the file for read, and pull the bytes from
  the file, converting them to a UTF-8 encoded string in the process,
  and print to the screen:


  32:       FSDataInputStream in = fs.open(filenamePath);
33:       String messageIn = in.readUTF();
34:       System.out.print(messageIn);
35:       in.close();



  The fs.open() method returns an FSDataInputStream,
  which subclasses java.io.DataInputStream. Data can be read
  from the stream using the readUTF() operation, as on line 33.
  When we are done with the
  stream, we call close() to free the handle associated with
  the file.


  More information:


  Complete JavaDoc for the HDFS API is provided at
  http://hadoop.apache.org/core/docs/r0.18.0/api/index.html.
  


  A direct link to the FileSystem interface is:
  http://hadoop.apache.org/core/docs/r0.18.0/api/org/apache/hadoop/fs/FileSystem.html.


  Another example HDFS application
  is available on
  the Hadoop wiki. This implements a file copy operation.
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  HDFS Permissions and Security


  [bookmark: perms]Starting with Hadoop 0.16.1, HDFS has included a rudimentary
  file permissions system. This 
   permission system is based on the POSIX model, but does not
   provide strong security for HDFS files. The HDFS permissions system is
   designed to prevent accidental corruption of data or casual misuse
   of information within a group of users who share access to a cluster.
   It is not a strong security model that guarantees denial of access
   to unauthorized parties.


  HDFS security is based on the POSIX model of users and groups.
  Each file or directory has 3 permissions (read, write and execute)
  associated with it at three different granularities: the file's
  owner, users in the same group as the owner, and all other users
  in the system. As the HDFS does not provide the full POSIX spectrum
  of activity, some combinations of bits will be meaningless. For
  example, no file can be executed; the +x bits cannot be set on
  files (only directories). Nor can an existing file be
  written to, although the +w bits may still be set.


  Security permissions and ownership can be modified using the
  bin/hadoop dfs -chmod, -chown, and -chgrp
  operations described earlier in this document; they work in a
  similar fashion to the POSIX/Linux tools of the same name.


  Determining identity - Identity is not authenticated
  formally with HDFS; it is taken from an extrinsic source. The
  Hadoop system is programmed to use the user's current login
  as their Hadoop username (i.e., the equivalent of whoami).
  The user's current working group list (i.e, the output of
  groups) is used as the group list in Hadoop. HDFS
  itself does not verify that this username is genuine to the
  actual operator.


  Superuser status - The username which was used to
  start the Hadoop process (i.e., the username who actually ran
  bin/start-all.sh or bin/start-dfs.sh) is
  acknowledged to be the superuser for HDFS. If this
  user interacts with HDFS, he does so with a special
  username superuser. This user's operations on
  HDFS never fail, regardless of permission bits set on the
  particular files he manipulates. If Hadoop is shutdown and
  restarted under a different username, that username is then
  bound to the superuser account.


  Supergroup - There is also a special group named
  supergroup, whose membership is controlled by the
  configuration parameter dfs.permissions.supergroup.
  


  Disabling permissions - By default, permissions
  are enabled on HDFS. The permission system can be
  disabled by setting the configuration option
  dfs.permissions to false. The owner,
  group, and permissions bits associated with each file and
  directory will still be preserved, but the HDFS process does
  not enforce them, except when using permissions-related
  operations such as -chmod.


  
[bookmark: tasks]
  Additional HDFS Tasks


  [bookmark: rebalancing]
  Rebalancing Blocks


  New nodes can be added to a cluster
  in a straightforward manner. On the new node, the same Hadoop
  version and configuration (conf/hadoop-site.xml) as on
  the rest of the cluster should be installed. Starting the DataNode
  daemon on the machine will cause it to contact the NameNode and
  join the cluster. (The new node should be added to the slaves
  file on the master server as well, to inform the master how to invoke
  script-based commands on the new node.)


  But the new DataNode will have no data on board initially; it is
  therefore not alleviating space concerns on the existing nodes. New
  files will be stored on the new DataNode in addition to the existing
  ones, but for optimum usage, storage should be evenly balanced across
  all nodes.


  [bookmark: rebalancing]This can be achieved with the automatic balancer tool
  included with Hadoop. The Balancer
  class will intelligently balance blocks across the nodes to achieve
  an even distribution of blocks within a given threshold, expressed as
  a percentage. (The default is 10%.) Smaller percentages make nodes
  more evenly balanced, but may require more time to achieve this state.
  Perfect balancing (0%) is unlikely to actually be achieved.


  The balancer script can be run by starting
  bin/start-balancer.sh in the Hadoop directory. The script can be
  provided a balancing threshold percentage with the -threshold
  parameter; e.g., bin/start-balancer.sh -threshold 5. The
  balancer will automatically terminate when it achieves its goal, or
  when an error occurs, or it cannot find more candidate blocks to move
  to achieve better balance. The balancer can always be terminated
  safely by the administrator by running bin/stop-balancer.sh.
  


  The balancing script can be run either when nobody else is using
  the cluster (e.g., overnight), but can also be run in an
  "online" fashion while many other jobs are on-going. To
  prevent the rebalancing process from consuming large amounts of
  bandwidth and significantly degrading the performance of other
  processes on the cluster, the dfs.balance.bandwidthPerSec
  configuration parameter can be used to limit the number of bytes/sec
  each node may devote to rebalancing its data store.


  [bookmark: copying]
  Copying Large Sets of Files


  When migrating a large
  number of files from one location to another (either from one HDFS
  cluster to another, from S3 into HDFS or vice versa, etc), the task should
  be divided between multiple nodes to allow them all to share in the
  bandwidth required for the process. Hadoop includes a tool called
  distcp for this purpose.


  [bookmark: copying]By invoking bin/hadoop distcp src dest,
  Hadoop will start a MapReduce task to distribute the burden of copying
  a large number of files from src to dest. These two
  parameters may specify a full URL for the the path to copy.
  e.g., "hdfs://SomeNameNode:9000/foo/bar/" and
  "hdfs://OtherNameNode:2000/baz/quux/" will
  copy the children of /foo/bar on one cluster to
  the directory tree rooted at /baz/quux on the other.
  The paths are assumed to be directories, and are copied recursively.
  S3 URLs can be specified with s3://bucket-name/key.

  [bookmark: decommission]
  
[bookmark: decommission]Decommissioning Nodes
[bookmark: decommission]

  In addition to allowing nodes to be added to the cluster on the fly,
  nodes can also be removed from a cluster while it is running, without
  data loss. But if nodes are simply shut down "hard,"
  data loss may occur as they may hold the sole copy of one or more
  file blocks.


  
  Nodes must be retired on a schedule that allows HDFS to ensure that
  no blocks are entirely replicated within the to-be-retired set of
  DataNodes.


  HDFS provides a decommissioning feature which ensures that this
  process is performed safely. To use it, follow the steps below:


  Step 1: Cluster configuration. If it is assumed that nodes
  may be retired in your cluster, then before it is started, an
  excludes file must be configured. Add a key named
  dfs.hosts.exclude to your conf/hadoop-site.xml file.
  The value associated with this key provides the full path to
  a file on the NameNode's local file system
  which contains a list of machines which are not permitted to connect
  to HDFS.


  Step 2: Determine hosts to decommission. Each machine to be
  decommissioned should be added to the file identified by
  dfs.hosts.exclude, one per line. This will prevent
  them from connecting to the NameNode.


  Step 3: Force configuration reload. Run the command
  bin/hadoop dfsadmin -refreshNodes. This will force the
  NameNode to reread its configuration, including the newly-updated
  excludes file. It will decommission the nodes over a period of time,
  allowing time for each node's blocks to be replicated onto machines
  which are scheduled to remain active. 


  Step 4: Shutdown nodes. After the decommission process has
  completed, the decommissioned hardware can be safely shutdown for
  maintenance, etc. The bin/hadoop dfsadmin -report command
  will describe which nodes are connected to the cluster.


  Step 5: Edit excludes file again. Once the machines have
  been decommissioned, they can be removed from the excludes file.
  Running bin/hadoop dfsadmin -refreshNodes again will
  read the excludes file back into the NameNode, allowing the
  DataNodes to rejoin the cluster after maintenance has been completed,
  or additional capacity is needed in the cluster again, etc.


  [bookmark: fsck]
  Verifying File System Health


  After decommissioning nodes, restarting a cluster, or periodically
  during its lifetime, you may want to ensure that the file system is
  healthy--that files are not corrupted or under-replicated, and that
  blocks are not missing.


  Hadoop provides an fsck command to do exactly this. It
  can be launched at the command line like so:
  



    bin/hadoop fsck [path] [options]



  If run with no arguments, it will print usage information and exit.
  If run with the argument /, it will check the health of the entire
  file system and print a report. If provided with a path to a particular
  directory or file, it will only check files under that path. If an
  option argument is given but no path, it will start
  from the file system root (/). The
  options may include two different types of options:


  Action options specify what action should be taken when
  corrupted files are found. This can be -move, which moves
  corrupt files to /lost+found, or -delete, which
  deletes corrupted files.


  Information options specify how verbose the tool
  should be in its report. The -files option will list all
  files it checks as it encounters them. This information can be further
  expanded by adding the -blocks option, which prints the list of
  blocks for each file. Adding -locations to these two options
  will then print the addresses of the DataNodes holding these blocks.
  Still more information can be retrieved by adding -racks
  to the end of this list, which then prints the rack topology information
  for each location. (See the next subsection for more information on
  configuring network rack awareness.) Note that the later options
  do not imply the former; you must use them in conjunction with one
  another. Also, note that the Hadoop program uses -files in
  a "common argument parser" shared by the different commands
  such as dfsadmin, fsck, dfs, etc. This
  means that if you omit a path argument to fsck, it will not receive
  the -files option that you intend. You can separate common
  options from fsck-specific options by using -- as an
  argument, like so:


    bin/hadoop fsck -- -files -blocks



  The -- is not required if you provide a path to start
  the check from, or if you specify another argument first such as
  -move.


  By default, fsck will not operate on files still open for write
  by another client. A list of such files can be produced with the
  -openforwrite option.



  [bookmark: rack]
  Rack Awareness


  For small clusters in which all servers are connected by a single
  switch, there are only two levels of locality: "on-machine"
  and "off-machine." When loading data from a DataNode's
  local drive into HDFS, the NameNode will schedule one copy to go into
  the local DataNode, and will pick two other machines at random from
  the cluster.


  For larger Hadoop installations which span multiple racks, it
  is important to ensure that replicas of data exist on multiple
  racks. This way, the loss of a switch does not render portions of
  the data unavailable due to all replicas being underneath it.


  HDFS can be made rack-aware by the use of a script which
  allows the master node to map the network topology of the cluster.
  While alternate configuration strategies can be used, the default
  implementation allows you to provide an executable script which
  returns the "rack address" of each of a list of IP
  addresses.
  


  The network topology script receives as arguments one
  or more IP addresses of nodes in the cluster. It returns on
  stdout a list of rack names, one for each input. The input and
  output order must be consistent.


  To set the rack mapping script, specify the key
  topology.script.file.name in conf/hadoop-site.xml.
  This provides a command to run to return a rack id; it must be an
  executable script or program. By default, Hadoop will attempt to
  send a set of IP addresses to the file as several separate command
  line arguments. You can control the maximum acceptable number of
  arguments with the topology.script.number.args key.
  


  Rack ids in Hadoop are hierarchical and look like path names.
  By default, every node has a rack id of /default-rack.
  You can set rack ids for nodes to any arbitrary path, e.g.,
  /foo/bar-rack. Path elements further to the left
  are higher up the tree. Thus a reasonable structure for a
  large installation may be
  /top-switch-name/rack-name.
  


  
  Hadoop rack ids are not currently expressive enough to handle
  an unusual routing topology such as a 3-d torus; they assume that
  each node is connected to a single switch which in turn has a
  single upstream switch. This is not usually a problem,
  however. Actual packet routing will be
  directed using the topology discovered by or set in switches and routers.
  The Hadoop rack ids will be used to find "near" and
  "far" nodes for replica placement (and in 0.17,
  MapReduce task placement).


  The following example script performs rack identification based
  on IP addresses given a hierarchical IP addressing scheme enforced
  by the network administrator. This may work directly for simple
  installations; more complex network configurations may require a
  file- or table-based lookup process. Care should be taken in
  that case to keep the table up-to-date as nodes are physically
  relocated, etc. This script requires that the maximum number of
  arguments be set to 1.


  #!/bin/bash
# Set rack id based on IP address.
# Assumes network administrator has complete control
# over IP addresses assigned to nodes and they are
# in the 10.x.y.z address space. Assumes that
# IP addresses are distributed hierarchically. e.g.,
# 10.1.y.z is one data center segment and 10.2.y.z is another;
# 10.1.1.z is one rack, 10.1.2.z is another rack in
# the same segment, etc.)
#
# This is invoked with an IP address as its only argument

# get IP address from the input
ipaddr=$0

# select "x.y" and convert it to "x/y"
segments=`echo $ipaddr | cut --delimiter=. --fields=2-3 --output-delimiter=/`
echo /${segments}



  
[bookmark: web]
  HDFS Web Interface


  HDFS exposes a web server which is capable of performing
  basic status monitoring and file browsing operations. By default
  this is exposed on port 50070 on the NameNode. Accessing
  http://namenode:50070/ with a web browser will return a page
  containing overview information about the health, capacity,
  and usage of the cluster (similar to the information returned
  by bin/hadoop dfsadmin -report).


  The address and port where the web interface listens can
  be changed by setting dfs.http.address in
  conf/hadoop-site.xml. It must be of the form
  address:port. To accept requests on all addresses,
  use 0.0.0.0.


  From this interface, you can browse HDFS itself with a basic
  file-browser interface. Each DataNode exposes its file browser
  interface on port 50075. You can override this by setting the
  dfs.datanode.http.address configuration key to a
  setting other than 0.0.0.0:50075. Log files generated
  by the Hadoop daemons can be accessed through this interface,
  which is useful for distributed debugging and troubleshooting.
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[bookmark: intro]Introduction

[bookmark: intro] 
[bookmark: intro]Hadoop is an open source implementation of the
MapReduce platform and distributed file system, written in Java. This
module explains the basics of how to begin using Hadoop to experiment
and learn from the rest of this tutorial. It covers setting up the
platform and connecting other tools to use it.

[bookmark: intro] [bookmark: goals] 

[bookmark: goals]Goals for this Module:

[bookmark: goals] 

  [bookmark: goals] 
  	[bookmark: goals]Set up a pre-configured Hadoop virtual machine

  [bookmark: goals] 
  	[bookmark: goals]Verify that you can connect to the virtual machine

  [bookmark: goals] 
  	[bookmark: goals]Understand tools available to help you use Hadoop
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[bookmark: prereq]Prerequisites

[bookmark: prereq] 
[bookmark: prereq]Developing for Hadoop requires a Java programming
environment. You can download a Java Development Kit (JDK) for a wide
variety of operating systems from http://java.sun.com.
Hadoop requires the Java Standard Edition (Java SE), version 6, which
is the most current version at the time of this writing. 

[bookmark: vm] 

[bookmark: vm]A Virtual Machine Hadoop Environment

[bookmark: vm] 
[bookmark: vm]This section explains how to configure a virtual
machine to run Hadoop within your host computer. After installing the
virtual machine software and the virtual machine image, you will learn
how to log in and run jobs within the Hadoop environment.

[bookmark: vm] 
[bookmark: vm]Users of Linux, Mac OSX, or other Unix-like
environments are able to install Hadoop and run it on one (or more)
machines with no additional software beyond Java. If you are interested
in doing this, there are instructions available on the Hadoop web site
in the quickstart
document.

Running Hadoop on top of Windows requires installing cygwin, a Linux-like environment that
runs within Windows. Hadoop works reasonably well on cygwin, but it is
officially for "development purposes only." Hadoop on cygwin may be
unstable, and installing cygwin itself can be cumbersome. 

To aid developers in getting started easily with Hadoop, we have
provided a virtual machine image containing a preconfigured
Hadoop installation. The virtual machine image will run inside of a
"sandbox" environment in which we can run another operating system. The
OS inside the sandbox does not know that there is another operating
environment outside of it; it acts as though it is on its own computer.
This sandbox environment is referred to as the "guest machine" running
a "guest operating system." The actual physical machine running the VM
software is referred to as the "host machine" and it runs the "host
operating system." The virtual machine provides other host-machine
applications with the appearance that another physical computer is
available on the same network. Applications running on the host machine
see the VM as a separate machine with its own IP address, and can
interact with the programs inside the VM in this fashion. 

 [bookmark: fig3-1]  

Figure 3.1: A virtual machine encapsulates one operating system within
another. Applications in the VM believe they run on a separate physical
host from other applications in the external operating system. Here we
demonstrate a Windows host machine and a Linux guest (virtual) machine.


[bookmark: fig3-1] 
[bookmark: fig3-1]Application developers do not need to use the
virtual machine to run Hadoop. Developers on Linux typically use Hadoop
in their native development environment, and Windows users often
install cygwin for Hadoop development. The virtual machine provided
with this tutorial allows users a convenient alternative development
platform with a minimum of configuration required. Another advantage of
the virtual machine is its easy reset functionality. If your
experiments break the Hadoop configuration or render the operating
system unusable, you can always simply copy the virtual machine image
from the CD back to where you installed it on your computer, and start
from a known-good state.

[bookmark: fig3-1] 
[bookmark: fig3-1]Our virtual machine will run Linux, and comes
preconfigured to run Hadoop in pseudo-distributed mode on this system.
(It is configured like a fully distributed system, but is actually
running on a single machine instance.) We can write Hadoop programs
using editors and other applications of the host platform, and run them
on our "cluster" consisting of just the virtual machine. We will
connect our host environment to the virtual machine through the
network. 

[bookmark: fig3-1] 
[bookmark: fig3-1]It should be noted that the virtual machine will
also run inside of another instance of Linux. Linux users can install
the virtual machine software and run the Hadoop VM as well; the same
separation between host processes and guest processes applies here. 

[bookmark: fig3-1] [bookmark: vmware-install] 
[bookmark: vmware-install]Installing VMware Player

[bookmark: vmware-install] 
[bookmark: vmware-install]The virtual machine is designed to run
inside of the VMware Player. A
copy of the VMware player installer (version 2.5) for both 32-bit
Windows and Linux
is included here (linux-rpm,
linux-bundle,
windows-exe).
A Getting
Started guide for VMware player provides instructions for
installing the VMware player. Review the license
information for VMware player before using it..

If you are running on a different operating system, or would prefer
to download a more recent version of the player, an alternate
installation strategy is to navigate to http://info.vmware.com/content/GLP_VMwarePlayer.
You will need to register for a "virtualization starter kit." You will
receive an email with a link to "Download VMware Player." Click the
link, then click the "download now" button at the top of the screen
under "most recent version" and follow the instructions. VMware Player
is available for Windows or Linux. The latter is available in both 32-
and 64-bit versions. 

VMware Player itself is approximately a 170 MB download. When the
download has completed, run the installer program to set up VMware
Player, and follow the prompts as directed. Installation in Windows is
performed by a typical Windows installation process.

[bookmark: vm-setup] 
[bookmark: vm-setup]Setting up the Virtual Environment

[bookmark: vm-setup] 
[bookmark: vm-setup]Next, [bookmark: vm-setup]copy the Hadoop
Virtual Machine 
into a location on your hard drive. It is a zipped vmware folder
(hadoop-vm-appliance-0-18-0) which includes a few files[bookmark: vm-setup]; a
.vmdk file that is a snapshot of the virtual machine's hard
drive, and a .vmx file which contains the configuration
information to start the virtual machine. After unzipping the vmware
folder zip file, to start the virtual machine,
double-click on the hadoop-appliance-0.18.0.vmx file in
Windows Explorer.

[bookmark: vm-setup] 
[bookmark: vm-setup] [bookmark: fig3-2]  

Figure 3.2: When you start the virtual machine for the first time, tell
VMware Player that you have copied the VM image. 

[bookmark: fig3-2] 
[bookmark: fig3-2]When you start the virtual machine for the first
time, VMware Player will recognize that the virtual machine image is
not in the same location it used to be. You should inform VMware Player
that you copied this virtual machine image. VMware Player will
then generate new session identifiers for this instance of the virtual
machine. If you later move the VM image to a different location on your
own hard drive, you should tell VMware Player that you have moved the
image.

[bookmark: fig3-2] 
[bookmark: fig3-2]If you ever corrupt the VM image (e.g., by
inadvertently deleting or overwriting important files), you can always
restore a pristine copy of the virtual machine by copying a fresh VM
image off of this tutorial CD. (So don't be shy about exploring! You
can always reset it to a functioning state.)

[bookmark: fig3-2] 
[bookmark: fig3-2]After you select this option and click OK, the
virtual machine should begin booting normally. You will see it perform
the standard boot procedure for a Linux system. It will bind itself to
an IP address on an unused network segment, and then display a prompt
allowing a user to log in.

[bookmark: fig3-2] [bookmark: vm-users] 
[bookmark: vm-users]Virtual Machine User Accounts

[bookmark: vm-users] 
[bookmark: vm-users]The virtual machine comes preconfigured with two
user accounts: "root" and "hadoop-user". The hadoop-user account has
sudo permissions to perform system management functions, such as
shutting down the virtual machine. The vast majority of your
interaction with the virtual machine will be as hadoop-user. 

[bookmark: vm-users] 
[bookmark: vm-users]To log in as hadoop-user, first click inside the
virtual machine's display. The virtual machine will take control of
your keyboard and mouse. To escape back into Windows at any time, press
CTRL+ALT at the same time. The hadoop-user user's password is hadoop.
To log in as root, the password is root.

[bookmark: vm-users] [bookmark: vm-jobs] 
[bookmark: vm-jobs]Running a Hadoop Job

[bookmark: vm-jobs] 
[bookmark: vm-jobs]Now that the VM is started, or you have installed
Hadoop on your own system in pseudo-distributed mode, let us make sure
that Hadoop is properly configured.

[bookmark: vm-jobs] 
[bookmark: vm-jobs]If you are using the VM, log in as hadoop-user, as
directed above. You will start in your home directory: /home/hadoop-user.
Typing ls, you will see a directory named hadoop/,
as well as a set of scripts to manage the server. The virtual machine's
hostname is hadoop-desk.

[bookmark: vm-jobs] 
[bookmark: vm-jobs]First, we must start the Hadoop system. Type the
following command:

[bookmark: vm-jobs] 

[bookmark: vm-jobs]hadoop-user@hadoop-desk:~$ ./start-hadoop



[bookmark: vm-jobs] 
[bookmark: vm-jobs]If you installed Hadoop on your host system, use
the following commands to launch hadoop (assuming you installed to ~/hadoop):

[bookmark: vm-jobs] 

[bookmark: vm-jobs]you@your-machine:~$ cd hadoop
you@your-machine:~/hadoop$ bin/start-all.sh



[bookmark: vm-jobs] 
[bookmark: vm-jobs]You will see a set of status messages appear as
the services boot. If prompted whether it is okay to connect to the
current host, type "yes". Try running an example program to ensure that
Hadoop is correctly configured:

[bookmark: vm-jobs] 

[bookmark: vm-jobs]hadoop-user@hadoop-desk:~$ cd hadoop
hadoop-user@hadoop-desk:~/hadoop$ bin/hadoop jar hadoop-0.18.0-examples.jar pi 10 1000000



[bookmark: vm-jobs] 
[bookmark: vm-jobs]This should provide output that looks something
like this:

[bookmark: vm-jobs] 

[bookmark: vm-jobs]Wrote input for Map #1
Wrote input for Map #2
Wrote input for Map #3
...
Wrote input for Map #10
Starting Job
INFO mapred.FileInputFormat: Total input paths to process: 10
INFO mapred.JobClient: Running job: job_200806230804_0001
INFO mapred.JobClient: map 0% reduce 0%
INFO mapred.JobClient: map 10% reduce 0%
...
INFO mapred.JobClient: map 100% reduce 100%
INFO mapred.JobClient: Job complete: job_200806230804_0001
...
Job Finished in 25.841 second
Estimated value of PI is 3.141688



[bookmark: vm-jobs] 
[bookmark: vm-jobs]This task runs a simulation to estimate the value
of pi based on sampling. The test first wrote out a number of points to
a list of files, one per map task. It then calculated an estimate of pi
based on these points, in the MapReduce task itself. How MapReduce
works and how to write such a program are discussed in the next module.
The Hadoop client program you used to launch the pi test launched the
job, displayed some progress update information as to how the job is
proceeding, and then displayed some final performance counters and the
job-specific output: an estimate for the value of pi. 
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[bookmark: vm-ssh]Accessing the VM via ssh

[bookmark: vm-ssh] 
[bookmark: vm-ssh]Rather than directly use the terminal of the
virtual machine, you can also log in "remotely" over ssh from the host
environment. Using an ssh client like putty (in Windows), log in with
username "hadoop-user" (password hadoop) to the IP address
displayed in the virtual machine terminal when it starts up. You can
now interact with this virtual machine as if it were another Linux
machine on the network.

