
Chapter 1
10

This book teaches you how to program in C++, a computer language that supports object-
oriented programming (OOP). Why do we need OOP? What does it do that traditional lan-
guages such as C, Pascal, and BASIC don’t? What are the principles behind OOP? Two key
concepts in OOP are objects and classes. What do these terms mean? What is the relationship
between C++ and the older C language?

This chapter explores these questions and provides an overview of the features to be discussed
in the balance of the book. What we say here will necessarily be rather general (although mer-
cifully brief). If you find the discussion somewhat abstract, don’t worry. The concepts we men-
tion here will come into focus as we demonstrate them in detail in subsequent chapters.

Why Do We Need Object-Oriented
Programming?
Object-oriented programming was developed because limitations were discovered in
earlier approaches to programming. To appreciate what OOP does, we need to under-
stand what these limitations are and how they arose from traditional programming
languages.

Procedural Languages
C, Pascal, FORTRAN, and similar languages are procedural languages. That is, each
statement in the language tells the computer to do something: Get some input, add
these numbers, divide by six, display that output. A program in a procedural language
is a list of instructions.

For very small programs, no other organizing principle (often called a paradigm) is needed.
The programmer creates the list of instructions, and the computer carries them out.

Division into Functions
When programs become larger, a single list of instructions becomes unwieldy. Few
programmers can comprehend a program of more than a few hundred statements
unless it is broken down into smaller units. For this reason the function was adopted
as a way to make programs more comprehensible to their human creators. (The term
function is used in C++ and C. In other languages the same concept may be referred
to as a subroutine, a subprogram, or a procedure.) A procedural program is divided
into functions, and (ideally, at least) each function has a clearly defined purpose and a
clearly defined interface to the other functions in the program.

02 3087 CH01 11/29/01 2:15 PM Page 10

The idea of breaking a program into functions can be further extended by grouping a number
of functions together into a larger entity called a module (which is often a file), but the princi-
ple is similar: a grouping of components that execute lists of instructions.

Dividing a program into functions and modules is one of the cornerstones of structured pro-
gramming, the somewhat loosely defined discipline that influenced programming organization
for several decades before the advent of object-oriented programming.

Problems with Structured Programming
As programs grow ever larger and more complex, even the structured programming
approach begins to show signs of strain. You may have heard about, or been involved
in, horror stories of program development. The project is too complex, the schedule
slips, more programmers are added, complexity increases, costs skyrocket, the sched-
ule slips further, and disaster ensues. (See The Mythical Man-Month by Frederick P.
Brooks, Jr. [Addison Wesley, 1982] for a vivid description of this process.)

Analyzing the reasons for these failures reveals that there are weaknesses in the procedural
paradigm itself. No matter how well the structured programming approach is implemented,
large programs become excessively complex.

What are the reasons for these problems with procedural languages? There are two related
problems. First, functions have unrestricted access to global data. Second, unrelated functions
and data, the basis of the procedural paradigm, provide a poor model of the real world.

Let’s examine these problems in the context of an inventory program. One important global
data item in such a program is the collection of items in the inventory. Various functions access
this data to input a new item, display an item, modify an item, and so on.

Unrestricted Access
In a procedural program, one written in C for example, there are two kinds of data.
Local data is hidden inside a function, and is used exclusively by the function. In the
inventory program a display function might use local data to remember which item it
was displaying. Local data is closely related to its function and is safe from modifica-
tion by other functions.

However, when two or more functions must access the same data—and this is true of the most
important data in a program—then the data must be made global, as our collection of inven-
tory items is. Global data can be accessed by any function in the program. (We ignore the issue
of grouping functions into modules, which doesn’t materially affect our argument.) The
arrangement of local and global variables in a procedural program is shown in Figure 1.1.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

11

02 3087 CH01 11/29/01 2:15 PM Page 11

FIGURE 1.1
Global and local variables.

In a large program, there are many functions and many global data items. The problem with
the procedural paradigm is that this leads to an even larger number of potential connections
between functions and data, as shown in Figure 1.2.

Chapter 1
12

FIGURE 1.2
The procedural paradigm.

This large number of connections causes problems in several ways. First, it makes a program’s
structure difficult to conceptualize. Second, it makes the program difficult to modify. A change
made in a global data item may necessitate rewriting all the functions that access that item.

02 3087 CH01 11/29/01 2:15 PM Page 12

For example, in our inventory program, someone may decide that the product codes for the
inventory items should be changed from 5 digits to 12 digits. This may necessitate a change
from a short to a long data type.

