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1 Introduction

The standard derivation of the equations describing the emission of Čerenkov radiation is
based on the assumption that the charged particle moves in a straight line at a constant
velocity (see, for example, Jelley [1, Chapter 2], Jackson [2] or Schiff [3]). However, this
is not a good assumption for electrons travelling in a dense medium such as water, where
the innumerable collisions with the atoms cause the electrons to deflect from straight paths
and to slow down. An attempt at qualitatively understanding the effects of scattering on
the emission of Čerenkov radiation is made. The effects of multiple scattering have been
treated by several authors for the case of electrons travelling through a thin transparent
plate [4, 5, 6, 7]. Their results are summarized here, and a possible method of extending the
calculations over the entire paths of electrons in water is given.

2 The Standard Derivation

Schiff’s derivation [3] of the angular distribution for Čerenkov radiation produced by a
constant-velocity, straight-moving charge is presented here, as his formalism allows the cal-
culation to (in principle) be extended over more realistic paths in dense media. He starts
with the current density for a point charge e which is located at the origin at t = 0 and
moving in the z direction with constant speed v,

Jx(r, t) = Jy(r, t) = 0

Jz(r, t) = ev δ(x) δ(y) δ(z − vt) (1)

To calculate the angular distribution of the Čerenkov radiation, we use the exact expres-
sion for the average energy radiated at position r by a harmonically time-varying current
distribution in a homogeneous isotropic dielectric medium

P
kω

(r) =
nk2

2πr2c

∣∣∣∣∫ J⊥k
(r′)exp(−ink · r′)dτ ′

∣∣∣∣2 (2)

where P
kω

is the component of the Poynting vector in the direction of observation (parallel
to k or r), k has magnitude ω/c, n is the index of refraction for the medium, and J⊥k

is
the component of the current density perpendicular to k. The expression for the radiated
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energy (eqn. 2) was developed for harmonically time-dependent current densities, hence, the
density in eqn. 1 must be replaced by the Fourier amplitude of angular frequency ω

Jzω(r) =
e

2π
δ(x) δ(y) exp(iωz/v) (3)

Thus, J⊥k
= Jzω sin θ. A little algebra yields the energy flow per unit area and angular

frequency

2πP
kω

(r) =
ne2ω2 sin2 θ

4π2c3r2

∣∣∣∣∣
∫

exp

[
iωz′

(
1

v
− n cos θ

c

)]
dz′
∣∣∣∣∣
2

(4)

For a pathlength L centered on the origin, the integral is evaluated to be

∫ L
2

−L
2

eiωz′( 1
v
−n cos θ

c )dz′ =
2 sin

[
ωL
2

(
1
v
− n cos θ

c

)]
ω
(

1
v
− n cos θ

c

) (5)

This is just the definition of the delta function in the limit of L going to infinity

lim
L→∞

2 sin
[

ωL
2

(
1
v
− n cos θ

c

)]
ω
(

1
v
− n cos θ

c

) = 2π δ

(
1

v
− n cos θ

c

)

from which we get the familiar relation defining the half-angle of the Čerenkov cone

cos θ0 =
c

nv

Combining eqn. 5 with the sin2 θ term from eqn. 4 we see that, for a path of finite length
L, the shorter distance over which coherence takes place produces an angular distribution
of the form

sin2 θ L2 sin2 χ

χ2
; χ =

ωL

2

(
1

v
− n cos θ

c

)
≡ πL

λ′

(
1

nβ
− cos θ

)
(6)

where λ′ ≡ 2πc/nω is the wavelength in the medium. The behaviour of eqn. 6 is quite
different in the limit of small and large L. For L � λ′, the angular distribution is still
sharply peaked at the usual Čerenkov angle θ0, however, it has a diffractive pattern whose
full width at half maximum is

δθ ' λ′

L sin θ0

As expected, the peak gets sharper as L increases. However, as the pathlength decreases
below the wavelength of the radiation (L � λ′), the sin2 χ/χ2 term becomes constant, and
the radiation is emitted over a dipole angular distribution.

