
The unbearable lightness of PIN cracking

Omer Berkman1 and Odelia Moshe Ostrovsky2,3?

1 The Academic College of Tel Aviv Yaffo, School of Computer Science
2 Algorithmic Research Ltd., www.arx.com

3 Tel Aviv University, School of Computer Science
omer@mta.ac.il, odelia@arx.com

Version 1.8

Abstract. We describe new attacks on the financial PIN processing
API. The attacks apply to switches as well as to verification facilities.
The attacks are extremely severe allowing an attacker to expose customer
PINs by executing only one or two API calls per exposed PIN. One of
the attacks uses only the translate function which is a required function
in every switch. The other attacks abuse functions that are used to allow
customers to select their PINs online. Some of the attacks can be applied
on a switch even though the attacked functions require issuer’s keys
which do not exist on a switch. This is particularly disturbing as it was
widely believed that functions requiring issuer’s keys cannot do any harm
if the respective keys are unavailable.

Key words: Security API, API attack, Financial PIN Processing API,
HSM, Insider attack, Phantom Withdrawal, VISA PVV, IBM 3624, EMV

1 Introduction

Personal Identification Number (PIN) is the means used by a bank account
holder to verify his/her identity to the issuing bank. When a PIN is entered
by the card holder at a service point (e.g., an Automatic Teller Machine), the
PIN and account number are sent to the verification facility (the issuing bank
or other authorized entity) for verification. To protect the PIN on transit, it is
formatted into a PIN block, the PIN block is encrypted under a transport key
and the resulting Encrypted PIN Block (EPB) is sent for verification. As there
usually isn’t direct communication between the service point and the verification
facility, the PIN goes through switches. Each switch decrypts the EPB, verifies
the resulting PIN block format (so the format serves as some form of Message
Authentication Code), re-formats the PIN block if necessary, and re-encrypts the
PIN block with a transport key shared with the next switch (or the verification
facility when arriving there). Switches may be part of other issuers’ verification
facilities or may be stand alone. There is generally no connection between a
switch facility that handles an incoming EPB, and the issuer of the respective
? The work of this author was carried out as part of an MSc thesis in Tel Aviv Uni-

versity.



account number. Additionally, switches may be physically far from the issuer
(for example, when a customer withdraws money overseas).

To protect the PIN and the encryption keys both in switches and in the
issuer’s environment, all operations involving a clear PIN are handled within a
Hardware Security Module (HSM). Such operations are controlled by an appli-
cation at the site using a cryptographic API. The Financial PIN Processing API
is a 30-years old standard which includes functions for, e.g., PIN issuing, PIN
verification, PIN reformatting, and PIN change.

The issuer’s environment is usually physically separated into an issuing facil-
ity and an online verification facility. The issuing facility where customer PINs
are generated and printed for delivery is usually isolated logically and physically
from the rest of the issuer’s environments. The verification facility as well as
switches on the other hand, are in general significantly less protected than the
issuing facility as they are required to be online. [1] requires that HSMs imple-
menting the Financial PIN processing API separate the functionality required
for the issuing facility from functionality required for the verification facility.
The separation can be logical and/or physical. The reason for this requirement,
is that much of the required functionality in the issuing facility is sensitive, and
must not therefore be accessible in the verification facility which is much less
secure. Switches are treated as verification facilities in this respect so HSMs in
switches should only contain (at least logically) the functionality required for
the verification facility.

In this paper we describe attacks on the Financial PIN Processing API, which
result in discovering customers PINs. The attacks can be applied in switches as
well as in verification facilities. The attacks require access (i) to the HSM in the
attacked facility for executing API calls; (ii) to EPBs incoming to the attacked
facility. Applying such attacks thus requires the help of an insider in the attacked
facility. However, when the attacks are applied on a switch, one cannot relate to
them as insider attacks. Since the switch, and the issuer whose EPBs are attacked
on the switch, are unrelated, an insider of the switch facility is an outsider from
the issuer’s point of view. The issuer has no control, neither on the environment
nor on the employees in the attacked system. We stress that our attacks only
require the use of API functions (and only the ones approved for the verification
facility) and do not assume that the attacker can perform operations such as
loading known keys into the attacked HSM.