Now all the functions that operate on the data must be modified to deal with a long instead of
a short. It’s similar to what happens when your local supermarket moves the bread from aisle
4 to aisle 7. Everyone who patronizes the supermarket must then figure out where the bread
has gone, and adjust their shopping habits accordingly.

When data items are modified in a large program it may not be easy to tell which functions
access the data, and even when you figure this out, modifications to the functions may cause
them to work incorrectly with other global data items. Everything is related to everything else,
so a modification anywhere has far-reaching, and often unintended, consequences.

Real-World Modeling
The second—and more important—problem with the procedural paradigm is that its
arrangement of separate data and functions does a poor job of modeling things in the
real world. In the physical world we deal with objects such as people and cars. Such
objects aren’t like data and they aren’t like functions. Complex real-world objects
have both attributes and behavior.

Attributes
Examples of attributes (sometimes called characteristics) are, for people, eye color
and job title; and, for cars, horsepower and number of doors. As it turns out, attributes
in the real world are equivalent to data in a program: they have a certain specific val-
ues, such as blue (for eye color) or four (for the number of doors).

Behavior
Behavior is something a real-world object does in response to some stimulus. If you
ask your boss for a raise, she will generally say yes or no. If you apply the brakes in a
car, it will generally stop. Saying something and stopping are examples of behavior.
Behavior is like a function: you call a function to do something (display the inventory,
for example) and it does it.

So neither data nor functions, by themselves, model real-world objects effectively.

The Object-Oriented Approach
The fundamental idea behind object-oriented languages is to combine into a single
unit both data and the functions that operate on that data. Such a unit is called an
object.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

13

02 3087 CH01 11/29/01 2:15 PM Page 13

An object’s functions, called member functions in C++, typically provide the only way to
access its data. If you want to read a data item in an object, you call a member function in the
object. It will access the data and return the value to you. You can’t access the data directly.
The data is hidden, so it is safe from accidental alteration. Data and its functions are said to be
encapsulated into a single entity. Data encapsulation and data hiding are key terms in the
description of object-oriented languages.

If you want to modify the data in an object, you know exactly what functions interact with it:
the member functions in the object. No other functions can access the data. This simplifies
writing, debugging, and maintaining the program.

A C++ program typically consists of a number of objects, which communicate with each other
by calling one another’s member functions. The organization of a C++ program is shown in
Figure 1.3.

Chapter 1
14

FIGURE 1.3
The object-oriented paradigm.

02 3087 CH01 11/29/01 2:15 PM Page 14

We should mention that what are called member functions in C++ are called methods in some
other object-oriented (OO) languages (such as Smalltalk, one of the first OO languages). Also,
data items are referred to as attributes or instance variables. Calling an object’s member func-
tion is referred to as sending a message to the object. These terms are not official C++ termi-
nology, but they are used with increasing frequency, especially in object-oriented design.

An Analogy
You might want to think of objects as departments—such as sales, accounting, per-
sonnel, and so on—in a company. Departments provide an important approach to cor-
porate organization. In most companies (except very small ones), people don’t work
on personnel problems one day, the payroll the next, and then go out in the field as
salespeople the week after. Each department has its own personnel, with clearly
assigned duties. It also has its own data: the accounting department has payroll fig-
ures, the sales department has sales figures, the personnel department keeps records of
each employee, and so on.

The people in each department control and operate on that department’s data. Dividing the
company into departments makes it easier to comprehend and control the company’s activities,
and helps maintain the integrity of the information used by the company. The accounting
department, for instance, is responsible for the payroll data. If you’re a sales manager, and you
need to know the total of all the salaries paid in the southern region in July, you don’t just walk
into the accounting department and start rummaging through file cabinets. You send a memo to
the appropriate person in the department, then wait for that person to access the data and send
you a reply with the information you want. This ensures that the data is accessed accurately
and that it is not corrupted by inept outsiders. This view of corporate organization is shown in
Figure 1.4. In the same way, objects provide an approach to program organization while help-
ing to maintain the integrity of the program’s data.

OOP: An Approach to Organization
Keep in mind that object-oriented programming is not primarily concerned with the
details of program operation. Instead, it deals with the overall organization of the pro-
gram. Most individual program statements in C++ are similar to statements in proce-
dural languages, and many are identical to statements in C. Indeed, an entire member
function in a C++ program may be very similar to a procedural function in C. It is
only when you look at the larger context that you can determine whether a statement
or a function is part of a procedural C program or an object-oriented C++ program.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

15

02 3087 CH01 11/29/01 2:15 PM Page 15

FIGURE 1.4
The corporate paradigm.

