
Preface

In this book I have only made up a bunch

of other men’s flowers, providing of my own

only the string that ties them together.

M. de Montaigne (1533–1592)

French essayist

Although it is hardly possible to keep up with advances in technology, it is reassuring to know that in science
and engineering, development and innovation are possible through a solid understanding of basic principles.
The theory of signals and systems is one of those fundamentals, and it will be the foundation of much research
and development in engineering for years to come. Not only engineers will need to know about signals and
systems—to some degree everybody will. The pervasiveness of computers, cell phones, digital recording, and
digital communications will require it.

Learning as well as teaching signals and systems is complicated by the combination of mathematical abstraction
and concrete engineering applications. Mathematical sophistication and maturity in engineering are needed.
Thus, a course in signals and systems needs to be designed to nurture the students’ interest in applications,
but also to make them appreciate the significance of the mathematical tools. In writing this textbook, as in
teaching this material for many years, the author has found it practical to follow Einstein’s recommendation
that “Everything should be made as simple as possible, but not simpler,” and Melzak’s [47] dictum that “It is
downright sinful to teach the abstract before the concrete.” The aim of this textbook is to serve the students’
needs in learning signals and systems theory as well as to facilitate the teaching of the material for faculty by
proposing an approach that the author has found effective in his own teaching.

We consider the use of MATLAB, an essential tool in the practice of engineering, of great significance in the learn-
ing process. It not only helps to illustrate the theoretical results but makes students aware of the computational
issues that engineers face in implementing them. Some familiarity with MATLAB is beneficial but not required.

LEVEL

The material in this textbook is intended for courses in signals and systems at the junior level in electrical and
computer engineering, but it could also be used in teaching this material to mechanical engineering and bioengi-
neering students and it might be of interest to students in applied mathematics. The “student-friendly” nature
of the text also makes it useful to practicing engineers interested in learning or reviewing the basic principles of
signals and systems on their own. The material is organized so that students not only get a solid understand-
ing of the theory—through analytic examples as well as software examples using MATLAB—and learn about
applications, but also develop confidence and proficiency in the material by working on problems.

xi



xii Preface

The organization of the material in the book follows the assumption that the student has been exposed to the
theory of linear circuits, differential equations, and linear algebra, and that this material will be followed by
courses in control, communications, or digital signal processing. The content is guided by the goal of nurturing
the interest of students in applications, and of assisting them in becoming more sophisticated mathematically.
In teaching signals and systems, the author has found that students typically lack basic skills in manipulating
complex variables, in understanding differential equations, and are not yet comfortable with basic concepts in
calculus. Introducing discrete-time signals and systems makes students face new concepts that were not explored
in their calculus courses, such as summations, finite differences, and difference equations. This text attempts to
fill the gap and nurture interest in the mathematical tools.

APPROACH

In writing this text, we have taken the following approach:

1. The material is divided into three parts: introduction, theory and applications of continuous-time signals
and systems, and theory and applications of discrete-time signals and systems. To help students under-
stand the connection between continuous- and discrete-time signals and systems, the connection between
infinitesimal and finite calculus is made in the introduction part, together with a motivation as to why com-
plex numbers and functions are used in the study of signals and systems. The treatment of continuous- and
discrete-time signals and systems is then done separately in the next two parts; combining them is found to
be confusing to students. Likewise, the author believes it is important for students to understand the connec-
tions and relevance of each of the transformations used in the analysis of signals and systems so that these
transformations are seen as a progression rather than as disconnected methods. Thus, the author advocates
the presentation of the Laplace analysis followed by the Fourier analysis, and the Z-transform followed by the
discrete Fourier, and capping each of these topics with applications to communications, control, and filter-
ing. The mathematical abstraction and the applications become more sophisticated as the material unfolds,
taking advantage as needed of the background on circuits that students have.

2. An overview of the topics to be discussed in the book and how each connects with some basic mathematical
concepts—needed in the rest of the book—is given in Chapter 0 (analogous to the ground floor of a build-
ing). The emphasis is in relating summations, differences, difference equations, and sequence of numbers
with the calculus concepts that the students are familiar with, and in doing so providing a new interpreta-
tion to integrals, derivatives, differential equations, and functions of time. This chapter also links the theory
of complex numbers and functions to vectors and to phasors learned in circuit theory. Because we strongly
believe that the material in this chapter should be covered before beginning the discussion of signals and
systems, it is not relegated to an appendix but placed at the front of the book where it cannot be ignored. A
soft introduction to MATLAB is also provided in this chapter.

3. A great deal of effort has been put into making the text “student friendly.” To make sure that the student does
not miss some of the important issues presented in a section, we have inserted well-thought-out remarks—
we want to minimize the common misunderstandings we have observed from our students in the past.
Plenty of analytic examples with different levels of complexity are given to illustrate issues. Each chapter
has a set of examples in MATLAB, illustrating topics presented in the text or special issues that the student
should know. The MATLAB code is given so that students can learn by example from it. To help students
follow the mathematical derivations, we provide extra steps whenever necessary and do not skip steps that
are necessary in the understanding of a derivation. Summaries of important issues are boxed and concepts
and terms are emphasized to help students grasp the main points and terminology.

4. Without any doubt, learning the material in signals and systems requires working analytical as well as com-
putational problems. It is important to provide problems of different levels of complexity to exercise not
only basic problem-solving skills, but to achieve a level of proficiency and mathematical sophistication.
The problems at the end of the chapter are of different types, some to be done analytically, others using



Preface xiii

MATLAB, and some both. The repetitive type of problem was avoided. Some of the problems explore issues
not covered in the text but related to it. The MATLAB problems were designed so that a better understanding
of the theoretical concepts is attained by the student working them out.

5. We feel two additional features would be beneficial to students. One is the inclusion of quotations and
footnotes to present interesting ideas or historical comments, and the other is the inclusion of sidebars that
attempt to teach historical or technical information that students should be aware of. The theory of signals
and systems clearly connects with mathematics and a great number of mathematicians have contributed to
it. Likewise, there is a large number of engineers who have contributed significantly to the development and
application of signals and systems. All of them need to be recognized for their contributions, and we should
learn from their experiences.

6. Finally, other features are: (1) the design of the index of the book so that it can be used by students to find
definitions, symbols, and MATLAB functions used in the text; and (2) a list of references to the material.

CONTENT

The core of the material is presented in the second and third part of the book. The second part of the book
covers the basics of continuous-time signals and systems and illustrates their application. Because the concepts
of signals and systems are relatively new to students, we provide an extensive and complete presentation of these
topics in Chapters 1 and 2. The presentation in Chapter 1 goes from a very general characterization of signals
to very specific classes that will be used in the rest of the book. One of the aims is to familiarize students with
continuous-time as well as discrete-time signals so as to avoid confusion in their processing later on—a common
difficulty encountered by students. Chapter 1 initiates the representation of signals in terms of basic signals that
will be easily processed later with the transform methods. Chapter 2 introduces the general concept of systems,
in particular continuous-time systems. The concepts of linearity, time invariance, causality, and stability are
introduced in this chapter, trying as much as possible to use the students’ background in circuit theory. Using
linearity and time invariance, the computation of the output of a continuous-time system using the convolution
integral is introduced and illustrated with relatively simple examples. More complex examples are treated with
the Laplace transform in the following chapter.

Chapter 3 covers the basics of the Laplace transform and its application in the analysis of continuous-time
signals and systems. It introduces the student to the concept of poles and zeros, damping and frequency, and
their connection with the signal as a function of time. This chapter emphasizes the solution of differential
equations representing linear time-invariant (LTI) systems, paying special attention to transient solutions due
to their importance in control, as well as to steady-state solutions due to their importance in filtering and in
communications. The convolution integral is dealt with in time and using the Laplace transform to emphasize
the operational power of the transform. The important concept of transfer function for LTI systems and the
significance of its poles and zeros are studied in detail. Different approaches are considered in computing the
inverse Laplace transform, including MATLAB methods.

Fourier analysis of continuous-time signals and systems is covered in detail in Chapters 4 and 5. The Fourier
series analysis of periodic signals, covered in Chapter 4, is extended to the analysis of aperiodic signals resulting
in the Fourier transform of Chapter 5. The Fourier transform is useful in representing both periodic and aperi-
odic signals. Special attention is given to the connection of these methods with the Laplace transform so that,
whenever possible, known Laplace transforms can be used to compute the Fourier series coefficients and the
Fourier transform—thus avoiding integration but using the concept of the region of convergence. The concept
of frequency, the response of the system (connected to the location of poles and zeros of the transfer function),
and the steady-state response are emphasized in these chapters.

The ordering of the presentation of the Laplace and the Fourier transformations (similar to the Z-transform
and the Fourier representation of discrete-time signals) is significant for learning and teaching of the material.



xiv Preface

Our approach of presenting first the Laplace transform and then the Fourier series and Fourier transform is
justified by several reasons. For one, students coming into a signals and systems course have been familiarized
with the Laplace transform in their previous circuits or differential equations courses, and will continue using
it in control courses. So expertise in this topic is important and the learned material will stay with them longer.
Another is that a common difficulty students have in applying the Fourier series and the Fourier transform is
connected with the required integration. The Laplace transform can be used not only to sidestep the integration
but to provide a more comprehensive understanding of the frequency representation. By asking students to
consider the two-sided Laplace transform and the significance of its region of convergence, they will appreciate
better the Fourier representation as a special case of Laplace’s in many cases. More importantly, these transforms
can be seen as a continuum rather than as different transforms. It also makes theoretical sense to deal with
the Laplace representation of systems first to justify the existence of the steady-state solution considered in the
Fourier representations, which would not exist unless stability of the system is guaranteed, and stability can only
be tested using the Laplace transform. The paradigm of interest is the connection of transient and steady-state
responses that must be understood by students before they can understand the connections between Fourier and
Laplace analyses.

