

 Chapter2 - HTML Design Patterns

 This chapter explores HTML only as it relates to CSS. It contains design patterns that are essential for styling a document with CSS. It explores HTML at a high level with an eye toward explaining how elements can be put to use structurally and semantically. Each design pattern in this book is created using structural and semantic elements combined with CSS. There are four major types of elements used in design patterns: structural block, terminal block, multi-purpose block, and inline elements. Understanding these types of elements is key to understanding the design patterns in this book and essential to creating your own.

 Chapter Outline

 	HTML Structure shows how HTML elements work together to create a document.

 	XHTML shows how to mark up a document with valid XHTML. It also points out why using valid XHTML makes styling with CSS more reliable.

 	DOCTYPE shows how to use document types to validate the way documents are coded, and it explores what document types work best for CSS and HTML.

 	Header Elements shows how to create metadata about a document and how to link a document to supporting documents and related documents.

 	Conditional Style Sheet shows how to load a style sheet to fix problems unique to Internet Explorer.

 	Structural Block Elements shows how to create structural meaning in a document.

 	Terminal Block Elements shows how certain blocks have semantic meaning because they contain content instead of other blocks.

 	Multi-purpose Block Elements shows how certain elements can be used for block structure and semantic meaning.

 	Inline Elements shows how styles can bring out the meaning of semantic markup.

 	Class and ID Attributes shows how CSS relies on class and id attributes to select elements. It also shows how the class attribute can add meaning to an element.

 	HTML Whitespace shows how to make whitespace work for you instead of against you.

 	Container

 	Contents

 	<html>

 	<head> <body>

 	<head>

 	<title> & (<meta> | <link> | <object> | <script> | <style> | <base>)

 	<body>

 	<noscript> <div>

 	 <noscript>

 	inline | block

 	 <article>

 	inline | block

 	 <section>

 	inline | block

 	 <nav>

 	inline | block

 	 <div>

 	inline | block

 	 <h1>

 	inline

 	 <p>

 	inline

 	 or

 	

 	

 	inline | block

 	 <dl>

 	<dt> <dd>

 	 <dt>

 	inline

 	 <dd>

 	inline | block

 	 <table>

 	<caption> <colgroup> <thead> <tfoot> <tbody>

 	 <caption>

 	inline

 	 <colgroup>

 	<col>

 	 <col>

 	null

 	 <thead>

 	<tr>

 	 <tfoot>

 	<tr>

 	 <tbody>

 	<tr>

 	 <tr>

 	<th><td>

 	 <th>

 	inline | block

 	 <td>

 	inline | block

 	 <form>

 	inline | block (excluding <form>)

 	 <fieldset>

 	inline | block (excluding <form>)

 	 <label>

 	inline (excluding <label>)

 	 <input>

 	null

 	 <textarea>

 	text

 	 <select>

 	<optgroup> | <option>

 	 <optgroup>

 	<option>

 	 <option>

 	text

 	 <button>

 	inline | block (excluding <a>, <form>, controls)

 	 <address>

 	inline

 	<a>

 	inline (excluding <a>)

 	

 	null

 	<canvas>

 	null

 	<audio>

 	null

 	<video>

 	null

 	<map>

 	<area>

 	<area>

 	null

 	<object>

 	<param> | inline | block

 	<param>

 	null

 	

 	null

 	null

 	No content; single tag with closing slash (e.g.,
)

 	text

 	Unicode text including HTML entities that are parsed and replaced

 	block

 	Includes the following three types of block elements:

 	structural block

 	- <dl> <table> <tr> <thead> <tfoot> <tbody> <colgroup> <col>

 	multi-purpose block

 	<div> <dd> <td> <th> <form> <noscript>

 	terminal block

 	<h1> <p> <dt> <caption> <address> <blockquote>

 	inline

 	Includes the following three major types and six minor types of inline elements:

 	inline-semantic

 	Includes text intermingled with zero or more of the following elements:

 	importance

 	

 	phrase

 	<a> <cite> <code> <kbd> <samp> <var>

 	word

 	<abbr> <dfn> <cite>

 	char

 	<sub> <sup>

 	inline-flow

 	
 <bdo>

 	inline-block

 	Includes replaced elements and form controls:

 	replaced

 	 <object> <embed> <iframe> <audio> <video> <canvas> <svg>

 	controls

 	<input> <textarea> <select> <button> <label> <video> (with controls attribute present)

 Additional elements are included in the HTML5 specification, but I did not list them in the preceding table because they have little semantic or structural meaning, are rarely used, or have quirky implementations. The following elements style text: <i>, , <big>, <small>. The <pre> element preserves whitespace, but it cannot contain images, objects, subscripts, or superscripts. The <q> element automatically inserts quotes differently depending on the browser. The <ins> and elements mark elements as inserted or deleted. Frames can cause problems for search engines and users: <iframe>, <frameset>, <frame>, and <noframe>. Internet Explorer 7 will not remove built-in styles from <hr>, <fieldset>, and <legend>, but later versions will. Also from an SEO perspective, traditional frames are not indexed well when displayed since the content is typically indexed outside of the controls that reside in a separate frame. At the same time, traditional framesets are fairly obsolete. Finally, <base> changes the root of all links in your document - use it only if you fully understand it, or it may break all your links. Similarly there are many other elements defined in the HTML5 draft spec that are either not yet implemented in browsers or still undergoing significant revisions.

 HTML Structure

 [image: Image]

 [image: Image]