Characteristics of Object-Oriented Languages
Let’s briefly examine a few of the major elements of object-oriented languages in
general, and C++ in particular.

Objects
When you approach a programming problem in an object-oriented language, you no
longer ask how the problem will be divided into functions, but how it will be divided
into objects. Thinking in terms of objects, rather than functions, has a surprisingly
helpful effect on how easily programs can be designed. This results from the close
match between objects in the programming sense and objects in the real world. This
process is described in detail in Chapter 16, “Object-Oriented Software
Development.”

Chapter 1
16

Sales Department

Sales
Manager

Sales data

Secretary

Personnel Department

Personnel
Manager

Personnel data

Personnel Staff

Finance Department

Chief Financial
Officer

Financial data

Financial
Assistant

02 3087 CH01 11/29/01 2:15 PM Page 16

What kinds of things become objects in object-oriented programs? The answer to this is lim-
ited only by your imagination, but here are some typical categories to start you thinking:

• Physical objects

Automobiles in a traffic-flow simulation

Electrical components in a circuit-design program

Countries in an economics model

Aircraft in an air traffic control system

• Elements of the computer-user environment

Windows

Menus

Graphics objects (lines, rectangles, circles)

The mouse, keyboard, disk drives, printer

• Data-storage constructs

Customized arrays

Stacks

Linked lists

Binary trees

• Human entities

Employees

Students

Customers

Salespeople

• Collections of data

An inventory

A personnel file

A dictionary

A table of the latitudes and longitudes of world cities

• User-defined data types

Time

Angles

Complex numbers

Points on the plane

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

17

02 3087 CH01 11/29/01 2:15 PM Page 17

• Components in computer games

Cars in an auto race

Positions in a board game (chess, checkers)

Animals in an ecological simulation

Opponents and friends in adventure games

The match between programming objects and real-world objects is the happy result of combin-
ing data and functions: The resulting objects offer a revolution in program design. No such
close match between programming constructs and the items being modeled exists in a
procedural language.

Classes
In OOP we say that objects are members of classes. What does this mean? Let’s look
at an analogy. Almost all computer languages have built-in data types. For instance, a
data type int, meaning integer, is predefined in C++ (as we’ll see in Chapter 3,
“Loops and Decisions”). You can declare as many variables of type int as you need in
your program:

int day;
int count;
int divisor;
int answer;

In a similar way, you can define many objects of the same class, as shown in Figure 1.5. A
class serves as a plan, or blueprint. It specifies what data and what functions will be included
in objects of that class. Defining the class doesn’t create any objects, just as the mere existence
of data type int doesn’t create any variables.

A class is thus a description of a number of similar objects. This fits our non-technical under-
standing of the word class. Prince, Sting, and Madonna are members of the rock musician
class. There is no one person called “rock musician,” but specific people with specific names
are members of this class if they possess certain characteristics. An object is often called an
“instance” of a class.

Inheritance
The idea of classes leads to the idea of inheritance. In our daily lives, we use the con-
cept of classes divided into subclasses. We know that the animal class is divided into
mammals, amphibians, insects, birds, and so on. The vehicle class is divided into cars,
trucks, buses, motorcycles, and so on.

Chapter 1
18

02 3087 CH01 11/29/01 2:15 PM Page 18

FIGURE 1.5
A class and its objects.

The principle in this sort of division is that each subclass shares common characteristics with
the class from which it’s derived. Cars, trucks, buses, and motorcycles all have wheels and a
motor; these are the defining characteristics of vehicles. In addition to the characteristics
shared with other members of the class, each subclass also has its own particular characteris-
tics: Buses, for instance, have seats for many people, while trucks have space for hauling
heavy loads.

This idea is shown in Figure 1.6. Notice in the figure that features A and B, which are part of
the base class, are common to all the derived classes, but that each derived class also has fea-
tures of its own.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

19

02 3087 CH01 11/29/01 2:15 PM Page 19

FIGURE 1.6
Inheritance.

In a similar way, an OOP class can become a parent of several subclasses. In C++ the original
class is called the base class; other classes can be defined that share its characteristics, but add
their own as well. These are called derived classes.

Don’t confuse the relation of objects to classes, on the one hand, with the relation of a base
class to derived classes, on the other. Objects, which exist in the computer’s memory, each
embody the exact characteristics of their class, which serves as a template. Derived classes
inherit some characteristics from their base class, but add new ones of their own.