[bookmark: vm-ssh] 
[bookmark: vm-ssh]This can only be done from the host machine. The
VMware image is, by default, configured to use host-only
networking; only the host machine can talk to the virtual machine over
its network interface. The virtual machine does not appear on the
actual external network. This is done for security purposes.

[bookmark: vm-ssh] 
[bookmark: vm-ssh]If you need to find the virtual machine's IP
address later, the ifconfig command will display this under
the "inet addr" field.

[bookmark: vm-ssh] 
[bookmark: vm-ssh]Important security note: In the VMware settings,
you can reconfigure the virtual machine for networked access rather
than host-only networking. If you enable network access, you can access
the virtual machine from anywhere else on the network via its IP
address. In this case, you should change the passwords associated with
the accounts on the virtual machine to prevent unauthorized users from
logging in with the default password.

[bookmark: vm-ssh] [bookmark: vm-shutdown] 
[bookmark: vm-shutdown]Shutting Down the VM

[bookmark: vm-shutdown] 
[bookmark: vm-shutdown]When you are done with the virtual machine,
you can turn it off by logging in as hadoop-user and typing sudo
poweroff. The virtual machine will shut itself down in an orderly
fashion and the window it runs in will disappear.

[bookmark: vm-shutdown] [bookmark: eclipse] 

[bookmark: eclipse]Getting Started With Eclipse

[bookmark: eclipse] 
[bookmark: eclipse]A powerful development environment for Java-based
programming is Eclipse.
Eclipse is a free, open-source IDE. It supports multiple languages
through a plugin interface, with special attention paid to Java. Tools
designed for working with Hadoop can be integrated into Eclipse, making
it an attractive platform for Hadoop development. In this section we
will review how to obtain, configure, and use Eclipse.

[bookmark: eclipse-dl] 
[bookmark: eclipse-dl]Downloading and Installing

[bookmark: eclipse-dl] 
[bookmark: eclipse-dl]Note: The most current release of
Eclipse is called Ganymede. Our testing shows that Ganymede is
currently incompatible with the Hadoop MapReduce plugin. The most
recent version which worked properly with the Hadoop plugin is version
3.3.1, "Europa." To download Europa, do not visit the main Eclipse
website; it can be found in the archive site http://archive.eclipse.org/eclipse/downloads/
as the "Archived Release (3.3.1)."

The Eclipse website has several versions available for download;
choose either "Eclipse Classic" or "Eclipse IDE for Java Developers."

Because it is written in Java, Eclipse is very cross-platform.
Eclipse is available for Windows, Linux, and Mac OSX.

Installing Eclipse is very straightforward. Eclipse is packaged as a
.zip file. Windows itself can natively unzip the compressed
file into a directory. If you encounter errors using the Windows
decompression tool (see [1]),
try using a third-party unzip utility such as 7-zip or WinRAR.

After you have decompressed Eclipse into a directory, you can run it
straight from that directory with no modifications or other
"installation" procedure. You may want to move it into C:\Program
Files\Eclipse to keep consistent with your other applications, but
it can reside in the Desktop or elsewhere as well.

[bookmark: plugin-install] 
[bookmark: plugin-install]Installing the Hadoop MapReduce Plugin

[bookmark: plugin-install] 
[bookmark: plugin-install]Hadoop comes with a plugin for Eclipse that
makes developing MapReduce programs easier. In the hadoop-0.18.0/contrib/eclipse-plugin
directory on this CD, you will find a file named hadoop-0.18.0-eclipse-plugin.jar.
Copy this into the plugins/ subdirectory of wherever you
unzipped Eclipse. 

[bookmark: plugin-install] [bookmark: hadoop-copy] 
[bookmark: hadoop-copy]Making a Copy of Hadoop

[bookmark: hadoop-copy] 
[bookmark: hadoop-copy] 
[bookmark: hadoop-copy]While we will be running MapReduce programs on
the virtual machine, we will be compiling them on the host machine. The
host therefore needs a copy of the Hadoop jars to compile your code
against. Copy the /hadoop-0.18.0
directory from the CD into a
location on your local drive, and remember where this is. You do not
need to configure this copy of Hadoop in any way.





[bookmark: hadoop-copy] [bookmark: eclipse-run] 
[bookmark: eclipse-run]Running Eclipse

[bookmark: eclipse-run] 
[bookmark: eclipse-run]Navigate into the Eclipse directory and run eclipse.exe
to start the IDE. Eclipse stores all of your source projects and their
related settings in a directory called a workspace. 

[bookmark: eclipse-run]Upon starting Eclipse, it will prompt you for
a directory to act as the workspace. Choose a directory name that makes
sense to you and click OK.

[bookmark: eclipse-run] 
[bookmark: eclipse-run] [bookmark: fig3-3]  

Figure 3.3: When you first start Eclipse, you must choose a directory
to act as your workspace. 

[bookmark: fig3-3] [bookmark: plugin-conf] 
[bookmark: plugin-conf]Configuring the MapReduce Plugin

[bookmark: plugin-conf] 
[bookmark: plugin-conf]In this section, we will walk through the
process of configuring Eclipse to switch to the MapReduce perspective
and connect to the Hadoop virtual machine.

[bookmark: plugin-conf] 
[bookmark: plugin-conf]Step 1: If you have not already done so,
start Eclipse and choose a workspace directory. If you are
presented with a "welcome" screen, click the button that says "Go to
the Workbench." The Workbench is the main view of Eclipse, where you
can write source code, launch programs, and manage your projects. 

[bookmark: plugin-conf] 
[bookmark: plugin-conf]Step 2: Start the virtual machine.
Double-click on the image.vmx file in the virtual machine's
installation directory to launch the virtual machine. It should begin
the Linux boot process.

[bookmark: plugin-conf] 
[bookmark: plugin-conf]Step 3: Switch to the MapReduce perspective.
In the upper-right corner of the workbench, click the "Open
Perspective" button, as shown in Figure 3.4:

[bookmark: plugin-conf] 
[bookmark: plugin-conf] [bookmark: fig3-4]  

Figure 3.4: Changing the Perspective 

[bookmark: fig3-4] 
[bookmark: fig3-4]Select "Other," followed by "Map/Reduce" in the
window that opens up. At first, nothing may appear to change. In the
menu, choose Window * Show View * Other. Under "MapReduce
Tools," select "Map/Reduce Locations." This should make a new panel
visible at the bottom of the screen, next to Problems and Tasks.

[bookmark: fig3-4] 
[bookmark: fig3-4]Step 4: Add the Server. In the Map/Reduce
Locations panel, click on the elephant logo in the upper-right corner
to add a new server to Eclipse.

[bookmark: fig3-4] 
[bookmark: fig3-4] [bookmark: fig3-5] 

Figure 3.5: Adding a New Server 

[bookmark: fig3-5] 
[bookmark: fig3-5]You will now be asked to fill in a number of
parameters identifying the server. To connect to the VMware image, the
values are:

[bookmark: fig3-5] 

[bookmark: fig3-5]Location name: (Any descriptive name you want; e.g., "VMware server")
Map/Reduce Master Host: (The IP address printed at startup)
Map/Reduce Master Port: 9001
DFS Master Port: 9000
User name: hadoop-user



[bookmark: fig3-5] 
[bookmark: fig3-5]Next, click on the "Advanced" tab. There are two
settings here which must be changed.

[bookmark: fig3-5] 
[bookmark: fig3-5]Scroll down to hadoop.job.ugi. It
contains your current Windows login credentials. Highlight the first
comma-separated value in this list (your username) and replace it with hadoop-user.

[bookmark: fig3-5] 
[bookmark: fig3-5]Next, scroll further down to mapred.system.dir.
Erase the current value and set it to /hadoop/mapred/system. 

[bookmark: fig3-5] 
[bookmark: fig3-5]When you are done, click "Finish." Your server will
now appear in the Map/Reduce Locations panel. If you look in the
Project Explorer (upper-left corner of Eclipse), you will see that the
MapReduce plugin has added the ability to browse HDFS. Click the [+]
buttons to expand the directory tree to see any files already there. If
you inserted files into HDFS yourself, they will be visible in this
tree.

[bookmark: fig3-5] 
[bookmark: fig3-5] [bookmark: fig3-6] 

Figure 3.6: Files Visible in the HDFS Viewer 

[bookmark: fig3-6] 
[bookmark: fig3-6]Now that your system is configured, the following
sections will introduce you to the basic features and verify that they
work correctly.

[bookmark: fig3-6] [bookmark: dfs] 

[bookmark: dfs]Interacting With HDFS

[bookmark: dfs] 
[bookmark: dfs]The VMware image will expose a single-node HDFS
instance for your use in MapReduce applications. If you are logged in
to the virtual machine, you can interact with HDFS using the
command-line tools described in Module 2. You can also manipulate HDFS
through the MapReduce plugin.

[bookmark: dfs] [bookmark: dfs-cmd] 
[bookmark: dfs-cmd]Using the Command Line

[bookmark: dfs-cmd] 
[bookmark: dfs-cmd]An interesting MapReduce task will require some
external data to process: log files, web crawl results, etc. Before you
can begin processing with MapReduce, data must be loaded into its
distributed file system. In Module 2,
you learned how to copy files from the local file system into HDFS. But
this will copy files from the local file system of the VM into HDFS -
not from the file system of your host computer.

To load data into HDFS in the virtual machine, you have several
options available to you:


  	scp the files to the virtual machine, and then use the bin/hadoop
fs -put ... syntax to copy the files from the VM's local file
system into HDFS,

  	pipe the data from the local machine into a put command
reading from stdin,

  	or install the Hadoop tools on the host system and configure it
to communicate directly with the guest instance



We will review each of these in turn.

To load data into HDFS using the command line within the virtual
machine, you can first send the data to the VM's local disk, then
insert it into HDFS. You can send files to the VM using an scp client,
such as the pscp component of putty,
or WinSCP. 

scp will allow you to copy files from one machine to another over
the network. The scp command takes two arguments, both of the form [[username@]hostname]:filename.
The scp command itself is of the form scp source dest,
where source and dest are formatted as described above.
By default, it will assume that paths are on the local host, and should
be accessed using the current username. You can override the username
and hostname to perform remote copies.

So supposing you have a file named foo.txt, and you would
like to copy this into the virtual machine which has IP address
192.168.190.128, you can perform this operation with the command:


  $ scp foo.txt hadoop-user@192.168.190.128:foo.txt



If you are using the pscp program, substitute pscp
instead of scp above. A copy of the "regular" scp
can be run under cygwin by downloading the OpenSSH package. pscp is a
utility by the makers of putty and does not require cygwin.

Note that since we did not specify a destination directory, it will
go in /home/hadoop-user by default. To change the target
directory, specify it after the hostname (e.g., hadoop-user@192.168.128.190:/some/dest/path/foo.txt.)
You can also omit the destination filename, if you want it to be
identical to the source filename. However, if you omit both the target
directory and filename, you must not forget the colon (":") that
follows the target hostname. Otherwise it will make a local copy of the
file, with the name 192.168.190.128. An equivalent correct
command to copy foo.txt to /home/hadoop-user on the
remote machine is:


  $ scp foo.txt hadoop-user@192.168.190.128:



Windows users may be more inclined to use a GUI tool to perform scp
commands. The free WinSCP program
provides an FTP-like GUI interface over scp.

After you have copied files into the local disk of the virtual
machine, you can log in to the virtual machine as hadoop-user
and insert the files into HDFS using the standard Hadoop commands. For
example,


hadoop-user@vm-instance:hadoop$ bin/hadoop dfs -put ~/foo.txt \
  /user/hadoop-user/input/foo.txt



A second option available to upload individual files to HDFS from
the host machine is to echo the file contents into a put
command running via ssh. e.g., assuming you have the cat
program (which comes with Linux or cygwin) to echo the contents of a
file to the terminal output, you can connect its output to the input of
a put command running over ssh like so:


you@host-machine$ cat somefile | ssh hadoop-user@vm-ip-addr \
  "hadoop/bin/hadoop fs -put - destinationfile



The - as an argument to the put command
instructs the system to use stdin as its input file. This will copy somefile
on the host machine to destinationfile in HDFS on the virtual
machine.

Finally, if you are running either Linux or cygwin, you can copy the
/hadoop-0.18.0 directory on the
CD to your local instance. You can then
configure hadoop-site.xml to use the virtual machine as the
default distributed file system (by setting the fs.default.name
parameter). If you then run bin/hadoop fs -put ... commands
on this machine (or any other hadoop commands, for that matter), they
will interact with HDFS as served by the virtual machine. See the Hadoop
quickstart for instructions on configuring a Hadoop installation,
or Module 7 for a more thorough treatment.

[bookmark: dfs-plugin] 
[bookmark: dfs-plugin]Using the MapReduce Plugin For Eclipse

[bookmark: dfs-plugin] 
[bookmark: dfs-plugin]An easier way to manipulate files in HDFS may
be through the Eclipse plugin. In the DFS location viewer, right-click
on any folder to see a list of actions available. You can create new
subdirectories, upload individual files or whole subdirectories, or
download files and directories to the local disk.

[bookmark: dfs-plugin] 
[bookmark: dfs-plugin]If /user/hadoop-user does not exist,
create that first. Right-click on the top-level directory and select
"Create New Directory". Type "user" and click OK. You will then need to
refresh the current directory view by right-clicking and
selecting "Refresh" from the pop-up menu. Repeat this process to create
the "hadoop-user" directory under "user."

[bookmark: dfs-plugin] 
[bookmark: dfs-plugin]Now, prepare some local files to upload.
Somewhere on your hard drive, create a directory named "input" and find
some text files to copy there. In the DFS explorer, right-click the
"hadoop-user" directory and click "Upload Directory to DFS." Select
your new input folder and click OK. Eclipse will copy the files
directly into HDFS, bypassing the local drive of the virtual machine.
You may have to refresh the directory view to see your changes. You
should now have a directory hierarchy containing the /user/hadoop-user/input
directory, which has at least one text file in it.

[bookmark: dfs-plugin] [bookmark: running] 

[bookmark: running]Running a Sample Program

[bookmark: running] 
[bookmark: running]While we have not yet formally introduced the
programming style for Hadoop, we can still test whether a MapReduce
program will run on our Hadoop virtual machine. This section walks you
through the steps required to verify this.

[bookmark: running] 
[bookmark: running]The program that we will run is a word count
utility. The program will read the files you uploaded to HDFS in the
previous section, and determine how many times each word in the files
appears.

[bookmark: running] 
[bookmark: running]If you have not already done so, start the virtual
machine and Eclipse, and switch Eclipse to use the MapReduce
perspective. Instructions are in the previous section. 

[bookmark: running] [bookmark: run-create] 
[bookmark: run-create]Creating the Project

[bookmark: run-create] 
[bookmark: run-create]In the menu, click File * New * Project.
Select "Map/Reduce Project" from the list and click Next.

[bookmark: run-create] 
[bookmark: run-create]You now need to select a project name. Any name
will do, e.g., "WordCount". You will also need to specify the Hadoop
Library Installation Path. This is the path where you made a copy of
the /hadoop-0.18.0 folder on the CD.  Since we have not
yet configured this part
of Eclipse, do so now by clicking "Configure Hadoop install
directory..." and choosing the path where you copied Hadoop to. There
should be a file named hadoop-0.18.0-core.jar in this
directory. Creating a MapReduce Project instead of a generic Java
project automatically adds the prerequisite jar files to the build
path. If you create a regular Java project, you must add the Hadoop jar
(and its dependencies) to the build path manually.

[bookmark: run-create] 
[bookmark: run-create]When you have completed these steps, click
Finish.

[bookmark: run-create] [bookmark: run-source] 
[bookmark: run-source]Creating the Source Files

[bookmark: run-source] 
[bookmark: run-source]Our program needs three classes to run: a
Mapper, a Reducer, and a Driver. The Driver tells Hadoop how to run the
MapReduce process. The Mapper and Reducer operate on your data.

[bookmark: run-source] 
[bookmark: run-source]Right-click on the "src" folder under your
project and select New * Other.... In the "Map/Reduce" folder
on the resulting window, we can create Mapper, Reducer, and Driver
classes based on pre-written stub code. Create classes named WordCountMapper,
WordCountReducer, and WordCount that use the Mapper,
Reducer, and Driver stubs respectively. 

[bookmark: run-source] 
[bookmark: run-source]The code for each of these classes is shown
here. You can copy this code into your files.

[bookmark: run-source] 
[bookmark: run-source]WordCountMapper.java:

[bookmark: run-source] 

[bookmark: run-source]import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;

public class WordCountMapper extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  private final IntWritable one = new IntWritable(1);
  private Text word = new Text();

  public void map(WritableComparable key, Writable value,
      OutputCollector output, Reporter reporter) throws IOException {

    String line = value.toString();
    StringTokenizer itr = new StringTokenizer(line.toLowerCase());
    while(itr.hasMoreTokens()) {
      word.set(itr.nextToken());
      output.collect(word, one);
    }
  }
}



[bookmark: run-source] 
[bookmark: run-source]WordCountReducer.java:

[bookmark: run-source] 

[bookmark: run-source]import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class WordCountReducer extends MapReduceBase
    implements Reducer<Text, IntWritable, Text, IntWritable> {

  public void reduce(Text key, Iterator values,
      OutputCollector output, Reporter reporter) throws IOException {

    int sum = 0;
    while (values.hasNext()) {
      IntWritable value = (IntWritable) values.next();
      sum += value.get(); // process value
    }

    output.collect(key, new IntWritable(sum));
  }
}



[bookmark: run-source] 
[bookmark: run-source]WordCount.java:

[bookmark: run-source] 

[bookmark: run-source]import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;

public class WordCount {

  public static void main(String[] args) {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(WordCount.class);

    // specify output types
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);

    // specify input and output dirs
    FileInputPath.addInputPath(conf, new Path("input"));
    FileOutputPath.addOutputPath(conf, new Path("output"));

    // specify a mapper
    conf.setMapperClass(WordCountMapper.class);

    // specify a reducer
    conf.setReducerClass(WordCountReducer.class);
    conf.setCombinerClass(WordCountReducer.class);

    client.setConf(conf);
    try {
      JobClient.runJob(conf);
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
}



[bookmark: run-source] 
[bookmark: run-source]For now, don't worry about how these functions
work; we will introduce how to write MapReduce programs in Module 4. We currently just want to establish
that we can run jobs on the virtual machine.

[bookmark: run-run] 
[bookmark: run-run]Launching the Job

[bookmark: run-run] 
[bookmark: run-run]After the code has been entered, it is time to run
it. You have already created a directory named input below /user/hadoop-user
in HDFS. This will serve as the input files to this process. In the
Project Explorer, right-click on the driver class, WordCount.java.
In the pop-up menu, select Run As * Run On Hadoop. A window
will appear asking you to select a Hadoop location to run on. Select
the VMware server that you configured earlier, and click Finish. 

[bookmark: run-run] 
[bookmark: run-run]If all goes well, the progress output from Hadoop
should appear in the console in Eclipse; it should look something like:

[bookmark: run-run] 

[bookmark: run-run]08/06/25 12:14:22 INFO mapred.FileInputFormat: Total input paths to process : 3
08/06/25 12:14:23 INFO mapred.JobClient: Running job: job_200806250515_0002
08/06/25 12:14:24 INFO mapred.JobClient:  map 0% reduce 0%
08/06/25 12:14:31 INFO mapred.JobClient:  map 50% reduce 0%
08/06/25 12:14:33 INFO mapred.JobClient:  map 100% reduce 0%
08/06/25 12:14:42 INFO mapred.JobClient:  map 100% reduce 100%
08/06/25 12:14:43 INFO mapred.JobClient: Job complete: job_200806250515_0002
08/06/25 12:14:43 INFO mapred.JobClient: Counters: 12
08/06/25 12:14:43 INFO mapred.JobClient:   Job Counters
08/06/25 12:14:43 INFO mapred.JobClient:     Launched map tasks=4
08/06/25 12:14:43 INFO mapred.JobClient:     Launched reduce tasks=1
08/06/25 12:14:43 INFO mapred.JobClient:     Data-local map tasks=4
08/06/25 12:14:43 INFO mapred.JobClient:   Map-Reduce Framework
08/06/25 12:14:43 INFO mapred.JobClient:     Map input records=211
08/06/25 12:14:43 INFO mapred.JobClient:     Map output records=1609
08/06/25 12:14:43 INFO mapred.JobClient:     Map input bytes=11627
08/06/25 12:14:43 INFO mapred.JobClient:     Map output bytes=16918
08/06/25 12:14:43 INFO mapred.JobClient:     Combine input records=1609
08/06/25 12:14:43 INFO mapred.JobClient:     Combine output records=682
08/06/25 12:14:43 INFO mapred.JobClient:     Reduce input groups=568
08/06/25 12:14:43 INFO mapred.JobClient:     Reduce input records=682
08/06/25 12:14:43 INFO mapred.JobClient:     Reduce output records=568



[bookmark: run-run] 
[bookmark: run-run]In the DFS Explorer, right-click on /user/hadoop-user
and select "Refresh." You should now see an "output" directory
containing a file named part-00000. This is the output of the
job. Double-clicking this file will allow you to view it in Eclipse;
you can see each word and its frequency in the documents. (You may
receive a warning that this file is larger than 1 MB, first. Click OK.)

[bookmark: run-run] 
[bookmark: run-run]If you want to run the job again, you will need to
delete the output directory first. Right-click the output directory in
the DFS Explorer and click "Delete."

[bookmark: run-run] 
[bookmark: run-run]Congratulations! You should now have a functioning
Hadoop development environment. In the next module, we will learn how
to use it to perform powerful programming tasks.

[bookmark: run-run] [bookmark: refs] 

[bookmark: refs]References & Resources

[bookmark: refs] 
[bookmark: refs]These resources are links to general Hadoop sites.
They should be your first stop for troubleshooting or more information.

[bookmark: refs] 

  [bookmark: refs] 
  	Hadoop site -
Central location for downloads, documentation and information

  	Hadoop wiki -
User-powered documentation for Hadoop

  	JavaDoc
- Current Hadoop API documentation

  	Mailing
list info - Hadoop community discussion & advice



[bookmark: tools] 

[bookmark: tools]Appendix: Complete Tools List

[bookmark: tools] 
[bookmark: tools]Included in this section is a complete list of
programs necessary to run Hadoop, and optional programs which may be
helpful in installing or using it. Some of these assume a Windows
development environment (though not necessarily a Windows-based
cluster).

[bookmark: tools] 

  [bookmark: tools] 
  	[bookmark: tools]Necessary for Hadoop:

  [bookmark: tools] 
  
    [bookmark: tools] 
    	Java SE SDK [download
JDK 6 or higher] 

    	Hadoop

  

  	Useful for this tutorial:

  
    	VMware
Player

    	Eclipse

  

  	Generally helpful utilities:

  
    	WinZip, 7-Zip, or WinRAR

    	putty
and pscp

    	WinSCP

    	cygwin
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[bookmark: intro]
  Introduction


  MapReduce is a programming model designed for
  processing large volumes of data in parallel by
  dividing the work into a set of independent
  tasks. MapReduce programs are written in a particular
  style influenced by functional programming
  constructs, specifically idioms for processing
  lists of data. This module explains the nature of
  this programming model and how it can be used to
  write programs which run in the Hadoop environment.


  
[bookmark: goals]
  Goals for this Module:


  
    	Understand functional programming as it applies to MapReduce

    	Understand the MapReduce program flow

    	Understand how to write programs for Hadoop MapReduce

    	Learn about additional features of Hadoop designed to
        aid software development.