Chapter 6 presents applications of the Laplace and the Fourier transforms to control, communications, and fil-
tering. The intent of the chapter is to motivate interest in these areas. The chapter illustrates the significance of
the concepts of transfer function, response of systems, and stability in control, and of modulation in communi-
cations. An introduction to analog filtering is provided. Analytic as well as MATLAB examples illustrate different
applications to control, communications, and filter design.

Using the sampling theory as a bridge, the third part of the book covers the theory and illustrates the application
of discrete-time signals and systems. Chapter 7 presents the theory of sampling: the conditions under which the
signal does not lose information in the sampling process and the recovery of the analog signal from the sampled
signal. Once the basic concepts are given, the analog-to-digital and digital-to-analog converters are considered
to provide a practical understanding of the conversion of analog-to-digital and digital-to-analog signals.

Discrete-time signals and systems are discussed in Chapter 8, while Chapter 9 introduces the Z-transform.
Although the treatment of discrete-time signals and systems in Chapter 8 mirrors that of continuous-time sig-
nals and systems, special emphasis is given in this chapter to issues that are different in the two domains. Issues
such as the discrete nature of the time, the periodicity of the discrete frequency, the possible lack of periodicity
of discrete sinusoids, etc. are considered. Chapter 9 provides the basic theory of the Z-transform and how it
relates to the Laplace transform. The material in this chapter bears similarity to the one on the Laplace trans-
form in terms of operational solution of difference equations, transfer function, and the significance of poles and
zeros.

Chapter 10 presents the Fourier analysis of discrete signals and systems. Given the accumulated experience of
the students with continuous-time signals and systems, we build the discrete-time Fourier transform (DTFT) on
the Z-transform and consider special cases where the Z-transform cannot be used. The discrete Fourier transform
(DFT) is obtained from the Fourier series of discrete-time signals and sampling in frequency. The DFT will be
of great significance in digital signal processing. The computation of the DFT of periodic and aperiodic discrete-
time signals using the fast Fourier transform (FFT) is illustrated. The FFT is an efficient algorithm for computing
the DFT, and some of the basics of this algorithm are discussed in Chapter 12.

Chapter 11 introduces students to discrete filtering, thus extending the analog filtering in Chapter 6. In this
chapter we show how to use the theory of analog filters to design recursive discrete low-pass filters. Frequency
transformations are then presented to show how to obtain different types of filters from low-pass prototype
filters. The design of finite-impulse filters using the window method is considered next. Finally, the implementa-
tion of recursive and nonrecursive filters is shown using some basic techniques. By using MATLAB for the design
of recursive and nonrecursive discrete filters, it is expected that students will be motivated to pursue on their
own the use of more sophisticated filter designs.



Preface xv

Finally, Chapter 12 explores topics of interest in digital communications, computer control, and digital signal
processing. The aim of this chapter is to provide a brief presentation of topics that students could pursue after
the basic courses in signals and systems.

TEACHING USING THIS TEXT

The material in this text is intended for a two-term sequence in signals and systems: one on continuous-time
signals and systems, followed by a term in discrete-time signals and systems with a lab component using MAT-
LAB. These two courses would cover most of the chapters in the text with various degrees of depth, depending
on the emphasis the faculty would like to give to the course. As indicated, Chapter 0 was written as a necessary
introduction to the rest of the material, but does not need to be covered in great detail—students can refer to it as
needed. Chapters 6 and 11 need to be considered together if the emphasis on applications is in filter design. The
control, communications, and digital signal processing material in Chapters 6 and 12 can be used to motivate
students toward those areas.

TO THE STUDENT

It is important for you to understand the features of this book, so you can take advantage of them to learn the
material:

1. Refer as often as necessary to the material in Chapter 0 to review or to learn the mathematical background;
to understand the overall structure of the material; or to review or learn MATLAB as it applies to signal
processing.

2. As you will see, the complexity of the material grows as it develops. The material in part three has been
written assuming good understanding of the material in the first two. See also the connection of the material
with applications in your own areas of interest.

3. To help you learn the material, clear and concise results are emphasized by putting them in boxes. Justi-
fication of these results is then given, complemented with remarks regarding issues that need a bit more
clarification, and illustrated with plenty of analytic and computational examples. Important terms are
emphasized throughout the text. Tables provide a good summary of properties and formulas.

4. A heading is used in each of the problems at the end of the chapters, indicating how it relates to specific
topics and if it requires to use MATLAB to solve it.

5. One of the objectives of this text is to help you learn MATLAB, as it applies to signal and systems, on your
own. This is done by providing the soft introduction to MATLAB in Chapter 0, and then by showing examples
using simple code in each of the chapters. You will notice that in the first two parts basic components of
MATLAB (scripts, functions, plotting, etc.) are given in more detail than in part three. It is assumed you are
very proficient by then to supply that on your own.

6. Finally, notice the footnotes, the vignettes, and the historical sidebars that have been included to provide a
glance at the background in which the theory and practice of signals and systems have developed.



Acknowledgments

I would like to acknowledge with gratitude the support and efforts of many people who made the writing of this text

possible. First, to my family—my wife Cathy, my children William, Camila, and Juan, and their own families—many

thanks for their support and encouragement despite being deprived of my attention. To my academic mentor, Professor

Eliahu I. Jury, a deep sense of gratitude for his teachings and for having inculcated in me the love for a scholarly career

and for the theory and practice of signals and systems. Thanks to Professor William Stanchina, chair of the Department

of Electrical and Computer Engineering at the University of Pittsburgh, for his encouragement and support that made

it possible to dedicate time to the project. Sincere thanks to Seda Senay and Mircea Lupus, graduate students in my

department. Their contribution to the painful editing and proofreading of the manuscript, and the generation of the

solution manual (especially from Ms. Senay) are much appreciated. Equally, thanks to the publisher and its editors, in

particular to Joe Hayton and Steve Merken, for their patience, advising, and help with the publishing issues. Thanks

also to Sarah Binns for her help with the final editing of the manuscript. Equally, I would like to thank Professor James

Rowland from the University of Kansas and the following reviewers for providing significant input and changes to

the manuscript: Dimitrie Popescu, Old Dominion University; Hossein Hakim, Worcester Polytechnic Institute; Mark

Budnik, Valparaiso University; Periasamy Rajan, Tennessee Tech University; and Mohamed Zohdy, Oakland University.

Thanks to my colleagues Amro El-Jaroudi and Juan Manfredi for their early comments and suggestions.

Lastly, I feel indebted to the many students I have had in my courses in signals and systems over the years I have

been teaching this material in the Department of Electrical and Computer Engineering at the University of Pittsburgh.

Unknown to them, they contributed to my impetus to write a book that I felt would make the teaching of signals and

systems more accessible and fun to future students in and outside the university.

RESOURCES THAT ACCOMPANY THIS BOOK

A companion website containing downloadable MATLAB code for the worked examples in the book is available at:

http://booksite.academicpress.com/chaparro

For instructors, a solutions manual and image bank containing electronic versions of figures from the book are

available by registering at:

www.textbooks.elsevier.com

Also Available for Use with This Book – Elsevier Online Testing

Web-based testing and assessment feature that allows instructors to create online tests and assignments which

automatically assess student responses and performance, providing them with immediate feedback. Elsevier’s

online testing includes a selection of algorithmic questions, giving instructors the ability to create virtually unlim-

ited variations of the same problem. Contact your local sales representative for additional information, or visit

http://booksite.academicpress.com/chaparro/ to view a demo chapter.

xvi



1PART

Introduction



This page intentionally left blank



CHAPTER 0

From the Ground Up!

In theory there is no difference

between theory and practice.

In practice there is.

Lawrence “Yogi” Berra, 1925

New York Yankees baseball player

This chapter provides an overview of the material in the book and highlights the mathematical back-

ground needed to understand the analysis of signals and systems. We consider a signal a function of

time (or space if it is an image, or of time and space if it is a video signal), just like the voltages or

currents encountered in circuits. A system is any device described by a mathematical model, just like

the differential equations obtained for a circuit composed of resistors, capacitors, and inductors.

By means of practical applications, we illustrate in this chapter the importance of the theory of signals

and systems and then proceed to connect some of the concepts of integro-differential Calculus with

more concrete mathematics (from the computational point of view, i.e., using computers). A brief

review of complex variables and their connection with the dynamics of systems follows. We end this

chapter with a soft introduction to MATLAB, a widely used high-level computational tool for analysis

and design.

Significantly, we have called this Chapter 0, because it is the ground floor for the rest of the material

in the book. Not everything in this chapter has to be understood in a first reading, but we hope that

as you go through the rest of the chapters in the book you will get to appreciate that the material in

this chapter is the foundation of the book, and as such you should revisit it as often as needed.

0.1 SIGNALS AND SYSTEMS AND DIGITAL TECHNOLOGIES

In our modern world, signals of all kinds emanate from different types of devices—radios and TVs,

cell phones, global positioning systems (GPSs), radars, and sonars. These systems allow us to com-

municate messages, to control processes, and to sense or measure signals. In the last 60 years, with

the advent of the transistor, the digital computer, and the theoretical fundamentals of digital signal

Signals and Systems Using MATLAB➤. DOI: 10.1016/B978-0-12-374716-7.00002-8

c© 2011, Elsevier Inc. All rights reserved. 3



4 CHAPTER 0: From the Ground Up!

processing, the trend has been toward digital representation and processing of data, most of which

are in analog form. Such a trend highlights the importance of learning how to represent signals in

analog as well as in digital forms and how to model and design systems capable of dealing with

different types of signals.