 HTML

 <!DOCTYPE html>

 <html lang="en">

 <head><title>HTML Structure</title>

 <meta http-equiv="Content-type" content="text/html; charset=utf-8"/>

 <link rel="stylesheet" href="site.css" media="all" type="text/css"/>

 <link rel="stylesheet" href="page.css" media="all" type="text/css"/>

 <link rel="stylesheet" href="print.css" media="print" type="text/css"/>

 <!--[if lte IE 6]>

 <link rel="stylesheet" href="ie6.css" media="all" type="text/css"/>

 <![endif]-->

 </head>

 <body>

 <noscript>Show this when script cannot run.</noscript>

 <div>

 <h1>HTML Structure</h1>

 <p>Paragraph</p>

 Ordered List Item

 Ordered List Item

 Unordered List Item

 Unordered List Item

 <dl>

 <dt>Definition Term</dt>

 <dt>Definition Term</dt>

 <dd>Definition Data</dd>

 <dd>Definition Data</dd>

 </dl>

 <table>

 <caption>Table Caption</caption>

 <colgroup>

 <col/>

 <col/>

 </colgroup>

 <thead>

 <tr>

 <td>row1-col1</td>

 <td>row1-col2</td>

 </tr>

 </thead>

 <tfoot>

 <tr>

 <td>row3-col1</td>

 <td>row3-col2</td>

 </tr>

 </tfoot>

 <tbody>

 </tbody>

 </table>

 <form id="form1" method="post" action="http://www.tipjar.com/cgi-bin/test">

 <input type="hidden" title="input hidden" name="hidden" value="Secret"/>

 <input id="radio1" name="radios" type="radio" value="radio1" checked="checked"/>

 <label for="radio1">Radio1</label>

 <input id="radio2" name="radios" type="radio" value="radio2-pushed"/>

 <label for="radio2">Radio2</label>

 <input id="xbox1" name="xbox1" type="checkbox" value="xbox1" checked="checked"/>

 <label for="xbox1">Checkbox1</label>

 <label for="inputtext">Input-text</label>

 <input id="inputtext" name="inputtext" type="text" value="Type here" size="14"/>

 <label for="select1">Select</label>

 <select id="select1" name="select" size="2">

 <option selected="selected" value="item1">Item1</option>

 <option value="item2">Item2</option>

 </select>

 <label for="textarea">Textarea</label>

 <textarea id="textarea" name="textarea" rows="2" cols="10">Textarea</textarea>

 <input type="submit" id="submit1" name="submit1" value="Submit"/>

 <input type="reset" id="reset1" name="reset1" value="Reset"/>

 <button type="submit" id="button1" name="button1" value="Button1">Button</button>

 </form>

 <div>Division within a Division Link

 <map id="map1" name="map1">

 <area href="left.html" alt="left" shape="rect" coords="0,0,10,20"/>

 <area href="right.html" alt="right" shape="rect" coords="10,0,20,20"/>

 </map>

 span

 em

 strong

 <cite>cite</cite>

 <code>code</code>

 <kbd>kbd</kbd>

 <samp>samp</samp>

 <var>var</var>

 <abbr>abbr</abbr>

 <dfn>dfn</dfn>

 _{sub}

 ^{sup}

 <bdo dir="rtl">backwards</bdo>

 <object type="application/x-shockwave-flash">

 <param name="movie" value="http://myserver.com/movie.swf">

 <param name="allowfullscreen" value=true>

 </object>

 </div>

 <article>

 <header>

 <h1>My blog post</h1>

 <p>

 <time pubdate datetime="2011-10-07T10:00-08:00"></time>

 </p>

 </header>

 <p>The article element represents a self-contained compositionin page that is independently distributable or reusable,e.g., in syndication.</p>

 <footer>

 Show comments...

 </footer>

 </article>

 <section>

 <h1>First section heading</h1>

 <p>

 The section element represents a generic section of a document (thematic grouping ofcontent).

 </p>

 </section>

 <section>

 <h1>And one more section</h1>

 <p>A page could be split into sections for an introduction, news items, contactinformation, etc.</p>

 </section>

 <nav>

 <h1>Some Navigation</h1>

 Index of articles

 Contact information

 <p>A nav element doesn't have to contain a list; it can contain other kinds of content aswell.</p>

 </nav>

 <address>address</address>

 </div>

 </body>

 </html>

 CSS

 /* There are no CSS styles attached to this document. */

 HTML Structure

 Problem

 You want to know how HTML elements work together to create an HTML document.

 Solution

 HTML is a strict hierarchical nesting of elements. Elements may be nested within each other, but they cannot overlap each other. HTML organizes elements into three major categories: structural, block, and inline elements.

 The core structural elements are <html>, <head>, and <body>. Information about a document goes in <head> and document content goes in <body>. Header elements are covered in the Header Elements design pattern discussion.

 There are three types of block elements: structural, multi-purpose, and terminal. These are covered in the following design pattern discussions: Structural Block Elements, Terminal Block Elements, and Multi-purpose Block Elements.

 There are three major types of inline elements: semantic, flow, and inline-block. These are covered in the Inline Elements design pattern discussion.

 Pattern

 HTML Core Structure

 <!DOCTYPE DOCUMENT_TYPE_DEFINITION_USED_FOR_VALIDATION >

 <html>

 <head> METADATA </head>

 <body> CONTENT </body>

 </html>

 Example

 The example contains the simplest expression of each common HTML element.

 The concept behind the<object> element is that it represents an external resource, which, depending on the type of the resource, will be treated as an image, as a nested browsing context, or as an external resource to be processed by a plug-in. Different browsers have varying support for this element. The HTML5 specification defines several attributes like data, type, name, etc.

 Related to

 Header Elements, Structural Block Elements, Terminal Block Elements, Multi-purpose Block Elements, Inline Elements, Structural Meaning, Visual Structure (Chapter 13)

 XHTML

 [image: Image]

 Valid XHTML

 <!DOCTYPE html >

 <html lang="en">

 <head><title>XHTML</title>

 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

 <link rel="stylesheet" href="page.css" media="all" type="text/css" />

 </head>

 <body>

 <h1>XHTML</h1>

 <p>Paragraph</p>

Break

 Ordered List Item

 Ordered List Item

 <dl>

 <dt>Definition Term</dt>

 <dd>Definition Data</dd>

 </dl>

 /body>

 /html>

 Valid HTML

 <!DOCTYPE html >

 <html lang=”en”>

 <head><title>HTML</title>

 <meta http-equiv=Content-typecontent="text/html; charset=utf-8" >

 <link rel=stylesheethref=page.css media=all type="text/css" >

 <body>

 <h1>HTML</h1>

 <p>Paragraph

Break

 Ordered List Item

 Ordered List Item

 <dl>

 <dt>Definition Term

 <dd>Definition Data

 </dl>

 XHTML

 Problem

 You want to create a document using XHTML.

 Solution

 The HTML5 specification defines an abstract language for describing documents and applications, and some APIs for interacting with what is known as the "DOM HTML", or "the DOM" for short. There are various concrete syntaxes for the foregoing language, and two are HTML and XHTML.

 HTML (or HTML5) is the format suggested for most authors. It is compatible with most legacy web browsers. If a document is transmitted with an HTML MIME type, such as text/html, then it will be processed as an HTML document by web browsers.

 XHTML (or XHTML5) is an application of XML. When a document is transmitted with an XML MIME type, such as application/xhtml+xml, then it is treated as an XML document by web browsers, to be parsed by an XML processor. Authors are reminded that the processing for XML and HTML differs; in particular, even minor syntax errors will prevent a document labeled as XML from being rendered fully, whereas they would be ignored in the HTML syntax.

 Essentially an XHTML5 page is a simple HTML5 document that has the following:

 HTML doctype/namespace: The <!DOCTYPE html> definition is optional, but it would be useful for preventing browser quirks mode.

 XHTML well-formed syntax

 XML MIME type: application/xhtml+xml; this MIME declaration is not visible in the source code, but it would appear in the HTTP Content-Type header that could be configured on the server.