The first attack uses a single API function denoted ”translate”. The translate
function allows to reformat an EPB in any PIN block format to an EPB in
another PIN block format. It also allows to change the transport key which
encrypts the PIN block. It is a required function in every switch, and exists also
in verification facilities as part of the API. The attack on the translate function
allows revealing the PIN packed in each EPB arriving to the attacked switch
using one or two HSM calls, following a (one-time) preprocessing step of 20,000
HSM calls.

The attack is based on known weaknesses in the standard which are described
(and referenced) later is this section, and in Section 3. Our contribution is two



fold: (i) we observe that these weaknesses imply a major security problem allow-
ing to build a single (small) look-up table enabling to expose the contents (in
particular the PIN) of any customer’s EPB arriving to the attacked facility. (ii)
we provide an efficient way to build such a table. Step (ii) uses ideas from [2–4].

The second attack has several variants some applicable to both switches
and to verification facilities and some only to verification facilities. The attacks
require the use of one of two API functions which are used for allowing customers
to select their PINs online (these function are denoted ”calculate offset” and
”calculate PVV”). The most severe variants allow discovering a PIN from its
EPB, discovering a PIN given its respective account number and setting a new
value for a customer’s PIN. Each of these variants can be performed in one or
two HSM calls (and no preprocessing). We are not aware of previous attacks
abusing these two functions.

Several papers ([5, 6, 2]) discuss a function denoted hereafter change account
number that is not part of the Financial PIN Processing API but was added
temporarily to the implementation of the API in a certain bank in order to
enable changing all customers account numbers without re-issuing new PINs.
The function accepts the customer’s old account number, the customer’s new
account number and the customer’s offset (a value used in the verification process
- see Section 4.2) and retrieves a new offset to be used with the new account
number. These publications show that the change account number function could
have been used to discover customer PINs. One of our variants, reveals that the
function calculate offset, which is part of the Financial PIN Processing API is
as dangerous as the change account number function. The crucial observations
are: (i) Although different, the input parameters of the two functions actually
contain the same inherent information (in different form); and (ii) the functions
use this information in a similar way. Therefore the two functions can be abused
in a similar way to calculate a value that can be used to reveal the customer’s
PIN.

Both calculate offset and calculate PVV functions require issuer keys so it is
quite surprising that they can be attacked in switches as switches do not contain
issuer keys. Indeed, the design of each of the functions allow an attacker to use
any key instead of the issuer’s key when attacking these functions in a switch.
The value of the key is not important, and the attacker does not need to know
it. This is particularly disturbing as it is widely believed that functions requiring
issuer’s keys cannot do any harm if the respective keys are unavailable.

In some of the cases above, the attacked functions are not used by the ap-
plication at the site. It is important in such cases to disable these functions (as
well as other unused functions) if this capability is offered. Issuers certainly have
the incentive to apply such measures in their verification (and issuing) facili-
ties. However, it is not clear how to verify that switch facilities adhere to these
measures.

The attacks apply to all common commercial HSMs implementing the API
and affect all financial institutions. The attacks require one or two HSM calls
per PIN discovery, enabling the discovery of several thousand (the exact number



depends on the HSM) customer PINs per attacked HSM per second. The attacks
do not require the knowledge of any key value. The attacks apply also to the
EMV standard ([7]) when on-line verification takes place.

The attacks abuse integrity and secrecy weaknesses in the financial PIN pro-
cessing API, some of which are well known ([8, 9, 4, 3, 10, 2], see also Section 3).
In fact, integrity is almost non existent in the standard. For example, we are
able to trick API functions into accepting a customer’s EPB together with an
account number which is not the customer’s.

The attacks described in this paper enable an attacker to apply serious at-
tacks on issuing banks, such as simultaneous withdrawals of aggregate large sums
of money. The attacks may also explain cases of phantom withdrawals where a
cash withdrawal from an ATM has occurred, and neither the customer nor the
bank admits liability.

To prevent the attacks described in this paper, worldwide modifications in
ATMs, HSMs and other components implementing the Financial PIN processing
API must be introduced.

Previous API-level attacks appear in [11–13]. Previous attacks on the Fi-
nancial PIN Processing Standard appear in the references above as well as in
[6].

The rest of the paper is organized as follows. In Section 2 we discuss the
threat model. In Sections 3 and 4 we describe the attacks.

2 Threat model

We discuss in this section the requirements from an attacker.
A potential attacker is an insider of the attacked facility - a switch or a

verification facility. Such an insider should have logical access to the HSM in the
facility and should be able to generate API calls (the required API functions
depend on the attack). In many cases this is easy as the HSM is connected to
the organization’s internal network. When this is not the case, the attacker can,
for example, interfere with or masquerade as the legal application working with
the HSM in the attacked facility.