1948

The year 1948 is considered the birth year of technologies and theories responsible for the spectacular advances in com-

munications, control, and biomedical engineering since then. In June 1948, Bell Telephone Laboratories announced the

invention of the transistor. Later that month, a prototype computer built at Manchester University in the United Kingdom

became the first operational stored-program computer. Also in that year, many fundamental theoretical results were pub-

lished: Claude Shannon’s mathematical theory of communications, Richard W. Hamming’s theory on error-correcting codes,

and Norbert Wiener’s Cybernetics comparing biological systems with communication and control systems [51].

Digital signal processing advances have gone hand-in-hand with progress in electronics and comput-

ers. In 1965, Gordon Moore, one of the founders of Intel, envisioned that the number of transistors

on a chip would double about every two years [35]. Intel, the largest chip manufacturer in the world,

has kept that pace for 40 years. But at the same time, the speed of the central processing unit (CPU)

chips in desktop personal computers has dramatically increased. Consider the well-known Pentium

group of chips (the Pentium Pro and the Pentium I to IV) introduced in the 1990s [34]. Figure 0.1

shows the range of speeds of these chips at the time of their introduction into the market, as well as

the number of transistors on each of these chips. In five years, 1995 to 2000, the speed increased by

a factor of 10 while the number of transistors went from 5.5 million to 42 million.

FIGURE 0.1

The Intel Pentium CPU chips. (a) Range of

CPU speeds in MHz for the Pentium Pro

(1995), Pentium II (1997), Pentium III (1999),

and Pentium IV (2000). (b) Number of

transistors (in millions) on each of the above

chips. (Pentium data taken from [34].)

✶��✁ ✶��✂ ✶��� ✷✄✄✄
✄

✶✄✄✄

✷✄✄✄

▼
☎
✆

❨✝✞✟

✭✞✠

✭✡✠

✶��✁ ✶��☛ ✶��✂ ✶��☞ ✶��� ✷✄✄✄

✶✄

✷✄

✸✄

✹✄

▼
✌✍
✍✌
✎
✏
✑✒
✓
✏
✔
✌✔
✑✎
✒✔

❨✝✞✟



0.2 Examples of Signal Processing Applications 5

Advances in digital electronics and in computer engineering in the past 60 years have permitted the

proliferation of digital technologies. Digital hardware and software process signals from cell phones,

high-definition television (HDTV) receivers, radars, and sonars. The use of digital signal processors

(DSPs) and more recently of field-programmable gate arrays (FPGAs) have been replacing the use of

application-specific integrated circuits (ASICs) in industrial, medical, and military applications.

It is clear that digital technologies are here to stay. Today, digital transmission of voice, data, and video is

common, and so is computer control. The abundance of algorithms for processing signals, and the pervasive

presence of DSPs and FPGAs in thousands of applications make digital signal processing theory a necessary

tool not only for engineers but for anybody who would be dealing with digital data; soon, that will be every-

body! This book serves as an introduction to the theory of signals and systems—a necessary first step in the

road toward understanding digital signal processing.

DSPs and FPGAs

A digital signal processor (DSP) is an optimized microprocessor used in real-time signal processing applications [67]. DSPs

are typically embedded in larger systems (e.g., a desktop computer) handling general-purpose tasks. A DSP system typically

consists of a processor, memory, analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The main

difference with typical microprocessors is they are faster. A field-programmable gate array (FPGA) [77] is a semiconductor

device containing programmable logic blocks that can be programmed to perform certain functions, and programmable

interconnects. Although FPGAs are slower than their application-specific integrated circuits (ASICs) counterparts and use

more power, their advantages include a shorter time to design and the ability to be reprogrammed.

0.2 EXAMPLES OF SIGNAL PROCESSING APPLICATIONS

The theory of signals and systems connects directly, among others, with communications, control,

and biomedical engineering, and indirectly with mathematics and computer engineering. With the

availability of digital technologies for processing signals, it is tempting to believe there is no need

to understand their connection with analog technologies. It is precisely the opposite is illustrated

by considering the following three interesting applications: the compact-disc (CD) player, software-

defined radio and cognitive radio, and computer-controlled systems.

0.2.1 Compact-Disc Player

Compact discs [9] were first produced in Germany in 1982. Recorded voltage variations over time due

to an acoustic sound is called an analog signal given its similarity with the differences in air pressure

generated by the sound waves over time. Audio CDs and CD players illustrate best the conversion

of a binary signal—unintelligible—into an intelligible analog signal. Moreover, the player is a very

interesting control system.

To store an analog audio signal (e.g., voice or music) on a CD the signal must be first sampled and

converted into a sequence of binary digits—a digital signal—by an ADC and then especially encoded

to compress the information and to avoid errors when playing the CD. In the manufacturing of a CD,



6 CHAPTER 0: From the Ground Up!

❉�✁

▲✂✄☎✆

❙☎✝✄✞✆
�❆✟✠✞

✂❛✡☛✠☞✠☎✆

❙✡☎✂✌☎✆

FIGURE 0.2

When playing a CD, the CD player follows the tracks in the disc, focusing a laser on them, as the CD is spun.

The laser shines a light that is reflected by the pits and bumps put on the surface of the disc and corresponding

to the coded digital signal from an acoustic signal. A sensor detects the reflected light and converts it into a

digital signal, which is then converted into an analog signal by the DAC. When amplified and fed to the speakers

such a signal sounds like the originally recorded acoustic signal.

pits and bumps corresponding to the ones and zeros from the quantization and encoding processes

are impressed on the surface of the disc. Such pits and bumps will be detected by the CD player and

converted back into an analog signal that approximates the original signal when the CD is played.

The transformation into an analog signal uses a DAC.

As we will see in Chapter 7, an audio signal is sampled at a rate of about 44,000 samples/second

(sec) (corresponding to a maximum frequency around 22 KHz for a typical audio signal) and each of

these samples is represented by a certain number of bits (typically 8 bits/sample). The need for stereo

sound requires that two channels be recorded. Overall, the number of bits representing the signal is

very large and needs to be compressed and especially encoded. The resulting data, in the form of pits

and bumps impressed on the CD surface, are put into a spiral track that goes from the inside to the

outside of the disc.

Besides the binary-to-analog conversion, the CD player exemplifies a very interesting control system

(see Figure 0.2). Indeed, the player must: (1) rotate the disc at different speeds depending on the

location of the track within the CD being read, (2) focus a laser and a lens system to read the pits

and bumps on the disc, and (3) move the laser to follow the track being read. To understand the

exactness required, consider that the width of the track and the high of the bumps is typically less

than a micrometer (10−6 meters or 3.937 × 10−5 inches) and a nanometer (10−9 meters or 3.937 ×
10−8 inches), respectively.

0.2.2 Software-Defined Radio and Cognitive Radio

Software-defined radio and cognitive radio are important emerging technologies in wireless commu-

nications [43]. In software-defined radio (SDR), some of the radio functions typically implemented

in hardware are converted into software [64]. By providing smart processing to SDRs, cognitive radio

(CR) will provide the flexibility needed to more efficiently use the radio frequency spectrum and to

make available new services to users. In the United States the Federal Communication Commission

(FCC), and likewise in other parts of the world the corresponding agencies, allocates the bands for



0.2 Examples of Signal Processing Applications 7

different users of the radio spectrum (commercial radio and TV, amateur radio, police, etc.). Although

most bands have been allocated, implying a scarcity of spectrum for new users, it has been found that

locally at certain times of the day the allocated spectrum is not being fully utilized. Cognitive radio

takes advantage of this.

Conventional radio systems are composed mostly of hardware, and as such cannot be easily recon-

figured. The basic premise in SDR as a wireless communication system is its ability to reconfigure

by changing the software used to implement functions typically done by hardware in a conventional

radio. In an SDR transmitter, software is used to implement different types of modulation procedures,

while ADCs and DACs are used to change from one type of signal to another. Antennas, audio ampli-

fiers, and conventional radio hardware are used to process analog signals. Typically, an SDR receiver

uses an ADC to change the analog signals from the antenna into digital signals that are processed

using software on a general-purpose processor. See Figure 0.3.

Given the need for more efficient use of the radio spectrum, cognitive radio (CR) uses SDR technology

while attempting to dynamically manage the radio spectrum. A cognitive radio monitors locally the

radio spectrum to determine regions that are not occupied by their assigned users and transmits

in those bands. If the primary user of a frequency band recommences transmission, the CR either

moves to another frequency band, or stays in the same band but decreases its transmission power

level or modulation scheme to avoid interference with the assigned user. Moreover, a CR will search

❙�✁✂✄☎

❤✂✆✂✄✝✞✟✠✂
❆✡☛ ✡✂❉✝✞�☞✌✆✝✄ ✡❆☛

❆✠✆✂✠✠✌

❙✁✂✌✍✂✄

❚✎❆✏❙✑✒❚❚✓✎

✎✓☛✓✒❘✓✎

❆✡☛ ✑✝✞�☞✌✆✝✄ ✡❆☛

✑▼✔✄✝✁❤✝✠✂

❆✠✆✂✠✠✌

FIGURE 0.3

Schematics of a voice SDR mobile two-way radio. Transmitter: The voice signal is inputted by means of

a microphone, amplified by an audio amplifier, converted into a digital signal by an ADC, and then modulated

using software, before being converted into analog by an DAC, amplified, and sent as a radio frequency signal

via an antenna. Receiver: The signal received by the antenna is processed by a superheterodyne front-end,

converted into a digital signal by an ADC before being demodulated and converted into an analog signal by a

DAC, amplified, and fed to a speaker. The modulator and demodulator blocks indicate software processing.