To get the total energy radiated over the path L, one integrates eqn. 4 over the surface
of a sphere of radius r. The integral can be evaluated easily in the two limits mentioned
above. For the case of L � λ′ (and thus δθ � 1), sin θ can be replaced by sin θ0, and the
limits of integration on cos θ can be extended to ±∞. The integral of eqn. 6 then evaluates

2



to 4πcLr2 sin2 θ0/nω. Substitution of this result into eqn. 4 yields the total energy radiated
per unit angular frequency range over the path L

ωe2L sin2 θ0

c2
=

ωe2L

c2

(
1− 1

n2β2

)
(7)

This is the standard result, showing that, for constant index of refraction n, the total power
output is proportional to ω and to the path length L, and thus, the number of photons
emitted per unit frequency interval per unit length is constant. In reality, there is usually a
weak frequency dependence brought in through the index of refraction.

In the limit of L � λ′, the integral over the dipole angular distribution yields a total
radiated energy per unit angular frequency over the path L of

ωe2L

c2

(
4L

3λ′

)
(8)

Hence, the number of photons emitted per unit frequency range is not constant as in the
other limiting case, but goes as the ratio of L/λ′. This difference may prove useful when
looking for evidence of the loss of coherence (see the Conclusions section).

To get an estimate of what pathlength is required to achieve coherence, we look at the
result of the integration over the angular distribution (eqn. 6). The value of the integral
over sin2 χ/χ2 goes to π as the limits on χ go to ±∞. About 90% of this maximum value is
achieved when the limits on χ are ±π. This translates to the condition∣∣∣∣∣Lλ′ ( 1

β
± n)

∣∣∣∣∣ > 1 (9)

which, for β=1 and n=4/3, becomes
L > 3λ′

The longest wavelength we are interested in is nλ′ = 720 nm. Hence, we need straight path-
lengths of at least 2 µm to get full light output. Molière’s theory predicts the mean distance
between multiple scatters to be t/Ω0 = β2/bc (see, for example, the EGS4 manual). For
water, b−1

c '1.3 µm, which is less than the distance computed from our limit above. How-
ever, the multiple scattering is predominately small-angled, so we can expect that coherence
between the straight path segments will be preserved to a large extent.

Before we leave the simplest case of a straight path, it is worthwhile to summarize Jelley’s
report [1, pages 26-30] on the effects of the slowing down of the electron and the radiation
reaction from the emitted radiation. In the former case, coherence is said to be preserved if
the deceleration of the electron is gradual enough that the following condition holds:

T

(
dv

dt

)
� c

n

where T is the period of the wave. This can be re-expressed as

λ

(
dE

dx

)
1

γ3mc2
� 1

n
(10)
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For our purposes, we can conservatively estimate the quantity on the left hand side of eqn. 10
using λ = 720×10−7 cm, (dE/dx) = 3 MeV/cm and γ = 1.51 (electron kinetic energy of 261
keV) to be ∼0.0001. This is much smaller than (1/n) = 0.75 in water. Thus, the slowing
down of the electron in the water should not affect the coherence of the Čerenkov radiation.
The quantum mechanical effects of the reaction of the Čerenkov radiation on the electron
are to introduce terms of order (h̄ω/mc2) into the expression for the energy loss per unit
length (eqn. 7). For photon energies of a few eV, these terms are negligible.

3 Multiple Straight Pathlengths

In this section, we will investigate the effect of breaking the electron path into many short
straight segments on the coherence of the radiation. The following notation was developed
by Dedrick [4], who used it when determining the effects of multiple scattering on the angular
distribution of Čerenkov radiation. The integral in eqn. 2 becomes a sum of integrals over
each straight path segment ν

P
kω

(r) =
nk2

2πr2c

∣∣∣∣∣
N∑

ν=1

Iν

∣∣∣∣∣
2

(11)

where

Iν =
e

2π
sin Θνexp[iωtν − ink(xν sin θ cos φ + yν sin θ sin φ + zν cos θ)]×

exp[iωlν(
1
vν
− n

c
cos Θν)]− 1

iω( 1
vν
− n

c
cos Θν)

and lν is the length of the segment from xν , yν , zν to xν+1, yν+1, zν+1, θν and φν are the polar
angles for the segment, and tν is the time at which the particle is at the start of the path
segment. The emission angle Θν is taken between the path segment and k, and obeys the
relation cos Θν = cos θ cos θν + sin θ sin θν cos(φ− φν). The integral Iν can be expressed in a
notation similar to that used previously