All API functions use cryptographic keys. The standard does not specify how
keys should be input to an API function but most implementations either keep
keys outside the HSM encrypted by a master key, or keep them inside the HSM.
In the first case, HSMs accept encrypted keys in each API call. In this case, an
attacker is only required to record the desired encrypted key buffer from a real
transaction. The same encrypted key can then be used in the attacker’s API calls
to the HSM. In the second case where keys are stored and managed inside the
HSM, the attacker only needs to know the required key ID. In this case, however,
the HSM may also handle user access rights to the keys. To use the required keys
in such cases the attacker can, as before, interfere with or masquerade as the
legal application working with the HSM in the attacked facility. In any case, we
never assume that the attacker has any knowledge of the value of cryptographic
keys.



In some of the attacks the attacker is required to generate EPBs which con-
tain known PINs and which share a transport key with the attacked HSM. To
do this, the attacker can use any banking card and enter a desired PIN at an
ATM adjacent physically or logically to the attacked HSM. The attacker then
needs to record the EPB when it arrives to the attacked facility. This can be
done in various ways, i.e., by a program that reads the EPB on its way from the
application to the HSM in the site. In the same way an attacker is able to record
EPBs incoming to the switch, e.g., in order to expose the PINs they hide.

Transport keys sometimes change. However, parameters to the API functions
that control the keys to be used in the API function come from the outside so the
attacker can always use the same key. Additionally, when required, the attacker
can use the translate function to translate an EPB encrypted with one transport
key to an EPB encrypted with another.

3 Attack on the translate function

The attack we describe in this section, enables revealing for any EPB arriving to
the attacked switch (or verification facility), the PIN that the EPB packs. The
attack uses at most two API calls per EPB. The attack requires also a one-time
preprocessing step consisting of 20,000 API calls (assuming the PIN is of length
4 as is normally the case). The attack uses the translate API function only.

As we mentioned earlier, on its way for verification, the PIN is formatted into
a PIN block and the result is encrypted using a transport key to generate an
Encrypted PIN Block (EPB). The attack is based on the following weaknesses:
(i) the fact that there exists an API function which translates an EPB in one
approved PIN block format to another; (ii) weaknesses in the approved PIN
block format themselves.

Specifically, [14] describes four different PIN Block formats. ISO-0, ISO-1,
ISO-2, and ISO-3, which differ in whether the customer’s account number and/or
random data is involved in the format in addition to the PIN itself. ISO-0 uses
only account number, ISO-1 uses only random data, ISO-2 uses neither account
number nor random data, and ISO-3 uses both account number and random
data. [1] approves ISO-0, ISO-1, and ISO-3 for online PIN transactions. ISO-2
is not approved for online PIN transactions since an EPB based on ISO-2 (and
on a given transport key) has only 10,000 possible values (assuming the PIN is
of length 4) enabling the use of a look-up table. The specific weaknesses we use
are the following:

1. The translate API function allows reformatting an EPB from any of the
approved formats (ISO-0, ISO-1, or ISO-3) to another ([4, 2, 3]).

2. For a particular account number, the ISO-0 format is as weak as ISO-2:
an EPB based on ISO-0 and a particular account number has only 10,000
possible values enabling the use of a look-up table ([4, 8, 2]).

3. The ISO-1 format is independent of any account number ([2]).
4. As mentioned in the introduction, the format of PIN block serves as a form of

Message Authentication Code (MAC). The weakness is that in ISO-0 format,



digits of the PIN are XORed with digits of the account number, making it
impossible to correctly authenticate neither ([2–4]).

We start by showing that weaknesses 1-3 degrade the system to the strength
of ISO-2, the weak and thus non-approved PIN block format.

Given an EPB in any of the approved formats (ISO-0, ISO-1, or ISO-3) we use
the translate capability to convert it to ISO-1 (if it is not already in ISO-1) and
then back to ISO-0 but with a chosen account number. By doing this we untie
the link between the customer’s account number and the customer’s PIN and
create a fabricated link between a chosen account number and this customer’s
PIN. This abuse was discussed in [8], [4] and [2].