8 CHAPTER 0: From the Ground Up!

for network services that it can offer to its users. Thus, SDR and CR are bound to change the way we

communicate and use network services.

0.2.3 Computer-Controlled Systems

The application of computer control ranges from controlling simple systems such as a heater (e.g.,

keeping a room temperature comfortable while reducing energy consumption) or cars (e.g., con-

trolling their speed), to that of controlling rather sophisticated machines such as airplanes (e.g.,

providing automatic flight control) or chemical processes in very large systems such as oil refineries.

A significant advantage of computer control is the flexibility computers provide—rather sophisticated

control schemes can be implemented in software and adapted for different control modes.

Typically, control systems are feedback systems where the dynamic response of a system is changed to

make it follow a desirable behavior. As indicated in Figure 0.4, the plant is a system, such as a heater,

car, or airplane, or a chemical process in need of some control action so that its output (it is also

possible for a system to have several outputs) follows a reference signal (or signals). For instance, one

could think of a cruise-control system in a car that attempts to keep the speed of the car at a certain

value by controlling the gas pedal mechanism. The control action will attempt to have the output of

the system follow the desired response, despite the presence of disturbances either in the plant (e.g.,

errors in the model used for the plant) or in the sensor (e.g., measurement error). By comparing the

reference signal with the output of the sensor, and using a control law implemented in the computer,

a control action is generated to change the state of the plant and attain the desired output.

To use a computer in a control application it is necessary to transform analog signals into digital

signals so that they can be inputted into the computer, while it is also necessary that the output of

the computer be converted into an analog signal to drive an actuator (e.g., an electrical motor) to

provide an action capable of changing the state of the plant. This can be done by means of ADCs

and DACs. The sensor should also be able to act as a transducer whenever the output of the plant is

❉�✁�✂✄☎

❝✆✝✞✟✂✠✡
❉☛☞ P☎✄✌✂

❙✠✌✍✆✡

☛❉☞

☞☎✆❝❈

✰

✕

r ✭t✮

✇ ✭t✮

② ✭t✮

✈ ✭t✮

FIGURE 0.4

Computer-controlled system for an analog plant (e.g., cruise control for a car). The reference signal is r(t) (e.g.,

desired speed) and the output is y(t) (e.g., car speed). The analog signals are converted to digital signals by an

ADC, while the digital signal from the computer is converted into an analog signal (an actuator is probably

needed to control the car) by a DAC. The signals w(t) and v(t) are disturbances or noise in the plant and the

sensor (e.g., electronic noise in the sensor and undesirable vibration in the car).



0.3 Analog or Discrete? 9

of a different type than the reference. Such would be the case, for instance, if the plant output is a

temperature while the reference signal is a voltage.

0.3 ANALOG OR DISCRETE?

Infinitesimal calculus, or just plain calculus, deals with functions of one or more continuously changing

variables. Based on the representation of these functions, the concepts of derivative and integral are

developed to measure the rate of change of functions and the areas under the graphs of these

functions, or their volumes. Differential equations are then introduced to characterize dynamic

systems.

Finite calculus, on the other hand, deals with sequences. Thus, derivatives and integrals are replaced

by differences and summations, while differential equations are replaced by difference equations.

Finite calculus makes possible the computations of calculus by means of a combination of digital

computers and numerical methods—thus, finite calculus becomes the more concrete mathematics.1

Numerical methods applied to sequences permit us to approximate derivatives, integrals, and the

solution of differential equations.

In engineering, as in many areas of science, the inputs and outputs of electrical, mechanical, chemical,

and biological processes are measured as functions of time with amplitudes expressed in terms of

voltage, current, torque, pressure, etc. These functions are called analog or continuous-time signals, and

to process them with a computer they must be converted into binary sequences—or a string of ones

and zeros that is understood by the computer. Such a conversion is done in a way as to preserve as

much as possible the information contained in the original signal. Once in binary form, signals can

be processed using algorithms (coded procedures understood by computers and designed to obtain

certain desired information from the signals or to change them) in a computer or in a dedicated piece

of hardware.

In a digital computer, differentiation and integration can be done only approximately, and the solu-

tion of differential equations requires a discretization process as we will illustrate later in this chapter.

Not all signals are functions of a continuous parameter—there exist inherently discrete-time signals

that can be represented as sequences, converted into binary form, and processed by computers. For

these signals the finite calculus is the natural way of representing and processing them.

Analog or continuous-time signals are converted into binary sequences by means of an ADC, which, as we will

see, compresses the data by converting the continuous-time signal into a discrete-time signal or a sequence

of samples, each sample being represented by a string of ones and zeros giving a binary signal. Both time and

signal amplitude are made discrete in this process. Likewise, digital signals can be transformed into analog

signals by means of a DAC that uses the reverse process of the ADC. These converters are commercially

available, and it is important to learn how they work so that digital representation of analog signals is obtained

1The use of concrete, rather than abstract, mathematics was coined by Graham, Knuth, and Patashnik in Concrete Mathematics: A

Foundation for Computer Science [26]. Professor Donald Knuth from Stanford University is the the inventor of the Tex and Metafont

typesetting systems that are the precursors of Latex, the document layout system in which the original manuscript of this book was

done.



10 CHAPTER 0: From the Ground Up!

with minimal information loss. Chapters 1, 7, and 8 will provide the necessary information about continuous-

time and discrete-time signals, and show how to convert one into the other and back. The sampling theory

presented in Chapter 7 is the backbone of digital signal processing.

0.3.1 Continuous-Time and Discrete-Time Representations

There are significant differences between continuous-time and discrete-time signals as well as in their

processing. A discrete-time signal is a sequence of measurements typically made at uniform times,

while the analog signal depends continuously on time. Thus, a discrete-time signal x[n] and the

corresponding analog signal x(t) are related by a sampling process:

x[n] = x(nTs) = x(t)|t=nTs (0.1)

That is, the signal x[n] is obtained by sampling x(t) at times t = nTs, where n is an integer and Ts is

the sampling period or the time between samples. This results in a sequence,

{· · · x(−Ts) x(0) x(Ts) x(2Ts) · · · }

according to the sampling times, or equivalently

{· · · x[−1] x[0] x[1] x[2] · · · }

according to the ordering of the samples (as referenced to time 0). This process is called sampling or

discretization of an analog signal.

Clearly, by choosing a small value for Ts we could make the analog and the discrete-time signals look

very similar—almost indistinguishable—which is good, but this is at the expense of memory space

required to keep the numerous samples. If we make the value of Ts large, we improve the memory

requirements, but at the risk of losing information contained in the original signal. For instance,

consider a sinusoid obtained from a signal generator:

x(t) = 2 cos(2π t)

for 0 ≤ t ≤ 10 sec. If we sample it every Ts1 = 0.1 sec, the analog signal becomes the following

sequence:

x1[n] = x(t) |t=0.1n= 2 cos(2πn/10) 0 ≤ n ≤ 100

providing a very good approximation to the original signal. If, on the other hand, we let Ts2 = 1 sec,

then the discrete-time signal becomes

x2[n] = x(t) |t=n= 2 cos(2πn) = 2 0 ≤ n ≤ 10

See Figure 0.5. Although for Ts2 the number of samples is considerably reduced, the representation

of the original signal is very poor—it appears as if we had sampled a constant signal, and we have

thus lost information! This indicates that it is necessary to come up with a way to choose Ts so that

sampling provides not only a reasonable number of samples, but, more importantly, guarantees that

the information in the analog and the discrete-time signals remains the same.



0.3 Analog or Discrete? 11

FIGURE 0.5

Sampling an analog sinusoid

x(t) = 2 cos(2π t), 0 ≤ t ≤ 10, with two

different sampling periods,

(a) Ts1 = 0.1 sec and (b) Ts2 = 1 sec, giving

x1(0.1n) and x2(n). The sinusoid is shown

by dashed lines. Notice the similarity

between the discrete-time signal and the

analog signal when Ts1 = 0.1 sec, while

they are very different when Ts2 = 1 sec,

indicating loss of information.

✵ ✷ ✹

✭�✁

✭✂✁

✻ ✽ ✶✵

✕✄

✕☎

✵

✶

✷

✵ ✷ ✹ ✻ ✽ ✶✵

✕✄

✕☎

✵

✶

✷

t✭✆✝✞✁

①
✟
✠✡
☛☞
♥
✮

①
✌
✠♥
✮

FIGURE 0.6

Weekly closings of ACM stock for 160

weeks in 2006 to 2009. ACM is the trading

name of the stock of the imaginary

company, ACME Inc., makers of everything

you can imagine.

✍✎✎

✍✏✎

✍✑✎

✍✒✎

✍✓✎

✏✎✎

✏✏✎

✏✑✎

✏✒✎

❉
✔
✖✖
✗
✘✙

❆✚✛ ✚✜✢✣✤✥✦✣✧ ★✩✥✪ ✫✬✬✯✰✱✲✳✪ ✫✬✬✴

✏✎ ✑✎ ✒✎ ✓✎ ✍✎✎ ✍✏✎ ✍✑✎

❲✸✸✺

As indicated before, not all signals are analog; there are some that are naturally discrete. Figure 0.6

displays the weekly average of the stock price of a fictitious company, ACME. Thinking of it as a signal,

it is naturally discrete-time as it does not come from the discretization of an analog signal.