 Default XHTML namespace: <html >

 XHTML is case-sensitive, and HTML is case-insensitive. XHTML requires all tags and attributes to be lowercase (e.g., <html> instead of <HTML>). CSS selectors are case-sensitive in XHTML! In XHTML, the case of class or id values must match before they will be selected by CSS! For example, the selectors #test and *.test select <h1 id="Test" class="TEST"> in HTML, but not in XHTML. For this reason, I recommend always using lowercase attribute values and tag names in XHTML and CSS.

 XHTML requires the <html> tag to include the xmlns attribute with the value of "http://www.w3.org/1999/xhtml". XHTML requires the xml:lang attribute to be present each time the HTML lang attribute is used, such as xml:lang="en" lang="en".

 XHTML requires all elements to have start and end tags and all attributes to be enclosed in quotes and to have a value. HTML does not.

 HTML lets you omit the start tags for <html>, <head>, <body>, and <tbody>. HTML lets you omit end tags for <html>, <head>, <body>, <p>, , <dt>, <dd>, <tr>, <th>, and <td>. A browser implies their presence in HTML. In XHTML, a document will not validate if these tags are omitted.

 HTML prohibits end tags for elements that must always be empty: <meta>, <link>, <base>,
, <hr>, <area>, , <param>, <input>, <option>, and <col>. XHTML requires end tags for all elements.

 Thus, a valid XHTML document containing one of these elements can never be a valid HTML document and vice versa. There is a compromise that works in HTML browsers because they do not require documents to be valid HTML. You can use the XML shorthand notation for an empty element as long as it includes a space before the closing slash and less-than sign. This works as follows: <meta />, <link />, <base />,
, <hr />, <area />, , <param />, <input />, <option />, and <col />. You should use a separate closing tag for all other empty elements, such as .

 Advantages

 It has been argued that the strict coding requirements of XHTML identify the structure of a document more clearly than HTML. In HTML, a browser assumes the location of a missing end tag to be the start tag of the next block element. In the example,
 is rendered after the paragraph in the XHTML document and as part of the paragraph in the HTML document. This is why there is an extra line of whitespace in the XHTML part of the example.

 A valid and unambiguous structure is essential when you use CSS to style a document because CSS selectors select elements based on their structure. For this reason, some developers might prefer XHTML for their projects.

 Related to

 DOCTYPE

 DOC TYPE

 HTML

 <!-- The following DOCTYPEs place the browser in almost-standards mode.The first one is for XHTML, the second one is for HTML 4, and thethird one for HTML5 (browser support varies).-->

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

 "http://www.w3.org/TR/html4/loose.dtd">

 <!DOCTYPE html >

 CONTENT TYPE VS. DOCTYPE

 Web servers identify each document they serve with a MIME content type. MIME stands for Multipart Internet Mail Extensions. The content type is identified in the HTTP header for the document. A browser determines how to process a document based on its MIME content type. When it gets a document with a content type of "text/html", it renders the document as HTML.

 According to the W3C's Note titled “XHTML Media Types” (www.w3.org/TR/xhtml-media-types/), a web server may serve XHTML with one of the following three content types.

 	An XHTML document may be served as "text/html" as long as you do not want the browser to treat the document as XML and you do not include content from other XML namespaces, such as MathML. A browser receiving an XHTML document with this content type treats the document as HTML.

 	XHTML should be served as "application/xhtml+xml". Unfortunately, Internet Explorer 7 and earlier versions refuse to display pages served this way.

 	XTHML may be served as "application/xml" or "text/xml". Unfortunately, Internet Explorer 7 and earlier versions recognize such a document as generic XML, which means they ignore all XHTML semantics. This means links and forms do not work, and it takes much longer to render the document.

 A Gecko browser renders a document served with an XML content type only after it has completely downloaded and has absolutely no coding errors. It also renders the document in strict mode regardless of its DOCTYPE (see www.mozilla.org/docs/web-developer/faq.html#accept).

 At the current time, the most reliable content type for serving XHTML web pages is "text/html". This tells a browser to render a document as HTML. This approach is supported by the W3C, and it works well in all major browsers. It works because browsers do not validate HTML. They parse web pages in a way that allows them to display any version of HTML and XHTML - including documents containing errors. Contrast this with how a browser processes an XHTML document where the rules of XML prohibit it from rendering an entire XHTML document when it has an error - even the tiniest error created by an accidental typo! Such precision is essential for computer-to-computer transactions, but it is not good for human-generated web pages.

 DOCTYPE

 Alias

 Metadata Declaration

 Problem

 You want to declare the type of your document so you can validate it against a Document Type Definition (DTD). You want to ensure your document is valid. You want to ensure web browsers follow the same rules in rendering your document.

 Solution

 The <!DOCTYPE> prolog identifies the type and version of HTML or XHTML in which the document is coded. In technical terms, <!DOCTYPE> specifies the type of document and the DTD that validates the document. The W3C provides a free online service at http://validator.w3.org/ that you can use to validate your documents.

 All HTML and XHTML code should be validated. This verifies the code contains no coding errors. If there are errors, CSS selectors may fail to select elements as expected or may even select elements unexpectedly.

 There are benefits to using XHTML. Validated XHTML documents are well formed and have unambiguous structure. You can also use XSLT (Extensible Stylesheet Language) and XQUERY (XML Query Language) processors to extract content and rearrange documents.

 In the HTML4 era, there were two additional varieties of DOCTYPEs: strict and transitional. Strict removes all presentational elements and attributes, and transitional allows them. I do not recommend presentation elements and attributes, but the strict DOCTYPE may be too strict for some needs. For example, it prohibits the start attribute in and the value attribute in , which are the only available means to control the numbering of an ordered list. The strict DOCTYPE also prohibits <iframe>.

 Most important to CSS, browsers use <!DOCTYPE> to determine how closely they will follow the CSS standard when they render the document. There are two basic modes: quirks and standards. In quirks mode, browsers do not follow the CSS standard, which makes this mode undesirable for styling with CSS. In standards mode, they follow the CSS specification.

 To complicate matters, Internet Explorer in strict mode violates a part of the CSS spec by not aligning images in table cells to the baseline. It does this to remove the baseline space below images so that sliced images in tables work as expected. The other major browsers have a third mode called almost-standards mode that emulates this nonstandard behavior.

 The standards mode of Internet Explorer and the almost-standards mode of the other major browsers are the most compatible modes. There are two main <!DOCTYPE> declarations that trigger this level of compatibility: one for XHTML and one for HTML. They are listed in the DOCTYPE code example. You can find a complete list of DOCTYPEs at http://hsivonen.iki.fi/doctype/.

 Location

 <!DOCTYPE> must be the first item in an HTML document. There must be only one <!DOCTYPE> per document. You must not precede this DOCTYPE with an XML declaration, such as <?xml version="1.0" ?>, or Internet Explorer 6 will trigger quirks mode.