Fixing the chosen account number to some value A, and applying the above
to all EPBs arriving to the attacked switch ensures that all resulting EPBs are
based on account number A, thus degrading their strength to that of ISO-2.
This new observation has extremely serious implications on the security of the
Financial PIN Processing API, as it implies that a single look-up table of size
10,000 is all that is required in order to discover the PIN packed in every EPB
arriving to the attacked switch, regardless of its account number.

We now describe how to build the required table. Specifically, we show how
to generate a table of 10,000 EPBs, where the ith EPB, 1 ≤ i ≤ 10, 000 contains
the PIN whose value is i, and such that each EPB in the table is formatted in
ISO-0 using account number A.

One obvious way such a table can be generated is by brute force - generating
10,000 EPBs by ATMs: For each i, 1 ≤ i ≤ 10, 000 use a card with any account
number and type PIN value i. When the respective EPB arrives at the attacked
HSM, translate it to ISO-0 using account number A (by one or two calls to the
translate function depending on the format of the incoming EPB). Using different
account numbers when generating EPBs via ATMs would make it harder to
discover the attack.

We now describe a much more practical method of generating the table. This
method requires generating only 100 EPBs by ATMs. To build the 10,000-entry
table we use weakness 4 to generate 100 of the required EPBs from each of the
100 EPBs generated by ATMs. The details are described below.

We start by describing the ISO-0 PIN block format. Denote the PIN P1P2P3P4

and the respective account number A1A2 . . . A12 (only 12 digits of the account
number are used in the ISO formats). The PIN block is the XOR of two 16-
hexadecimal digits blocks. An original block containing the PIN (”F” stands for
the hexadecimal value F)

0 4 P1 P2 P3 P4 F F F F F F F F F F

with an account number block containing the account number

0 0 0 0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

When an API function receives an EPB in ISO-0 as a parameter, it also
receives its associated account number. To use the PIN packed in the EPB, the



function decrypts the EPB, and XORs the result with the account number block
to recreate the original block. It then authenticates the result by verifying that
the values of the first two digits of the original block are 0 and 4, that the last
10 digits are hexadecimal F and that the PIN is composed of decimal digits.

Weakness 4 - the fact that two digits of the PIN are XORed with two digits
of the account number - is used for generating the table. The attacker gener-
ates in ATMs 100 EPBs packing, respectively, PIN values 0000, 0100, . . . , 9900.
Each of these EPBs is formatted in ISO-0 and associated with account number
00A3 . . . A12 where the values A3, . . . , A12 are immaterial to the attack and can
be different for each PIN value to make the attack more innocent. (It is also
possible to generate the 100 EPBs in ATMs using completely arbitrary account
numbers and then change the account number of each EPB to the desired one
using the translate function.)

We complete our description by showing how the attacker generates an EPB
containing PIN value xyuv for any decimal values x, y, u, v:

To generate an EPB that packs PIN value xyuv, the attacker uses the EPB
packing xy00 which was generated by ATM. It reformats this EPB to ISO-1 but
instead of using the original account number 00A3 . . . A12 the attacker provides
the translate function with account number uvA3 . . . A12.

The translate function decrypts the EPB and gets a block which is the XOR
of the original block

0 4 x y 0 0 F F F F F F F F F F

and the original account number block

0 0 0 0 0 0 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

Note that the function only sees the decrypted block - the XOR of these two
blocks. It then XORs the decrypted block with the following:

0 0 0 0 u v A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

to get

0 4 x y u v F F F F F F F F F F

This resulting block will be authenticated (its two first digits are 0 and 4, its
10 last digits are hexadecimal F, and the PIN consists of decimal digits). Con-
sequently, PIN value xyuv will be packed in an EPB in ISO-1 PIN block and
returned. The attacker can now translate this EPB to ISO-0 with the desired
account number A.

4 Attacks on functions allowing PIN change

In the Financial PIN Processing API, the PIN is verified using one of two ap-
proved methods - the IBM 3624 or the VISA PIN validation value (PVV) meth-
ods. In both methods the input to the verify function is as follows:



– An EPB containing the PIN presented by the customer.
– The customer’s account number.
– A four decimal digits customer’s verification value (called offset in the first

method and PVV in the second).

This customer’s verification value is not secret. It is kept either in a database
as part of the customer details (together with the customer’s account number),
or on the customer’s card.

Denote by P the PIN packed in the EPB, by A the customer’s account
number, and by V the customer’s verification value.