We have shown in this section the significance of the sampling period Ts in the transformation of an analog

signal into a discrete-time signal without losing information. Choosing the sampling period requires knowl-

edge of the frequency content of the signal—this is an example of the relation between time and frequency to

be presented in great detail in Chapters 4 and 5, where the Fourier representation of periodic and nonperiodic



12 CHAPTER 0: From the Ground Up!

signals is given. In Chapter 7, where we consider the problem of sampling, we will use this relation to

determine appropriate values for the sampling period.

0.3.2 Derivatives and Finite Differences

Differentiation is an operation that is approximated in finite calculus. The derivative operator

D[x(t)] = dx(t)

dt
= lim

h→0

x(t + h)− x(t)

h
(0.2)

measures the rate of change of an analog signal x(t). In finite calculus the forward finite-difference

operator

1[x(nTs)] = x((n + 1)Ts)− x(nTs) (0.3)

measures the change in the signal from one sample to the next. If we let x[n] = x(nTs), for a known

Ts, the forward finite-difference operator becomes a function of n:

1[x[n]] = x[n + 1] − x[n] (0.4)

The forward finite-difference operator measures the difference between two consecutive samples: one

in the future x((n + 1)Ts) and the other in the present x(nTs). (See Problem 0.4 for a definition of

the backward finite-difference operator.) The symbols D and 1 are called operators as they operate on

functions to give other functions. The derivative and the finite-difference operators are clearly not the

same. In the limit, we have that

dx(t)

dt
|t=nTs= lim

Ts→0

1[x(nTs)]

Ts
(0.5)

Depending on the signal and the chosen value of Ts, the finite-difference operation can be a crude or

an accurate approximation to the derivative multiplied by Ts.

Intuitively, if a signal does not change very fast with respect to time, the finite-difference approximates

well the derivative for relatively large values of Ts, but if the signal changes very fast one needs very

small values of Ts. The concept of frequency of a signal can help us understand this. We will learn that

the frequency content of a signal depends on how fast the signal varies with time; thus a constant

signal has zero frequency while a noisy signal that changes rapidly has high frequencies. Consider a

constant signal x0(t) = 2 having a derivative of zero (i.e., such a signal does not change at all with

respect to time or it is a zero-frequency signal). If we convert this signal into a discrete-time signal

using a sampling period Ts = 1 (or any other positive value), then x0[n] = 2 and so

1[x0[n]] = 2 − 2 = 0

coincides with the derivative. Consider then a signal x1(t) = t with derivative 1 (this signal changes

faster than x(t) so it has frequencies larger than zero). If we sample it using Ts = 1, then x1[n] = n

and the finite difference is

1[x1[n]] = 1[n] = (n + 1)− n = 1



0.3 Analog or Discrete? 13

which again coincides with the derivative. Finally, we consider a signal that changes faster than x(t)

and x1(t) such as x2(t) = t2. Sampling x2(t) with Ts = 1, we have x2[n] = n2 and its forward finite

difference is given by

1[x2[n]] = 1[n2] = (n + 1)2 − n2 = 2n + 1

which gives as an approximation to the derivative 1[x2[n]]/Ts = 2n + 1. The derivative of x2(t)

is 2t, which at 0 equals 0, and at 1 equals 2. On the other hand, 1[n2]/Ts equals 1 and 3 at

n = 0 and n = 1, respectively, which are different values from those of the derivative. Suppose

Ts = 0.01, so that x2[n] = x2(nTs) = (0.01n)2 = 0.0001n2. If we compute the difference for this signal

we get

1[x2(0.01n)] = 1[(0.01n)2] = (0.01n + 0.01)2 − 0.0001n2 = 10−4(2n + 1)

which gives as an approximation to the derivative 1[x2(0.01n)]/Ts = 10−2(2n + 1), or 0.01 when

n = 0 and 0.03 when n = 1 which are a lot closer to the actual values of

dx2(t)

dt
|t=0.01n = 2t |t=0.01n = 0.02n

The error now is 0.01 for each case instead of 1 as in the case when Ts = 1. Thus, whenever the

rate of change of the signal is faster, the difference gets closer to the derivative by making Ts

smaller.

It becomes clear that the faster the signal changes, the smaller the sampling period Ts should be in order to

get a better approximation of the signal and its derivative. As we will learn in Chapters 4 and 5 the frequency

content of a signal depends on the signal variation over time. A constant signal has frequency zero, while a

signal that changes very fast over time would have high frequencies. The higher the frequencies in a signal,

the more samples would be needed to represent it with no loss of information, thus requiring that Ts be

smaller.

0.3.3 Integrals and Summations

Integration is the opposite of differentiation. To see this, suppose I(t) is the integration of a

continuous signal x(t) from some time t0 to t (t0 < t),

I(t) =
t

∫

t0

x(τ )dτ (0.6)



14 CHAPTER 0: From the Ground Up!

or the sum of the area under x(t) from t0 to t. Notice that the upper bound of the integral is t so the

integrand depends on a dummy variable.2 The derivative of I(t) is

dI(t)

dt
= lim

h→0

I(t)− I(t − h)

h
= lim

h→0

1

h

t
∫

t−h

x(τ )dτ

≈ lim
h→0

x(t)+ x(t − h)

2
= x(t)

where the integral is approximated as the area of a trapezoid with sides x(t) and x(t − h) and height

h. Thus, for a continuous signal x(t),

d

dt

t
∫

t0

x(τ )dτ = x(t) (0.7)

or if using the derivative operator D[.], then its inverse D−1[.] should be the integration operator.

That is, the above equation can be written

D[D−1[x(t)]] = x(t). (0.8)

We will see in Chapter 3 a similar relation between the derivative and the integral. The Laplace trans-

form operators s and 1/s (just like D and 1/D) imply differentiation and integration in the time

domain.

Computationally, integration is implemented by sums. Consider, for instance, the integral of x(t) = t

from 0 to 10, which we know is equal to

10
∫

0

t dt = t2

2

∣

∣

10
t=0 = 50.

That is, the area of a triangle with a base of 10 and a height of 10. For Ts = 1, suppose we approximate

the signal x(t) by pulses p[n] of width Ts = 1 and height nTs = n, or pulses of area n for n = 0, . . . , 9.

This can be seen as a lower-bound approximation to the integral, as the total area of these pulses

gives a result smaller than the integral. In fact, the sum of the areas of the pulses is given by

9
∑

n=0

p[n] =
9

∑

n=0

n = 0 + 1 + 2 + · · · 9 = 0.5

[

9
∑

n=0

n +
0

∑

k=9

k

]

= 0.5

[

9
∑

n=0

n +
9

∑

n=0

(9 − n)

]

= 9

2

9
∑

n=0

1 = 10 × 9

2
= 45

2The integral I(t) is a function of t and as such the integrand needs to be expressed in terms of a so-called dummy variable τ that takes

values from t0 to t in the integration. It would be confusing to let the integration variable be t. The variable τ is called a dummy variable

because it is not crucial to the integration; any other variable could be used with no effect on the integration.



0.3 Analog or Discrete? 15

FIGURE 0.7

Approximation of area under

x(t) = t, t ≥ 0, 0 otherwise, by pulses of

width 1 and height nTs, where Ts = 1 and

n = 0, 1, . . .

✵ ✷ ✹ ✻ ✽ ✶✵

✵

✷

✹

✻

✽

✶✵

t

�✱
✥

t

The approximation of the area using Ts = 1 is very poor (see Figure 0.7). In the above, we used the

fact that the sum is not changed whether we add the numbers from 0 to 9 or backwards from 9 to 0,

and that doubling the sum and dividing by 2 would not change the final answer. The above sum can

thus be generalized to

N−1
∑

n=0

n = 1

2

[

N−1
∑

n=0

n +
N−1
∑

n=0

(N − 1 − n)

]

= 1

2

N−1
∑

n=0

(N − 1)

= N × (N − 1)

2
(0.9)

a result that Gauss found out when he was a preschooler!3

To improve the approximation of the integral we use Ts = 10−3, which gives a discretized signal nTs

for 0 ≤ nTs < 10 or 0 ≤ n ≤ (10/Ts)− 1. The area of the pulses is nT2
s and the approximation to the

integral is then

104−1
∑

n=0

p[n] =
104−1
∑

n=0

n10−6

= 104 × (104 − 1)

106 × 2

= 49.995

3Carl Friedrich Gauss (1777–1855) was a German mathematician. He was seven years old when he amazed his teachers with his trick

for adding the numbers from 1 to 100 [7]. Gauss is one of the most accomplished mathematicians of all times [2]. He is in a group of

selected mathematicians and scientists whose pictures appear in the currency of a country. His picture was on the Mark, the previous

currency of Germany [6].



16 CHAPTER 0: From the Ground Up!

which is a lot better result. In general, we have that the integral can be computed quite accurately

using a very small value of Ts, indeed

(10/Ts)−1
∑

n=0

p[n] =
(10/Ts)−1

∑

n=0

nT2
s

= T2
s

(10/Ts)× ((10/Ts)− 1)

2

= 10 × (10 − Ts)

2

which for very small values of Ts (so that 10 − Ts ≈ 10) gives 100/2 = 50, as desired.