 Tip

 As mentioned earlier, the HTML5 <!DOCTYPE> is <!DOCTYPE html>. You’ll note that it’s significantly simpler than earlier DOCTYPEs, and that was intentional. A lot has changed in HTML5 in an attempt to make it even easier to develop a standards-based web page, and it should really pay off in the end. One nice thing about this new DOCTYPE is that all current browsers (IE, FF, Opera, Safari) will look at it and switch the content into standards mode, even if they don’t implement HTML5. This means that you could start writing your web pages using HTML5 today, without having to worry about future compatibility.

 Related to

 XHTML

 Header Elements

 HTML

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xml:lang="en" lang="en" >

 <head>

 <title>Header Elements</title>

 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

 <!-- Include links to stylesheets -->

 <link rel="stylesheet" href="site.css"media="all"type="text/css" />

 <link rel="stylesheet" href="page.css"media="all"type="text/css" />

 <link rel="stylesheet" href="print.css"media="print"type="text/css" />

 <!--[if lte IE 6]>

 <link rel="stylesheet" href="ie6.css"media="all"type="text/css" />

 <![endif]-->

 <!-- Optionally include alternate style sheets that the user can apply. -->

 <link rel="alternate stylesheet" type="text/css" title="cool" href="cool.css" />

 <link rel="alternate stylesheet" type="text/css" title="hot"href="hot.css"/>

 <!-- Optionally include style rules that apply only to this page. -->

 <style type="text/css" media="all">

 body{ margin:0px; padding:20px; padding-top:0px; width:702px;font-family:verdana,arial,sans-serif; font-size:medium; }

 h1{ margin:10px 0 10px 0; font-size:1.9em;}

 </style>

 <!-- Optionally link to a JavaScript file. -->

 <script type="text/javascript" src="script.js" ></script>

 <!-- Optionally include JavaScript that applies only to this page. -->

 <script type="text/javascript" ><!--alert("Hello World!");--></script>

 </head>

 <body><h1>Header Elements</h1></body>

 </html>

 Header Elements

 Problem

 You want to add metadata to a document. You also want to link the document to style sheets and JavaScript files. You also want to improve performance by embedding CSS rules and JavaScript inside the page.

 Solution

 You can use <link rel="stylesheet" type="text/css" /> to link style sheets to a document. You can use href="URI" to specify the URI of the style sheet. You can use media="all" to apply a style sheet to all devices. You can use media="print" to apply a style sheet only when printing. This allows you to hide navigational bars, remove backgrounds, reset inverse color schemes (like white text on a black background) to normal black text on a white background, and so forth. You can use media="handheld" to apply a style sheet to handheld devices only. You may find this impractical because styles that work on one handheld device may be ignored or not work at all on another. Few browsers have implemented the following media types: "tty", "tv", "projection", "braille", and "aural".

 You can use <link rel="alternate stylesheet" /> to provide a user with alternate style sheets. Most browsers put alternate style sheets in a drop-down list and allow users to select and apply one alternate style sheet at a time to a document. Since most web sites do not provide alternate style sheets and since there is no visual indication that they are available, few users look for them or use them. Thus, sites that supply alternate style sheets often put buttons or menus in the document and link them to JavaScript that switches between alternate style sheets.

 You can embed styles in the <style> element. These should be styles specific only to the current document. Styles that are used for more than one document should be contained in external style sheets. You may find that putting styles directly in a document greatly speeds the rendering of the document because a browser has fewer files to download. You may also find that this increases the amount of work it takes to maintain a web site. Other elements are common in <head>, such as <title>, <meta>, and <script>. I have included these elements in the example, but their usage is beyond the scope of this book.

 Pattern

 HTML

 <head>

 <base href="http://www.example.com/">

 <link rel="stylesheet" href="FILE.CSS" media="ALL_PRINT_HANDHELD" type="text/css" />

 <link rel="alternate stylesheet" type="text/css" title="NAME_TO_SHOW_USER" href="FILE.css" />

 <style type="text/css" media="all"> STYLES

 </style>

 </head>

 Location

 <link>, <style>, <title>, <meta>, <base> and <script> belong in <head>.

 Related to

 HTML Structure, Conditional Style Sheet

 Conditional Style Sheet

 [image: Image]

 Rendered in Firefox without the conditional style sheet

 [image: Image]

 Rendered in Internet Explorer with the conditional style sheet

 HTML

 <html xml:lang="en" lang="en" >

 <head><title>Conditional Stylesheet</title>

 <meta http-equiv="Content-type" content="text/html; charset=utf-8" />

 <link rel="stylesheet" href="page.css" media="all" type="text/css" />

 <!--Embed the following style sheet only in IE 6 and higher-->

 <!--[if gt IE 5.5]>

 <link rel="stylesheet" href="ie6.css" media="all" type="text/css" />

 <![endif]-->

 </head>

 <body>

 <h1>Conditional Stylesheet</h1>

 <p class="test">In Internet Explorer 6, this box has a border and background.</p>

 </body>

 </html>

 CSS page.css

 *.test { font-size:18px; }

 CSS ie6.css

 *.test { border:2px solid black; background-color:gold; }

 Conditional Style Sheet

 Problem

 You want one set of styles to be applied to Internet Explorer and another set to be applied to other browsers.

 Solution

 You can use Microsoft Internet Explorer’s conditional comments to load a style sheet created exclusively for Internet Explorer. You can place a conditional comment in <head> after all links to other style sheets. Inside the conditional comment, you can place a link to a style sheet. I call this the conditional style sheet. Since the conditional style sheet comes last, it overrides previously loaded styles.

 You can create a separate conditional style sheet for Internet Explorer 6, and if necessary you can create one for Internet Explorer 7. You can include styles in this style sheet to compensate for different behaviors and bugs.

 The following pattern loads two conditional style sheets. The first is for Internet Explorer versions 6 and earlier. The second is for Internet Explorer 7 and higher. Internet Explorer 7 fixes most of the bugs in Internet Explorer 6, but there are still a number of CSS features that it does not implement, such as the content property.

 Pattern

 HTML

 <!--[if lte IE 6]>

 <link rel="stylesheet" href="ie6.css" media="all"type="text/css" />

 <![endif]-->

 <!--[if gt IE 6]>

 <link rel="stylesheet" href="ie.css" media="all"type="text/css" />

 <![endif]-->

 Limitations

 Conditional style sheets apply only to Internet Explorer. This is unfortunate because they are a good way to work around browser-specific problems. Fortunately, there are few problems in other browsers. I do not recommend CSS hacks because they rely on parsing bugs in a browser’s CSS engine. When these bugs get fixed, the hack no longer works. For this reason, I do not use or discuss CSS hacks in this book. In other words, all the design patterns in this book work without hacks.

 Also in Internet Explorer 10, this is considered a legacy feature and will work only in legacy mode.

 <!--[if IE]> This content is ignored in IE10 and other browsers. <![endif]-->

 Variations

 To target different versions of Internet Explorer, you can change the operator and version in the conditional comment. For example, you can use <!--[if lt IE 5]> or <!--[if IE 7]>.