The verify function decrypts the EPB, authenticates it by verifying the PIN
block format, extracts P from the EPB, and verifies whether V = f(P,A) where
f is a function which depends on an issuer’s secret key. The function f is different
in the two methods.

In order to allow customers to select their PIN online, the Financial Process-
ing API contains two functions (one for each method) that allow recalculating
the customer’s verification value when the customer’s PIN changes. The func-
tions are denoted calculate offset and calculate PVV. Both functions receive the
following input:

– An EPB containing the customer’s chosen PIN .
– The customer’s account number.

The functions return V = f(P,A) where P , A, V and f are as before. We note
that in both functions, the value V is pseudo random as a result of using the
random issuer’s key in f .

The main weakness in both functions regardless of f is that the new PIN
supplied to the function (packed in an EPB) is not bound to the old PIN. Note
that since an attacker can carry out the attack by directly using the API, this
binding must be checked by the function itself and not by the application at the
site. Note also that it would not be enough to add the functions a parameter
consisting of an EPB that packs the customer’s old PIN (and means to verify
it, i.e., the respective PVV) since the attacker can record a customer’s real EPB
on its way for verification, and use it as the additional parameter.

We describe below attacks on the calculate PVV function. These attacks do
not use any properties of the respective f (except for assuming that the value
V is pseudo random). Thus, all our attacks on calculate PVV apply also to
calculate offset. We also describe attacks specifically on calculate offset. These
attacks use properties of the respective f and are more severe than the general
attacks.

To attack the calculate PVV, we are required to send it an EPB and an
account number. In all cases, the EPB would be generated by one customer and
the account number would belong to another.

To force the calculate PVV function to accept the non-matching parameters
we use the translate function to reformat the EPB to ISO-1 (which is not linked
to any customer) before sending it to the calculate PVV function. Because ISO-1



does not depend on account number, there would be no inconsistency between
the EPB parameter and the account number parameter. Note that restricting
the calculate PVV function to accept only EPBs with a certain format would
not thwart the attacks, as we can reformat the EPB to that format. We also
note that the attacks can be applied (though in a more restricted form) even if
PIN block reformatting capability is disabled.

When attacking the calculate PVV function (respectively the calculate offset
function) with an EPB denoted E and an account number A, we use a shorthand
V = PV V (E,A) (respectively, O = offset(E,A)). As all EPBs are converted
to ISO-1 before using the function, we will not mention the reformatting any
more.

4.1 Attacks on the calculate PVV function

Attacking the calculate PVV function in a switch Consider all customer
EPBs arriving to the attacked switch. The attack discovers for each such EPB
(and its associated account number) a list of other EPBs having the same PIN
(with high probability). It requires one or two HSM calls per attacked EPB. We
note that the attack can be applied also in verification facilities.

We use a table of 10,000 entries. The table is indexed by values of computed
PV V s. Each entry of the table contains customer EPBs (and their associated
account numbers). Initially all entries are empty.

We choose a fix account number B. We show how to attack any customer’s
EPB arriving to the switch. Denote by Ec the customer’s EPB.

1. V = PV V (Ec, B).
The computed PVV value V equals f(Pc, B) where Pc is the PIN packed in
the customer’s EPB.

2. Add the customer’s EPB Ec to the table entry corresponding to the resulting
PVV value V .
For example, if the value of Pc is 1234 and V is 5678 then Ec will be added
to table entry 5678.

The computed PVV value V depends only on Pc, B, and on the key k used
by the function f . Since the attack is applied in a switch, k is not the issuer’s
key as required, but some other arbitrary value (not known to the attacker).
The value of k is immaterial to the attack since all that we require is that the
value V be a pseudo random function of Pc, B, and k, which is the case from
our assumption on f . Since B and k are fixed, V can be regarded as a pseudo
random function of Pc only.

Suppose we have performed the above with many EPBs. What actually hap-
pens in steps 1 and 2 is that all EPBs that pack the same PIN value are thrown
into the same table entry. Since the process is random, a table entry may be
empty, may contain EPBs corresponding to a single value of PIN, or may con-
tain EPBs corresponding to several PIN values. Combinatorically, the process is
equivalent to throwing balls (PINs) to bins (table entries) and asking questions



on the number of balls (distinct PINs) in each bin. It can be shown that when
the number of balls and bins is the same (10,000 in our case) the average number
of balls in a non-empty bin is less than 2. In other words, EPBs that ended in
the same table entry correspond to less than 2 distinct PINs on the average.