  


  
[bookmark: outline]
  Outline


  [bookmark: outline]
    	[bookmark: outline]Introduction

    	Goals for this Module

    	Outline

    	Prerequisites

    	MapReduce Basics

    
      	Functional Programming Concepts

      	List Processing

      	Mapping Lists

      	Reducing Lists

      	Putting them Together in MapReduce

      	An Example Application: Word Count

      	The Driver Method

    

    	MapReduce Data Flow

    
      	A Closer Look

      	Additional MapReduce Functionality

      	Fault Tolerance

    

    	Checkpoint

    	More Tips

    
      	Chaining Jobs

      	Troubleshooting: Debugging
        MapReduce

      	Listing and Killing Jobs

    

    	Additional Language Support

    
      	Pipes

      	Hadoop Streaming

    

    	Conclusions

    	Solution to Inverted Index Code

  



  
[bookmark: prereq]
  Prerequisites


  [bookmark: prereq]This module requires that you have set up a build environment
  as described in Module 3. If you have
  not already configured Hadoop and successfully run the example
  applications, go back and do so now.



  
[bookmark: basics]
  MapReduce Basics


  [bookmark: functional]
  Functional Programming Concepts


  MapReduce programs are designed to compute large volumes of
  data in a parallel fashion. This requires dividing the workload
  across a large number of machines. This model would not scale
  to large clusters (hundreds or thousands of nodes) if the
  components were allowed to share data arbitrarily. The communication
  overhead required to keep the data on the nodes synchronized
  at all times would prevent the system from performing reliably
  or efficiently at large scale.


  Instead, all data elements in MapReduce are immutable,
  meaning that they cannot be updated. If in a mapping task you change
  an input (key, value) pair, it does not get reflected back in the
  input files; communication occurs only by generating new output
  (key, value) pairs which are then forwarded by the Hadoop system
  into the next phase of execution.


  [bookmark: lists]
  List Processing


  Conceptually, MapReduce programs transform lists of input
  data elements into lists of output data elements. A MapReduce
  program will do this twice, using two different list processing
  idioms: map, and reduce. These terms are taken
  from several list processing languages such as LISP, Scheme,
  or ML.


  [bookmark: listmapping]
  Mapping Lists


  The first phase of a MapReduce program is called mapping.
  A list of data elements are provided, one at a time, to a
  function called the Mapper, which transforms each element
  individually to an output data element. 


  
    
    Figure 4.1: Mapping creates a new output list by applying a
    function to individual elements of an input list.

  


  As an example of the utility of map: Suppose you had a
  function toUpper(str) which returns an uppercase version
  of its input string. You could use this function with map
  to turn a list of strings into a list of uppercase strings.
  Note that we are not modifying the input string here:
  we are returning a new string that will form part of a new
  output list.


  [bookmark: listreducing]
  Reducing Lists


  Reducing lets you aggregate values together. A reducer
  function receives an iterator of input values from an input
  list. It then combines these values together, returning a
  single output value. 


  
    
    Figure 4.2: Reducing a list iterates over the input
    values to produce an aggregate value as output.

  


  Reducing is often used to produce "summary"
  data, turning a large volume of data into a smaller summary
  of itself. For example, "+" can be used as a
  reducing function, to return the sum of a list of input
  values.


  [bookmark: together]
  Putting Them Together in MapReduce:


  The Hadoop MapReduce framework takes these concepts and
  uses them to process large volumes of information. A
  MapReduce program has two components: one that implements
  the mapper, and another that implements the reducer. The
  Mapper and Reducer idioms described above are extended
  slightly to work in this environment, but the basic
  principles are the same.


  Keys and values: In MapReduce, no value stands
  on its own. Every value has a key associated with it.
  Keys identify related values. For example, a log of
  time-coded speedometer readings from multiple cars could be
  keyed by license-plate number; it would look like:
  

AAA-123   65mph, 12:00pm
ZZZ-789   50mph, 12:02pm
AAA-123   40mph, 12:05pm
CCC-456   25mph, 12:15pm
...

  


  The mapping and reducing functions receive not just
  values, but (key, value) pairs. The output of each of
  these functions is the same: both a key and a value must
  be emitted to the next list in the data flow.


  MapReduce is also less strict than other languages about
  how the Mapper and Reducer work. In more formal functional
  mapping and reducing settings, a mapper must produce exactly
  one output element for each input element, and a reducer must
  produce exactly one output element for each input list.
  In MapReduce, an arbitrary number of values can be output
  from each phase; a mapper may map one input into zero, one,
  or one hundred outputs. A reducer may compute over an input list
  and emit one or a dozen different outputs.


  Keys divide the reduce space: A reducing function
  turns a large list of values into one (or a few) output
  values. In MapReduce, all of the output values are not
  usually reduced together. All of the values with the same
  key are presented to a single reducer together. This
  is performed independently of any reduce operations occurring
  on other lists of values, with different keys attached.


  
    
    Figure 4.3: Different colors represent different keys.
    All values with the same key are presented to a single
    reduce task.

  


  [bookmark: wordcount]
  An Example Application: Word Count


  A simple MapReduce program can be written to determine
  how many times different words appear in a set of files.
  For example, if we had the files:


  foo.txt: Sweet, this is the foo file

  bar.txt: This is the bar file


  We would expect the output to be:

  

sweet 1
this  2
is    2
the   2
foo   1
bar   1
file  2
  



  Naturally, we can write a program in MapReduce to compute
  this output. The high-level structure would look like this:


  mapper (filename, file-contents):
  for each word in file-contents:
    emit (word, 1)

reducer (word, values):
  sum = 0
  for each value in values:
    sum = sum + value
  emit (word, sum)


  Listing 4.1: High-Level MapReduce Word Count


  Several instances of the mapper function are created on
  the different machines in our cluster. Each instance receives
  a different input file (it is assumed that we have many such
  files). The mappers output (word, 1) pairs which are then
  forwarded to the reducers. Several instances of the reducer
  method are also instantiated on the different machines. Each
  reducer is responsible for processing the list of values
  associated with a different word. The list of values will
  be a list of 1's; the reducer sums up those ones into a
  final count associated with a single word. The reducer then
  emits the final (word, count) output which is written to
  an output file.



  We can write a very similar program to this in Hadoop
  MapReduce; it is included in the Hadoop distribution in
  src/examples/org/apache/hadoop/examples/WordCount.java.
  It is partially reproduced below:

  
  public static class MapClass extends MapReduceBase
    implements Mapper<LongWritable, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(LongWritable key, Text value,
                    OutputCollector<Text, IntWritable> output,
                    Reporter reporter) throws IOException {
      String line = value.toString();
      StringTokenizer itr = new StringTokenizer(line);
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        output.collect(word, one);
      }
    }
  }

  /**
   * A reducer class that just emits the sum of the input values.
   */
  public static class Reduce extends MapReduceBase
    implements Reducer<Text, IntWritable, Text, IntWritable> {

    public void reduce(Text key, Iterator<IntWritable> values,
                       OutputCollector<Text, IntWritable> output,
                       Reporter reporter) throws IOException {
      int sum = 0;
      while (values.hasNext()) {
        sum += values.next().get();
      }
      output.collect(key, new IntWritable(sum));
    }
  }


  Listing 4.2: Hadoop MapReduce Word Count Source


  There are some minor differences between this actual Java
  implementation and the pseudo-code shown above. First,
  Java has no native emit keyword; the OutputCollector
  object you are given as an input will receive values to
  emit to the next stage of execution. And second, the default input
  format used by Hadoop presents each line of an input file
  as a separate input to the mapper function, not the entire file
  at a time. It also uses a StringTokenizer object
  to break up the line into words. This does not perform any
  normalization of the input, so "cat", "Cat"
  and "cat," are all regarded as different strings.
  Note that the class-variable word is reused each time the mapper
  outputs another (word, 1) pairing; this saves time by not
  allocating a new variable for each output. The output.collect()
  method will copy the values it receives as input, so you
  are free to overwrite the variables you use.


  [bookmark: driver]
  The Driver Method


  There is one final component of a Hadoop MapReduce program,
  called the Driver. The driver initializes the job and
  instructs the Hadoop platform to execute your code on a set
  of input files, and controls where the output files are placed.
  A cleaned-up version of the driver from the example Java implementation
  that comes with Hadoop is presented below:


    public void run(String inputPath, String outputPath) throws Exception {
    JobConf conf = new JobConf(WordCount.class);
    conf.setJobName("wordcount");

    // the keys are words (strings)
    conf.setOutputKeyClass(Text.class);
    // the values are counts (ints)
    conf.setOutputValueClass(IntWritable.class);

    conf.setMapperClass(MapClass.class);
    conf.setReducerClass(Reduce.class);

    FileInputFormat.addInputPath(conf, new Path(inputPath));
    FileOutputFormat.setOutputPath(conf, new Path(outputPath));

    JobClient.runJob(conf);
  }


  Listing 4.3: Hadoop MapReduce Word Count Driver


  [bookmark: driver]This method sets up a job to execute the word count program
  across all the files in a given input directory (the inputPath
  argument). The output from the reducers are written into files
  in the directory identified by outputPath. The configuration
  information to run the job is captured in the JobConf
  object. The mapping and reducing functions are identified by the
  setMapperClass() and setReducerClass() methods.
  The data types emitted by the reducer are identified by
  setOutputKeyClass() and setOutputValueClass().
  By default, it is assumed that these are the output types of
  the mapper as well. If this is not the case, the methods
  setMapOutputKeyClass() and setMapOutputValueClass()
  methods of the JobConf class will override these.
  The input types fed to the mapper
  are controlled by the InputFormat used. Input formats
  are discussed in more detail
  below. The
  default input format, "TextInputFormat," will
  load data in as (LongWritable, Text) pairs. The
  long value is the byte offset of the line in the file. The Text
  object holds the string contents of the line of the file.



  The call to JobClient.runJob(conf) will submit the
  job to MapReduce. This call will block until the job completes.
  If the job fails, it will throw an IOException. JobClient
  also provides a non-blocking version called submitJob().
  


  
[bookmark: dataflow]
  MapReduce Data Flow


  Now that we have seen the components that make up a basic
  MapReduce job, we can see how everything works together at a
  higher level:


  
    
    Figure 4.4: High-level MapReduce pipeline

  


  [bookmark: dataflow]MapReduce inputs typically come from input files loaded onto
  our processing cluster in HDFS. These
  files are evenly distributed across all our nodes. Running a
  MapReduce program involves running mapping tasks on many or all
  of the nodes in our cluster. Each of these mapping tasks is
  equivalent: no mappers have particular "identities"
  associated with them. Therefore, any mapper can process any
  input file. Each mapper loads the set of files local to that
  machine and processes them.


  When the mapping phase has completed, the intermediate
  (key, value) pairs must be exchanged between machines to send all
  values with the same key to a single reducer. The reduce tasks
  are spread across the same nodes in the cluster as the mappers.
  This is the only communication step in MapReduce. Individual
  map tasks do not exchange information with one another, nor are
  they aware of one another's existence. Similarly, different
  reduce tasks do not communicate with one another. The user never
  explicitly marshals information from one machine to another; all
  data transfer is handled by the Hadoop MapReduce platform itself,
  guided implicitly by the different keys associated with values.
  This is a fundamental element of Hadoop MapReduce's reliability.
  If nodes in the cluster fail, tasks must be able to be restarted.
  If they have been performing side-effects, e.g., communicating
  with the outside world, then the shared state must be restored
  in a restarted task. By eliminating communication and side-effects,
  restarts can be handled more gracefully.
  



  [bookmark: closer]
  A Closer Look


  The previous figure described the high-level view of Hadoop MapReduce.
  From this diagram, you can see where the mapper and reducer components
  of the Word Count application fit in, and how it achieves its objective.
  We will now examine this system in a bit closer detail.


  
    
    Figure 4.5: Detailed Hadoop MapReduce data flow

  


  Figure 4.5 shows the pipeline with more of its mechanics exposed. While
  only two nodes are depicted, the same pipeline can be replicated across
  a very large number of nodes.
  The next several paragraphs describe each of the stages of a MapReduce program
  more precisely.


  Input files: This is where the data for a MapReduce task is
  initially stored. While this does not need to be the case, the input files
  typically reside in HDFS.  The format of these files is arbitrary; while
  line-based log files can be used, we could also use a binary format,
  multi-line input records, or something else entirely. It is typical for these
  input files to be very large -- tens of gigabytes or more.


  [bookmark: inputformat]
  InputFormat: How these input files are split up and read is defined
  by the InputFormat. An InputFormat is a class that provides the following
  functionality:
  


  
  	Selects the files or other objects that should be used for input

  	Defines the InputSplits that break a file into tasks

  	Provides a factory for RecordReader objects that read the file

  


  Several InputFormats are provided with Hadoop. An abstract type is
  called FileInputFormat; all InputFormats that operate on files inherit
  functionality and properties from this class. When starting a Hadoop
  job, FileInputFormat is provided with a path containing files to read. The
  FileInputFormat will read all files in this directory. It then divides these
  files into one or more InputSplits each.  You can choose which
  InputFormat to apply to your input files for a job by calling the
  setInputFormat() method of the JobConf object that
  defines the job. A table of standard InputFormats is given below.


  
    
    	InputFormat:	Description:	Key:	Value:

    	TextInputFormat	Default format; reads lines of text
        files	The byte offset of the line	The line
        contents

    	KeyValueInputFormat	Parses lines into key, val pairs
        	Everything up to the first tab character	The remainder of
        the line

    	SequenceFileInputFormat	A Hadoop-specific high-performance
        binary format	user-defined	user-defined

    


    Table 4.1: InputFormats provided by MapReduce

  


  The default InputFormat is the TextInputFormat. This treats each
  line of each input file as a separate record, and performs no parsing. This
  is useful for unformatted data or line-based records like log files. A more
  interesting input format is the KeyValueInputFormat. This format
  also treats each line of input as a separate record. While the TextInputFormat
  treats the entire line as the value, the KeyValueInputFormat breaks the line
  itself into the key and value by searching for a tab character. This is
  particularly useful for reading the output of one MapReduce job as the
  input to another, as the default OutputFormat (described in more detail
  below) formats its results in this manner. Finally, the
  SequenceFileInputFormat reads special binary files that are specific
  to Hadoop. These files include many features designed to allow data to be
  rapidly read into Hadoop mappers. Sequence files are block-compressed
  and provide direct serialization and deserialization of several
  arbitrary data types (not just text). Sequence files can be generated as
  the output of other MapReduce tasks and are an efficient intermediate
  representation for data that is passing from one MapReduce job to
  anther.


  [bookmark: inputformat]InputSplits: An InputSplit describes a unit of work that comprises
  a single map task in a MapReduce program. A MapReduce program applied
  to a data set, collectively referred to as a Job, is made up of several
  (possibly several hundred) tasks. Map tasks may involve reading a whole file;
  they often involve reading only part of a file. By default, the
  FileInputFormat and its descendants break a file up into 64 MB chunks (the
  same size as blocks in HDFS). You can control this value by setting the
  mapred.min.split.size parameter in hadoop-site.xml, or
  by overriding the parameter in the JobConf object used to
  submit a particular MapReduce job. By
  processing a file in chunks, we allow several map tasks to operate on a single
  file in parallel. If the file is very large, this can improve performance
  significantly through parallelism. Even more importantly, since the various
  blocks that make up the file may be spread across several different nodes
  in the cluster, it allows tasks to be scheduled on each of these different
  nodes; the individual blocks are thus all processed locally, instead of
  needing to be transferred from one node to another. Of course, while log
  files can be processed in this piece-wise fashion, some file formats are
  not amenable to chunked processing. By writing a custom InputFormat, you can
  control how the file is broken up (or is not broken up) into splits.
  Custom input formats are described in Module 5.
  


  The InputFormat defines the list of tasks that make up the mapping
  phase; each task corresponds to a single input split. The tasks are then
  assigned to the nodes in the system based on where the input file
  chunks are physically resident. An individual node may have several
  dozen tasks assigned to it. The node will begin working on the tasks,
  attempting to perform as many in parallel as it can. The on-node parallelism
  is controlled by the mapred.tasktracker.map.tasks.maximum
  parameter.


  RecordReader: The InputSplit has defined a slice of work,
  but does not describe how to access it. The RecordReader class
  actually loads the data from its source and converts it into (key,
  value) pairs suitable for reading by the Mapper. The RecordReader
  instance is defined by the InputFormat. The default InputFormat,
  TextInputFormat, provides a LineRecordReader, which
  treats each line of the input file as a new value. The key associated
  with each line is its byte offset in the file. The RecordReader is
  invoke repeatedly on the input until the entire InputSplit has been
  consumed. Each invocation of the RecordReader leads to another
  call to the map() method of the Mapper.



  Mapper: The Mapper performs the interesting user-defined
  work of the first phase of the MapReduce program. Given a key and
  a value, the map() method emits (key, value) pair(s)
  which are forwarded to the Reducers. A new instance of Mapper is
  instantiated in a separate Java process for each map task (InputSplit)
  that makes up part of the total job input. The individual mappers
  are intentionally not provided with a mechanism to communicate with one
  another in any way. This allows the reliability of each map task to be
  governed solely by the reliability of the local machine. The
  map() method receives two parameters in addition to the
  key and the value:


  
    	The OutputCollector object has a method named collect()
    which will forward a (key, value) pair to the reduce phase of the job.
    

    	
    The Reporter object provides information about the current
    task; its getInputSplit() method will return an object
    describing the current InputSplit. It also allows the map task to
    provide additional information about its progress to the rest of
    the system. The setStatus() method allows you to emit
    a status message back to the user. The incrCounter()
    method allows you to increment shared performance counters. You
    may define as many arbitrary counters as you wish. Each mapper can
    increment the counters, and the JobTracker will collect the
    increments made by the different processes and aggregate them for
    later retrieval when the job ends.

  


  Partition & Shuffle: After the first map tasks have completed,
  the nodes may still be performing several more map tasks each.
  But they also begin exchanging
  the intermediate outputs from the map tasks to where they are required
  by the reducers. This process of moving map outputs to the reducers
  is known as shuffling. A different subset of the intermediate
  key space is assigned to each reduce node; these subsets (known as
  "partitions") are the inputs to the reduce tasks.
  Each map task may emit (key, value) pairs to any partition; all
  values for the same key are always reduced together regardless of
  which mapper is its origin. Therefore, the map nodes must all agree
  on where to send the different pieces of the intermediate data.
  The Partitioner class determines which partition a given
  (key, value) pair will go to. The default partitioner computes a
  hash value for the key and assigns the partition based on this
  result. Custom partitioners are described in more detail in
  Module 5.
  


  Sort: Each reduce task is responsible for reducing
  the values associated with several intermediate keys. The set of
  intermediate keys on a single node is automatically sorted by
  Hadoop before they are presented to the Reducer.
  


  Reduce: A Reducer instance is created for each reduce
  task. This is an instance of user-provided code that performs
  the second important phase of job-specific work. For each key
  in the partition assigned to a Reducer, the Reducer's
  reduce() method is called once. This receives a key
  as well as an iterator over all the values associated with the
  key. The values associated with a key are returned by the
  iterator in an undefined order. The Reducer also receives
  as parameters OutputCollector and Reporter objects;
  they are used in the same manner as in the map() method.


  OutputFormat: The (key, value) pairs provided to this
  OutputCollector are then written to output files. The way they
  are written is governed by the OutputFormat. The OutputFormat
  functions much like the InputFormat class described earlier.
  The instances of OutputFormat provided by Hadoop write to
  files on the local disk or in HDFS; they all inherit from a
  common FileOutputFormat. Each Reducer writes a separate
  file in a common output directory. These files will typically
  be named part-nnnnn, where nnnnn is the
  partition id associated with the reduce task.
  The output directory is set by the
  FileOutputFormat.setOutputPath() method.
  You can control which particular OutputFormat is used by calling
  the setOutputFormat() method of the JobConf
  object that defines your MapReduce job. A table of
  provided OutputFormats is given below.


  
    
      	OutputFormat:	Description

      	TextOutputFormat	Default; writes lines in "key \t
          value" form

      	SequenceFileOutputFormat	Writes binary files
          suitable for reading into subsequent MapReduce jobs

      	NullOutputFormat	Disregards its inputs

    

    Table 4.2: OutputFormats provided by Hadoop

  


  Hadoop provides some OutputFormat instances to write to files. The
  basic (default) instance is TextOutputFormat, which writes (key, value)
  pairs on individual lines of a text file. This can be easily re-read by
  a later MapReduce task using the KeyValueInputFormat class, and
  is also human-readable. A better intermediate format for use between MapReduce
  jobs is the SequenceFileOutputFormat which rapidly serializes
  arbitrary data types to the file; the corresponding
  SequenceFileInputFormat will deserialize the file into the same
  types and presents the data to the next Mapper in the same manner as
  it was emitted by the previous Reducer. The NullOutputFormat
  generates no output files and disregards any (key, value) pairs
  passed to it by the OutputCollector. This is useful if you are
  explicitly writing your own output files in the reduce()
  method, and do not want additional empty output files generated
  by the Hadoop framework.


  RecordWriter: Much like how the InputFormat actually reads
  individual records through the RecordReader implementation, the
  OutputFormat class is a factory for RecordWriter objects;
  these are used to write the individual records to the files
  as directed by the OutputFormat.


  The output files written by the Reducers are then left
  in HDFS for your use, either by another MapReduce job, a separate
  program, for for human inspection.


  [bookmark: functionality]
  Additional MapReduce Functionality


  
    
    Figure 4.6: Combiner step inserted into the MapReduce data
    flow

  


  Combiner: The pipeline showed earlier omits a processing
  step which can be used for optimizing bandwidth usage by your MapReduce
  job. Called the Combiner, this pass runs after the Mapper and
  before the Reducer. Usage of the Combiner is optional. If this pass
  is suitable for your job, instances of the Combiner class are run
  on every node that has run map tasks. The Combiner will receive as
  input all data emitted by the Mapper instances on a given node. The
  output from the Combiner is then sent to the Reducers, instead of
  the output from the Mappers. The Combiner is a "mini-reduce"
  process which operates only on data generated by one machine.


  Word count is a prime example for where a Combiner is useful. The
  Word Count program in listings 1--3 emits a (word, 1)
  pair for every instance of every word it sees. So if the same document
  contains the word "cat" 3 times, the pair ("cat",
  1) is emitted three times; all of these are then sent to the Reducer.
  By using a Combiner, these can be condensed into a single
  ("cat", 3) pair to be sent to the Reducer. Now each
  node only sends a single value to the reducer for each word -- drastically
  reducing the total bandwidth required for the shuffle process, and speeding
  up the job. The best part of all is that we do not need to write any
  additional code to take advantage of this! If a reduce function is both
  commutative and associative, then it can be used as a Combiner
  as well. You can enable combining in the word count program by adding the
  following line to the driver:

  
conf.setCombinerClass(Reduce.class);



  The Combiner should be an instance of the Reducer interface.
  If your Reducer itself cannot be used directly as a Combiner because of
  commutativity or associativity, you might still
  be able to write a third class to use as a Combiner for your job.


  [bookmark: tolerence]
  Fault Tolerance


  One of the primary reasons to use Hadoop to run your jobs is due to
  its high degree of fault tolerance. Even when running jobs on a large
  cluster where individual nodes or network components may experience
  high rates of failure, Hadoop can guide jobs toward a successful
  completion.


  The primary way that Hadoop achieves fault tolerance is through
  restarting tasks. Individual task nodes (TaskTrackers) are
  in constant communication
  with the head node of the system, called the JobTracker. If
  a TaskTracker fails to communicate with the JobTracker for a period
  of time (by default, 1 minute), the JobTracker will assume that the
  TaskTracker in question has crashed. The JobTracker knows which
  map and reduce tasks were assigned to each TaskTracker.


  If the job is still in the mapping phase, then other TaskTrackers
  will be asked to re-execute all map tasks previously run by the
  failed TaskTracker. If the job is in the reducing phase, then
  other TaskTrackers will re-execute all reduce tasks that were
  in progress on the failed TaskTracker.