Derivatives and integrals take us into the processing of signals by systems. Once a mathematical model for a

dynamic system is obtained, typically differential equations characterize the relation between the input and

output variable or variables of the system. A significant subclass of systems (used as a valid approximation in

some way to actual systems) is given by linear differential equations with constant coefficients. The solution

of these equations can be efficiently found by means of the Laplace transform, which converts them into

algebraic equations that are much easier to solve. The Laplace transform is covered in Chapter 3, in part to

facilitate the analysis of analog signals and systems early in the learning process, but also so that it can be

related to the Fourier theory of Chapters 4 and 5. Likewise for the analysis of discrete-time signals and systems

we present in Chapter 9 the Z-transform, having analogous properties to those from the Laplace transform,

before the Fourier analysis of those signals and systems.

0.3.4 Differential and Difference Equations

A differential equation characterizes the dynamics of a continuous-time system, or the way the system

responds to inputs over time. There are different types of differential equations, corresponding to

different systems. Most systems are characterized by nonlinear, time-dependent coefficient differential

equations. The analytic solution of these equations is rather complicated. To simplify the analysis,

these equations are locally approximated as linear constant-coefficient differential equations.

Solution of differential equations can be obtained by means of analog and digital computers. An

electronic analog computer consists of operational amplifiers (op-amps), resistors, capacitors, voltage

sources, and relays. Using the linearized model of the op-amps, resistors, and capacitors it is possible

to realize integrators to solve a differential equation. Relays are used to set the initial conditions on

the capacitors, and the voltage source gives the input signal. Although this arrangement permits the

solution of differential equations, its drawback is the storage of the solution, which can be seen with

an oscilloscope but is difficult to record. Hybrid computers were suggested as a solution—the analog

computer is assisted by a digital component that stores the data. Both analog and hybrid computers

have gone the way of the dinosaurs, and it is digital computers aided by numerical methods that are

used now to solve differential equations.

Before going into the numerical solution provided by digital computers, let us consider why inte-

grators are needed in the solution of differential equations. A first-order (the highest derivative

present in the equation); linear (no nonlinear functions of the input or the output are present) with



0.3 Analog or Discrete? 17

FIGURE 0.8

RC circuit.

✰

❾
✈✐✭t ✮ ✶✂

✶❋ �✭t✮

FIGURE 0.9

Realization of first-order differential equation using

(a) a differentiator and (b) an integrator. ✁✄☎ ✁✆☎

✝✞✁✟ ☎

✠
✕

❞✝❝✁✟ ☎
❞✟

✝❝✁✟ ☎

❞ ✁✡☎
❞✟

✝✞✁✟ ☎

✠
✕

❞✝❝✁✟ ☎
❞✟ ✝❝✁✟ ☎

☛ ✁✡☎❞✟

constant-coefficient differential equations obtained from a simple RC circuit (Figure 0.8) with a con-

stant voltage source vi(t) as input and with resistor R = 1�; and capacitor C = 1 F (with huge plates!)

connected in series is given by

vi(t) = vc(t)+ dvc(t)

dt
(0.10)

with an initial voltage vc(0) across the capacitor.

Intuitively, in this circuit the capacitor starts with an initial charge of vc(0), and will continue charging

until it reaches saturation, at which point no more charge will flow (the current across the resistor and

the capacitor is zero). Therefore, the voltage across the capacitor is equal to the voltage source–that

is, the capacitor is acting as an open circuit given that the source is constant.

Suppose, ideally, that we have available devices that can perform differentiation. There is then the

tendency to propose that the differential equation (Eq. 0.10) be solved following the block diagram

shown in Figure (0.9). Although nothing is wrong analytically, the problem with this approach is that

in practice most signals are noisy (each device produces electronic noise) and the noise present in the

signal may cause large derivative values given its rapidly changing amplitudes. Thus, the realization

of the differential equation using differentiators is prone to being very noisy (i.e., not good). Instead

of, as proposed years ago by Lord Kelvin,4 using differentiators we need to smooth out the process by

using integrators, so that the voltage across the capacitor vc(t) is obtained by integrating both sides of

Equation (0.10). Assuming that the source is switched on at time t = 0 and that the capacitor has an

initial voltage vc(0), using the inverse relation between derivatives and integrals gives

vc(t) =
t

∫

0

[vi(τ )− vc(τ )]dτ + vc(0) t ≥ 0 (0.11)

4William Thomson, Lord Kelvin, proposed in 1876 the differential analyzer, a type of analog computer capable of solving differential

equations of order 2 and higher. His brother James designed one of the first differential analyzers [78].



18 CHAPTER 0: From the Ground Up!

which is represented by the block diagram in Figure 0.9(b). Notice that the integrator also provides a

way to include the initial condition, which in this case is the initial voltage across the capacitor, vc(0).

Different from the accentuating the effect of differentiators on noise, integrators average the noise,

thus reducing its effects.

Block diagrams like the ones shown in Figure 0.9 allow us to visualize the system much better, and are

commonly used. Integrators can be efficiently implemented using operational amplifiers with resistors and

capacitors.

How to Obtain Difference Equations
Let us then show how Equation (0.10) can be solved using integration and its approximation, result-

ing in a difference equation. Using Equation (0.11) at t = t1 and t = t0 for t1 > t0, we have that

vc(t1)− vc(t0) =
t1

∫

t0

vi(τ )dτ −
t1

∫

t0

vc(τ )dτ

If we let t1 − t0 = 1t where 1t → 0 (i.e., a very small time interval), the integrals can be seen as

the area of small trapezoids of height 1t and bases vi(t1) and vi(t0) for the input source and vc(t1)

and vc(t0) for the voltage across the capacitor (see Figure 0.10). Using the formula for the area of a

trapezoid we get an approximation for the above integrals so that

vc(t1)− vc(t0) = [vi(t1)+ vi(t0)]
1t

2
− [vc(t1)+ vc(t0)]

1t

2

from which we obtain

vc(t1)

[

1 + 1t

2

]

= [vi(t1)+ vi(t0)]
1t

2
+ vc(t0)

[

1 − 1t

2

]

Assuming 1t = T, we then let t1 = nT and t0 = (n − 1)T. The above equation can be written as

vc(nT) = T

2 + T
[vi(nT)+ vi((n − 1)T)] + 2 − T

2 + T
vc((n − 1)T) n ≥ 1 (0.12)

and initial condition vc(0) = 0. This is a first-order linear difference equation with constant

coefficients approximating the differential equation characterizing the RC circuit. Letting the input

FIGURE 0.10

Approximation of area under the

curve by a trapezoid.

✈❝✭t✵✮

✈❝✭t✶✮

t ✵

✁t

t✶

t



0.3 Analog or Discrete? 19

be vi(t) = 1 for t ≥ 0, we have

vc(nT) =
{

0 n = 0
2T

2+T + 2−T
2+T vc((n − 1)T) n ≥ 1

(0.13)

The advantage of the difference equation is that it can be solved for increasing values of n using

previously computed values of vc(nT), which is called a recursive solution. For instance, letting T =
10−3, vi(t) = 1, and defining M = 2T/(2 + T), K = (2 − T)/(2 + T), we obtain

n = 0 vc(0) = 0

n = 1 vc(T) = M

n = 2 vc(2T) = M + KM = M(1 + K)

n = 3 vc(3T) = M + K(M + KM) = M(1 + K + K2)

n = 4 vc(4T) = M + KM(1 + K + K2) = M(1 + K + K2 + K3)

· · ·
The values are M = 2T/(2 + T) ≈ T = 10−3, K = (2 − T)/(2 + T) < 1, and 1 − K = M. The response

increases from the zero initial condition to a constant value, which is the effect of the dc source—the

capacitor eventually acts as an open circuit, so that the voltage across the capacitor equals that of

the input. Extrapolating from the above results it seems that in the steady-state (i.e., when nT → ∞)

we have5

vc(nT) = M

∞
∑

m=0

Km = M

1 − K
= 1

Even though this is a very simple example, it clearly illustrates that very good approximations to the

solution of differential equations can be obtained using numerical methods that are appropriate for

implementation in digital computers.

The above example shows how to solve a differential equation using integration and approximation of the

integrals to obtain a difference equation that a computer can easily solve. The integral approximation used

above is the trapezoidal rule method, which is one among many numerical methods used to solve differential

equations. Also we will see later that the above results in the bilinear transformation, which connects the

Laplace s variable with the z variable of the Z-transform, and that will be used in Chapter 11 in the design of

discrete filters.

5The infinite sum converges if |K| < 1, which is satisfied in this case. If we multiply the sum by (1 − K) we get

(1 − K)

∞
∑

m=0

Km =
∞
∑

m=0

Km −
∞
∑

m=0

Km+1

= 1 +
∞
∑

m=1

Km −
∞
∑

ℓ=1

Kℓ = 1

where we changed the variable in the second equation to ℓ = m + 1. This explains why the sum is equal to 1/(1 − K).



20 CHAPTER 0: From the Ground Up!

0.4 COMPLEX OR REAL?

Most of the theory of signals and systems is based on functions of a complex variable. Clearly, sig-

nals are functions of a real variable corresponding to time or space (if the signal is two-dimensional,

like an image) so why would one need complex numbers in processing signals? As we will see later,

time-dependent signals can be characterized by means of frequency and damping. These two charac-

teristics are given by complex variables such as s = σ + j� (where σ is the damping factor and � is

the frequency) in the representation of analog signals in the Laplace transform, or z = rejω (where r

is the damping factor and ω is the discrete frequency) in the representation of discrete-time signals in

the Z-transform. Both of these transformations will be considered in detail in Chapters 3 and 9. The

other reason for using complex variables is due to the response of systems to pure tones or sinusoids.

We will see that such response is fundamental in the analysis and synthesis of signals and systems.