 The following operators are available: lte (less than or equals), lt (less than), gt (greater than), or gte (greater than or equals). You can omit the operator for an equals comparison, such as <!--[if IE 7]>.

 If another browser ever implements conditional comments, you can replace IE with the constant that identifies that browser.

 Related to

 Header Elements

 Structural Block Elements

 HTML Pattern

 <!-- Ordered List -->

 One or more list items...

 <!-- Unordered List -->

 One or more list items...

 <!-- Definition List -->

 <dl>

 <dt></dt>

 <dt>One or more definition terms... </dt>

 <dd></dd>

 <dd>One or more definitions...</dd>

 </dl>

 <!-- Table -->

 <table>

 <caption> One optional caption per table. </caption>

 <colgroup> <col /> <col /> </colgroup>

 <thead>

 <tr>

 <th> One or more header cells in a row...</th>

 <td> One or more data cellsin a row...</td>

 </tr>

 </thead>

 <tfoot>

 <tr>

 <th> One or more rows in a row group...</th>

 <td></td>

 </tr>

 </tfoot>

 <tbody>

 <tr>

 <th> Zero or more row groups in a table... </th>

 <td></td>

 </tr>

 </tbody>

 </table>

 <!-- Divisions -->

 <div> <div> <div> ... </div> </div> </div>

 Structural Block Elements

 Problem

 You want to structure your document so web browsers can render an enhanced view of the document; search engines can determine important keywords; document processors can use technologies like XSLT to extract content and transform the structure; and JavaScript can navigate the structure to modify content and make a document interactive.

 Solution

 You can mark up a document with block elements to identify its structure. There is meaning in structure, and HTML markup is most meaningful when its structure reflects the hierarchy and relationships of a document’s topics.

 Because a parent element contains child elements, they are related structurally. This implies their content is related. For example, a child’s content is typically a subtopic of its parent’s topic, and siblings typically have related subtopics. Implicit in the hierarchical nature of HTML is the assumption that document organization is hierarchical.

 Structural blocks may contain block elements only. They have structural meaning, but they have little semantic meaning. In other words, they do not tell you what something is; they tell you how it is organized.

 There are four major structural block elements (, , <dl>, and <table>) with nine supporting structural elements (, <dt>, <dd>, <caption>, <thead>, <tfoot>, <tbody>, <colgroup>, and <col>).

 Details

 creates an ordered list of one or more list items (). Items belong to the same set and are in order. Order implies sequence or ranking.

 creates an unordered list of one or more list items (). Items belong to the same set without sequence or ranking.

 <dl> creates a definition list of one or more terms (<dt>) and definitions (<dd>). Structurally, a definition list implies all its terms are synonyms and all its definitions are alternate definitions of its terms. The HTML specification also shows that a definition list can have a broader application, such as listing speakers and their dialog. In generic terms, a definition list is an associative entity that associates keys with values.

 <table> creates a tabular data structure in rows (<tr>) and cells (<th> and <td>). It may optionally contain groups of rows: one table header (<thead>), one table footer (<tfoot>), and one or more table body groups (<tbody>). It may optionally contain one or more column groups (<colgroup>) containing one or more columns (<col>). Column groups and columns are the only structural blocks that are relational instead of hierarchical. In other words, each <col> element forms a relationship with cells in a column without actually being their parent. A table may optionally contain a <caption>.

 <div> is a multi-purpose block element. It can be structural or terminal. I mention it here because it normally creates a document division. Document divisions are essential for organizing a document into sections, and sections are the essential building blocks of documents. That is why I list <div> as the parent of all structural elements in the HTML Structure design pattern.

 <article> represents a self-contained composition in a page that is, in principle, independently distributable or reusable, e.g., via syndication. This could be a forum post, a magazine or newspaper article, a blog entry, etc. When article elements are nested, the inner article elements represent articles that are in principle related to the contents of the outer article. For instance, a blog entry on a site that accepts user-submitted comments could represent the comments as article elements nested within the article element for the blog entry.

 <section> represents a generic section of a document and acts as a thematic grouping of content, typically with a heading. Examples of sections would be chapters, the various tabbed pages in a tabbed dialog box, or the numbered sections of a thesis. A web site’s home page could be split into sections for an introduction, news items, and contact information. Developers may use <article> instead of the section element when it would make sense to syndicate the contents of the element.

 <nav> defines a section of a page that links to other pages or to parts within the page - basically a section with navigation links.

 Related to

 HTML Structure, Terminal Block Elements, Multi-purpose Block Elements

 Terminal Block Elements

 [image: Image]

 HTML

 <h1>Terminal Block Elements</h1>

 <p>

 Headings, paragraphs, blockquotes, definition terms, addresses,and table captions are terminal block elements. They may contain only content.An HTML validator will declare a document invalid if you attemptto put block elements inside terminal blocks.

 </p>

 <blockquote> A blockquote is a terminal block. </blockquote>

 <dl>

 <dt>NOTE:</dt>

 <dd>The content of terminal blocks is always inline.</dd>

 </dl>

 <address> An address is a terminal block.</address>

 <table>

 <caption>Table caption is a terminal block.</caption>

 <tr>

 <td></td>

 </tr>

 </table>

 Terminal Block Elements

 Problem

 You want to transition from document structure to content.

 Solution

 You can use one of the following terminal blocks to terminate document structure so you can insert content: <h1>, <p>, <blockquote>, <dt>, <address>, and <caption>. These elements are the primary containers of content. The multi-purpose block elements discussed in the next design pattern may also contain content. Paragraphs contain most of a document’s content followed by headings, blockquotes, list items, and table cells.

 Terminal blocks are terminal nodes in the block structure of a document. They cannot contain blocks. They contain text and inline elements. Structurally, they are siblings to other terminal and structural blocks, which implies they all have subtopics related to their parent block’s topic.

 Terminal blocks mainly have semantic meaning. HTML supplies six elements you can use to identify the purpose of content: heading, paragraph, blockquote, definition term, address, and caption.

 Details

 <h1>, <h2>, <h3>, <h4>, <h5>, and <h6> create headings from most important to least. Headings are relational. They imply the following sibling elements (typically paragraphs) have a subtopic that supports the topic of the heading. They also imply a relationship to each other. For example, <h2> implies that it is a subtopic of the previous <h1> element. Headings placed at lower levels of document structure typically have higher heading numbers. You can reinforce the structure of a document by making a heading the first element of each document division.

 <p> creates a paragraph. Semantically, a paragraph contains one or more sentences. The first sentence defines the topic of the paragraph, and subsequent sentences support that topic. The topic of a paragraph is typically a subtopic of the previous heading and relates to sibling elements.

 <blockquote> creates a blockquote. Semantically, a blockquote contains a quote from an external source that relates to the topic of its siblings.