Since the probability that EPBs in the same table entry correspond to more
than a single PIN is still high, we are still not done. For each entry in the table
we repeat the procedure with respect to the EPBs in that entry using a different
fixed account number C. EPBs from a given table entry that end in the same
table entry again, have high probability of having the same PIN.

Attacking the calculate PVV function in a verification facility This
attack reveals for any account number associated with the attacked issuer, the
PVV that corresponds to this customer’s account number and a chosen PIN.
Replacing the verification value on the card or in the database (depending on
the system) enables withdrawing money from the customer’s account using the
chosen PIN. The attack requires one HSM call per account number attacked. In
addition, it requires generating by ATM an EPB that packs a known PIN. This
single EPB will be used to attack the account numbers of all customers.

We start by generating an EPB in an ATM that packs a chosen PIN. This
EPB, denoted Ea (for attacker’s EPB) is used to attack the account num-
bers of all customers. For each customer’s account number Ac compute V =
PV V (Ea, Ac).

The computed PVV value V corresponds to the customer’s account number
and the chosen PIN. Since the attack takes place in the verification facility, the
required issuer’s key is used, and the PVV is valid.

It remain to explain how the attacker can replace the customer’s original
PVV used by the system by the PVV computed in the attack.

According to [1], the clear PVV can be stored on the card’s magnetic stripe
or in a PVV database. In case the PVV is stored on both, the PVV is taken from
the database. In many implementations the PVV is stored only on the card as
long as the customer uses the initial PIN generated by the issuer.

Setting the customer’s PVV to the computed PVV can be done as follows:

Case 1: The PVV is stored only on the card. Generate a card containing the
customer’s details and set the PVV value on the magnetic stripe to the PVV
that was calculated by the attacker. In this case the fabricated card and the
customer’s original card will both be valid at the same time. It is important to
note that in this case, issuing a new PIN to a customer will not prevent the
attack as the fabricated card with the false PVV will remain valid.

Case 2: The PVV entry of this customer exists in the PVV database. In this
case the attacker needs write access to the PVV database. The attacker can then
do one of the following:

– Delete the PVV entry (and then apply the steps described in Case 1).



– Set the customer’s entry in the PVV database to the PVV that was calcu-
lated by the attacker. If the entry does not exist - create it. In this case the
fabricated card will be the only valid card.

4.2 Attacks on the calculate offset function

The specific function f in calculate offset is V = g(A) − P where P is the PIN
packed in the EPB parameter, A is the account number parameter, V is the
returned offset, g is a function that depends on an issuer’s key and computes a
4 decimal digits number, and ”−” is minus modulo 10 digit by digit.

Attacking the calculate offset function in a switch The attack reveals for
each customer’s EPB arriving to the attacked switch, the PIN it packs. It requires
one or two HSM calls per attacked EPB. In addition, it requires generating by
ATM an EPB that packs a known PIN. This single EPB will be used to attack
all EPBs arriving to the attacked switch. We note that the attack can be applied
also in verification facilities.

Choose a fixed account number B. Generate an EPB in an ATM that packs
a chosen PIN and denote it Ea. Compute O1 = Offset(Ea, B). For each cus-
tomer’s EPB arriving to the attacked switch compute O2 = Offset(Ec, B)
where Ec is the customer’s EPB.

Denote by Pa and Pc the values of PINs packed in the attacker’s and cus-
tomer’s EPBs, respectively. We thus have O1 = g(B)−Pa and O2 = g(B)−Pc.
Since the value of Pa is known, the value of Pc can be trivially calculated. Note
that the value of g(B) is immaterial, so the attack can be applied in a switch
which does not contain the required issuer’s key.

Attacking the calculate offset function in a verification facility This
attack reveals for every customer account number associated with the attacked
issuer, the respective customer’s PIN. It requires one or two HSM calls per
attacked account number. In addition, it requires generating by ATM an EPB
that packs a known PIN. This single EPB will be used to attack all account
numbers associated with the issuer.

Generate an EPB in an ATM that packs a chosen PIN. Denote the EPB by
Ea. Given any customer’s account number Ac compute O = Offset(Ea, Ac).