We thus need a solid grasp of what is meant by complex variables and what a function of these is

all about. In this section, complex variables will be connected to vectors and phasors (which are

commonly used in the sinusoidal steady-state analysis of linear circuits).

0.4.1 Complex Numbers and Vectors

A complex number z represents any point (x, y) in a two-dimensional plane by z = x + jy, where

x = Re[z] (real part of z) is the coordinate in the x axis and y = Im[z] (imaginary part of z) is the

coordinate in the y axis. The symbol j = √−1 just indicates that z needs to have two components

to represent a point in the two-dimensional plane. Interestingly, a vector Ez that emanates from the

origin of the complex plane (0, 0) to the point (x, y) with a length

|Ez| =
√

x2 + y2 = |z| (0.14)

and an angle

θ = ∠Ez = ∠z (0.15)

also represents the point (x, y) in the plane and has the same attributes as the complex number z. The

couple (x, y) is therefore equally representable by the vector Ez or by a complex number z that can be

written in a rectangular or in a polar form,

z = x + jy = |z|ejθ (0.16)

where the magnitude |z| and the phase θ are defined in Equations (0.14) and (0.15).

It is important to understand that a rectangular plane or a polar complex plane are identical despite

the different representation of each point in the plane. Furthermore, when adding or subtracting

complex numbers the rectangular form is the appropriate one, while when multiplying or dividing

complex numbers the polar form is more advantageous. Thus, if complex numbers z = x + jy = |z|ej∠z

and v = p + jq = |v|ej∠v are added analytically, we obtain

z + v = (x + p)+ j(y + q)



0.4 Complex or Real? 21

FIGURE 0.11

(a) Representation of a complex number z by a

vector (b) addition of complex numbers z and v;

(c) integer powers of j; and (d) complex conjugate.

✭①✱ ②✮

✂

⑤③⑤

①
✭�✮

✭✁✮ ✭✄✮

②

③ ✰✈

✭☎✮

③✈

✕✶❂ ❥ ✷✱ ❥ ✻✱ ✆

✶❂ ❥ ✵✱ ❥ ✹✱ ✆

❥ ❂ ❥ ✝✱ ❥ ✺✱ ✆

✕❥ ❂ ❥ ✸✱ ❥ ✼✱ ✆

✭①✱ ②✮

✭①✱ ✕②✮

✂

✕✂

⑤③⑤

⑤③⑤

Using their polar representations requires a geometric interpretation: the addition of vectors (see

Figure 0.11). On the other hand, the multiplication of z and v is easily done using their polar

forms as

zv = |z|ej∠z|v|ej∠v = |z||v|ej(∠z+∠v)

but it requires more operations if done in the rectangular form—that is,

zv = (x + jy)(p + jq) = (xp − yq)+ j(xq + yp)

It is even more difficult to obtain a geometric interpretation. Such an interpretation will be seen

later on. Addition and subtraction as well as multiplication and division can thus be done more

efficiently by choosing the rectangular and the polar representations, respectively. Moreover, the polar

representation is also useful when finding powers of complex numbers. For the complex variable

z = |z|e∠z, we have that

zn = |z|nejn∠z

for n integer or rational. For instance, if n = 10, then z10 = |z|10ej10∠z, and if n = 3/2, then z1.5 =
(
√|z|)3ej1.5∠z. The powers of j are of special interest. Given that j = √−1 then, we have

jn = (−1)n/2 =
{

(−1)m n = 2m, n even

(−1)mj n = 2m + 1, n odd



22 CHAPTER 0: From the Ground Up!

so that j0 = 1, j1 = j, j2 = −1, j3 = −j, and so on. Letting j = 1ejπ/2, we can see that the increasing

powers of jn = 1ejnπ/2 are vectors with angles of 0 when n = 0, π/2 when n = 1, π when n = 2,

and 3π/2 when n = 3. The angles repeat for the next four values, the four after that, and so on. See

Figure 0.11.

One operation possible with complex numbers that is not possible with real numbers is complex

conjugation. Given a complex number z = x + jy = |z|ej∠z its complex conjugate is z∗ = x − jy =
|z|e−j∠z—that is, we negate the imaginary part of z or reflect its angle. This operation gives that

(i) z + z∗ = 2x or Re[z] = 0.5[z + z∗]

(ii) z − z∗ = 2jy or Im[z] = 0.5[z − z∗]

(iii) zz∗ = |z|2 or |z| =
√

zz∗

(iv)
z

z∗ = ej2∠z or ∠z = −j0.5[log(z)− log(z∗)] (0.17)

The complex conjugation provides a different approach to the division of complex numbers in rect-

angular form. This is done by making the denominator a positive real number by multiplying both

numerator and denominator by the complex conjugate of the denominator. For instance,

z = 1 + j1

3 + j4
= (1 + j1)(3 − j4)

(3 + j4)(3 − j4)
= 7 − j

9 + 16
= 7 − j

25

Finally, the conversion of complex numbers from rectangular to polar needs to be done with care,

especially when computing the angles. For instance, z = 1 + j has a vector representing in the first

quadrant of the complex plane, and its magnitude is |z| =
√

2 while the tangent of its angle θ is

tan(θ) = 1 or θ = π/4 radians. If z = −1 + j, the vector representing it is now in the second quadrant

with the same magnitude as before, but its angle is now

θ = π − tan−1(1) = 3π/4

That is, we find the angle with respect to the negative real axis and subtract it from π . Likewise, if

z = −1 − j, the magnitude does not change but the phase is now

θ = π + tan−1(1) = 5π/4

which can also be expressed as −3π/4. Finally, when z = 1 − j, the angle is −π/4 and the magnitude

remains the same. The conversion from polar to rectangular form is much easier. Indeed, given a

complex number in polar form z = |z|ejθ its real part is x = |z| cos(θ) (i.e., the projection of the vector

corresponding to z onto the real axis) and the imaginary part is y = |z| sin(θ), so that z = x + jy. For

instance, z =
√

2e3π/4 can be written as

z =
√

2 cos(3π/4)+ j
√

2 sin(3π/4) = −1 + j



0.4 Complex or Real? 23

0.4.2 Functions of a Complex Variable

Just like real-valued functions, functions of a complex variable can be defined. For instance, the

logarithm of a complex number can be written as

v = log(z) = log(|z|ejθ ) = log(|z|)+ jθ

by using the inverse connection between the exponential and the logarithmic functions. Of particular

interest in the theory of signals and systems is the exponential of complex variable z defined as

v = e z = ex+jy = exejy

It is important to mention that complex variables as well as functions of complex variables are more

general than real variables and real-valued functions. The above definition of the logarithmic function

is valid when z = x, with x a real value, and also when z = jy, a purely imaginary value. Likewise, the

exponential function for z = x is a real-valued function.

Euler’s Identity
One of the most famous equations of all times6 is

1 + ejπ = 1 + e−jπ = 0

due to one of the most prolific mathematicians of all times, Leonard Euler.7 The above equation can

be easily understood by establishing Euler’s identity, which connects the complex exponential and

sinusoids:

ejθ = cos(θ)+ j sin(θ) (0.18)

One way to verify this identity is to consider the polar representation of the complex number cos(θ)+
j sin(θ), which has a unit magnitude since

√

cos2(θ)+ sin2(θ) = 1 given the trigonometric identity

cos2(θ)+ sin2(θ) = 1. The angle of this complex number is

ψ = tan−1

[

sin(θ)

cos(θ)

]

= θ

Thus, the complex number

cos(θ)+ j sin(θ) = 1ejθ

which is Euler’s identity. Now in the case where θ = ±π the identity implies that e±jπ = −1,

explaining the famous Euler’s equation.

6A reader’s poll done by Mathematical Intelligencer named Euler’s identity the most beautiful equation in mathematics. Another poll by

Physics World in 2004 named Euler’s identity the greatest equation ever, together with Maxwell’s equations. Paul Nahin’s book Dr. Euler’s

Fabulous Formula (2006) is devoted to Euler’s identity. It states that the identity sets “the gold standard for mathematical beauty” [73].
7Leonard Euler (1707–1783) was a Swiss mathematician and physicist, student of John Bernoulli, and advisor of Joseph Lagrange. We

owe Euler the notation f (x) for functions, e for the base of natural logs, i = √−1, π for pi, 6 for sum, the finite difference notation 1,

and many more!



24 CHAPTER 0: From the Ground Up!

The relation between the complex exponentials and the sinusoidal functions is of great importance

in signals and systems analysis. Using Euler’s identity the cosine can be expressed as

cos(θ) = Re[ejθ ] = ejθ + e−jθ

2
(0.19)

while the sine is given by

sin(θ) = Im[ejθ ] = ejθ − e−jθ

2j
(0.20)

Indeed, we have

ejθ = cos(θ)+ j sin(θ)

e−jθ = cos(θ)− j sin(θ)

Adding them we get the above expression for the cosine, and subtracting the second from the first we

get the given expression for the sine. The variable θ is in radians, or in the corresponding angle in

degrees (recall that 2π radians equals 360 degrees).