 <dt> creates a definition term. Semantically, a definition term is a term that is being defined directly in the document by one or more definitions. The Structural Block Elements design pattern includes <dt> because it is a part of the <dl> structure. When you use <dl> as an associative entity, <dt> changes its semantic meaning to being a key that is associated with one or more values. Like a term, a key can be looked up to find its associated items.

 <address> creates a contact record for the document itself. It is not for identifying other types of addresses, such as your favorite restaurants. The HTML specification allows an address to contain any type of content such as a street address, e-mail address, phone number, etc.

 <caption> creates a table caption. Semantically, it labels a table. <caption> is referred to in the Structural Block Elements design pattern because it is a part of the <table> structure.

 Related to

 HTML Structure, Structural Block Elements, Multi-purpose Block Elements

 Multi-purpose Block Elements

 [image: Image]

 HTML

 <noscript>Show this text when script cannot run.</noscript>

 <div>

 <div>

 <h1>Multi-purpose Block Elements</h1>

 </div>

 </div>

 <!-- The following code is invalid HTML and broken structure. -->

 This content is inside a list but is not inside a list item like it should be.

 This content is properly nested in a list item.

 This content outside a list item invalidates and destroys the structure of a list.

 <!-- The following code is _valid_ HTML due to a loophole in HTML's DTD,but is still broken structure. -->

 <div>

 Compare the mixed content in this division with that of the preceding list.

 <div> This content is inside a nested structural division. </div>

 This mixed content is not invalid, but it destroys the block structureand requires a browser to create anonymous blocks in which to render it.

 </div>

 <!-- The following form contains blocks, which in turn contain controls. -->

 <form id="form1" method="post" action="http://www.apress.com/cgi-bin/test" >

 <input type="checkbox" id="xbox1" name="xbox1" value="xbox1" />

 <label for="xbox1">Checkbox1</label>

 <input type="submit" id="submit1" name="submit1" value="Submit" />

 </form>

 Multi-purpose Block Elements

 Problem

 You want the flexibility of extending the document structure by nesting structures within structures or terminating the current structure.

 Solution

 HTML provides seven elements - <div>, , <dd>, <td>, <th>, <form>, and <noscript> - that can extend the structure or terminate it. For this reason, I call them multi-purpose block elements, as they are the most versatile elements. You can use them to identify document divisions, list items, dictionary definitions, table data cells, table header cells, forms, and alternate content to display when scripting is unavailable.

 When a multi-purpose block is used structurally, it has structural meaning. When it is used terminally, it has semantic meaning. For example, when a list item is terminal, it identifies its content as an item in a list. When a list item contains a structural block, such as a table or another list, it functions structurally as a node in a larger nested structure.

 Multi-purpose blocks may contain blocks or content, but not both. Content is defined as text intermingled with inline elements (images, objects, controls, and semantic markup). Block elements should not be siblings with inline elements and text. This is called mixed content. Content should always be contained within a block - not placed in between blocks. Because of limitations in HTML’s Document Type Definition language, HTML validators do not always invalidate a document containing mixed content, but this does not mean you should allow it. When a browser encounters mixed content, it wraps the content in an anonymous block. This is because a browser cannot render blocks and content at the same time, as blocks flow down the page and content flows across. CSS selectors cannot select anonymous blocks, which prevents you from being able to style anonymous blocks.

 Details

 <div> is a division. It is normally structural, but it can contain content. As shown in the example, the block structure created by divisions is invisible unless you style each division’s margins, border, and/or padding.

 is a list item. Typically, it is a terminal block containing content, but it may contain structural blocks such as tables and lists, or terminal blocks such as headings and paragraphs.

 <dd> is a definition in a definition list. Typically, it is a terminal block containing content, but it may contain structural or terminal blocks.

 <td> and <th> are table cells. <td> is a data cell and <th> is a header cell. Typically, cells are terminal blocks containing content, but they may contain structural or terminal blocks.

 <form> is a data-entry form. It may contain structural blocks that organize form controls (as shown in this example), or it may directly contain inline form controls (as shown in the HTML Structure example). It may also contain terminal blocks such as headings and paragraphs.

 <noscript> is displayed when a browser does not support scripting. It may contain simple inline content, or it may contain a fully structured document.

 Related to

 HTML Structure, Structural Block Elements, Terminal Block Elements

 Inline Elements

 [image: Image]

 HTML

 <h1>Inline Elements</h1>

 <h2>Italicized</h2>

 <code> </code> emphasized

 <code><cite> </code> <cite>citation</cite>

 <code><var> </code> <var>computer variable</var>

 <code><dfn> </code> <dfn>definition</dfn>

 <h2>Bold</h2>

 <code> </code> strongly emphasized

 <h2>Monospace</h2>

 <code><code> </code> <code>computer code</code>

 <code><kbd> </code> <kbd>key press</kbd>

 <code><samp> </code> <samp>sample computer output</samp>

 <h2>Underlined</h2>

 <code><a> </code> a

 <code><abbr> </code> <abbr title="a" >abbreviation</abbr>

 <h2>Vertical-aligned</h2>

 <code><sup> </code> superscript¹

 <code><sub> </code> subscript₁

 Inline Elements

 Problem

 You want to add explicit meaning to text, and you want to style text to reflect this meaning.

 Solution

 HTML provides inline elements to identify the meaning of text, to control the flow of text, and to insert external content into the document, such as images and controls. Inline elements are content.

 Intermingling inline elements and text is desirable. Some call this mixed content, but I prefer to define mixed content narrowly as blocks, text, and inlines being mixed together, which is undesirable. I define content as text mixed with inline elements, which is desirable. This clearly separates structure from content and emphasizes that inline elements and text should always be contained within blocks - not in between blocks.

 I organize inline elements into four types: semantic, flow, replaced, and controls. Semantic elements identify the meaning of their content. Flow elements control the flow, such as inserting a line break. Replaced elements are replaced with an object, such as an image. Controls are objects used for data entry, such as a text box.

 HTML assigns each semantic inline element to a default style to emphasize that its text has a particular meaning. For example, <code> is rendered in a monospace font. You can use CSS to override these default styles.

 Details

 Three semantic inline elements specify the relative importance of their content; they are listed in order of increasing importance as follows: , , and . is generic and has neutral importance. Search engines use and to rank content.

 I have organized the remaining semantic inline elements by how much content they typically contain, such as a phrase, a word, or a character. Phrase inlines include <a>, <cite>, <code>, <kbd>, <samp>, and <var>. Word inlines include <abbr>, and <dfn>. Character inlines include <sub> and <sup>.

 Flow-control elements control the flow of content, such as
, which inserts a line break, and <bdo>, which changes the direction of the flow.

 Replaced elements are replaced by external content, such as , which is replaced by an image or <object>, which can be replaced by a video, a Flash movie, a sound file, etc.

 Controls are inline elements used for data entry in forms, such as <input>, <textarea>, <select>, and <button>.