  Reduce tasks, once completed, have been written back to HDFS. Thus,
  if a TaskTracker has already completed two out of three reduce tasks
  assigned to it, only the third task must be executed elsewhere. Map
  tasks are slightly more complicated: even if a node has completed
  ten map tasks, the reducers may not have all copied their inputs from
  the output of those map tasks. If a node has crashed, then its mapper
  outputs are inaccessible. So any already-completed map tasks must
  be re-executed to make their results available to the rest of the
  reducing machines. All of this is handled automatically by the
  Hadoop platform.


  This fault tolerance underscores the need for program execution
  to be side-effect free. If Mappers and Reducers had individual
  identities and communicated with one another or the outside world,
  then restarting a task would require the other nodes to communicate
  with the new instances of the map and reduce tasks, and the re-executed
  tasks would need to reestablish their intermediate state. This process
  is notoriously complicated and error-prone in the general case.
  MapReduce simplifies this problem drastically by eliminating
  task identities or the ability for task partitions to communicate
  with one another. An individual task sees only its own direct
  inputs and knows only its own outputs, to make this failure and
  restart process clean and dependable. 



  Speculative execution: One problem with the Hadoop system is
  that by dividing the tasks across many nodes, it is possible for a
  few slow nodes to rate-limit the rest of the program. For example if
  one node has a slow disk controller, then it may be reading its input
  at only 10% the speed of all the other nodes. So when 99 map tasks
  are already complete, the system is still waiting for the final
  map task to check in, which takes much longer than all the other nodes.
  


  By forcing tasks to run in
  isolation from one another, individual tasks do not know where
  their inputs come from. Tasks trust the Hadoop platform to just
  deliver the appropriate input.  Therefore, the same input can be
  processed multiple times in parallel, to exploit differences
  in machine capabilities. As most of the tasks in a job are coming to
  a close, the Hadoop platform will schedule redundant copies of the
  remaining tasks across several nodes which do not have other work
  to perform. This process is known as speculative execution.
  When tasks complete, they announce this fact to the JobTracker.
  Whichever copy of a task finishes first becomes the definitive
  copy. If other copies were executing speculatively, Hadoop
  tells the TaskTrackers to abandon the tasks and discard their
  outputs. The Reducers then receive their inputs from whichever
  Mapper completed successfully, first.


  Speculative execution is enabled by default. You can disable
  speculative execution for the mappers and reducers by setting
  the mapred.map.tasks.speculative.execution and
  mapred.reduce.tasks.speculative.execution JobConf
  options to false, respectively.


  
[bookmark: checkpoint]
  Checkpoint


  You now know about all of the basic operations of the
  Hadoop MapReduce platform. Try the following exercise, to see if you
  understand the MapReduce programming concepts.
  


  Exercise: Given the code for WordCount in listings 2 and 3,
  modify this code to produce an inverted index of its inputs.
  An inverted index returns a list of documents that contain each word
  in those documents. Thus, if the word "cat" appears in
  documents A and B, but not C, then the line:


  cat    A, B



  should appear in the output. If the word "baseball" appears
  in documents B and C, then the line:


  baseball    B, C



  should appear in the output as well.


  [bookmark: checkpoint]If you get stuck, read the section on troubleshooting below. The working solution
  is provided at the end of this module.


  Hint: The default InputFormat will provide the Mapper with
  (key, value) pairs where the key is the byte offset into the file, and the
  value is a line of text. To get the filename of the current input, use
  the following code:


  FileSplit fileSplit = (FileSplit)reporter.getInputSplit();
String fileName = fileSplit.getPath().getName();
  



  
[bookmark: tips]
  More Tips


  [bookmark: chaining]
  Chaining Jobs


  Not every problem can be solved with a MapReduce program, but fewer
  still are those which can be solved with a single MapReduce job. Many
  problems can be solved with MapReduce, by writing several MapReduce
  steps which run in series to accomplish a goal:


  Map1 -> Reduce1 -> Map2 -> Reduce2 -> Map3...


  You can easily chain jobs together in this fashion by writing
  multiple driver methods, one for each job. Call the first driver method, which
  uses JobClient.runJob() to run the job and wait for it to
  complete. When that job has completed, then call the next driver method,
  which creates a new JobConf object referring to different instances
  of Mapper and Reducer, etc. The first job in the chain
  should write its output to a path which is then used as the input path for
  the second job. This process can be repeated for as many jobs are necessary
  to arrive at a complete solution to the problem.
  


  Many problems which at first seem impossible in MapReduce can be
  accomplished by dividing one job into two or more.


  Hadoop provides another mechanism for managing batches of jobs
  with dependencies between jobs. Rather than submit a JobConf
  to the JobClient's runJob() or submitJob()
  methods, org.apache.hadoop.mapred.jobcontrol.Job objects
  can be created to represent each
  job; A Job takes a JobConf object as its
  constructor argument. Jobs can depend on one another through the
  use of the addDependingJob() method. The code:


    x.addDependingJob(y)



  says that Job x cannot start until y has successfully
  completed. Dependency information cannot be added to a job after it
  has already been started. Given a set of jobs, these can be passed to
  an instance of the  JobControl class. JobControl
  can receive individual jobs via the addJob() method, or
  a collection of jobs via addJobs(). The JobControl
  object will spawn a thread in the client to launch the jobs.
  Individual jobs will be launched when their dependencies have all
  successfully completed and when the MapReduce system as a whole
  has resources to execute the jobs. The JobControl interface allows
  you to query it to retrieve the state of individual jobs, as well
  as the list of jobs waiting, ready, running, and finished. The job
  submission process does not begin until the run() method of the
  JobControl object is called.



  [bookmark: troubleshooting]
  Troubleshooting: Debugging MapReduce


  When writing MapReduce programs, you will occasionally encounter
  bugs in your programs, infinite loops, etc. This section describes the
  features of MapReduce that will help you diagnose and solve these
  conditions.


  Log Files: Hadoop keeps logs of important events during program
  execution. By default, these are stored in the logs/ subdirectory
  of the hadoop-version/ directory where you run Hadoop
  from. Log files are named
  hadoop-username-service-hostname.log. The
  most recent data is in the .log file; older logs have their date
  appended to them. The username in the log filename refers to the username
  under which Hadoop was started -- this is not necessarily the same username
  you are using to run programs. The service name refers to which of the
  several Hadoop programs are writing the log; these can be jobtracker,
  namenode, datanode, secondarynamenode, or tasktracker. All of these are
  important for debugging a whole Hadoop installation. But for individual
  programs, the tasktracker logs will be the most relevant. Any exceptions
  thrown by your program will be recorded in the tasktracker logs.


  The log directory will also have a subdirectory called userlogs.
  Here there is another subdirectory for every task run. Each task records
  its stdout and stderr to two files in this directory. Note that on a
  multi-node Hadoop cluster, these logs are not centrally
  aggregated -- you should check each TaskNode's logs/userlogs/
  directory for their output.


  Debugging in the distributed setting is complicated and requires
  logging into several machines to access log data. If possible, programs
  should be unit tested by running Hadoop locally. The default configuration
  deployed by Hadoop runs in "single instance" mode, where the
  entire MapReduce program is run in the same instance of Java as called
  JobClient.runJob(). Using a debugger like Eclipse, you can then
  set breakpoints inside the map() or reduce() methods
  to discover your bugs.


  [bookmark: troubleshooting]In Module 5, you will learn how to use
  additional features of MapReduce to distribute auxiliary code to nodes
  in the system. This can be used to enable debug scripts which run on
  machines when tasks fail.
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  Listing and Killing Jobs:


  It is possible to submit jobs to a Hadoop cluster which malfunction
  and send themselves into infinite loops or other problematic states.
  In this case, you will want to manually kill the job you have started.


  The following command, run in the Hadoop installation directory on
  a Hadoop cluster, will list all the current jobs:
  


  $ bin/hadoop job -list



  This will produce output that looks something like:

  1 jobs currently running
JobId   State   StartTime       UserName
job_200808111901_0001   1       1218506470390   aaron



  You can use this job id to kill the job; the command is:


  $ bin/hadoop job -kill jobid



  Substitute the "job_2008..." from the
  -list command for jobid.


  
[bookmark: lang]
  Additional Language Support


  Hadoop itself is written in Java; it thus accepts Java code natively
  for Mappers and Reducers. Hadoop also comes with two adapter layers which
  allow code written in other languages to be used in MapReduce programs.


  [bookmark: pipes]
  Pipes


  Pipes is a library which allows C++ source code to be used for
  Mapper and Reducer code. Applications which require high numerical
  performance may see better throughput if written in C++ and used through
  Pipes. This library is supported on 32-bit Linux installations.


  The include files and static libraries are present in the
  c++/Linux-i386-32/ directory under your Hadoop installation.
  Your application should include include/hadoop/Pipes.hh
  and TemplateFactory.hh and link against
  lib/libhadooppies.a; with gcc, include the arguments
  -L${HADOOP_HOME}/c++/Linux-i386-32/lib -lhadooppipes to do the
  latter.


  Both key and value inputs to pipes programs are provided as STL
  strings (std::string). A program must still define an instance of
  Mapper and Reducer; these names have not changed. (They,
  like all other classes defined in Pipes, are in the HadoopPipes
  namespace.)
  Unlike the classes of the same names in Hadoop itself,
  the map() and reduce() functions
  take in a single argument which is a reference to an object
  of type MapContext and ReduceContext
  respectively. The most important methods contained in each of
  these context objects are:

  
const std::string& getInputKey();
const std::string& getInputValue();
void emit(const std::string& key, const std::string& value);



  The ReduceContext class also contains an additional method
  to advance the value iterator:

  bool nextValue();



  [bookmark: pipes]Defining a Pipes Program: A program to use with Pipes is
  defined by writing classes extending Mapper and Reducer.
  (And optionally, Partitioner; see Module 5.)
  Hadoop must then be informed which classes to use to run the job.


  An instance of your C++ program will be started by the Pipes
  framework in main() on each machine. This should do any (hopefully
  brief) configuration required for your task. It should then define
  a Factory to create Mapper and Reducer instances as necessary,
  and then run the job by calling the runTask() method.
  The simplest way to define a factory is with the following code:

  
#include"TemplateFactory.hh"
using namespace HadoopPipes;

void main() {
  // classes are indicated to the factory via templates
  // TODO: Substitute your own class names in below.
  TemplateFactory2<MyMapperClass, MyReducerClass> factory();

  // do any configuration you need to do here

  // start the task
  bool result = runTask(factory);
}
  



  Running a Pipes Program: After a Pipes program has been
  written and compiled, it can be launched as a job with the following command:
  (Do this in your Hadoop home directory)


  $ bin/hadoop pipes -input inputPath -output outputPath -program path/to/pipes/program/executable
  



  This will deploy your Pipes program on all nodes and run the MapReduce
  job through it. By running bin/hadoop pipes with no options, you can
  see additional usage information which describes how to set additional
  configuration values as necessary.


  The Pipes API contains additional functionality to allow you to
  read settings from the JobConf, override the Partitioner class, and
  use RecordReaders in a more direct fashion for higher performance. See the
  header files in c++/Linux-i386-32/include/hadoop for more
  information.



  [bookmark: streaming]
  Hadoop Streaming


  Whereas Pipes is an API that provides close coupling between
  C++ application code and Hadoop, Streaming is a generic API that allows
  programs written in virtually any language to be used as Hadoop
  Mapper and Reducer implementations.


  [bookmark: streaming]The official Hadoop documentation contains
  a
  thorough introduction to Streaming, and briefer notes
  on the wiki. A brief overview is presented here.


  Hadoop Streaming allows you to use arbitrary programs for the Mapper
  and Reducer phases of a MapReduce job. Both Mappers and Reducers receive
  their input on stdin and emit output (key, value) pairs on stdout.


  Input and output are always represented textually in Streaming. The
  input (key, value) pairs are written to stdin for a Mapper or Reducer,
  with a 'tab' character separating the key from the value. The
  Streaming programs should split the input on the first tab character
  on the line to recover the key and the value. Streaming programs write
  their output to stdout in the same format: key \t value \n.


  The inputs to the reducer are sorted so that while each line contains
  only a single (key, value) pair, all the values for the same key are
  adjacent to one another.


  Provided it can handle its input in the text format described above,
  any Linux program or tool can be used as the mapper or reducer in
  Streaming. You can also write your own scripts in bash, python, perl,
  or another language of your choice, provided that the necessary interpreter
  is present on all nodes in your cluster.


  Running a Streaming Job: To run a job with Hadoop Streaming,
  use the following command:


  $ bin/hadoop jar contrib/streaming/hadoop-version-streaming.jar
  



  The command as shown, with no arguments, will print some usage information.
  An example of how to run real commands is given below:


  $ bin/hadoop jar contrib/streaming-hadoop-0.18.0-streaming.jar -mapper \
    myMapProgram -reducer myReduceProgram -input /some/dfs/path \
    -output /some/other/dfs/path



  This assumes that myMapProgram and myReduceProgram are
  present on all nodes in the system ahead of time. If this is not the
  case, but they are present on the node launching the job, then they can
  be "shipped" to the other nodes with the -file option:
  


  $ bin/hadoop jar contrib/streaming-hadoop-0.18.0-streaming.jar -mapper \
    myMapProgram -reducer myReduceProgram -file \
    myMapProgram -file myReduceProgram -input some/dfs/path \
    -output some/other/dfs/path



  Any other support files necessary to run your program can be shipped
  in this manner as well.


  
[bookmark: conclusions]
  Conclusions


  This module described the MapReduce execution platform at the heart of
  the Hadoop system. By using MapReduce, a high degree of parallelism can
  be achieved by applications. The MapReduce framework provides a high
  degree of fault tolerance for applications running on it by limiting the
  communication which can occur between nodes, and requiring applications
  to be written in a "dataflow-centric" manner.



  
[bookmark: solution]
  Solution to Inverted Index Code


  The following source code implements a solution to the inverted indexer
  problem posed at the checkpoint. The source code is structurally very
  similar to the source for Word Count; only a few lines really need to be
  modified.


  import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;

public class LineIndexer {

  public static class LineIndexMapper extends MapReduceBase
      implements Mapper<LongWritable, Text, Text, Text> {

    private final static Text word = new Text();
    private final static Text location = new Text();

    public void map(LongWritable key, Text val,
        OutputCollector<Text, Text> output, Reporter reporter)
        throws IOException {

      FileSplit fileSplit = (FileSplit)reporter.getInputSplit();
      String fileName = fileSplit.getPath().getName();
      location.set(fileName);

      String line = val.toString();
      StringTokenizer itr = new StringTokenizer(line.toLowerCase());
      while (itr.hasMoreTokens()) {
        word.set(itr.nextToken());
        output.collect(word, location);
      }
    }
  }



  public static class LineIndexReducer extends MapReduceBase
      implements Reducer<Text, Text, Text, Text> {

    public void reduce(Text key, Iterator<Text> values,
        OutputCollector<Text, Text> output, Reporter reporter)
        throws IOException {

      boolean first = true;
      StringBuilder toReturn = new StringBuilder();
      while (values.hasNext()){
        if (!first)
          toReturn.append(", ");
        first=false;
        toReturn.append(values.next().toString());
      }

      output.collect(key, new Text(toReturn.toString()));
    }
  }


  /**
   * The actual main() method for our program; this is the
   * "driver" for the MapReduce job.
   */
  public static void main(String[] args) {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(LineIndexer.class);

    conf.setJobName("LineIndexer");

    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(Text.class);

    FileInputFormat.addInputPath(conf, new Path("input"));
    FileOutputFormat.setOutputPath(conf, new Path("output"));

    conf.setMapperClass(LineIndexMapper.class);
    conf.setReducerClass(LineIndexReducer.class);

    client.setConf(conf);

    try {
      JobClient.runJob(conf);
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
}



  [bookmark: solution]
    [bookmark: solution]
    Previous module
     | 
    Table of contents
     | 
    Next module
    

  



Module 5: Advanced MapReduce Features



  
    
    Previous module
     | 
    Table of contents
     | 
    Next module
    

  


  





[bookmark: intro]
  Introduction


  [bookmark: intro]In Module 4 you learned the basics
  of programming with Hadoop MapReduce. That module explains how
  data moves through a general MapReduce architecture, and what
  particular methods and classes facilitate the use of the
  Hadoop for processing. In this module we will look more closely
  at how to override Hadoop's functionality in various ways.
  These techniques allow you to customize Hadoop for
  application-specific purposes.
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  Goals for this Module:


  
    	Understand advanced Hadoop features

    	Be able to use Hadoop on Amazon EC2 and S3
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  Outline
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  Custom Data Types


  Hadoop MapReduce uses typed data at all times when it interacts
  with user-provided Mappers and Reducers: data read from files into
  Mappers, emitted by mappers to reducers, and emitted by reducers
  into output files is all stored in Java objects.


  [bookmark: writable]
  Writable Types


  [bookmark: writable]Objects which can be marshaled to or from files and across
  the network must obey a particular interface, called Writable,
  which allows Hadoop
  to read and write the data in a serialized form for transmission.
  Hadoop provides several stock classes which implement Writable:
  Text (which stores String data), IntWritable, LongWritable,
  FloatWritable, BooleanWritable,
  and several others. The entire list is in the org.apache.hadoop.io
  package of the Hadoop source (see the API
  reference).


  In addition to these types, you are free to define your own classes
  which implement Writable. You can organize a structure of virtually
  any layout to fit your data and be transmitted by Hadoop. As a motivating
  example, consider a mapper which emits key-value pairs where the key
  is the name of an object, and the value is its coordinates in some
  3-dimensional space. The key is some string-based data, and the value is a
  structure of the form:


  struct point3d {
  float x;
  float y;
  float z;
}



  The key can be represented as a Text object, but what about
  the value? How do we build a Point3D class which Hadoop can transmit?
  The answer is to implement the Writable interface, which requires
  two methods:


  public interface Writable {
  void readFields(DataInput in);
  void write(DataOutput out);
}



  The first of these methods initializes all of the fields of the object
  based on data contained in the binary stream in. The latter writes
  all the information needed to reconstruct the object to the binary
  stream out. The DataInput and DataOutput classes
  (part of java.io) contain methods to serialize most basic types
  of data; the important contract between your readFields() and
  write() methods is that they read and write the data from and
  to the binary stream in the same order. The following code implements
  a Point3D class usable by Hadoop:


  public class Point3D implements Writable {
  public float x;
  public float y;
  public float z;

  public Point3D(float x, float y, float z) {
    this.x = x;
    this.y = y;
    this.z = z;
  }

  public Point3D() {
    this(0.0f, 0.0f, 0.0f);
  }

  public void write(DataOutput out) throws IOException {
    out.writeFloat(x);
    out.writeFloat(y);
    out.writeFloat(z);
  }

  public void readFields(DataInput in) throws IOException {
    x = in.readFloat();
    y = in.readFloat();
    z = in.readFloat();
  }

  public String toString() {
    return Float.toString(x) + ", "
        + Float.toString(y) + ", "
        + Float.toString(z);
  }
}


  Listing 5.1: A Point class which implements Writable


  [bookmark: keytypes]
  Custom Key Types


  As written, the Point3D type will work as a value type
  like we require for the mapper problem described above. But what if
  we want to emit Point3D objects as keys too? In Hadoop
  MapReduce, if (key, value) pairs sent to a single reduce task
  include multiple keys, the reducer will process the keys in sorted
  order. So key types must implement a stricter interface,
  WritableComparable. In addition to being Writable so
  they can be transmitted over the network, they also obey Java's
  Comparable interface. The following code listing extends
  Point3D to meet this interface:


  public class Point3D implements WritableComparable {
  public float x;
  public float y;
  public float z;

  public Point3D(float x, float y, float z) {
    this.x = x;
    this.y = y;
    this.z = z;
  }

  public Point3D() {
    this(0.0f, 0.0f, 0.0f);
  }

  public void write(DataOutput out) throws IOException {
    out.writeFloat(x);
    out.writeFloat(y);
    out.writeFloat(z);
  }

  public void readFields(DataInput in) throws IOException {
    x = in.readFloat();
    y = in.readFloat();
    z = in.readFloat();
  }

  public String toString() {
    return Float.toString(x) + ", "
        + Float.toString(y) + ", "
        + Float.toString(z);
  }

  /** return the Euclidean distance from (0, 0, 0) */
  public float distanceFromOrigin() {
    return (float)Math.sqrt(x*x + y*y + z*z);
  }

  public int compareTo(Point3D other) {
    float myDistance = distanceFromOrigin();
    float otherDistance = other.distanceFromOrigin();

    return Float.compare(myDistance, otherDistance);
  }

  public boolean equals(Object o) {
    if (!(other instanceof Point3D)) {
      return false;
    }

    Point3D other = (Point3D)o;
    return this.x == other.x && this.y == other.y
        && this.z == other.z;
  }

  public int hashCode() {
    return Float.floatToIntBits(x)
         ^ Float.floatToIntBits(y)
         ^ Float.floatToIntBits(z);
  }
}


  Listing 5.2: A WritableComparable version of Point3D


  It is important for key types to implement hashCode()
  as well; the section on Partitioners later in this module
  explains why. The methods hashCode() and equals()
  have been provided in this version of the class as well.
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  Using Custom Types


  Now that you have created a custom data type, Hadoop must be
  told to use it. You can control the output key or value data
  type for a job by using the setOutputKeyClass() and
  setOutputValueClass() methods of the JobConf
  object that defines your job. By default, this will set the
  types expected as output from both the map and reduce phases.
  If your Mapper emits different types than the Reducer, you
  can set the types emitted by the mapper with the JobConf's
  setMapOutputKeyClass() and setMapOutputValueClass()
  methods. These implicitly set the input types expected by the Reducer.
  The types delivered as input to the Mapper are
  governed by the InputFormat used; see the next section
  of this module for more details.



  [bookmark: writable-comparator]
  Faster Comparison Operations


  The default sorting process for keys
  will read instances of the key type in from a stream, parsing
  the byte stream with the readFields() method of the key
  class, and then call the compareTo() method of the key
  class on the two objects. For faster performance, it may be possible
  to decide on an ordering between two keys just by looking at the
  byte streams and without parsing all of the data contained therein.
  For example, consider comparing strings of text. If characters are
  read in sequentially, then a decision can be made on their ordering
  as soon as a character position is found where the two strings differ.
  Even if all of the bytes for the object must be read in, the object
  itself does not necessarily need to be instantiated around those
  bytes.
  To support this higher-speed sorting mechanism, you can extend the
  WritableComparator class with a comparator specific to your
  own data type. In particular, the method which should be overridden
  is public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int
  l2).


  The default implementation is in the class
  org.apache.hadoop.io.WritableComparator. The relevant
  method has been reproduced here:


    public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {
    try {
      buffer.reset(b1, s1, l1);                   // parse key1
      key1.readFields(buffer);

      buffer.reset(b2, s2, l2);                   // parse key2
      key2.readFields(buffer);

    } catch (IOException e) {
      throw new RuntimeException(e);
    }

    return compare(key1, key2);                   // compare them
  }



  Its operation is exactly as described above; it performs the
  straightforward comparison of the two objects after they have been
  individually deserialized from their separate byte streams (the
  b variables), which each have their own start offset (s)
  and length (l) attributes.
  Both objects must be fully constructed
  and deserialized before comparison can occur. The Text
  class, on the other hand, allows incremental comparison via its
  own implementation of this method. The code from
  org.apache.hadoop.io.Text is shown here:


     /** A WritableComparator optimized for Text keys. */
  public static class Comparator extends WritableComparator {
    public Comparator() {
      super(Text.class);
    }

    public int compare(byte[] b1, int s1, int l1,
                       byte[] b2, int s2, int l2) {
      int n1 = WritableUtils.decodeVIntSize(b1[s1]);
      int n2 = WritableUtils.decodeVIntSize(b2[s2]);
      return compareBytes(b1, s1+n1, l1-n1, b2, s2+n2, l2-n2);
    }
  }




  The Text object is serialized by first writing its length
  field to the byte stream, followed by the UTF-encoded string. The
  method decodeVIntSize determines the length of the integer
  describing the length of the byte stream. The comparator then skips
  these bytes, directly comparing the UTF-encoded bytes of the actual
  string-portion of the stream in the compareBytes() method.
  As soon as it finds a character in which the two streams differ,
  it returns a result without examining the rest of the strings.
  