Inheritance is somewhat analogous to using functions to simplify a traditional procedural pro-
gram. If we find that three different sections of a procedural program do almost exactly the
same thing, we recognize an opportunity to extract the common elements of these three sec-
tions and put them into a single function. The three sections of the program can call the func-
tion to execute the common actions, and they can perform their own individual processing as
well. Similarly, a base class contains elements common to a group of derived classes. As func-
tions do in a procedural program, inheritance shortens an object-oriented program and clarifies
the relationship among program elements.

Chapter 1
20

02 3087 CH01 11/29/01 2:15 PM Page 20

Reusability
Once a class has been written, created, and debugged, it can be distributed to other
programmers for use in their own programs. This is called reusability. It is similar to
the way a library of functions in a procedural language can be incorporated into dif-
ferent programs.

However, in OOP, the concept of inheritance provides an important extension to the idea of
reusability. A programmer can take an existing class and, without modifying it, add additional
features and capabilities to it. This is done by deriving a new class from the existing one. The
new class will inherit the capabilities of the old one, but is free to add new features of its own.

For example, you might have written (or purchased from someone else) a class that creates a
menu system, such as that used in Windows or other Graphic User Interfaces (GUIs). This
class works fine, and you don’t want to change it, but you want to add the capability to make
some menu entries flash on and off. To do this, you simply create a new class that inherits all
the capabilities of the existing one but adds flashing menu entries.

The ease with which existing software can be reused is an important benefit of OOP. Many
companies find that being able to reuse classes on a second project provides an increased
return on their original programming investment. We’ll have more to say about this in later
chapters.

Creating New Data Types
One of the benefits of objects is that they give the programmer a convenient way to
construct new data types. Suppose you work with two-dimensional positions (such as
x and y coordinates, or latitude and longitude) in your program. You would like to
express operations on these positional values with normal arithmetic operations,
such as

position1 = position2 + origin

where the variables position1, position2, and origin each represent a pair of inde-
pendent numerical quantities. By creating a class that incorporates these two values,
and declaring position1, position2, and origin to be objects of this class, we can,
in effect, create a new data type. Many features of C++ are intended to facilitate the
creation of new data types in this manner.

Polymorphism and Overloading
Note that the = (equal) and + (plus) operators, used in the position arithmetic shown
above, don’t act the same way they do in operations on built-in types such as int. The
objects position1 and so on are not predefined in C++, but are programmer-defined

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

21

02 3087 CH01 11/29/01 2:15 PM Page 21

objects of class Position. How do the = and + operators know how to operate on
objects? The answer is that we can define new behaviors for these operators. These
operations will be member functions of the Position class.

Using operators or functions in different ways, depending on what they are operating on, is
called polymorphism (one thing with several distinct forms). When an existing operator, such
as + or =, is given the capability to operate on a new data type, it is said to be overloaded.
Overloading is a kind of polymorphism; it is also an important feature of OOP.

C++ and C
C++ is derived from the C language. Strictly speaking, it is a superset of C: Almost
every correct statement in C is also a correct statement in C++, although the reverse is
not true. The most important elements added to C to create C++ concern classes,
objects, and object-oriented programming. (C++ was originally called “C with
classes.”) However, C++ has many other new features as well, including an improved
approach to input/output (I/O) and a new way to write comments. Figure 1.7 shows
the relationship of C and C++.

Chapter 1
22

FIGURE 1.7
The relationship between C and C++.

02 3087 CH01 11/29/01 2:15 PM Page 22

In fact, the practical differences between C and C++ are larger than you might think. Although
you can write a program in C++ that looks like a program in C, hardly anyone does. C++ pro-
grammers not only make use of the new features of C++, they also emphasize the traditional C
features in different proportions than do C programmers.

If you already know C, you will have a head start in learning C++ (although you may also
have some bad habits to unlearn), but much of the material will be new.

Laying the Groundwork
Our goal is to help you begin writing OOP programs as soon as possible. However, as
we noted, much of C++ is inherited from C, so while the overall structure of a C++
program may be OOP, down in the trenches you need to know some old-fashioned
procedural fundamentals. Chapters 2–5 therefore deal with the “traditional” aspects of
C++, many of which are also found in C. You will learn about variables and I/O,
about control structures such as loops and decisions, and about functions themselves.
You will also learn about structures, since the same syntax that’s used for structures is
used for classes.