 Default Styles

 HTML assigns default styles to each semantic inline element. has no default style and meaning, so you can use it for any purpose. is bold by default. The following are italicized by default: , <dfn>, <cite>, and <var>. The following are monospace by default: <code>, <kbd>, and <samp>. The following are underlined by default: <a> and <abbr>. Internet Explorer 6 does not support <abbr>.

 Related to

 HTML Structure; all design patterns in Chapters 10 through 12 and 14

 Class and ID Attributes

 [image: Image]

 HTML

 <h1>Class and ID Attributes</h1>

 <div id="hcalendar1" class="vevent">

 <h2 class="summary">Calendar Event Summary</h2>

 <p class="description">Calendar Event Description</p>

 <p>From

 01 May 2007 from 8:30am EST to

 9:30am EST</p>

 <p>Location:Meeting Location</p>

 <p>Booked by: globally-unique-id.host.comon Jan 1, 2007 at 6:00pm</p>

 </div>

 <p>See microformats.orgfor more information about microformats.</p>

 CSS

 *.vevent p { margin:0 0 5px 0; font-size:0.9em; }

 *.vevent h2 { margin:0 0 5px 0; }

 *.vevent *.location{ font-style:italic; }

 *.vevent *.uid { font-family:monospace; }

 *.vevent *.dtstart,*.vevent *.dtend,*.vevent *.dtstamp { color:green; }

 #hcalendar1 { margin:5px; border:1px solid black; padding:10px; }

 Class and ID Attributes

 Problem

 You want to identify some elements as being in the same class as other elements. You want to apply additional semantic and relational meaning to a class of elements. You want to style a class of elements in the same way. You want to identify some elements uniquely in a document so you can style them uniquely and directly access them through JavaScript.

 Solution

 HTML supplies the class and id attributes for these purposes. You can assign a class and an id to any element.

 An ID and class name cannot include a space. It must start with a letter and may contain letters, numbers, the underscore (_), and the dash (-). Since CSS selectors are case-sensitive when using XHTML, it is a common practice to use lowercase class and ID names.

 Class

 class assigns a user-defined semantic meaning to an element. class is the primary mechanism for extending the semantic meaning of HTML elements. Elements with the same class are related and can be manipulated as a group. You can use CSS selectors to apply a style to a class of elements. You can use a document processor, such as XSLT, to manipulate a class of elements.

 You can assign multiple classes to an element by putting multiple class names in an element’s class attribute. A space separates each class name.

 Classes should have semantic names, such as copyright, date, price, back-to-top, example, figure, listing, illustration, note, result, tip, warning, etc.

 ID

 An ID should be unique within a document. If it is not, a CSS ID selector will match all elements with the same ID - just like the class attribute.

 You can use a unique ID as a CSS selector to style one element. You can use it as an anchor that can be targeted by other links. You can use it to access and manipulate a specific element from JavaScript or a document processor.

 IDs should have semantic names, such as skip-to-main-content, page, preheader, header, title, search, postheader, body, nav, site-map, links, main, section1, section2, news, about-us, services, products, etc.

 Patterns

 HTML

 <ELEMENT id="id" class="class1 class2 etc" ></ELEMENT>

 CSS

 #id { STYLES }

 *.class { SYTLES }

 Tip

 Since <div> and elements have no semantic meaning, you can assign classes to them without conflicting with any predefined meaning. You can assign classes to <div> to create custom document structures with custom semantic meaning. You can assign classes to to customize the meaning of text. There are currently no standard class names with precise predefined meanings, although the microformats movement is making progress toward that goal by mapping HTML structure and class names to common standards, such as hCard and hCalendar.

 Related to

 Type, Class, and ID Selectors, Subclass Selector (Chapter 3)

 HTML Whitespace

 [image: Image]

 HTML

 <h1>HTML Whitespace</h1>

 <p> start middle 	

  end </p>

 <h2>Controlling Where Whitespace Collapses</h2>

 <p>startmiddle end - inside element</p>

 <p>start middleend - outside element</p>

 <h2>Embedding Whitespace Inside Tags</h2>

 <p>start<span

 class

 =

 "spaced"

 >middle</span

 >end</p> <h2>Embedding Space Entities</h2>

 <code>&zwnj;</code>‌

 <code>&thinsp; </code> 

 <code>&nbsp;</code>

 <code>&ensp;</code> 

 <code>&emsp;</code> 

 CSS

 em { padding-left:50px; }

 p { font-family:monospace; font-size:18px; }

 *.border { font-weight:bold;

 border-left:2px solid black; border-right:2px solid black; }

 HTML Whitespace

 Problem

 You want to use whitespace in markup to make the code more readable without the whitespace affecting the rendering of the document.

 Solution

 A browser collapses repeated whitespace into a single space. This allows you to insert extra spaces, tabs, newlines, and returns into the markup to make it more readable without it showing up in the rendered document.

 A browser interprets only the following characters as whitespace: space (), tab (), newline (), and return ().

 Empty elements and elements containing only whitespace do not interrupt a contiguous sequence of whitespace. Notice in the first paragraph of the example how a browser renders only one space between the words “start,” “middle,” and “end” - even though there are many characters between these words including spaces, tabs, newlines, returns, whitespace entities, an empty span, and a span containing whitespace.

 The first whitespace character in a series of contiguous whitespace characters determines the position and style of the collapsed space. In other words, a browser renders collapsed space using the font-family, font-size, font-weight, line-height, and letter-spacing assigned to the first whitespace character of the series. Larger fonts, wider letter-spacing, and taller line-height create wider and taller whitespace. Thus, the location of whitespace in an HTML document determines how wide and tall it is.

 The second and third paragraphs of the example show how the location of whitespace determines whether it collapses inside an element or outside. If it collapses inside, it is styled by the element’s rules. Since whitespace collapses to the left, you can collapse whitespace in front of an element by simply putting whitespace before it. If you want whitespace to collapse inside an element, you need to remove all whitespace before the element and put at least one whitespace inside it. If you want whitespace to be inside an element and to be placed after its content, simply follow the content with whitespace. If you want whitespace to collapse outside the closing tag of an element, you need to remove all whitespace following the element’s content and insert whitespace after the element.

 You can put extra whitespace inside an element’s start and end tags without putting undesired whitespace in the content. You can insert extra whitespace between the start tag’s name and its attributes; surrounding an attribute’s name, equal sign, and value; and before the start tag’s greater-than sign. You can insert extra whitespace between the end tag’s name and its greater-than sign. The fourth paragraph of the example is an extreme example that has much whitespace inside the tags but none inside the content.

 Space Entities

 HTML provides five space entities that have different widths. These are not whitespace! The nonbreaking space, , is the width of a normal space and works in all major browsers; the widths of the other spaces (&zwnj, &thinsp, &ensp, and &emsp) vary in different browsers.