  Note that you do not need to manually specify this comparator's
  use in your Hadoop programs. Hadoop automatically uses this special
  comparator implementation for Text data due to the following
  code being added to Text's static initialization:

    static {
    // register this comparator
    WritableComparator.define(Text.class, new Comparator());
  }
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  Final Writable Notes


  Defining custom writable types allows you to intelligently
  use Hadoop to manipulate higher-level data structures, without
  needing to use toString() to convert all your data types
  to text for sending over the network. If you will be using a type
  in a lot of MapReduce jobs, or you must process a very large
  volume of them (as is usually the case in Hadoop), defining
  your own data type classes will provide a significant performance
  benefit.


  Exercise: Assume that we have a mapper which emits
  line segments as keys and values. A line segment is defined by its
  endpoints. For our purposes, line segments can be ordered by their
  lengths. Implement a LineSegment class which implements
  WritableComparable. Hint: make use of Point3D objects.
[bookmark: writable-notes]
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  [bookmark: inputformat]The InputFormat defines how to read data from a file into the
  Mapper instances. Hadoop comes with several implementations of
  InputFormat; some work with text files and describe different ways
  in which the text files can be interpreted. Others, like
  SequenceFileInputFormat, are purpose-built for reading particular
  binary file formats.  These types are described in more detail in
  Module 4.


  More powerfully, you can define your own InputFormat
  implementations to format the input to your programs however you
  want. For example, the default TextInputFormat reads
  lines of text files. The key it emits for each record is the
  byte offset of the line read (as a LongWritable), and
  the value is the contents of
  the line up to the terminating '\n' character (as a
  Text object). If you have
  multi-line records each separated by a $ character, you
  could write your own InputFormat that parses files into
  records split on this character instead.


  Another important job of the InputFormat is to divide
  the input data sources (e.g., input files) into fragments
  that make up the inputs to individual map tasks. These fragments
  are called "splits" and are encapsulated in instances of the
  InputSplit interface. Most files, for example, are split up
  on the boundaries of the underlying blocks in HDFS, and are
  represented by instances of the FileInputSplit class.
  Other files may be unsplittable, depending on application-specific
  data. Dividing up other data sources (e.g., tables from
  a database) into splits would be performed in a different,
  application-specific fashion. When dividing the data into input splits,
  it is important that this process be quick and cheap. The data itself
  should not need to be accessed to perform this process (as it is all
  done by a single machine at the start of the MapReduce job).


  
  The TextInputFormat divides files into splits strictly by
  byte offsets. It then reads individual lines of the files from the
  split in as record inputs to the Mapper. The RecordReader
  associated with TextInputFormat must be robust enough to
  handle the fact that the splits do not necessarily correspond neatly
  to line-ending boundaries. In fact, the RecordReader will
  read past the theoretical end of a split to the end of a line in
  one record. The reader associated with the next split in the file
  will scan for the first full line in the split to begin processing
  that fragment. All RecordReader implementations must use
  some similar logic to ensure that they do not miss records that
  span InputSplit boundaries.
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  Custom File Formats


  In this section we will describe how to develop a custom
  InputFormat that reads files of a particular format.


  Rather than implement InputFormat directly, it is
  usually best to subclass the FileInputFormat. This
  abstract class provides much of the basic handling necessary
  to manipulate files. If we want to parse the file in a particular
  way, then we must override the getRecordReader()
  method, which returns an instance of RecordReader: an
  object that can read from the input source. To motivate
  this discussion with concrete code, we will develop an
  InputFormat and RecordReader implementation which
  can read lists of objects and positions from files. We assume
  that we are reading text files where each line contains the
  name of an object and then its coordinates as a set of three
  comma-separated floating-point values. For instance, some
  sample data may look like the following:


  ball, 3.5, 12.7, 9.0
car, 15, 23.76, 42.23
device, 0.0, 12.4, -67.1



  We must read individual lines of the file, separate the key
  (Text)
  from the three floats, and then read those into a Point3D
  object as we developed earlier.


  The ObjectPositionInputFormat class itself is
  very straightforward. Since it will be reading from files, all
  we need to do is define a factory method for RecordReader
  implementations:


  public class ObjectPositionInputFormat extends
    FileInputFormat<Text, Point3D> {

  public RecordReader<Text, Point3D> getRecordReader(
      InputSplit input, JobConf job, Reporter reporter)
      throws IOException {

    reporter.setStatus(input.toString());
    return new ObjPosRecordReader(job, (FileSplit)input);
  }
}


  Listing 5.3: InputFormat for object-position files



  Note that we define the types of the keys and values emitted
  by the InputFormat in its definition; these must match
  the types read in as input by the Mapper in its class definition.


  The RecordReader implementation is where the actual
  file information is read and parsed. We will implement this by
  making use of the LineRecordReader class; this is the
  RecordReader implementation used by TextInputFormat
  to read individual lines from files and return them unparsed. We
  will wrap the LineRecordReader with our own implementation
  which converts the values to the expected types. By using
  LineRecordReader, we do not need to worry about what
  happens if a record spans an InputSplit boundary, since this
  underlying record reader already has logic to take care of this fact.


  class ObjPosRecordReader implements RecordReader<Text, Point3D> {

  private LineRecordReader lineReader;
  private LongWritable lineKey;
  private Text lineValue;

  public ObjPosRecordReader(JobConf job, FileSplit split) throws IOException {
    lineReader = new LineRecordReader(job, split);

    lineKey = lineReader.createKey();
    lineValue = lineReader.createValue();
  }

  public boolean next(Text key, Point3D value) throws IOException {
    // get the next line
    if (!lineReader.next(lineKey, lineValue)) {
      return false;
    }

    // parse the lineValue which is in the format:
    // objName, x, y, z
    String [] pieces = lineValue.toString().split(",");
    if (pieces.length != 4) {
      throw new IOException("Invalid record received");
    }

    // try to parse floating point components of value
    float fx, fy, fz;
    try {
      fx = Float.parseFloat(pieces[1].trim());
      fy = Float.parseFloat(pieces[2].trim());
      fz = Float.parseFloat(pieces[3].trim());
    } catch (NumberFormatException nfe) {
      throw new IOException("Error parsing floating point value in record");
    }

    // now that we know we'll succeed, overwrite the output objects

    key.set(pieces[0].trim()); // objName is the output key.

    value.x = fx;
    value.y = fy;
    value.z = fz;

    return true;
  }

  public Text createKey() {
    return new Text("");
  }

  public Point3D createValue() {
    return new Point3D();
  }

  public long getPos() throws IOException {
    return lineReader.getPos();
  }

  public void close() throws IOException {
    lineReader.close();
  }

  public float getProgress() throws IOException {
    return lineReader.getProgress();
  }
}


  Listing 5.4: RecordReader for object-position files


  You can control the InputFormat used by your MapReduce job
  with the JobConf.setInputFormat() method.


  Exercise: Write an InputFormat and RecordReader
  that read strings of text separated by '$' characters instead
  of newlines.


  [bookmark: altsources]
  Alternate Data Sources


  An InputFormat describes both how to present the data to
  the Mapper and where the data originates from. Most implementations
  descend from FileInputFormat, which reads from files on
  the local machine or HDFS. If your data does not come from a source
  like this, you can write an InputFormat implementation that
  reads from an alternate source. For example, HBase (a distributed
  database system) provides a TableInputFormat that reads
  records from a database table. You could imagine a system where
  data is streamed to each machine over the network on a particular
  port; the InputFormat reads data from the port and parses
  it into individual records for mapping.


  
[bookmark: outputformat]
  Output Formats


  [bookmark: outputformat]The InputFormat and RecordReader interfaces define
  how data is read into a MapReduce program. By analogy, the
  OutputFormat and RecordWriter interfaces dictate
  how to write the results of a job back to the underlying permanent
  storage. Several useful OutputFormat implementations are
  described in Module 4. The default
  format (TextOutputFormat) will write (key, value)
  pairs as strings to individual
  lines of an output file (using the toString() methods
  of the keys and values). The SequenceFileOutputFormat
  will keep the data in binary, so it can be later read quickly by the
  SequenceFileInputFormat. These classes make
  use of the write()
  and readFields() methods of the specific Writable
  classes used by your MapReduce pass.


  
  You can define your own
  OutputFormat implementation that will write data to an
  underlying medium in the format that you control. If you want to
  write to output files on the local system or in HDFS, you should
  extend the FileOutputFormat abstract class.
  When you want to use a different output format, you can control
  this with the JobConf.setOutputFormat() method.


  Why might we want to define our own OutputFormat? A custom
  OutputFormat allows you to exactly control what data is
  put into a file, and how it is laid out. Suppose another process
  you use has a custom input file format. Your MapReduce job is supposed
  to generate inputs compatible with this program. You may develop an
  OutputFormat implementation which will produce the correct
  type of file to work with this subsequent process in your tool
  chain. As an example of how to write an OutputFormat, we
  will walk through the implementation of a simple XML-based format
  developed for this tutorial, XmlOutputFormat. Given a
  set of (key, value) pairs from the Reducer, (e.g., (k1, v1),
  (k2, v2), etc...) this will generate a file laid out like
  so:


  <results>
  <k1>v1</k1>
  <k2>v2</k2>
  ...
</results>



  The code to generate these files is presented below:

  import java.io.DataOutputStream;
import java.io.IOException;

import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.RecordWriter;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Progressable;

public class XmlOutputFormat<K, V> extends FileOutputFormat {

  protected static class XmlRecordWriter<K, V> implements RecordWriter<K, V> {
    private static final String utf8 = "UTF-8";

    private DataOutputStream out;

    public XmlRecordWriter(DataOutputStream out) throws IOException {
      this.out = out;
      out.writeBytes("<results>\n");
    }

    /**
     * Write the object to the byte stream, handling Text as a special case.
     *
     * @param o
     *          the object to print
     * @throws IOException
     *           if the write throws, we pass it on
     */
    private void writeObject(Object o) throws IOException {
      if (o instanceof Text) {
        Text to = (Text) o;
        out.write(to.getBytes(), 0, to.getLength());
      } else {
        out.write(o.toString().getBytes(utf8));
      }
    }

    private void writeKey(Object o, boolean closing) throws IOException {
      out.writeBytes("<");
      if (closing) {
        out.writeBytes("/");
      }
      writeObject(o);
      out.writeBytes(">");
      if (closing) {
        out.writeBytes("\n");
      }
    }

    public synchronized void write(K key, V value) throws IOException {

      boolean nullKey = key == null || key instanceof NullWritable;
      boolean nullValue = value == null || value instanceof NullWritable;

      if (nullKey && nullValue) {
        return;
      }

      Object keyObj = key;

      if (nullKey) {
        keyObj = "value";
      }

      writeKey(keyObj, false);

      if (!nullValue) {
        writeObject(value);
      }

      writeKey(keyObj, true);
    }

    public synchronized void close(Reporter reporter) throws IOException {
      try {
        out.writeBytes("</results>\n");
      } finally {
        // even if writeBytes() fails, make sure we close the stream
        out.close();
      }
    }
  }

  public RecordWriter<K, V> getRecordWriter(FileSystem ignored, JobConf job,
      String name, Progressable progress) throws IOException {
    Path file = FileOutputFormat.getTaskOutputPath(job, name);
    FileSystem fs = file.getFileSystem(job);
    FSDataOutputStream fileOut = fs.create(file, progress);
    return new XmlRecordWriter<K, V>(fileOut);
  }
}



  The FileOutputFormat which XmlOutputFormat
  subclasses will handle most of the heavy lifting. The only method
  directly implemented in XmlOutputFormat is
  getRecordWriter(), which is a factory method for the
  RecordWriter object which will actually write the file.
  The inner class XmlRecordWriter is the implementation which
  generates files in the format shown above. The RecordWriter
  is initialized with an output stream connected to a file in the
  output file system. At the same time, the XML prologue is written
  into the output file. The particular output file system and filename
  associated with this output stream
  are determined based on the current job configuration. The
  XmlRecordWriter's write() method is then called each
  time a (key, value) pair is provided to the OutputCollector
  by the Reducer. When the Reducer finishes, the close()
  method of the XmlRecordWriter will write the XML epilogue
  and close the underlying stream.


  
[bookmark: partitioning]
  Partitioning Data


  "Partitioning" is the process of determining which
  reducer instance will receive which intermediate keys and values.
  Each mapper must determine for all of its output (key, value)
  pairs which reducer will receive them. It is necessary that for any
  key, regardless of which mapper instance generated it, the
  destination partition is the same. If the key "cat"
  is generated in two separate (key, value) pairs, they must both
  be reduced together. It is also important for performance reasons
  that the mappers be able to partition data independently -- they
  should never need to exchange information with one another to
  determine the partition for a particular key.
  


  Hadoop uses an interface called Partitioner to determine
  which partition a (key, value) pair will go to. A single
  partition refers to all (key, value) pairs which will be sent to
  a single reduce task. Hadoop MapReduce determines when the job
  starts how many partitions it will divide the data into.
  If twenty reduce tasks are to be run (controlled by the
  JobConf.setNumReduceTasks()) method), then twenty
  partitions must be filled.
  


  The Partitioner defines one method which must be filled:

  public interface Partitioner<K, V> extends JobConfigurable {
  int getPartition(K key, V value, int numPartitions);
}



  The getPartition() method receives a key and a value
  and the number of partitions to split the data across; a number
  in the range [0, numPartitions) must be returned by this method,
  indicating which partition to send the key and value to. For
  any two keys k1 and k2, k1.equals(k2)
  implies getPartition(k1, *, n) == getPartition(k2, *, n).
  


  The default Partitioner implementation is called
  HashPartitioner. It uses the hashCode() method
  of the key objects modulo the number of partitions total
  to determine which partition to send a given (key, value) pair
  to.


  For most randomly-distributed data, this should result in
  all partitions being of roughly equal size. If the data in your
  data set is skewed in some way, however, this might not produce
  good results. For example, if you know that the key 0
  will appear much more frequently than any other key, then
  you may want to send all the 0-keyed data to one partition, and
  distribute the other keys over all other partitions by their
  hashCode(). Also, if the hashCode() method
  for your data type does not provide uniformly-distributed
  values over its range, then data may not be sent to reducers
  evenly. Poor partitioning of data means that some reducers will
  have more data input than others, which usually means they'll
  have more work to do than the other reducers. Thus the entire
  job will wait for one reducer to finish its extra-large share
  of the load, when it might have been possible to spread that
  across many different reducers.


  
  If you are dissatisfied with the performance of HashPartitioner,
  you are free to write your own Partitioner implementation.
  It can be general-purpose, or tailored to the specific data
  types or values that you expect to use in your application. After
  implementing the Partitioner interface, use the
  JobConf.setPartitionerClass() method to tell Hadoop
  to use it for your job.


  
[bookmark: metrics]
  Reporting Custom Metrics


  The Hadoop system records a set of metric counters for each
  job that it runs. For example, the number of input records
  mapped, the number of bytes it reads from or writes to HDFS, etc.
  To profile your applications, you may wish to record other values
  as well. For example, if the records sent into your mappers
  fall into two categories (call them "A" and "B"),
  you may wish to count the total number of A-records seen vs.
  the total number of B-records.


  The Reporter object passed in to your Mapper and
  Reducer classes can be used to update counters. The same
  set of counter variables can be contributed to by all Mapper
  and Reducer instances across your cluster. The values are
  aggregated by the master node of the cluster, so they are
  "thread-safe" in this manner.
  


  Counters are incremented through the Reporter.incrCounter()
  method. The names of the counters are defined as Java enum's.
  The following example demonstrates how to count the number of
  "A" vs. "B" records seen by the mapper:


  public class MyMapper extends MapReduceBase implements
    Mapper<Text, Text, Text, Text> {

  static enum RecordCounters { TYPE_A, TYPE_B, TYPE_UNKNOWN };

  // actual definitions elided
  public boolean isTypeARecord(Text input) { ... }
  public boolean isTypeBRecord(Text input) { ... }

  public void map(Text key, Text val, OutputCollector<Text, Text> output,
      Reporter reporter) throws IOException {

    if (isTypeARecord(key)) {
      reporter.incrCounter(RecordCounters.TYPE_A, 1);
    } else if (isTypeBRecord(key)) {
      reporter.incrCounter(RecordCounters.TYPE_B, 1);
    } else {
      reporter.incrCounter(RecordCounters.TYPE_UNKNOWN, 1);
    }

    // actually process the record here, call
    // output.collect( .. ), etc.
  }
}




  If you launch your job with JobClient.runJob(),
  the diagnostic information printed to stdout when the job completes
  will contain the values of all the counters. Both runJob()
  and submitJob() will return a RunningJob object
  that refers to the job in question. The RunningJob.getCounters()
  method will return a Counters object that contains the
  values of all the counters so that you can query them programmatically.
  The Counters.getCounter(Enum key) method returns the
  value of a particular counter.


  
[bookmark: auxdata]
  Distributing Auxiliary Job Data


  The bulk of the data that you process in a MapReduce job will
  probably be stored in large files spread across the HDFS. You can
  reliably store petabytes of information in HDFS and individual jobs
  can process several terabytes at a time. The HDFS access model, however,
  assumes that the data from a file should be read into a single mapper.
  The individual files stored in HDFS are very large and can possibly
  be broken into different chunks for processing in parallel.


  Sometimes it is necessary for every Mapper to read a single
  file; for example, a distributed spell-check application would require
  every Mapper to read in a copy of the dictionary before processing
  documents. The dictionary will be small (only a few megabytes), but needs
  to be widely available so that all nodes can reach it.


  Hadoop provides a mechanism specifically for this purpose,
  called the distributed cache. The distributed cache can contain
  small data files needed for initialization or libraries of code
  that may need to be accessed on all nodes in the cluster.


  To use the distributed cache to disseminate files, create an
  instance of the DistributedCache class when setting up
  your job. Use the DistributedCache.addCacheFile() method
  to add names of files which should be sent to all nodes on the system.
  The file names are specified as URI objects; unless
  qualified otherwise, they assume that the file is present on the
  HDFS in the path indicated. You can copy local files to HDFS with
  the FileSystem.copyFromLocalFile() method.


  When you want to retrieve files from the distributed cache
  (e.g., when the mapper is in its configure() step and
  wants to load config data like the dictionary mentioned above),
  use the DistributedCache.getLocalCacheFiles() method
  to retrieve the list of paths local to the current node for the
  cached files. These are copies of all cached files, placed
  in the local file system of each worker machine. (They
  will be in a subdirectory of mapred.local.dir.)
  Each of the paths returned by getLocalCacheFiles()
  can be accessed via regular Java file I/O mechanisms,
  such as java.io.FileInputStream.


  As a cautionary note: If you use the local JobRunner in
  Hadoop (i.e., what happens if you call JobClient.runJob()
  in a program with no or an empty hadoop-conf.xml accessible),
  then no local data directory is created; the
  getLocalCacheFiles() call will return an empty set of
  results. Unit test code should take this into account.


  Suppose that we were writing an inverted index builder. We
  do not want to include very common words such "the,"
  "a," "and," etc. These so-called stop words
  might all be listed in a file. All the mappers should read the
  stop word list when they are initialized, and then filter the
  index they generate against this list. We can disseminate a list
  of stop words to all the Mappers with the following code.
  The first listing will put the stop-words file into the distributed
  cache:


    public static final String LOCAL_STOPWORD_LIST =
      "/home/aaron/stop_words.txt";

  public static final String HDFS_STOPWORD_LIST = "/data/stop_words.txt";

  void cacheStopWordList(JobConf conf) throws IOException {
    FileSystem fs = FileSystem.get(conf);
    Path hdfsPath = new Path(HDFS_STOPWORD_LIST);

    // upload the file to hdfs. Overwrite any existing copy.
    fs.copyFromLocalFile(false, true, new Path(LOCAL_STOPWORD_LIST),
        hdfsPath);

    DistributedCache.addCacheFile(hdfsPath.toUri(), conf);
  }
  



  This code copies the local stop_words.txt file into
  HDFS, and then tells the distributed cache to send the HDFS copy
  to all nodes in the system. The next listing actually uses the
  file in the mapper:


  class IndexMapperExample implements Mapper {
  void configure(JobConf conf) {
    try {
      String stopwordCacheName = new Path(HDFS_STOPWORD_LIST).getName();
      Path [] cacheFiles = DistributedCache.getLocalCacheFiles(conf);
      if (null != cacheFiles && cacheFiles.length > 0) {
        for (Path cachePath : cacheFiles) {
          if (cachePath.getName().equals(stopwordCacheName)) {
            loadStopWords(cachePath);
            break;
          }
        }
      }
    } catch (IOException ioe) {
      System.err.println("IOException reading from distributed cache");
      System.err.println(ioe.toString());
    }
  }

  void loadStopWords(Path cachePath) throws IOException {
    // note use of regular java.io methods here - this is a local file now
    BufferedReader wordReader = new BufferedReader(
        new FileReader(cachePath.toString()));
    try {
      String line;
      this.stopWords = new HashSet<String>();
      while ((line = wordReader.readLine()) != null) {
        this.stopWords.add(line);
      }
    } finally {
      wordReader.close();
    }
  }

  /* actual map() method, etc go here */
}



  The code above belongs in the Mapper instance associated
  with the index generation process. We retrieve the list of files
  cached in the distributed cache. We then compare the basename of
  each file (using Path.getName()) with the one we expect
  for our stop word list. Once we find this file, we read the words,
  one per line, into a Set instance that we will consult during
  the mapping process.


  The distributed cache has additional uses too. For instance,
  you can use the DistributedCache.addArchiveToClassPath()
  method to send a .jar file to all the nodes. It will be
  inserted into the classpath as well, so that classes in the
  archive can be accessed by all the nodes.


  
[bookmark: debugscripts]
  Distributing Debug Scripts


  Hadoop will generate a large number of log files for a job,
  distributed across all the nodes that participated in the job's
  execution. Often times only a subset of these logs will be of interest
  when debugging failing tasks.
  MapReduce can help with this by running a user-provided script when
  either a map or reduce task fails. These scripts are provided the
  names of files containing the stdout and stderr from the task, as well
  as the task's Hadoop log and job.xml file (i.e., its complete JobConf in
  serialized form).


  These scripts will be run on whichever node encounters failing tasks.
  You can use these scripts to perform automation to allow you to more
  easily inspect only the failing tasks: e.g., email the stdout/stderr
  to an administrator email address; upload the failed task's log files
  to a common NFS-mounted "debug dump" directory, preserve
  local state modifications made by map tasks, etc.


  Separate scripts can be provided for map and reduce task failure.
  They each receive as arguments, in order, the names of files containing
  the task's stdout, stderr, syslog, and jobconf. Because they are run
  on all the task nodes, and not on the client machine where the job
  was submitted, these scripts must be sent to the nodes through the
  distributed cache listed above.