Iν =
e

2π
sin Θν ei(δν+χν) lν

sin χν

iχν

(12)

where the phase angles are given by

χν =
ωlν
2

(
1

vν

− n

c
cos Θν

)
≡ πlν

λ′

(
1

nβν

− cos Θν

)

δν = ωtν − nk(xν sin θ cos φ + yν sin θ sin φ + zν cos θ)

Diffractive effects over each path segment are determined by the angle χν , while coherence
effects between segments are determined by both phase angles.

Some general statements can be made based on the last few equations. Once again we
see that the integral Iν is significant only when χν is of order π or less (ie. when Θν is
within ∼ λ′/lν of the Čerenkov angle θ0). The expression for the total energy radiated in
any direction is composed of terms of the form IνI

∗
ν and (IνI

∗
µ + I∗νIµ). The former represent
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the contribution from each path segment as derived in the previous section, while the latter
represent the interference between the segments. The interference terms are only significant
where the cones from two segments overlap.

Once again, let us look at what happens in the limiting cases of large and small path-
lengths. In the case of long segments (lν � λ′), the diffractive widths of the cones are very
small. Thus, unless the cones are aligned and have similar opening angles, the overlap of
the two cones will be small (confined to the lines of intersection between the cones). When
integrating over all angles to get the total energy radiated, the range of the angles χν will
be large. Thus, the energy contribution from each segment will tend toward the maximum
value derived in the previous section (cf. eqn. 7). The contribution from each interference
term averages to zero as one integrates terms of the form

cos[(δν − δµ) + (χν − χµ)]
sin χν

χν

sin χµ

χµ

over large ranges of χ. Thus, long segments can be treated more or less independently. The
total light output over each segment is the maximum value derived in the previous section.
There will be diffractive effects in the angular distribution at the intersections of the cones,
but these are localized to small regions of (θ, φ), and average to zero over each region. For
those cases where the two cones are aligned and have similar opening angles, the phase angles
δ determine whether or not the interference is constructive or destructive. The difference in
the phase angles is given by

∆δ = (δν − δµ) = ω(tν − tµ)− n(xν − xµ) · k

For a particle travelling in a straight line, tν − tµ = −|xν − xµ|/v (for ν < µ), hence,

∆δ = −ω|xν − xµ|
(

1

v
− n

c
cos Θ

)
which goes to zero at Θ = θ0. To get destructive interference, the particle would have to
scatter out of and back into the same direction over a path whose length is different from
the distance |xν−xµ| by some half-integral number of wavelengths. It is not unreasonable to
believe that such situations will occur. The question is how often, and how destructive is the
interference? The answer lies in the details of the problem, and I think, cannot be answered
in any handwaving way. A deeper analysis is required, as discussed in the Conclusions of
this report.

For the case of lν � λ′, the dipole angular distributions are broad, and interference
between segments cannot be ignored. It is this interference, in fact, which produces the
Čerenkov cone over long pathlengths. Thus, the problem cannot be simplified by treating
segments independently. However, we know from the previous section that the mean free
path between scatters for the electron is comparable to the wavelength of the Čerenkov
radiation in water, so it is likely that the true situation lies somewhere between the two
limiting cases for L.

It should be noted that the expression for total energy radiated (eqn. 11) seems to be in
a useful form for analysis using Monte Carlo techniques. In principle, an electron’s position,
direction of motion, and speed at the start of each step can be stored during a Monte Carlo
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simulation, and used to calculate the sum of the integrals Iν afterwards. From this, the
total energy radiated and the angular distribution at various wavelengths can be calculated.
However, there are problems which make applying these results difficult. The numerical
integration over all angles and frequencies required to calculate the total energy output
would be very time consuming. Also, the almost discrete nature of the angular distribution
when the cones are sharp makes it difficult to efficiently choose a direction for the emission
of the photon. And finally, we have so far neglected the multiple scattering of the electron
over each step. The last effect is treated in the next section.