Denote by Pa the value of PIN packed in the attacker’s EPB, by Pc the
required customer PIN, and by Oc the customer’s offset (stored in the issuer’s
database or on the magnetic stripe of the card). We thus have O = g(Ac)− Pa.
Since Pa is known, g(Ac) can be easily computed. We also know that Oc =
g(Ac)− Pc. Since g(Ac) is known and since the value of Oc is not secret (it can
be recorded during a transaction or read from the database or from the card)
the customer’s PIN Pc can be trivially calculated. Note that the exact nature of
g is immaterial, but the attack requires the real value of g(Ac) so it needs to be
applied in the verification facility were the required issuer’s key exists.



5 Conclusions

We have shown in this paper that the Financial PIN processing API is exposed
to severe attacks on the functions translate, calculate offset and calculate PVV
inside and outside of the issuer environment.

The attacks we describe provide explanations to possibly many unexplained
Phantom Withdrawals. The attacks are so simple and practical that issuers
may have to admit liability not only for future cases but even retroactively.
The attacks can be applied on such a large scale (in some of the variants up
to 18,000,000 PINs can be discovered in an hour) that such liability can be
enormous.

As some of the attacks apply to switches, which are not under the issuers
control, countermeasures in the issuers environment do not suffice. To be pro-
tected from this attack, countermeasures in all verification paths to the issuer
must be taken. As this is unrealistic, solutions outside the standard must be
sought.

We have also shown that the common assumption that all sensitive opera-
tions are limited to the issuing facility and that separation of the issuing and
verification facilities prevent severe attacks is wrong.

It is well known that when several PIN block formats are available the se-
curity of the whole system degrades to the security of the weakest PIN block
format. The attacks demonstrate that reformatting capability between differ-
ent PIN block formats allows an attacker to abuse weaknesses of both formats.
Therefore enabling reformatting is more dangerous than using the weakest for-
mat. We have also shown that the ISO-1 format is extremely weak and thus
should be immediately removed from the list of allowed interchange transaction
formats.

Another interesting insight from the attacks described is that the offset and
the PVV values may reveal as much information as the PIN itself. One possible
remedy is treating the offset and the PVV as secret values.

The changes require worldwide modifications in ATMs, HSMs and other com-
ponents implementing the PIN processing API.

In addition to all implementation of this API, systems applying the EMV
standard ([7]) and using online (rather than off-line) PIN verification are also
vulnerable to the attacks.

References

1. VISA: PIN security requirements (2004) http://partnernetwork.visa.com/st/pin/
pdfs/PCI PIN Security Requirements.pdf.

2. Clulow, J.: The design and analysis of cryptographic APIs. Mas-
ter’s thesis, University of Natal, South Africa (2003) Available through
http://www.cl.cam.ac.uk/˜jc407.

3. Bond, M., Clulow, J.: Extending security protocols analysis: New challenges. In:
Automated Reasoning and Security Protocols Analysis (ARSPA). (2004) 602–608



4. Bond, M., Clulow, J.: Encrypted? randomised? compromised? In: Workshop on
Cryptographic Algorithms and their Uses. (2004)

5. Anderson, R.: The correctness of crypto transaction sets. In: Security Protocols,
8th International Workshop. (2000)

6. Andersson, R.: Why cryptosystems fail. Communications of the ACM 37(11)
(1994) 32–40

7. EMV: Integrated circuit card specifications for payment systems (2004) Available
through http://www.emvco.com.

8. Anderson, R., Bond, M., Clulow, J., Skorobogatov, S.: Cryptographic processors -
a survey. Proceedings of the IEEE 94(2) (2006) 357–369

9. Bond, M.: Understanding Security APIs. PhD thesis, University of Cambridge
(2004) Available through http://www.cl.cam.ac.uk/˜mkb23/research.html.

10. Bond, M., Zielinski, P.: Decimalization table attacks for pin cracking. Technical
Report UCAM-CL-TR-560, University of Cambridge, computer Laboratory (2003)
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-560.pdf.

11. Longley, D.: Expert systems applied to the analysis of key management schemes.
Computers and Security 6(1) (1987) 54–67

12. Rigby, S.: Key management in secure data networks. Master’s thesis, Queensland
Institute of Technology, Australia (1987)

13. Steel, G., Bundy, G.: Deduction with XOR constraints in security API modelling.
In: Proceedings of the 20th Conference on Automated Deduction (CADE 20).
(2005)

14. ISO: Banking – personal identification number (PIN) management and security
– part 1: Basic principles and requirements for online PIN handling in ATM and
POS systems (2002)


	fc2007_ver8.pdf
	Appendix.pdf