If you already know C, you might be tempted to skip these chapters. However, you will find
that there are many differences, some obvious and some rather subtle, between C and C++.
Our advice is to read these chapters, skimming what you know, and concentrating on the ways
C++ differs from C.

The specific discussion of OOP starts in Chapter 6, “Objects and Classes.” From then on the
examples will be object oriented.

The Unified Modeling Language (UML)
The UML is a graphical “language” for modeling computer programs. “Modeling” means to
create a simplified representation of something, as a blueprint models a house. The UML pro-
vides a way to visualize the higher-level organization of programs without getting mired down
in the details of actual code.

The UML began as three separate modeling languages, one created by Grady Booch at
Rational Software, one by James Rumbaugh at General Electric, and one by Ivar Jacobson at
Ericson. Eventually Rumbaugh and Jacobson joined Booch at Rational, where they became
known as the three amigos. During the late 1990s they unified (hence the name) their modeling
languages into the Unified Modeling Language. The result was adopted by the Object
Management Group (OMG), a consortium of companies devoted to industry standards.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

23

02 3087 CH01 11/29/01 2:15 PM Page 23

Why do we need the UML? One reason is that in a large computer program it’s often hard to
understand, simply by looking at the code, how the parts of the program relate to each other.
As we’ve seen, object-oriented programming is a vast improvement over procedural programs.
Nevertheless, figuring out what a program is supposed to do requires, at best, considerable
study of the program listings.

The trouble with code is that it’s very detailed. It would be nice if there were a way to see a
bigger picture, one that depicts the major parts of the program and how they work together.
The UML answers this need.

The most important part of the UML is a set of different kinds of diagrams. Class diagrams
show the relationships among classes, object diagrams show how specific objects relate,
sequence diagrams show the communication among objects over time, use case diagrams show
how a program’s users interact with the program, and so on. These diagrams provide a variety
of ways to look at a program and its operation.

The UML plays many roles besides helping us to understand how a program works. As we’ll
see in Chapter 16, it can help in the initial design of a program. In fact, the UML is useful
throughout all phases of software development, from initial specification to documentation,
testing, and maintenance.

The UML is not a software development process. Many such processes exist for specifying the
stages of the development process. The UML is simply a way to look at the software being
developed. Although it can be applied to any kind of programming language, the UML is espe-
cially attuned to OOP.

As we noted in the Introduction, we introduce specific features of the UML in stages through-
out the book.

• Chapter 1: (this section) introduction to the UML

• Chapter 8: class diagrams, associations, and navigability

• Chapter 9: generalization, aggregation, and composition

• Chapter 10: state diagrams and multiplicity

• Chapter 11: object diagrams

• Chapter 13: more complex state diagrams

• Chapter 14: templates, dependencies, and stereotypes

• Chapter 16: use cases, use case diagrams, activity diagrams, and sequence diagrams

Chapter 1
24

02 3087 CH01 11/29/01 2:15 PM Page 24

Summary
OOP is a way of organizing programs. The emphasis is on the way programs are
designed, not on coding details. In particular, OOP programs are organized around
objects, which contain both data and functions that act on that data. A class is a tem-
plate for a number of objects.

Inheritance allows a class to be derived from an existing class without modifying it. The
derived class has all the data and functions of the parent class, but adds new ones of its own.
Inheritance makes possible reusability, or using a class over and over in different programs.

C++ is a superset of C. It adds to the C language the capability to implement OOP. It also adds
a variety of other features. In addition, the emphasis is changed in C++ so that some features
common to C, although still available in C++, are seldom used, while others are used far more
frequently. The result is a surprisingly different language.

The Unified Modeling Language (UML) is a standardized way to visualize a program’s struc-
ture and operation using diagrams.

The general concepts discussed in this chapter will become more concrete as you learn more
about the details of C++. You may want to refer back to this chapter as you progress further
into this book.

Questions
Answers to these questions can be found in Appendix G. Note that throughout this
book, multiple-choice questions can have more than one correct answer.

1. Pascal, BASIC, and C are p_____ languages, while C++ is an o_____
language.

2. A widget is to the blueprint for a widget as an object is to

a. a member function.

b. a class.

c. an operator.

d. a data item.

3. The two major components of an object are _____ and functions that _____.

4. In C++, a function contained within a class is called

a. a member function.

b. an operator.

c. a class function.

d. a method.

The Big Picture

1

T
H

E
B

IG
P

IC
TU

R
E

25

02 3087 CH01 11/29/01 2:15 PM Page 25