  The following method will enable failed task scripts on a
  MapReduce job being prepared. It assumes that you have given it
  the names of two scripts (e.g., bash scripts) which do your debug
  actions with the log filenames provided (e.g., copy them to a shared
  NFS mount). In this script these are /home/aaron/src/map-fail
  and reduce-fail.


    private static final String FAILED_MAP_SCRIPT_NAME = "map-fail";
  private static final String FAILED_REDUCE_SCRIPT_NAME = "reduce-fail";

  private static final String HDFS_SCRIPT_DIR = "/debug";

  private static final String HDFS_FAILED_MAP_SCRIPT =
    HDFS_SCRIPT_DIR + "/" + FAILED_MAP_SCRIPT_NAME;
  private static final String HDFS_FAILED_REDUCE_SCRIPT =
    HDFS_SCRIPT_DIR + "/" + FAILED_REDUCE_SCRIPT_NAME;
  private static final String LOCAL_FAILED_MAP_SCRIPT  =
    "/home/aaron/src/" + FAILED_MAP_SCRIPT_NAME;
  private static final String LOCAL_FAILED_REDUCE_SCRIPT =
    "/home/aaron/src/" + FAILED_REDUCE_SCRIPT_NAME;

  public static void setupFailedTaskScript(JobConf conf) throws IOException {

    // create a directory on HDFS where we'll upload the fail scripts
    FileSystem fs = FileSystem.get(conf);
    Path debugDir = new Path(HDFS_SCRIPT_DIR);

    // who knows what's already in this directory; let's just clear it.
    if (fs.exists(debugDir)) {
      fs.delete(debugDir, true);
    }

    // ...and then make sure it exists again
    fs.mkdirs(debugDir);

    // upload the local scripts into HDFS
    fs.copyFromLocalFile(new Path(LOCAL_FAILED_MAP_SCRIPT),
        new Path(HDFS_FAILED_MAP_SCRIPT));
    fs.copyFromLocalFile(new Path(LOCAL_FAILED_REDUCE_SCRIPT),
        new Path(HDFS_FAILED_REDUCE_SCRIPT));

    conf.setMapDebugScript("./" + FAILED_MAP_SCRIPT_NAME);
    conf.setReduceDebugScript("./" + FAILED_REDUCE_SCRIPT_NAME);
    DistributedCache.createSymlink(conf);

    URI fsUri = fs.getUri();

    String mapUriStr = fsUri.toString() + HDFS_FAILED_MAP_SCRIPT
        + "#" + FAILED_MAP_SCRIPT_NAME;
    URI mapUri = null;
    try {
      mapUri = new URI(mapUriStr);
    } catch (URISyntaxException use) {
      throw new IOException(use);
    }

    DistributedCache.addCacheFile(mapUri, conf);

    String reduceUriStr = fsUri.toString() + HDFS_FAILED_REDUCE_SCRIPT
        + "#" + FAILED_REDUCE_SCRIPT_NAME;
    URI reduceUri = null;
    try {
      reduceUri = new URI(reduceUriStr);
    } catch (URISyntaxException use) {
      throw new IOException(use);
    }

    DistributedCache.addCacheFile(reduceUri, conf);
  }



  How does this all work?
  The scripts are, presumably, initially hosted on the client machine
  that is submitting the job. The client is responsible for injecting them
  into HDFS and enabling them in the distributed cache. It first creates
  the HDFS_SCRIPT_DIR and then uploads the local script files
  into this directory.


  It must then set the commands for the TaskTracker to execute to
  run the scripts. This is accomplished by the lines:
  


      conf.setMapDebugScript("./" + FAILED_MAP_SCRIPT_NAME);
    conf.setReduceDebugScript("./" + FAILED_REDUCE_SCRIPT_NAME);
    DistributedCache.createSymlink(conf);



  The distributed cache copies the files to the mapred.local.dir
  on each task node. The TaskTracker will then execute the scripts if
  necessary. But the TaskTracker does not run with its working directory
  set to mapred.local.dir. Fortunately, the distributed cache
  can be told to create symlinks in the working directory for files in
  the distributed cache. The third line of the snippit above enables
  this functionality. Now ./FAILED_MAP_SCRIPT_NAME will
  point to the copy of FAILED_MAP_SCRIPT_NAME in the
  local cache directory, and the script can be run.


  But before that can happen, we must add the files themselves to
  the distributed cache. (As of now they are only in HDFS.) Ordinarily,
  we could just call DistributedCache.addCacheFile(new
  Path("hdfs_path_to_some_file").toUri()) on
  a filename and that would be sufficient. But since we need to create
  symlinks, we must provide the distributed cache with information as
  to how the symlink should be created--what filename it should take
  in the working directory. This is provided as the URI "anchor"
  part following the "#" in the URI. A subtlety of Hadoop's
  Path class is that if you put a '#' in the path string,
  it will URL-encode it and treat it as part of the filename. Therefore,
  we use some extra code to construct our URIs manually to ensure that
  the '#' remains unescaped.
  



  
[bookmark: aws]
  Using Amazon Web Services


  Hadoop's power comes from its ability to perform work on
  a large number of machines simultaneously. What if you want to
  experiment with Hadoop, but do not have many machines? While operations
  on a two or four-node cluster are functionally equivalent to those
  on a 40 or 100-node cluster, processing larger volumes of data
  will require a larger number of nodes.


  [bookmark: aws]Amazon provides machines
  for rent on demand through their Elastic
  Compute Cloud (a.k.a. EC2) service. EC2 is part of a broader
  set of services collectively called the Amazon Web Services, or AWS.
  EC2 allows you request
  a set of nodes ("instances" in their parlance) for as
  long as you need them. You pay by the instance*hour, plus costs
  for bandwidth. You can use EC2 instances to run a Hadoop cluster.
  Hadoop comes with a set of scripts which will provision EC2
  instances.


  The first step in this process is visit the EC2 web site (link
  above) and click "Sign Up For This Web Service". You will
  need to create an account and provide billing information. Then
  follow the instructions in the Getting
  started guide to set up your account and configure your system
  to run the AWS tools.


  Once you have done so, follow the instructions in the
  Hadoop wiki specific
  to running Hadoop on Amazon EC2. While more details are available in the
  above document, the shortest steps to provisioning a cluster are:
  


  
    	Edit src/contrib/ec2/bin/hadoop-ec2-env.sh to contain
    your Amazon account information and parameters about the desired
    cluster size.

    	Execute src/contrib/ec2/bin/hadoop-ec2 launch-cluster.
  




  After the cluster has been started, you can log in to the
  head node over ssh with the bin/hadoop-ec2 login script,
  and perform your MapReduce computation. When you are done,
  log out and type bin/hadoop-ec2 terminate-cluster to
  release the EC2 instances. The contents of the virtual hard
  drives on the instances will disappear, so be sure to copy off any
  important data with scp or another tool first!


  A very thorough introduction to configuring Hadoop on EC2 and
  running a test job is provided in this
  article in the Amazon Web Services Developer Connection site.
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[bookmark: intro]Hadoop by itself allows you to store and process
very large volumes of data. However, building a large-scale distributed
system can require functionality not provided by this base. Several
other tools and systems have been created to fill the gaps and deliver
a more full-featured set of distributed systems engineering tools.
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[bookmark: goals]Goals for this Module:

[bookmark: goals] 

  [bookmark: goals] 
  	[bookmark: goals]Understand how distributed consensus systems can
be used to bootstrap larger distributed systems.

  [bookmark: goals] 
  	[bookmark: goals]Understand how to write queries in the Pig
log-processing language
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[bookmark: zookeeper]ZooKeeper

[bookmark: zookeeper] [bookmark: zoomotivation] 
[bookmark: zoomotivation]Motivation

[bookmark: zoomotivation] 
[bookmark: zoomotivation]Suppose you are building a large-scale
distributed system. Several different services need to be brought
online and must discover one another. It is not guaranteed that each
service will have a fixed master IP address. For example, it may be the
case that you start the same service on 100 nodes, and they elect a
master from among whichever of the 100 boots first. Each of these
disparate services must communicate with each other. How do all the
nodes of each service find the master IP address of each other service?
How do all the nodes in a single service agree on which one of them
becomes the master? 

[bookmark: zoomotivation] 
[bookmark: zoomotivation]ZooKeeper is a service designed to handle
all of these problems. ZooKeeper will allow you to store small amounts
of information in a central location. It provides coordinated access to
this information. Most importantly, it provides high-availability: the
ZooKeeper service is intended to run on a set of several machines,
which prevents the loss of individual nodes from bringing down the
cluster. But these nodes communicate information in a careful way,
ensuring that all nodes in the ZooKeeper cluster provide the same
consistent answer for a query, regardless of which ZooKeeper server you
contact.

[bookmark: zoomotivation] [bookmark: datastore] 
[bookmark: datastore]Data Storage in ZooKeeper

[bookmark: datastore] 
[bookmark: datastore]Several ZooKeeper daemons can be started on
different machines. Clients can connect to any daemon in the cluster;
the clients will always see the same view of the ZooKeeper world
regardless of which daemon they connect to. User data is stored in
objects with a hierarchical addressing system similar to that used by a
conventional file system. It has a root object named /, and
additional nodes can be extended off of this in a tree-like fashion.
Each node of the tree can both hold data (i.e., act like a file) and
have child nodes (i.e., act like a directory). The amount of data that
can be stored in an object is small: there is a hard cap of 1 MB. The
reason for the cap is so that the entire data store can be stored in
the RAM of the ZooKeeper machines. This allows requests to be
dispatched with high throughput. Changes are written to disk to provide
permanence, but read requests are entirely handled by the data cached
in memory. This is usually not a major limitation; the data stored at a
node is intended to be used as a pointer. For example, ZooKeeper may
know about the filename in another conventional file system, which
contains the authoritative configuration file for a distributed system.
The distributed system components first contact ZooKeeper to get the
definitive filename, and then fetch that file for the configuration. 
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[bookmark: zoouses]ZooKeeper Applications

[bookmark: zoouses] 
[bookmark: zoouses]ZooKeeper can be used for a variety of distributed
coordination tasks. In addition to leader election, system
bootstrapping, and various types of locks (mutual exclusion,
reader/writer, etc), other synchronization primitives such as barriers,
producer/consumer queues, priority queues, and multi-phase commit
operations can be encoded in ZooKeeper. The ZooKeeper tutorial
and recipes
pages describe how to implement these algorithms. ZooKeeper itself is
implemented in Java, but provides APIs for both Java- and C-based
programs.

ZooKeeper can also be used as a central message board for an
application. Individual nodes of a distributed system can store their
current operational status in ZooKeeper for easy central reporting. The
ZooKeeper service can also be used to form sub-groups of nodes or other
hierarchical arrangements within a distributed system. 

As mentioned, data stored in ZooKeeper is accessed by manipulating
the nodes in the data hierarchy. This is done in a manner similar to
file system access. But ZooKeeper does not implement the POSIX file
system API. On the other hand, it also adds a set of other primitives
not ordinarily found in a file system. Nodes can be opened with a
number of special flags. One such flag is "ephemeral," meaning that the
node disappears when the client who opened it disconnects. Another such
flag is "sequence," which means that ZooKeeper will append a sequential
id number to the node name you are trying to create. These id numbers
are handed out in order, and the same id number is not reused.
ZooKeeper does not provide exclusive locks on nodes directly, but a
lock can be created by careful use of the ephemeral and sequence flags.
The ZooKeeper
recipes wiki page describes how to implement global locks using
these flags. It also describes protocols for implementing shared
(reader-writer) and revocable locks. 
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[bookmark: consensus]Distributed Consensus

[bookmark: consensus] 
[bookmark: consensus]A reasonable question is how the ZooKeeper
service can function across multiple nodes and remain synchronized. If
distributed synchronization is why your services must use ZooKeeper,
how does ZooKeeper itself bootstrap this capability?

[bookmark: consensus] 
[bookmark: consensus]ZooKeeper implements a distributed consensus
protocol. ZooKeeper internally uses a leader election protocol such as
Paxos to determine which node in the ZooKeeper service is the master.
While clients connect to any node in the ZooKeeper service, these
additional nodes will forward agreed-upon facts back to
clients. Updates to the shared state require the intervention of the
master. All updates to the shared state are ordered with timestamps.
These timestamped updates are then disseminated to the nodes in the
ZooKeeper service. When a majority of nodes acknowledge an update, it
is said to be held by a quorum of the nodes. Any fact that a
quorum has agreed upon may be returned to clients. Conversely, any
updates that have not reached a quorum will not be returned to the
clients. The timestamps are used to order the updates to elements of
the data store. If multiple updates are made to the state of an
individual node, the newest update is used.

[bookmark: consensus] 
[bookmark: consensus]The use of a quorum ensures that the service
always returns consistent answers. Because a vote is effectively held
before returning a response, any nodes which hold stale data will be
outvoted by the nodes with more current information. This also makes
ZooKeeper resilient to failure. Up to 49% of the ZooKeeper service
nodes can shut down or become desynchronized before ZooKeeper loses its
ability to authoritatively answer responses. So if 11 nodes run
ZooKeeper, up to 5 of these may disconnect without incident. After more
than half the nodes fail, ZooKeeper will refuse service until the
machines are restored. 

[bookmark: consensus] 
[bookmark: consensus]If the node of the ZooKeeper cluster which was
elected leader fails, then a new leader election will be held and the
cluster will continue to function.

[bookmark: consensus] 
[bookmark: consensus]The reason for electing a leader in such a
system is to ensure that timestamps assigned to updates are only issued
by a single authority. ZooKeeper is designed to reduce or eliminate
possible race conditions in distributed applications.

[bookmark: consensus] 
[bookmark: consensus]One consequence of ZooKeeper's design is that it
is intended to serve many more read requests than writes. A ZooKeeper
cluster can handle hundreds or thousands of clients, issuing many tens
of thousands of requests per second--if the majority of these requests
(90--99%) are reads. Only a small fraction should be updates.

[bookmark: consensus] [bookmark: zooexample] 
[bookmark: zooexample]ZooKeeper Example

[bookmark: zooexample] 
[bookmark: zooexample]The following code excerpt shows how to use
ZooKeeper to implement a "barrier." A barrier separates a process into
two logical halves. Multiple machines running in coordination with one
another will all perform the first half of the process. No machine can
begin the second half of the process until everyone has completed the
first half. The barrier sits between these processes. As nodes reach
the barrier, they all wait until everyone has reached the barrier. Then
all nodes are released to begin the second half. A distributed barrier
implementation written for ZooKeeper follows: 

[bookmark: zooexample] 

[bookmark: zooexample]Watcher watcher = new Watcher() {
  public void process(WatchEvent event) {}
};

ZooKeeper zk = new ZooKeeper(hosts, 3000, watcher);

Object notifyObject = new Object();
String root;
int size;

Barrier(ZooKeeper zk, String name, int size) throws KeeperException, InterruptedException {
  this.zk = zk;
  this.root = name;
  this.size = size;
  // Make sure the  barrier node exists
  try {
    zk.create(root, new byte[0], Ids.OPEN_ACL_UNSAFE, 0);
  } catch (NodeExistsException e) {}
}


b.enter()
/** work with everyone **/
b.leave()



/**
 * Join barrier
 * @return
 * @throws KeeperException
 * @throws InterruptedException */
boolean enter() throws KeeperException, InterruptedException {
  zk.create(root + "/" + name, new byte[0], Ids.OPEN_ACL_UNSAFE, CreateFlags.EPHEMERAL);
  while (true) {
    synchronized (notifyObject) {
      ArrayList<String> list = zk.getChildren(root, new Watcher() {
        public void process(Event e) { notifyObject.notifyAll(); }
      });

      if (list.size() < size)  {
        notifyObject.wait();
      } else {
        return true;
      }
    }
  }
}

/**
 * Wait until all reach barrier
 * @return
 * @throws KeeperException
 * @throws InterruptedException */
boolean leave() throws KeeperException, InterruptedException {
  zk.delete(root + "/" + name, 0);
  while (true) {
    synchronized (notifyObject) {
      ArrayList<String> list = zk.getChildren(root, new Watcher() {
        public void process(Event e) { notifyObject.notifyAll(); }
      });

      if (list.size() > 0) {
        notifyObject.wait();
      } else {
        return true;
      }
    }
  }
}
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[bookmark: zooexample]Listing 6.1: ZooKeeper Barrier Example
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[bookmark: pig] [bookmark: pigmotive] 
[bookmark: pigmotive]Motivation

[bookmark: pigmotive]Pig is a platform for analyzing large data sets.
Pig's language, Pig
Latin, lets you specify a sequence of data transformations such as
merging data sets, filtering them, and applying functions to records or
groups of records. Users can create their own functions to do
special-purpose processing.

[bookmark: pigmotive]Pig Latin programs execute in a distributed
fashion on a cluster. Our
current implementation compiles Pig Latin programs into Map/Reduce
jobs,
and executes them using Hadoop on Kryptonite.

[bookmark: pigmotive] 
[bookmark: pigmotive]Thur purpose of Pig is to answer queries over
semi-structured data such as log files. Large volumes of data are in
mostly-organized formats such as log files, which define a set of
standard fields for each entry. While the MapReduce programming model
on top of Hadoop provides a convenient mechanism for delivering a large
volume of log-structured information to an analysis program, writing
analyses of mostly-structured information involves writing a large
amount of tedious processing code.

[bookmark: pigmotive] 
[bookmark: pigmotive]Pig is a high-level language for writing queries
over this sort of data. A query planner then compiles queries written
in this language (called "Pig Latin") into maps and reduces which are
then executed on a Hadoop cluster.

[bookmark: pigmotive] 
[bookmark: pigmotive]Anything which could be written in Pig can also
be implemented as straight Java-based Hadoop MapReduce. But while
individual programmers could develop their own suite of data analysis
functions such as join, order by, etc., this requires
individual programmers to develop their own (non-standard) libraries,
and test them. Pig provides a tested and supported suite of the most
common data-aggregation functions. It also allows programmers to
provide their own application-specific code for purposes of loading and
saving data, as well as for performing more complicated
record-by-record evaluations.

[bookmark: pigmotive] [bookmark: piglatin] 
[bookmark: piglatin]Pig Latin

[bookmark: piglatin] 
[bookmark: piglatin]The programming language used to write Pig
queries is called Pig Latin.

[bookmark: piglatin] 
[bookmark: piglatin]The MapReduce programming model can be thought of
as composed of three distinct phases:

[bookmark: piglatin] 

  [bookmark: piglatin] 
  	[bookmark: piglatin]Process input records

  [bookmark: piglatin] 
  	[bookmark: piglatin]Form groups of related records

  [bookmark: piglatin] 
  	[bookmark: piglatin]Process groups into outputs

  [bookmark: piglatin] 


[bookmark: piglatin] 
[bookmark: piglatin]In MapReduce, the first two of these steps are
handled by the mapper, and the third step is handled by the reducer.
Pig Latin exposes explicit primitives that perform actions from each
phase. These primitives can be composed and reordered. Furthermore, it
includes additional primitives to handle operations such as filtering
and joining data sets.

[bookmark: piglatin] [bookmark: datatypes] 
[bookmark: datatypes]Pig Latin Data Types

[bookmark: datatypes] 
[bookmark: datatypes]Values in Pig Latin can be expressed by four
basic data types: 

[bookmark: datatypes] 

  [bookmark: datatypes] 
  	[bookmark: datatypes]An atom is any atomic value (e.g., "fish")

  [bookmark: datatypes] 
  	[bookmark: datatypes]A tuple is a record of multiple
values with fixed arity. e.g., ("dog", "sparky").

  [bookmark: datatypes] 
  	[bookmark: datatypes]A data bag is a collection of an
arbitrary number of values. e.g., {("dog", "sparky"), ("fish",
"goldie")}. Data bags support a scan operation for
iterating through their contents.

  [bookmark: datatypes] 
  	[bookmark: datatypes]A data map is a collection with a
lookup function translating keys to values. e.g., ["age" : 25]

  [bookmark: datatypes] 


[bookmark: datatypes] 
[bookmark: datatypes]All data types are fully nestable; bags may
contain tuples, and maps may contain bags or other maps, etc. This
differs from a traditional database model, where data must be
normalized into lists of atoms. By allowing data types to be composed
in this manner, Pig queries line up better to the conceptual model of
the data held by the programmer. Data types may also be heterogeneous.
For example, the fields of a tuple may each have different types; some
may be atoms, others may be more tuples, etc. The values in a bag may
hold different types, as may the values in data maps. These can vary
from one record to the next in the bag. Data map keys must be atoms,
for efficiency reasons.

[bookmark: datatypes] [bookmark: dataload] 
[bookmark: dataload]Loading Data Into Pig

[bookmark: dataload] 
[bookmark: dataload]The first step in using Pig is to load data into
a program. Pig provides a LOAD statement for this purpose.
Its format is: result = LOAD 'filename' USING fn()
AS (field1, field2, ...).

[bookmark: dataload] 
[bookmark: dataload]This statement returns a bag of values of all the
data contained in the named file. Each record in the bag is a tuple,
with the fields named by field1, field2, etc. The fn()
is a user-provided function that reads in the data. Pig supports
user-provided Java code throughout to handle the application-specific
bits of parsing. Pig Latin itself is the "glue" that then holds these
application-specific functions together, routing records and other data
between them.

[bookmark: dataload] 
[bookmark: dataload]An example data loading command (taken from this
paper on Pig) is:


queries = LOAD 'query_log.txt'
          USING myLoad()
          AS (userId, queryString, timestamp)



The user-defined functions to load data (e.g., myLoad()) do
not need to be provided. A default function for loading data exists,
which will parse tab-delimited records. If the programmer did not
specify field names in the AS clause, they would be addressed
by positional parameters: $0, $1, and so forth.

The default loader is called PigStorage(). This loader can
read files containing character-delimited tuple records. These tuples
must contain only atomic values; e.g., cat, turtle, fish.
Other loaders are listed in the PigBuiltins page of
the Pig wiki. PigStorage() takes as an argument the character
to use to delimit fields. For example, to load a table of three
tab-delimited fields, the following statement can be used:


data = LOAD 'tab_delim_data.txt' USING PigStorage('\t') AS (user, time, query)



A different argument could be passed to PigStorage() to
read comma- or space-delimited fields.

[bookmark: operators] 
[bookmark: operators]Pig Latin Operators

[bookmark: operators] 
[bookmark: operators]Pig Latin provides a number of operators which
filter, join, or otherwise organize data.

[bookmark: operators] 
[bookmark: operators]FOREACH: The FOREACH command
operates on each element of a data bag. This is useful, for instance,
for processing each input record in a bag returned by a LOAD
statement. 


[bookmark: operators]FOREACH bagname GENERATE expression, expression...



[bookmark: operators] 
[bookmark: operators]This statement iterates over the contents of a
bag. It applies the expressions on the right of the GENERATE
keyword to the data provided by the current record emitted from the
bag. The expressions may be, for example, the names of fields. So to
extract the names of all users who accessed the site (based on the query_log.txt
example shown above), we could write a query like: 

[bookmark: operators] 

[bookmark: operators]FOREACH queries GENERATE userId;



[bookmark: operators] 
[bookmark: operators]In the FOREACH statement, each element
of the bag is considered independently. There are no expressions which
reference multiple elements being extracted from the bag's iterator at
a time; this allows the statement to be processed in parallel using
Hadoop MapReduce.

[bookmark: operators] 
[bookmark: operators]Expressions emitted by the GENERATE
element are not limited to the names of fields; they can be fields (by
name like userId or by position like $0),
constants, algebraic operations, map lookups, conditional expressions,
or FLATTEN expressions, described below.

[bookmark: operators] 
[bookmark: operators]Finally, these expressions may also call
user-provided functions that are written in Java. These user-provided
functions have access to the entire current record through a Pig
library; in this way, Pig can be used as the heavy-lifting component to
automate record-by-record mapping using an application-specific Java
function to perform tricky parsing or evaluation logic. Pig also
provides several of the most commonly-needed functions, such as COUNT,
AVG, MIN, MAX, and SUM.

[bookmark: operators] 
[bookmark: operators]FLATTEN is an expression which will
eliminate a level of nesting. Given a tuple which contains a bag, FLATTEN
will emit several tuples each of which contains one record from the
bag. For example, if we had a bag of records containing a person's name
and a list of types of pets they own:

[bookmark: operators] 

[bookmark: operators](Alice, { turtle, goldfish, cat })
(Bob, { dog, cat })



[bookmark: operators] 
[bookmark: operators]A FLATTEN command would eliminate the
inner bags like so:

[bookmark: operators] 

[bookmark: operators](Alice, turtle)
(Alice, goldfish)
(Alice, cat)
(Bob, dog)
(Bob, cat)



[bookmark: operators] 
[bookmark: operators]FILTER statements iterate over a bag and
return a new bag containing all elements which pass a conditional
expression, e.g.: 

[bookmark: operators] 

[bookmark: operators]adults = FILTER people BY age > 21;
  



[bookmark: operators] 
[bookmark: operators]The COGROUP and JOIN operations
perform similar functions: they unite related data elements from
multiple data sets. The difference is that JOIN acts like the
SQL JOIN statement, creating a flat set of output records containing
the joined cross-product of the input records. The COGROUP
operator, on the other hand, groups the elements by their common field
and returns a set of records each containing two separate bags. The
first bag is the records of the first data set with the common field,
and the second bag is the records of the second data set containing the
common field. 