 Preserved

 The <pre> element preserves all the whitespace that is inside it.

 Related to

 Spacing, Nowrap, Preserved, Padded Content, Inline Spacer, Linebreak (Chapter 11)

OEBPS/Images/HTMLSTRUC1v3.jpg
(@00 Mo
HTML Structure

Pangrph
1. Ordered List lem
2. Ordered List lem

‘» Unordered List lem
‘» Unordered List lem

Definition Term

Definition Term
Definition Data
Definition Data

‘Table Caption
rowl-coll rowl-<ol2
rowd-coll row3<ol2

© Radiol O Radio2 & Checkbox] Inputtext Tysenee | mi:]m--m) (Rae) (wiom)

Division witin a Division Link [T span em stron cite code xb samp nar sbbr i 7 sdrawkesb

OEBPS/Images/U0101.jpg
3 Background Imago - Mozill Firsfox
Be Ch tev toy Gomebs Doh b

Background Image

%adinyx 2

OEBPS/Images/U0104.jpg
3 Lofe Marginal - Moalia Ficofex,
Br £ i thy Emels Dok &b

Left Marginal

HeadIng oSt R o A el e i e

OEBPS/Images/U0106.jpg
ot - Moilla Fisefos.

S syntox s EASY!

OEBPS/Images/U0209.jpg
&) ke vitiessco. Hocila Fiolen

start middle end

Controlling Where Whitespace Collapses
start] middle ond —inside element

start piddie] end —sutside element

Embedding Whitespace Inside Tags

startmiddlesnd

Embedding Space Entities

cnsnsg || esmops || coneps || 2

OEBPS/Images/U0107.jpg
3 Cascading Order - Leved 1: limpostant - Mezilla Ficefox

Ge o lex tay fmets

limportant has highest prior

OEBPS/Images/U0102.jpg
3 Absolute - Mozilla Firofox

Be Gh tev toy Gomels Dxh b

Absolute

OEBPS/Images/U0103.jpg
Text Replacement

(%a(//in’/ 2

OEBPS/Images/U0202.jpg
) XHTH - ozl Firefox) T - osila Firefox LB
e Gt Yen vy Gt e ep Se o ten woy Wommis Do >

XHTML HTML

Paagraph Paagaph
Bresk

Bresk. 1. Ovdesed List e

2. Ordered List e
1. Oudeced List e

2. Ocdered Listlew Defaiion Teun

Defuicn Date
Defuiton T

Defisten Deta

OEBPS/Images/U0205.jpg
Terminal Block Elements

Feadings, poragrophs, blockquove, deSnion temas, addresses, nd ke captoas are renviaal bock e, They.
suay contan ony conent. A HIML vaSarcr i declare a dheurment ivald Eycu atecpto putbock deeats inside
terminableeks,

A blsckquore s atervinalbock:

TE:
= cortent o terminn blocks s abvays .

sin edles: i tarinel blsck.
Tatie
apton
terminal
Hock.

OEBPS/Images/U0203.jpg
) Condidonst Syleshost - Mozila Firelox.

Do Gl Yoo figho Dok ot

Conditional Stylesheet

In Internet Explorar 6, this box has a border and backgrourd.

OEBPS/Images/U0204.jpg
2 Conditonsl Styleshest- Nicrosof: et Explorer
O o o b

Conditional Stylesheet
[in Internet Explorer 6, this box has a border and background.

OEBPS/Images/U0105.jpg
Marginal Graphic Dropcap

A,

arginal Graphic Dropcap. The letter M has been covered by the
dropcap image. Screen readers read the text and visual users
see the image. If the browser cannot display the dropcap
Image, the text becomes visible.

OEBPS/Styles/page-template.xpgt

	
		
			
		
		
			
		
		
			
			
		
		
			
		
		
			
			
		
		
			
				
				
				
				
				
				
		
	
	
		
	

OEBPS/Images/HTMLSTRUC2v3.jpg
cssDesignPatterns.com

My blog post

“The arice clement represcats aselfconained composition in page that s independently distibutabl or rusable, .8 i syndicaton.
Show commeass..

First section heading

The socton clement represeats a generic secton of a documen (thematic groupiag of conten).

And one more section

A page could be splitint sections for an introducton, news iems, contact information, .

Some Navigation

* Index of amicles
* Contatinformation

A nav clemeat doesn't have to coniain a lst, K can contain other kinds of content as well.
address

OEBPS/Images/HTMLSTRUC2.jpg
cssDesignPatterns.com

My blog post
e aricle lmen pesns sl coaied composion n pge i ndepedendly disbuate o s, .. i syncaion.
Stow commens..

First section heading

o sctonclemct epmsets g scton o 3 documen (b i o o),

And one more section

N P could b sl s o an o, o s, contct o,

Some Navigation

+ ndex ofanikes
+ Contactnforaaion

A v clemen dossst have 0 coman a1, ca comaln ter kids f onienta wel

ali

OEBPS/Images/U0208.jpg
&) Class and 0 Attfbutes = Wozlla Firefos.
B Gt e Gt Dbt

Class and ID Attributes

Calendar Event Summary
Calendar Even: Descrpaon
From 01 May 2007 fram B:30am EST to 4:30am EST
Location: Hecting Location

Baoked by: sl on 1an 1, 2007 at 6:00pm

See micoformats.oiq for mora Information about microformats.

OEBPS/Images/U0206.jpg
1 Mol purpose,DiogK Eloments - Moz
E ton vy Eomats Tkt

Multi-purpose Block Elements

Tis cootent i ide Bt b o side @ Et zem B showtd be
1. This costeats propedy ested o 2 st o
Ths content ouside st e imveSdes and destros the stroctre ofa Bt
Cernpans themixed corssat i s Snsion wih s o she proceding Bt
s conlet i usids 3 nested stuctral G,
s uived ecnenzis motionai, s desvoys e ook sasrire nd eaques 2 broser 1 erette ool
Blocks in i totender

* O Chiskbsl

OEBPS/Images/square.jpg

OEBPS/Images/HTMLSTRUC1.jpg
ano, Mozl Frefox
HTML Structure

Pangrph

1. Ontered it Bem
2! Onter Lit hem

+ Unordesd Lis em
© Unontesd List e

Defston Temn

Delnion Tem
Defidon D
Definiion Dats

Tabi Capion
rowLcol 2o
-

= —

© Radiol O Ratio2 Creckbor! Ioposent enws | Seect ||| Texaren () () ()
wision witin a Division Link [TJspun em strong cte code xod samp var abbrdfn P sdrawkeab

OEBPS/Images/rounded.jpg
border-top-left-radius: 55pt 25pt

OEBPS/Images/U0207.jpg
% loline Fements = ozilla Firelox

Do gt e My gowels Dot e

Inline Elements

Italicized

emphasized
citation
computer variable
definition

Underlined

psy

Vertical-atigned
 superscript!
o> subscripty