4 Multiple Scattering Over a Straight Path Segment

The effects of electron multiple scattering on the angular distribution of Čerenkov light
produced in thin transparent plates have been studied by Dedrick [4], and by Kobzev and
associates [5, 6, 7]. I shall only briefly report the results, as the derivations are rather
involved.

Dedrick starts from the expression for the energy output per unit frequency in terms of
the sum of integrals over straight path segments (eqn. 11). Using various approximations to
reduce the expression for the integral Iν to simpler forms for the two cases of photon emission
angles close to and far from the Čerenkov angle θ0, and using a simple multiple scattering
theory to calculate averages over the interference terms, he derives angular distributions

for photon emission in terms of a reduced angle δ =
√

2(θ − θ0)/
√
〈ϑ2〉 and a parameter

K = [(6π/
√

2)n sin θ0(L/λ)
√
〈ϑ2〉] 1

3 , where
√
〈ϑ2〉 is the rms multiple scattering angle for

the plate of thickness L. The results for small reduced angle δ were computed numerically
as a function of K, and plotted.

Kobzev et. al. [6] were not satisfied with the restrictiveness of some of Dedrick’s small
angle approximations. They present new formulae for the angular distribution for each
photon polarization that involve unevaluated integrals over time. The formulae were derived
elsewhere [8], and I have not been able to acquire the translation (if someone has a copy
of this paper, please send it to me). Although I reserve my final judgement until I see the
actual derivations of their results, the integral form of their equations makes it doubtful that
they will be useful for us.

Both treatments of multiple scattering were for electrons travelling through a thin plate,
ie. there were definite boundaries for the production of the Čerenkov radiation, and slow-
ing down of the electron was negligible. This makes there analysis somewhat easier than
ours, since they don’t need to consider interference with radiation produced over other path
segments. Unfortunately, their results are in the form of angular distributions, and not am-
plitudes. Thus, we cannot use their results if we wish to calculate interference effects between
path segments over which multiple scattering occurred. It may be possible to derive these
from the original papers, although the ensemble averages used in Dedrick’s derivation seem
to make this unlikely in that case.
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5 Conclusions

When an electron travels in water, the average distance between scatters is only slightly
larger than the wavelength of the Čerenkov radiation. However, the fact that the scattering
is predominately at small angles means that some level of coherence will still be achieved.
We need to find out what that level is before we can hope to accurately predict the frequency
and angular distributions of the Čerenkov light. It is likely that the level of coherence is high,
since past experiments [9, 10, 11] have found reasonable agreement between the measured
and predicted wavelength distributions. However, there is marginal evidence in the most
sensitive of these experiments [11] that longer wavelengths are slightly suppressed (in my
opinion, not the authors’). This is what would be expected if full coherence has not been
reached (cf. eqns. 7 and 8). I have not found any reports of accurate measurements of
the absolute intensity of Čerenkov radiation, so a direct check of the standard theoretical
predictions at the level of a few percent is not possible yet.

Theoretically, the expression for the energy output in terms of the sum over small, straight
path segments (eqn. 11) offers some hope that we may be able to calculate the Čerenkov
spectrum even if the radiation is not fully coherent. The fly in the ointment is that we cannot
use the published data on multiple scattering if we want to accurately compute the effects
of interference between the radiation produced by separate segments. Perhaps step sizes
of order ∼1 µm could be used so that multiple scattering would become unimportant, and
plural scattering theory could be used instead. Then, no approximations need be made about
interference between separate steps. The results of such computer-intensive calculations
could then be compared to those done with the various approximations mentioned in this
report, to see which are acceptable for use in generating SNO events.

There is one final point I would like to make about our simulations of Čerenkov radiation.
The intensity of the radiation is proportional to the pathlength of the electron. Thus, even if
the intensity per unit pathlength is precisely given by the standard expression (eqn. 7), the
total light output is as uncertain as the pathlength. Since the actual pathlength is estimated
when multiple scattering approximations are made, some effort should be put into making
sure that these estimates are accurate.

References
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