[bookmark: operators] 
[bookmark: operators]To illustrate the difference, suppose we had the
flattened data set mapping people to their pets, and another flattened
data set mapping people to their friends. We could create a "pets of
friends" data set out of these like the following. Here are the input
data sets:

[bookmark: operators] 

[bookmark: operators]pets: (owner, pet)
----------------------
(Alice, turtle)
(Alice, goldfish)
(Alice, cat)
(Bob, dog)
(Bob, cat)

friends: (friend1, friend2)
----------------------
(Cindy, Alice)
(Mark, Alice)
(Paul, Bob)



[bookmark: operators] 
[bookmark: operators]Here is what is returned by COGROUP:

[bookmark: operators] 

[bookmark: operators]COGROUP pets BY owner, friends BY friend2; returns:

( Alice, {(Alice, turtle), (Alice, goldfish), (Alice, cat)},
         {(Cindy, Alice), (Mark, Alice)} )
( Bob, {(Bob, dog), (Bob, cat)}, {(Paul, Bob)} )



[bookmark: operators] 
[bookmark: operators]Contrasted with the more familiar,
non-hierarchical JOIN operator:

[bookmark: operators] 

[bookmark: operators]JOIN pets BY owner, friends BY friend2; returns:

(Alice, turtle, Cindy)
(Alice, turtle, Mark)
(Alice, goldfish, Cindy)
(Alice, goldfish, Mark)
(Alice, cat, Cindy)
(Alice, cat, Mark)
(Bob, dog, Paul)
(Bob, cat, Paul)



[bookmark: operators] 
[bookmark: operators]In general, COGROUP command supports
grouping on as many data sets as are desired. Three or more data sets
can be joined in this fashion. It is also possible to group up elements
of only a single data set; this is supported through an alternate
keyword, GROUP.

[bookmark: operators] 
[bookmark: operators]A GROUP ... BY statement will organize
a bag of records into bags of related items based on the field
identified as their common key field. e.g., the pets bag from
the previous example could be grouped up with: 

[bookmark: operators] 

[bookmark: operators]GROUP pets BY owner; returns:

( Alice, {(Alice, turtle), (Alice, goldfish), (Alice, cat)} )
( Bob, {(Bob, dog), (Bob, cat)} )



[bookmark: operators] 
[bookmark: operators]In this way, GROUP and FLATTEN
are effectively inverses of one another.

[bookmark: operators] 
[bookmark: operators]More complicated statements can be realized as
well: operations which expect a data set as input do not need to use an
explicitly-named data set; they can use one generated "inline" with
another FILTER, GROUP or other statement.

[bookmark: operators] 
[bookmark: operators]When the final data set has been created by a
Pig Latin script, the output can be saved to a file with the STORE
command, which follows the form:

[bookmark: operators] 

[bookmark: operators]STORE data set INTO 'filename' USING function()



[bookmark: operators] 
[bookmark: operators]The provided function specifies how to serialize
the data to the file; if it is omitted, then a default serializer will
write plain-text tab-delimited files.

[bookmark: operators] 
[bookmark: operators]A number of additional operators exist for the
purposes of removing duplicate records, sorting records, etc. This
paper explains the additional operators and expression syntaxes in
greater detail.

[bookmark: pigsetup] 
[bookmark: pigsetup]Setting Up Pig

[bookmark: pigsetup] 
[bookmark: pigsetup]Pig is an Apache incubator project; it has not
made official packaged releases, but the source code can be retrieved
from their subversion
repository. 

The Pig Incubator
home page contains instructions on retrieving the Pig sources and
compiling them.

[bookmark: refs] 

[bookmark: refs]References

Pig Tutorial: Included in this package
for user to get hands-on help

[bookmark: refs]Olston, C., Reed, B., Srivastava, U., et al. Pig
Latin: A Not-So-Foreign Language for Data Processing. In
Proceedings of the ACM SIGMOD 2008 International Conference on
Management of Data. Vancouver, Canada, June 2008.
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[bookmark: intro]Introduction

[bookmark: intro] 
[bookmark: intro]Hadoop can be deployed on a variety of scales. The
requirements at each of these will be different. Hadoop has a large
number of tunable parameters that can be used to influence its
operation. Furthermore, there are a number of other technologies which
can be deployed with Hadoop for additional capabilities. This module
describes how to configure clusters to meet varying needs in terms of
size, processing power, and reliability and availability.

[bookmark: intro] [bookmark: goals] 

[bookmark: goals]Goals for this Module:

[bookmark: goals] 

  [bookmark: goals] 
  	[bookmark: goals]Understand differences in requirements for
different sizes of Hadoop clusters

  [bookmark: goals] 
  	[bookmark: goals]Learn how to configure Hadoop for a variety of
deployment scopes

  [bookmark: goals] 
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[bookmark: outline]Outline

[bookmark: outline] 
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[bookmark: basic]Basic Setup

[bookmark: basic] 
[bookmark: basic]This section discusses the general platform
requirements for Hadoop.

[bookmark: basic] [bookmark: java] 
[bookmark: java]Java Requirements

[bookmark: java] 
[bookmark: java]Hadoop is a Java-based system. Recent versions of
Hadoop require Sun Java 1.6. 

[bookmark: java] 
[bookmark: java]Compiling Java programs to run on Hadoop can be done
with any number of commonly-used Java compilers. Sun's compiler is
fine, as is ecj, the Eclipse Compiler for Java. A bug in gcj, the GNU
Compiler for Java, causes incompatibility between generated classes and
Hadoop; it should not be used.

[bookmark: java] [bookmark: os] 
[bookmark: os]Operating System

[bookmark: os] 
[bookmark: os]As Hadoop is written in Java, it is mostly portable
between different operating systems. Developers can and do run Hadoop
under Windows. The various scripts used to manage Hadoop clusters are
written in a UNIX shell scripting language that assumes sh-
or bash-like behavior. Thus running Hadoop under Windows
requires cygwin to be installed. The Hadoop documentation stresses that
a Windows/cygwin installation is for development only. The vast
majority of server deployments today are on Linux. (Other POSIX-style
operating systems such as BSD may also work. Some Hadoop users have
reported successfully running the system on Solaris.) The instructions
on this page assume a command syntax and system design similar to
Linux, but can be readily adapted to other systems. 

[bookmark: os] [bookmark: download] 
[bookmark: download]Downloading and Installing Hadoop

[bookmark: download] 
[bookmark: download]Hadoop is available for download from the project
homepage at http://hadoop.apache.org/core/releases.html.
Here you will find several versions of Hadoop available.

The versioning strategy used is major.minor.revision.
Increments to the major version number represent large differences in
operation or interface and possibly significant incompatible changes.
At the time of this writing (September 2008), there have been no major
upgrades; all Hadoop versions have their major version set to 0. The
minor version represents a large set of feature improvements and
enhancements. Hadoop instances with different minor versions may use
different versions of the HDFS file formats and protocols, requiring a
DFS upgrade to migrate from one to the next. Revisions are used to
provide bug fixes. Within a minor version, the most recent revision
contains the most stable patches. 

Within the releases page, two or three versions of Hadoop will be
readily available, corresponding to the highest revision number in the
most recent two or three minor version increments. The stable
version is the highest revision number in the second most recent minor
version. Production clusters should use this version. The most recent
minor version may include improved performance or new features, but may
also introduce regressions that will be fixed in ensuing revisions.

At the time of this writing, 0.18.0 is the most recent version, with
0.17.2 being the "stable" release. These example instructions assume
that version 0.18.0 is being used; the directions will not change
significantly for any other version, except by substituting the new
version number where appropriate.

To install Hadoop, first download and install prerequisite
software. This includes Java 6 or higher. Distributed operation
requires ssh and sshd. Windows users must install and configure cygwin
as well. Then download a Hadoop version using a web browser, wget, or
curl, and then unzip the package:


gunzip hadoop-0.18.0.tar.gz
tar vxf hadoop-0.18.0.tar



Within the hadoop-0.18.0/ directory which results, there
will be several subdirectories. The most interesting of these are bin/,
where scripts to run the cluster are located, and conf/ where
the cluster's configuration is stored. 

Enter the conf/ directory and modify hadoop-env.sh.
The JAVA_HOME variable must be set to the base directory of
your Java installation. It is recommended that you install Java in the
same location on all machines in the cluster, so this file can be
replicated to each machine without modification.

The hadoop-site.xml file must also be modified to contain
a number of configuration settings. The sections below address the
settings which should be included here.

If you are interested in setting up a development installation,
running Hadoop on a single machine, the Hadoop documentation includes quickstart
instructions which will configure Hadoop for standalone or
"pseudo-distributed" operation. 

Standalone installations run all of Hadoop and your
application inside a single Java process. The distributed file system
is not used; file are read from and written to the local file system.
Such a setup can be helpful for debugging Hadoop applications.

Pseudo-distributed operation refers to the use of several
separate processes representing the different daemons (NameNode,
DataNode, JobTracker, TaskTracker) and a separate task process to
perform a Hadoop job, but with all processes running on a single
machine. A pseudo-distributed instance will have a functioning
NameNode/DataNode managing a "DFS" of sorts. Files in HDFS are in a
separate namespace from the local file system, and are stored as block
objects in a Hadoop-managed directory. However, it is not truly
distributed, as no processing or data storage is performed on remote
notes. A pseudo-distributed instance can be extended into a fully
distributed cluster by adding more machines to function as
Task/DataNodes, but more configuration settings are usually required to
deploy a Hadoop cluster for multiple users. 

The rest of this document deals with configuring Hadoop clusters of
multiple nodes, intended for use by one or more developers.

After the conf/hadoop-site.xml is configured according to
one of the models in the quickstart,
the sections below, or your own settings, two more files must be
written. 

The conf/masters file contains the hostname of the
SecondaryNameNode. This should be changed from "localhost" to the
fully-qualified domain name of the node to run the SecondaryNameNode
service. It does not need to contain the hostname of the
JobTracker/NameNode machine; that service is instantiated on whichever
node is used to run bin/start-all.sh, regardless of the masters
file. The conf/slaves file should contain the hostname of every
machine in the cluster which should start TaskTracker and DataNode
daemons. One hostname should be written per line in each of these
files, e.g.:


slave01
slave02
slave03
...



The master node does not usually also function as a slave node,
except in installations across only 1 or 2 machines.

If the nodes on your cluster do not support passwordless ssh, you
should configure this now:


$ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys



This will enable passwordless ssh login to the local machine. (You
can verify that this works by executing ssh localhost.) The ~/.ssh/id_dsa.pub
and authorized_keys files should be replicated on all
machines in the cluster.

At this point, the configuration must be replicated across all nodes
in the cluster. Small clusters may use rsync or copy the configuration
directory to each node. Larger clusters should use a configuration
management system such as bcfg2, smartfrog, or puppet. NFS should be
avoided as much as is possible, as it is a scalability bottleneck.
DataNodes should never share block storage or other high-bandwidth
responsibilities over NFS, and should avoid sharing configuration
information over NFS if possible.

Various directories should be created on each node. The NameNode
requires the NameNode metadata directory:


$ mkdir -p /home/hadoop/dfs/name



And every node needs the Hadoop tmp directory and DataNode directory
created. Rather than logging in to each node and performing the steps
multiple times manually, the file bin/slaves.sh allows a
command to be executed on all nodes in the slaves file. For example, we
can create these directories by executing the following commands on the
NameNode:


$ mkdir -p /tmp/hadoop  # make the NameNode's tmp dir
$ export HADOOP_CONF_DIR=${HADOOP_HOME}/conf
$ export HADOOP_SLAVES=${HADOOP_CONF_DIR}/slaves
$ ${HADOOP_HOME}/bin/slaves.sh "mkdir -p /tmp/hadoop"
$ ${HADOOP_HOME}/bin/slaves.sh "mkdir -p /home/hadoop/dfs/data"



The environment variables $HADOOP_CONF_DIR and $HADOOP_SLAVES
are used by the bin/slaves.sh script to find the slave
machines list. The provided command is then executed over ssh. If you
need particular ssh options, the contents of the $HADOOP_SSH_OPTS
variable are passed to ssh as arguments.

We then format HDFS by executing the following command on the
NameNode:


$ bin/hadoop namenode -format



And finally, start the cluster:


$ bin/start-all.sh



Now it is time to load in data and start processing it with Hadoop!
Good luck!

The remainder of this document discusses various trade-offs in
cluster configurations for different sizes, and reviews the settings
which may be placed in the hadoop-site.xml file.

[bookmark: dirs] 

[bookmark: dirs]Important Directories

[bookmark: dirs] 
[bookmark: dirs]One of the basic tasks involved in setting up a
Hadoop cluster is determining where the several various Hadoop-related
directories will be located. Where they go is up to you; in some cases,
the default locations are inadvisable and should be changed. This
section identifies these directories.

[bookmark: dirs] 

  
    
      	Directory
      	Description
      	Default location
      	Suggested location
    

    
      	HADOOP_LOG_DIR
      	Output location for log files from daemons
      	${HADOOP_HOME}/logs
      	/var/log/hadoop
    

    
      	hadoop.tmp.dir
      	A base for other temporary directories
      	/tmp/hadoop-${user.name}
      	/tmp/hadoop
    

    
      	dfs.name.dir
      	Where the NameNode metadata should be stored
      	${hadoop.tmp.dir}/dfs/name
      	/home/hadoop/dfs/name
    

    
      	dfs.data.dir
      	Where DataNodes store their blocks
      	${hadoop.tmp.dir}/dfs/data
      	/home/hadoop/dfs/data
    

    
      	mapred.system.dir
      	The in-HDFS path to shared MapReduce system files
      	${hadoop.tmp.dir}/mapred/system
      	/hadoop/mapred/system
    

  


[bookmark: dirs] 
[bookmark: dirs]This table is not exhaustive; several other
directories are listed in conf/hadoop-defaults.xml. The
remaining directories, however, are initialized by default to reside
under hadoop.tmp.dir, and are unlikely to be a concern.

[bookmark: dirs] 
[bookmark: dirs]It is critically important in a real cluster
that dfs.name.dir and dfs.data.dir be moved out
from hadoop.tmp.dir. A real cluster should never consider
these directories temporary, as they are where all persistent HDFS data
resides. Production clusters should have two paths listed for dfs.name.dir
which are on two different physical file systems, to ensure that
cluster metadata is preserved in the event of hardware failure.

[bookmark: dirs] 
[bookmark: dirs]A multi-user configuration should also definitely
adjust mapred.system.dir. Hadoop's default installation is
designed to work for standalone operation, which does not use HDFS.
Thus it conflates HDFS and local file system paths. When enabling HDFS,
however, MapReduce will store shared information about jobs in mapred.system.dir
on the DFS. If this path includes the current username (as the default hadoop.tmp.dir
does), this will prevent proper operation. The current username on the
submitting node will be the username who actually submits the job,
e.g., "alex." All other nodes will have the current username set to the
username used to launch Hadoop itself (e.g., "hadoop"). If these do not
match, the TaskTrackers will be unable to find the job information and
run the MapReduce job.

[bookmark: dirs] 
[bookmark: dirs]For this reason, it is also advisable to remove ${user.name}
from the general hadoop.tmp.dir. 

[bookmark: dirs] 
[bookmark: dirs]While most of the directories listed above (all the
ones with names in "foo.bar.baz" form) can be relocated via the conf/hadoop-site.xml
file, the HADOOP_LOG_DIR directory is specified in conf/hadoop-env.sh
as an environment variable. Relocating this directory requires editing
this script. 

[bookmark: dirs] [bookmark: machines] 

[bookmark: machines]Selecting Machines

[bookmark: machines] 
[bookmark: machines]Before diving into the details of configuring
nodes, we include a brief word on choosing hardware for a cluster.
While the processing demands of different organizations will dictate a
different machine configuration for optimum efficiency, there are are
commonalities associated with most Hadoop-based tasks.

[bookmark: machines] 
[bookmark: machines]Hadoop is designed to take advantage of whatever
hardware is available. Modest "beige box" PCs can be used to run small
Hadoop setups for experimentation and debugging. Providing greater
computational resources will, to a point, result in increased
performance by your Hadoop cluster. Many existing Hadoop deployments
include Xeon processors in the 1.8-2.0GHz range. Hadoop jobs written in
Java can consume between 1 and 2 GB of RAM per core. If you use
HadoopStreaming to write your jobs in a scripting language such as
Python, more memory may be advisable. Due to the I/O-bound nature of
Hadoop, adding higher-clocked CPUs may not be the most efficient use of
resources, unless the intent is to run HadoopStreaming. Big data
clusters, of course, can use as many large and fast hard drives as are
available. However, too many disks in a single machine will result in
many disks not being used in parallel. It is better to have three
machines with 4 hard disks each than one machine with 12 drives. The
former configuration will be able to write to more drives in parallel
and will provide greater throughput. Finally, gigabit Ethernet
connections between machines will greatly improve performance over a
cluster connected via a slower network interface.

[bookmark: machines] 
[bookmark: machines] It should be noted that the lower limit on
minimum requirements for running Hadoop is well below the
specifications for modern desktop or server class machines. However,
multiple pages on the Hadoop wiki suggest similar specifications to
those posted here for high-performance cluster design. (See [1], 
[2].) 

[bookmark: configs] 

[bookmark: configs]Cluster Configurations

[bookmark: configs] 
[bookmark: configs]This section provides cluster configuration advice
and specific settings for clusters of varying sizes. These sizes were
picked to demonstrate basic categories of clusters; your own
installation may be a hybrid of different aspects of these profiles.
Here we suggest various properties which should be included in the conf/hadoop-site.xml
file to most effectively use a cluster of a given size, as well as
other system configuration elements. The next section describes how to
finish the installation after implementing the configurations described
here. You should read through each of these configurations in order, as
configuration suggestions for larger deployments are based on the
preceding ones. 

[bookmark: configs] [bookmark: config-small] 
[bookmark: config-small]Small Clusters: 2-10 Nodes

[bookmark: config-small] 
[bookmark: config-small]Setting up a small cluster for development
purposes is a very straightforward task. When using two nodes, one node
will act as both NameNode/JobTracker and a DataNode/TaskTracker; the
other node is only a DataNode/TaskTracker. Clusters of three or more
machines typically use a dedicated NameNode/JobTracker, and all other
nodes are workers.

[bookmark: config-small] 
[bookmark: config-small]A relatively minimalist configuration in conf/hadoop-site.xml
will suffice for this installation:

[bookmark: config-small] 

[bookmark: config-small]<configuration>
  <property>
    <name>mapred.job.tracker</name>
    <value>head.server.node.com:9001</value>
  </property>
  <property>
    <name>fs.default.name</name>
    <value>hdfs://head.server.node.com:9000</value>
  </property>
  <property>
    <name>dfs.data.dir</name>
    <value>/home/hadoop/dfs/data</value>
    <final>true</final>
  </property>
  <property>
    <name>dfs.name.dir</name>
    <value>/home/hadoop/dfs/name</value>
    <final>true</final>
  </property>
  <property>
    <name>hadoop.tmp.dir</name>
    <value>/tmp/hadoop</value>
    <final>true</final>
  </property>
  <property>
    <name>mapred.system.dir</name>
    <value>/hadoop/mapred/system</value>
    <final>true</final>
  </property>
  <property>
    <name>dfs.replication</name>
    <value>2</value>
  </property>
</configuration>



[bookmark: config-small] 
[bookmark: config-small]Clusters closer to the 8-10 node range may
want to set dfs.replication to 3. Values higher than 3 are
usually not necessary. Individual files which are heavily utilized by a
large number of nodes may have their particular replication factor
manually adjusted upward independent of the cluster default.

[bookmark: config-small] [bookmark: config-medium] 
[bookmark: config-medium]Medium Clusters: 10-40 Nodes

[bookmark: config-medium] 
[bookmark: config-medium]This category is for clusters that occupy
the majority of a single rack. Additional considerations for high
availability and reliability come into play at this level.

[bookmark: config-medium] 
[bookmark: config-medium]The single point of failure in a Hadoop
cluster is the NameNode. While the loss of any other machine
(intermittently or permanently) does not result in data loss, NameNode
loss results in cluster unavailability. The permanent loss of NameNode
data would render the cluster's HDFS inoperable.

[bookmark: config-medium] 
[bookmark: config-medium]Therefore, another step should be taken in
this configuration to back up the NameNode metadata. One machine in the
cluster should be designated as the NameNode's backup. This machine
does not run the normal Hadoop daemons (i.e., the DataNode and
TaskTracker). Instead, it exposes a directory via NFS which is only
mounted on the NameNode (e.g., /mnt/namenode-backup/). The
cluster's hadoop-site.xml file should then instruct the
NameNode to write to this directory as well: 

[bookmark: config-medium] 

[bookmark: config-medium]  <property>
    <name>dfs.name.dir</name>
    <value>/home/hadoop/dfs/name,/mnt/namenode-backup</value>
    <final>true</final>
  </property>



[bookmark: config-medium] 
[bookmark: config-medium]The NameNode will write its metadata to each
directory in the comma-separated list of dfs.name.dir. If /mnt/namenode-backup
is NFS-mounted from the backup machine, this will ensure that a
redundant copy of HDFS metadata is available. The backup node should
serve /mnt/namenode-backup from /home/hadoop/dfs/name
on its own drive. This way, if the NameNode hardware completely dies,
the backup machine can be brought up as the NameNode with no
reconfiguration of the backup machine's software. To switch the
NameNode and backup nodes, the backup machine should have its IP
address changed to the original NameNode's IP address, and the server
daemons should be started on that machine. The IP address must be
changed to allow the DataNodes to recognize it as the "original"
NameNode for HDFS. (Individual DataNodes will cache the DNS entry
associated with the NameNode, so just changing the hostname is
insufficient; the name reassignment must be performed at the IP address
level.)

[bookmark: config-medium] 
[bookmark: config-medium]The backup machine still has Hadoop
installed and configured on it in the same way as every other node in
the cluster, but it is not listed in the slaves file, so
normal daemons are not started there.

[bookmark: config-medium] 
[bookmark: config-medium]One function that the backup machine can be
used for is to serve as the SecondaryNameNode. Note that this
is not a failover NameNode process. The SecondaryNameNode process
connects to the NameNode and takes periodic snapshots of its metadata
(though not in real time). The NameNode metadata consists of a snapshot
of the file system called the fsimage and a series of deltas
to this snapshot called the editlog. With these two files,
the current state of the system can be determined exactly. The
SecondaryNameNode merges the fsimage and editlog
into a new fsimage file that is a more compact representation
of the file system state. Because this process can be memory intensive,
running it on the backup machine (instead of on the NameNode itself)
can be advantageous.

[bookmark: config-medium] 
[bookmark: config-medium]To configure the SecondaryNameNode daemon to
run on the backup machine instead of on the master machine, edit the conf/masters
file so that it contains the name of the backup machine. The bin/start-dfs.sh
and bin/start-mapred.sh (and by extension, bin/start-all.sh)
scripts will actually always start the master daemons (NameNode and
JobTracker) on the local machine. The slaves file is used for
starting DataNodes and TaskTrackers. The masters file is used
for starting the SecondaryNameNode. This filename is used despite the
fact that the master node may not be listed in the file itself.

[bookmark: config-medium] 
[bookmark: config-medium]A cluster of this size may also require
nodes to be periodically decommissioned. As noted in Module 2, several machines cannot be turned
off simultaneously, or data loss may occur. Nodes must be
decommissioned on a schedule that permits replication of blocks being
decommissioned. To prepare for this eventuality in advance, an excludes
file should be added to the conf/hadoop-site.xml: 


  <property>
    <name>dfs.hosts.exclude</name>
    <value>/home/hadoop/excludes</value>
    <final>true</final>
  </property>
  <property>
    <name>mapred.hosts.exclude</name>
    <value>/home/hadoop/excludes</value>
    <final>true</final>
  </property>



This property should provide the full path to the excludes file (the
actual location of the file is up to you). You should then create an
empty file with this name:


$ touch /home/hadoop/excludes



While the dfs.hosts.exclude property allows the definition
of a list of machines which are explicitly barred from connecting to
the NameNode (and similarly, mapred.hosts.exclude for the
JobTracker), a large cluster may want to explicitly manage a list of
machines which are approved to connect to a given JobTracker or
NameNode.

The dfs.hosts and mapred.hosts properties allow
an administrator to supply a file containing an approved list of
hostnames. If a machine is not in this list, it will be denied access
to the cluster. This can be used to enforce policies regarding which
teams of developers have access to which MapReduce sub-clusters. These
are configured in exactly the same way as the excludes file.

Of course, at this scale and above, 3 replicas of each block are
advisable; the hadoop-site.xml file should contain:


  <property>
    <name>dfs.replication</name>
    <value>3</value>
  </property>



By default, HDFS does not preserve any free space on the DataNodes;
the DataNode service will continue to accept blocks until all free
space on the disk is exhausted, which may cause problems. The following
setting will require each DataNode to reserve at least 1 GB of space on
the drive free before it writes more blocks, which helps preserve
system stability:


  <property>
    <name>dfs.datanode.du.reserved</name>
    <value>1073741824</value>
    <final>true</final>
  </property>



Another parameter to watch is the heap size associated with each
task. Hadoop caps the heap of each task process at 200 MB, which is too
small for most data processing tasks. This cap is set as a parameter
passed to the child Java process. It is common to override this with a
higher cap by specifying: 


  <property>
    <name>mapred.child.java.opts</name>
    <value>-Xmx512m</value>
  </property>



This will provide each child task with 512 MB of heap. It is not
unreasonable in some cases to specify -Xmx1024m instead. In
the interest of providing only what is actually required, it may be
better to leave this set to 512 MB by default, and allowing
applications to manually configure for a full GB of RAM/task themselves.

Using multiple drives per machine

While small clusters often have only one hard drive per machine,
more high-performance configurations may include two or more disks per
node. Slight configuration changes are required to make Hadoop take
advantage of additional disks. 

DataNodes can be configured to write blocks out to multiple disks
via the dfs.data.dir property. It can take on a
comma-separated list of directories. Each block is written to one of
these directories. E.g., assuming that there are four disks, mounted on
/d1, /d2, /d3, and /d4, the
following (or something like it) should be in the configuration for
each DataNode:


  <property>
    <name>dfs.data.dir</name>
    <value>/d1/dfs/data,/d2/dfs/data,/d3/dfs/data,/d4/dfs/data</value>
    <final>true</final>
  </property>



MapReduce performance can also be improved by distributing the
temporary data generated by MapReduce tasks across multiple disks on
each machine:


  <property>
    <name>mapred.local.dir</name>
    <value>/d1/mapred/local,/d2/mapred/local,/d3/mapred/local,/d4/mapred/local</value>
    <final>true</final>
  </property>



Finally, if there are multiple drives available in the NameNode,
they can be used to provide additional redundant copies of the NameNode
metadata in the event of the failure of one drive. Unlike the above two
properties, where one drive out of many is selected to write a piece of
data, the NameNode writes to each comma-separated path in dfs.name.dir.
If too many drives are listed here it may adversely affect the
performance of the NameNode, as the probability of blocking on one or
more I/O operations increases with the number of devices involved, but
it is imperative that the sole copy of the metadata does not reside on
a single drive. 

[bookmark: config-large] 
[bookmark: config-large]Large Clusters: Multiple Racks

[bookmark: config-large] 
[bookmark: config-large]Configuring multiple racks of machines for
Hadoop requires further advance planning. The possibility of rack
failure now exists, and operational racks should be able to continue
even if entire other racks are disabled. Naive setups may result in
large cross-rack data transfers which adversely affect performance.
Furthermore, in a large cluster, the amount of metadata under the care
of the NameNode increases. This section proposes configuring several
properties to help Hadoop operate at very large scale, but the numbers
used in this section are just guidelines. There is no single magic
number which works for all deployments, and individual tuning will be
necessary. These will, however, provide a starting point and alert you
to settings which will be important. 

[bookmark: config-large] 
[bookmark: config-large]The NameNode is responsible for managing
metadata associated with each block in the HDFS. As the amount of
information in the rack scales into the 10's or 100's of TB, this can
grow to be quite sizable. The NameNode machine needs to keep the
blockmap in RAM to work efficiently. Therefore, at large scale, this
machine will require more RAM than other machines in the cluster. The
amount of metadata can also be dropped almost in half by doubling the
block size:

[bookmark: config-large] 

[bookmark: config-large]  <property>
    <name>dfs.block.size</name>
    <value>134217728</value>
  </property>



[bookmark: config-large] 
[bookmark: config-large]This changes the block size from 64MB (the
default) to 128MB, which decreases pressure on the NameNode's memory.
On the other hand, this potentially decreases the amount of parallelism
that can be achieved, as the number of blocks per file decreases. This
means fewer hosts may have sections of a file to offer to MapReduce
tasks without contending for disk access. The larger the individual
files involved (or the more files involved in the average MapReduce
job), the less of an issue this is. 

[bookmark: config-large] 
[bookmark: config-large]In the medium configuration, the NameNode
wrote HDFS metadata through to another machine on the rack via NFS. It
also used that same machine to checkpoint the NameNode metadata and
compact it in the SecondaryNameNode process. Using this same setup will
result in the cluster being dependent on a single rack's continued
operation. The NFS-mounted write-through backup should be placed in a
different rack from the NameNode, to ensure that the metadata for the
file system survives the failure of an individual rack. For the same
reason, the SecondaryNameNode should be instantiated on a separate rack
as well. 

[bookmark: config-large] 
[bookmark: config-large]With multiple racks of servers, RPC timeouts
may become more frequent. The NameNode takes a continual census of
DataNodes and their health via heartbeat messages sent every few
seconds. A similar timeout mechanism exists on the MapReduce side with
the JobTracker. With many racks of machines, they may force one another
to timeout because the master node is not handling them fast enough.
The following options increase the number of threads on the master
machine dedicated to handling RPC's from slave nodes:

[bookmark: config-large] 

[bookmark: config-large]  <property>
    <name>dfs.namenode.handler.count</name>
    <value>40</value>
  </property>
  <property>
    <name>mapred.job.tracker.handler.count</name>
    <value>40</value>
  </property>



[bookmark: config-large] 
[bookmark: config-large]These settings were used in clusters of
several hundred nodes. They should be scaled up accordingly with larger
deployments.

[bookmark: config-large] 
[bookmark: config-large]The following settings provide additional
starting points for optimization. These are based on the reported
configurations of actual clusters from 250 to 2000 nodes.

[bookmark: config-large] 

  
    
      	Property
      	Range
      	Description
    

    
      	io.file.buffer.size
      	32768-131072
      	Read/write buffer size used in SequenceFiles (should be in
multiples of the hardware page size)
    

    
      	io.sort.factor
      	50-200
      	Number of streams to merge concurrently when sorting files
during shuffling
    

    
      	io.sort.mb
      	50-200
      	Amount of memory to use while sorting data
    

    
      	mapred.reduce.parallel.copies
      	20-50
      	Number of concurrent connections a reducer should use when
fetching its input from mappers
    

    
      	tasktracker.http.threads
      	40-50
      	Number of threads each TaskTracker uses to provide
intermediate map output to reducers
    

    
      	mapred.tasktracker.map.tasks.maximum
      	1/2 * (cores/node) to 2 * (cores/node)
      	Number of map tasks to deploy on each machine.
    

    
      	mapred.tasktracker.reduce.tasks.maximum
      	1/2 * (cores/node) to 2 * (cores/node)
      	Number of reduce tasks to deploy on each machine.
    

  


[bookmark: config-large] 
[bookmark: config-large]Rack awareness

[bookmark: config-large] 
[bookmark: config-large]In a multi-rack configuration, it is
important to ensure that replicas of blocks are placed on multiple
racks to minimize the possibility of data loss. Thus, a rack-aware
placement policy should be used. A basic rack awareness script is
provided in Module 2. The
guidelines there suggest how to set up a basic rack awareness policy;
due to the heterogeneity of network topologies, a definitive
general-purpose solution cannot be provided here. 

This tutorial targets Hadoop version 0.18.0. While most of the
interfaces described will work on other, older versions of Hadoop,
rack-awareness underwent a major overhaul in version 0.17. Thus, the
following does not apply to version 0.16 and before.

One major consequence of the upgrade is that while rack-aware block
replica placement has existed in Hadoop for some time, rack-aware task
placement has only been added in version 0.17. If Hadoop MapReduce
cannot place a task on the same node as the block of data which the
task is scheduled to process, then it picks an arbitrary different node
on which to schedule the task. Starting with 0.17.0, tasks will be
placed (when possible) on the same rack as at least one replica of an
input data block for a job, which should further minimize the amount of
inter-rack data transfers required to perform a job.

Hadoop includes an interface called DNSToSwitchMapping which
allows arbitrary Java code to be used to map servers onto a rack
topology. The configuration key topology.node.switch.mapping.impl
can be used to specify a class which meets this interface. More
straightforward than writing a Java class for this purpose, however, is
to use the default mapper, which executes a user-specified script (or
other command) on each node of the cluster, which returns the rack id
for that node. These rack ids are then aggregated and sent back to the
NameNode.

Note that the rack mapping script used by this system is
incompatible with the 0.16 method of using dfs.network.script.
Whereas dfs.network.script runs on each DataNode, a new
script specified by topology.script.file.name is run by the
master node only. To set the rack mapping script, specify the key topology.script.file.name
in conf/hadoop-site.xml. 

Cluster contention

If you are configuring a large number of machines, it is likely that
you have a large number of users who wish to submit jobs to execute on
it. Hadoop's job scheduling algorithm is based on a simple FIFO
scheduler. Using this in a large deployment without external controls
or policies agreed upon by all users can lead to lots of contention for
the JobTracker, causing short jobs to be delayed by other long-running
tasks and frustrating users.

An advanced technique to combat this problem is to configure a
single HDFS cluster which spans all available machines, and configure
several separate MapReduce clusters with their own JobTrackers and
pools of TaskTrackers. All MapReduce clusters are configured to use the
same DFS and the same NameNode; but separate groups of machines have a
different machine acting as JobTracker (i.e., subclusters have
different settings for mapred.job.tracker). Breaking machines
up into several smaller clusters, each of which contains 20-40
TaskTrackers, provides users with lower contention for the system.
Users may be assigned to different clusters by policy, or they can use
the JobTracker status web pages (a web page exposed on port 50030 of
each JobTracker) to determine which is underutilized.

Multiple strategies exist for this assignment process. It is
considered best practice to stripe the TaskTrackers associated with
each JobTracker across all racks. This maximizes the availability of
each cluster (as they are all resistant to individual rack failure),
and works with the HDFS replica placement policy to ensure that each
MapReduce cluster can find rack-local replicas of all files used in any
MapReduce jobs.

[bookmark: monitoring] 

[bookmark: monitoring]Performance Monitoring

[bookmark: monitoring] 
[bookmark: monitoring]Multiple tools exist to monitor large clusters
for performance and troubleshooting. This section briefly highlights
two such tools.

[bookmark: monitoring] [bookmark: ganglia] 
[bookmark: ganglia]Ganglia

[bookmark: ganglia] 
Ganglia is a performance
monitoring framework for distributed systems. Ganglia provides a
distributed service which collects metrics on individual machines and
forwards them to an aggregator which can report back to an
administrator on the global state of a cluster.

Ganglia is designed to be integrated into other applications to
collect statistics about their operation. Hadoop includes a performance
monitoring framework which can use Ganglia as its backend. Instructions
are available on
the Hadoop wiki as to how to enable Ganglia metrics in Hadoop.
Instructions are also included below.

After installing and configuring Ganglia on your cluster, to direct
Hadoop to output its metric reports to Ganglia, create a file named hadoop-metrics.properties
in the $HADOOP_HOME/conf directory. The file should have the
following contents: 


dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10
dfs.servers=localhost:8649

mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10
mapred.servers=localhost:8649



This assumes that gmond is running on each machine in the
cluster. Instructions on the Hadoop wiki note that (in the experience
of the wiki article author) this may result in all nodes reporting
their results as "localhost" instead of with their individual
hostnames. If this problem affects your cluster, an alternate
configuration is proposed, in which all Hadoop instances speak directly
with gmetad:


dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10
dfs.servers=@GMETAD@:8650

mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10
mapred.servers=@GMETAD@:8650



Where @GMETAD@ is the hostname of the server on which the gmetad
service is running. If deploying Ganglia and Hadoop on a very large
number of machines, the impact of this configuration (vs. the standard
Ganglia configuration where individual services talk to gmond
on localhost) should be evaluated. 

 [bookmark: nagios] 

[bookmark: nagios]Nagios

[bookmark: nagios] 
[bookmark: nagios]While Ganglia will monitor Hadoop-specific metrics,
general information about the health of the cluster should be monitored
with an additional tool.

[bookmark: nagios] 
Nagios is a machine and service
monitoring system designed for large clusters. Nagios will provide
useful diagnostic information for tuning your cluster, including
network, disk, and CPU utilization across machines.
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[bookmark: tips] 
[bookmark: tips]The following are a few additional pieces of small
advice:

[bookmark: tips] 

  [bookmark: tips] 
  	[bookmark: tips]Create a separate user named "hadoop" to run your
instances; this will separate the Hadoop processes from any users on
the system. Do not run Hadoop as root.

  [bookmark: tips] 
  	[bookmark: tips]If Hadoop is installed in /home/hadoop/hadoop-0.18.0,
link /home/hadoop/hadoop to /home/hadoop/hadoop-0.18.0.
When upgrading to a newer version in the future, the link can be moved
to make this process easier on other scripts that depend on the hadoop/bin
directory.

  [bookmark: tips] 


[bookmark: tips] [bookmark: refs] 

[bookmark: refs]References & Resources

[bookmark: refs] 
[bookmark: refs] Hadoop Downloads


 Hadoop
Quickstart - Single-machine configuration instructions 

 Hadoop
Cluster Setup - Official Hadoop configuration instructions 

Michael Noll's Hadoop configuration tutorials
for single
and multiple
node configurations. 
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Introduction

The Pig tutorial shows you how to run two Pig scripts in Local mode
and Hadoop mode. 


  	
     Local Mode: To run the scripts in local mode,
no Hadoop or HDFS installation is required. All files are installed and
run from your local host and file system. 

  

  	
     Hadoop Mode: To run the scripts in hadoop
(mapreduce) mode, you need access to a Hadoop cluster and HDFS
installation available through Hadoop Virtual Machine provided with
this tutorial.

    

  



The Pig tutorial files are installed on the Hadoop Virtual Machine
under "/home/hadoop-user/pig" directory. It includes the Pig JAR file
(pig.jar) and the tutorial files (tutorial.jar, Pigs scripts, log
files). These files work with Hadoop 0.18.0 and provide everything you
need to run the Pig scripts. This Pig Tutorial is also
available on the apache Pig
website.



Java
Installation (Note: already set-up on the Hadoop VM.)




  	
    Java 1.6.x (from Sun) is installed on /usr/jre16.

    

  

  	
    The JAVA_HOME environment variable is set the root of your Java
installation in "/home/hadoop-user/.profile" file. 

  



Pig Installation
(Note: already set-up on the Hadoop VM.)




  	
    The pig.jar and tutorial files are stored in
"/home/hadoop-user/pig" directory.

    

  

  	
    The PIGDIR environment variable is set to
"/home/hadoop-user/pig/"in the .profile file of hadoop-user. 

  



Pig Scripts:
Local Mode

To run the Pig scripts in local mode, do the following: 


  	
    Go to the /home/hadoop-user/pig directory on Hadoop VM. 

  

  	
    Review Pig
Script 1 and Pig
Script 2. 

  

  	
    Execute the following command (using either script1-local.pig or
script2-local.pig). 

  




$ java -cp $PIGDIR/pig.jar org.apache.pig.Main -x local script1-local.pig





  	
    Review the result file (either script1-local-results.txt or
script2-local-results.txt): 

  




$ ls -l script1-local-results.txt
$ cat script1-local-results.txt




Pig Scripts:
Hadoop Mode

To run the Pig scripts in hadoop (mapreduce) mode, do the following:



  	
    Go to the /home/hadoop-user/pig directory on Hadoop VM. 

  

  	
    Review Pig
Script 1 and Pig
Script 2. 

  

  	
    Copy the excite.log.bz2 file from the pigtmp directory to the
HDFS directory. 

  




$ hadoop fs –copyFromLocal excite.log.bz2 .





  	
    The HADOOPSITEPATH environment variable is set to the location
of your hadoop-site.xml file i.e.
"/home/hadoop-user/hadoop-tutorial-conf/" directory. 

  

  	
    Execute the following command (using either script1-hadoop.pig
or script2-hadoop.pig): 

  




$ java -cp $PIGDIR/pig.jar:$HADOOPSITEPATH org.apache.pig.Main script1-hadoop.pig





  	
    Review the result files (located in either the
script1-hadoop-results or script2-hadoop-results HDFS directory): 

  




$ hadoop fs -ls script1-hadoop-results
$ hadoop fs -cat 'script1-hadoop-results/*' | less




 

Pig Tutorial File

The contents of the Pig tutorial  are described here. 



  
    
      	
       File 

      
      	
       Description

      
    

    
      	
       pig.jar 

      
      	
       Pig JAR file 

      
    

    
      	
       tutorial.jar 

      
      	
       User-defined functions (UDFs) and Java classes 

      
    

    
      	
       script1-local.pig 

      
      	
       Pig Script 1, Query Phrase Popularity (local mode) 

      
    

    
      	
       script1-hadoop.pig 

      
      	
       Pig Script 1, Query Phrase Popularity (Hadoop cluster) 

      
    

    
      	
       script2-local.pig 

      
      	
       Pig Script 2, Temporal Query Phrase Popularity (local mode)

      
    

    
      	
       script2-hadoop.pig 

      
      	
       Pig Script 2, Temporal Query Phrase Popularity (Hadoop
cluster) 

      
    

    
      	
       excite-small.log 

      
      	
       Log file, Excite search engine (local mode) 

      
    

    
      	
       excite.log.bz2 

      
      	
       Log file, Excite search engine (Hadoop cluster) 

      
    

  




The user-defined functions (UDFs) are described here. 



  
    
      	
       UDF 

      
      	
       Description

      
    

    
      	
       ExtractHour 

      
      	
       Extracts the hour from the record.

      
    

    
      	
       NGramGenerator 

      
      	
       Composes n-grams from the set of words. 

      
    

    
      	
       NonURLDetector 

      
      	
       Removes the record if the query field is empty or a URL. 

      
    

    
      	
       ScoreGenerator 

      
      	
       Calculates a "popularity" score for the n-gram.

      
    

    
      	
       ToLower 

      
      	
       Changes the query field to lowercase. 

      
    

    
      	
       TutorialUtil 

      
      	
       Divides the query string into a set of words.

      
    

  




 

[bookmark: Pig_Script_1:_Query_Phrase_Popularity]Pig Script 1: Query
Phrase Popularity

The Query Phrase Popularity script (script1-local.pig or
script1-hadoop.pig) processes a search query log file from the Excite
search engine and finds search phrases that occur with particular high
frequency during certain times of the day. 

The script is shown here: 


  	
     Register the tutorial JAR file so that the included UDFs can be
called in the script. 

  




REGISTER ./tutorial.jar; 





  	
     Use the PigStorage function
to load the excite log file (excite.log or
excite-small.log) into the “raw” bag as an array of records with the
fields user, time, and query.
    

  




raw = LOAD 'excite.log' USING PigStorage('\t') AS (user, time, query);





  	
     Call the NonURLDetector UDF to remove records if the query
field is empty or a URL. 

  




clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);





  	
     Call the ToLower UDF to change the query field to lowercase. 

  




clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query;





  	
     Because the log file only contains queries for a single day, we
are only interested in the hour. The excite query log timestamp format
is YYMMDDHHMMSS. Call the ExtractHour UDF to extract the hour (HH) from
the time field. 

  




houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query;





  	
     Call the NGramGenerator UDF to compose the n-grams of the
query. 

  




ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram;





  	
     Use the DISTINCT
command to get the unique n-grams for all records. 

  




ngramed2 = DISTINCT ngramed1;





  	
     Use the GROUP
command to group records by n-gram and hour. 

  




hour_frequency1 = GROUP ngramed2 BY (ngram, hour);





  	
     Use the COUNT function to
get the count (occurrences) of each n-gram. 

  




hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count;





  	
     Use the GROUP
command to group records by n-gram only. Each group now
corresponds to a distinct n-gram and has the count for each hour. 

  




uniq_frequency1 = GROUP hour_frequency2 BY group::ngram;





  	
     For each group, identify the hour in which this n-gram is used
with a particularly high frequency. Call the ScoreGenerator UDF to
calculate a "popularity" score for the n-gram. 

  




uniq_frequency2 = FOREACH uniq_frequency1 GENERATE flatten($0), flatten(org.apache.pig.tutorial.ScoreGenerator($1));





  	
     Use the FOREACH-GENERATE
command to assign names to the fields. 

  




uniq_frequency3 = FOREACH uniq_frequency2 GENERATE $1 as hour, $0 as ngram, $2 as score, $3 as count, $4 as mean;





  	
     Use the FILTER
command to move all records with a score less than or equal
to 2.0. 

  




filtered_uniq_frequency = FILTER uniq_frequency3 BY score > 2.0;





  	
     Use the ORDER
command to sort the remaining records by hour and score. 

  




ordered_uniq_frequency = ORDER filtered_uniq_frequency BY (hour, score);





  	
     Use the PigStorage function
to store the results. The output file contains
a list of n-grams with the following fields: hour, ngram,
    score, count, mean.
    

  




STORE ordered_uniq_frequency INTO '/tmp/tutorial-results' USING PigStorage(); 




 

[bookmark: Pig_Script_2:_Temporal_Query_Phrase]Pig Script 2: Temporal
Query Phrase Popularity

The Temporal Query Phrase Popularity script (script2-local.pig or
script2-hadoop.pig) processes a search query log file from the Excite
search engine and compares the occurrence of frequency of search
phrases across two time periods separated by twelve hours. 

The script is shown here: 


  	
     Register the tutorial JAR file so that the user-defined
functions (UDFs) can be called in the script. 

  




REGISTER ./tutorial.jar;





  	
     Use the PigStorage function
to load the excite log file (excite.log or
excite-small.log) into the “raw” bag as an array of records with the
fields user, time, and query.
    

  




raw = LOAD 'excite.log' USING PigStorage('\t') AS (user, time, query);





  	
     Call the NonURLDetector UDF to remove records if the query
field is empty or a URL. 

  




clean1 = FILTER raw BY org.apache.pig.tutorial.NonURLDetector(query);





  	
     Call the ToLower UDF to change the query field to lowercase. 

  




clean2 = FOREACH clean1 GENERATE user, time, org.apache.pig.tutorial.ToLower(query) as query;





  	
     Because the log file only contains queries for a single day, we
are only interested in the hour. The excite query log timestamp format
is YYMMDDHHMMSS. Call the ExtractHour UDF to extract the hour from the
time field. 

  




houred = FOREACH clean2 GENERATE user, org.apache.pig.tutorial.ExtractHour(time) as hour, query;





  	
     Call the NGramGenerator UDF to compose the n-grams of the
query. 

  




ngramed1 = FOREACH houred GENERATE user, hour, flatten(org.apache.pig.tutorial.NGramGenerator(query)) as ngram;





  	
     Use the DISTINCT
command to get the unique n-grams for all records. 

  




ngramed2 = DISTINCT ngramed1;





  	
     Use the GROUP
command to group the records by n-gram and hour. 

  




hour_frequency1 = GROUP ngramed2 BY (ngram, hour);





  	
     Use the COUNT function to
get the count (occurrences) of each n-gram. 

  




hour_frequency2 = FOREACH hour_frequency1 GENERATE flatten($0), COUNT($1) as count;





  	
     Use the FOREACH-GENERATE
command to assign names to the fields. 

  




hour_frequency3 = FOREACH hour_frequency2 GENERATE $0 as ngram, $1 as hour, $2 as count;





  	
     Use the FILTER
command to get the n-grams for hour ‘00’ 

  




hour00 = FILTER hour_frequency2 BY hour eq '00';





  	
     Uses the FILTER
command to get the n-grams for hour ‘12’ 

  




hour12 = FILTER hour_frequency3 BY hour eq '12';





  	
     Use the JOIN command to
get the n-grams that appear in both hours. 

  




same = JOIN hour00 BY $0, hour12 BY $0;





  	
     Use the FOREACH-GENERATE
command to record their frequency. 

  




same1 = FOREACH same GENERATE hour_frequency2::hour00::group::ngram as ngram, $2 as count00, $5 as count12;





  	
     Use the PigStorage function
to store the results. The output file contains
a list of n-grams with the following fields: hour, count00,
    count12. 

  




STORE same1 INTO '/tmp/tutorial-join-results' USING PigStorage();
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