These relations can be used to define the hyperbolic sinusoids as

cos( jα) = e−α + eα

2
= cosh(α) (0.21)

j sin( jα) = e−α − eα

2
= − sinh(α) (0.22)

from which the other hyperbolic functions are defined. Also, we obtain the following expression for

the real-valued exponential:

e−α = cosh(α)− sinh(α) (0.23)

Euler’s identity can also be used to find different trigonometric identities. For instance,

cos2(θ) =
[

ejθ + e−jθ

2

]2

= 1

4
[2 + ej2θ + e−j2θ ] = 1

2
+ 1

2
cos(2θ)

sin2(θ) = 1 − cos2(θ) = 1

2
− 1

2
cos(2θ)

sin(θ) cos(θ) = ejθ − e−jθ

2j

ejθ + e−jθ

2
= ej2θ − e−j2θ

4j
= 1

2
sin(2θ)

0.4.3 Phasors and Sinusoidal Steady State

A sinusoid x(t) is a periodic signal represented by

x(t) = A cos(�0t + ψ) − ∞ < t < ∞ (0.24)

where A is the amplitude, �0 = 2π f0 is the frequency in rad/sec, and ψ is the phase in radians. The

signal x(t) is defined for all values of t, and it repeats periodically with a period T0 = 1/f0 (sec), so



0.4 Complex or Real? 25

that f0 is the frequency in cycles/sec or in Hertz (Hz) (in honor of H. R. Hertz8). Given that the units

of�0 is rad/sec, then�0t has as units (rad/sec) × (sec) = (rad), which coincides with the units of the

phase ψ , and permits the computation of the cosine. If ψ = 0, then x(t) is a cosine, and if ψ = −π/2,

then x(t) is a sine.

If one knows the frequency �0 (rad/sec) in Equation (0.24), the cosine is characterized by its

amplitude and phase. This permits us to define phasors9 as complex numbers characterized by the

amplitude and the phase of a cosine signal of a certain frequency �0. That is, for a voltage signal

v(t) = A cos(�0t + ψ) the corresponding phasor is

V = Aejψ = A cos(ψ)+ jA sin(ψ) = A∠ψ (0.25)

and such that

v(t) = Re[Vej�0t] = Re[Aej(�0t+ψ)] = A cos(�0t + ψ) (0.26)

One can thus think of the voltage signal v(t) as the projection of the phasor V onto the real axis and

turning counterclockwise at a rate of �0 rad/sec. At time t = 0 the angle of the phasor is ψ . Clearly

the phasor definition is true for only one frequency, in this case �0, and it is always connected to a

cosine function.

Interestingly enough, the angle ψ can be used to differentiate cosines and sines. For instance, when

ψ = 0, the phasor V moving around at a rate of �0 generates as a projection on the real axis the

voltage signal A cos(�0t), while when ψ = −π/2, the phasor V moving around again at a rate of

�0 generates a sinusoid A sin(�0t) = A cos(�0t − π/2) as it is projected onto the real axis. This estab-

lishes the well-known fact that the sine lags the cosine by π/2 radians or 90 degrees, or that the cosine

leads the sine by π/2 radians or 90 degrees. Thus, the generation and relation of sines and cosines

can be easily obtained using the plot in Figure 0.12.

Phasors can be related to vectors. A current source, for instance,

i(t) = A cos(�0t)+ B sin(�0t)

FIGURE 0.12

Generation of sinusoids

from phasors of a

frequency �0.

❾❝�✁

❝�✁

❾✁s✂

✁s✂

✄✵

8Heinrich Rudolf Hertz was a German physicist known for being the first to demonstrate the existence of electromagnetic radiation in

1888.
9In 1883, Charles Proteus Steinmetz (1885–1923), German-American mathematician and engineer, introduced the concept of phasors

for alternating current analysis. In 1902, Steinmetz became a professor of electrophysics at Union College in Schenectady, New York.



26 CHAPTER 0: From the Ground Up!

can be expressed as

i(t) = C cos(�0t + γ )

where C and γ are to be determined (the sinusoidal components of i(t) must depend on a unique

frequency �0; if that was not the case the concept of phasors would not apply). To obtain the equiv-

alent representation, we first obtain the phasor corresponding to A cos(�0t), which is I1 = Aej0 = A,

and for B sin(�0t) the corresponding phasor is I2 = Be−jπ/2, so that

i(t) = Re[(I1 + I2)e
j�0t]

Thus, the problem has been transformed into the addition of two vectors I1 and I2, which gives a

vector

I =
√

A2 + B2e−j tan−1(B/A)

so that

i(t) = Re[Iej�0t]

= Re[
√

A2 + B2 e−j tan−1(B/A)ej�0t]

=
√

A2 + B2 cos(�0t − tan−1(B/A))

Or, an equivalent source with amplitude C =
√

A2 + B2, phase γ = − tan−1(B/A), and frequency�0–

that is, an equivalent phasor that generates i(t) and has the magnitude C, the angle γ , and rotates at

frequency �0.

In Figure 0.13 we display the result of adding two phasors (frequency f0 = 20 Hz) and the sinusoid

that is generated by the phasor I = I1 + I2 = 27.98ej30.4o
.

0.4.4 Phasor Connection

The fundamental property of a circuit made up of constant resistors, capacitors, and inductors is that

its response to a sinusoid is also a sinusoid of the same frequency in steady state. The effect of the

circuit on the input sinusoid is on its magnitude and phase and depends on the frequency of the input

sinusoid. This is due to the linear and time-invariant nature of the circuit, and can be generalized to

more complex continuous-time as well as discrete-time systems as we will see in Chapters 3, 4, 5, 9

and 10.

To illustrate the connection of phasors with dynamic systems consider a simple RC circuit (R = 1 �

and C = 1F). If the input to the circuit is a sinusoidal voltage source vi(t) = A cos(�0t) and the voltage

across the capacitor vc(t) is the output of interest, the circuit can be easily represented by the first-order

differential equation

dvc(t)

dt
+ vc(t) = vi(t)



0.4 Complex or Real? 27

✶�

✷�

✥�

✥�

✷✶�

✻�

✷✁�

✾�

✷✂�

✶✷�

✥��

✶✄�

✥✥�

✶☎� �

P✆✝✞✟✠ ✶✰P✆✝✞✟✠ ✷

✭✝✡

☛☞

✌☞

✸☞

✸☞

✌☛☞

✍☞

✌✎☞

✏☞

✌✑☞

✒✓✔

☛✌☞

✸☞☞

☛✕☞

✸✸☞

☛✖☞ ☞

☞ ☞✵☞✌ ☞✵☞✎ ☞✵☞✍ ☞✵☞✖ ☞✵☛

✒✗✔

☞✵☛✌ ☞✵☛✎ ☞✵☛✍ ☞✵☛✖ ☞✵✌
✘✎☞

✘✌☞

☞

✌☞

✎☞

FIGURE 0.13

(a) Sum of phasors I1 = 10ej0 (solid arrow) and I2 = 20e jπ/4 (dashed arrow) with the result in blue; (c) sinusoid

generated by phasor I = I1 + I2 (b).



28 CHAPTER 0: From the Ground Up!

Assume that the steady-state response of this circuit (i.e., vc(t) as t → ∞) is also a sinusoid

vc(t) = C cos(�0t + ψ)

of the same frequency as the input, with amplitude C and phase ψ to be determined. This response

must satisfy the differential equation, or

vi(t) = dvc(t)

dt
+ vc(t)

A cos(�0t) = −C�0 sin(�0t + ψ)+ C cos(�0t + ψ)

= C�0 cos(�0t + ψ + π/2)+ C cos(�0t + ψ)

= C

√

1 +�2
0 cos(�0t + ψ + tan−1(C�0/C))

Comparing the two sides of the above equation gives

C = A
√

1 +�2
0

ψ = − tan−1(�0)

for a steady-state response

vc(t) = A
√

1 +�2
0

cos(�0t − tan−1(�0)).

Comparing the steady-state response vc(t)with the input sinusoid vi(t), we see that they both have the

same frequency �0, but the amplitude and phase of the input are changed by the circuit depending

on the frequency�0. Since at each frequency the circuit responds differently, obtaining the frequency

response of the circuit will be useful not only in analysis but in the design of circuits.

The sinusoidal steady-state is obtained using phasors. Expressing the steady-state response of the

circuit as

vc(t) = Re
[

Vce
j�0t

]

where Vc = Cejψ is the corresponding phasor for vc(t), we find that

dvc(t)

dt
= dRe[Vce

j�0t]

dt
= Re

[

Vc
dej�0t

dt

]

= Re
[

j�0Vce
j�0t

]

By replacing vc(t), dvc(t)/dt, obtained above, and

vi(t) = Re
[

Vie
j�0t

]

where Vi = Aej0



0.5 Soft Introduction to MATLAB 29

in the differential equation, we obtain

Re
[

Vc(1 + j�0)e
j�0t

]

= Re
[

Aej�0t
]

so that

Vc = A

1 + j�0
= A

√

1 +�2
0

e−j tan−1(�0)

= Cejψ

and the sinusoidal steady-state response is

vc(t) = Re
[

Vce
j�0t

]

= A
√

1 +�2
0

cos(�0t − tan−1(�0))

which coincides with the response obtained above. The ratio of the output phasor Vc to the input

phasor Vi,

Vc

Vi
= 1

1 + j�0

gives the response of the circuit at frequency�0. If the frequency of the input is a generic�, changing

�0 above for � gives the frequency response for all possible frequencies.

The concepts of linearity and time invariance will be used in both continuous-time as well as discrete-time

systems, along with the Fourier representation of signals in terms of sinusoids or complex exponentials, to

simplify the analysis and to allow the design of systems. Thus, transform methods such as Laplace and the

Z-transform will be used to solve differential and difference equations in an algebraic setup. Fourier repre-

sentations will provide the frequency perspective. This is a general approach for both continuous-time and

discrete-time signals and systems. The introduction of the concept of the transfer function will provide tools

for the analysis as well as the design of linear time-invariant systems. The design of analog and discrete filters

is the most important application of these concepts. We will look into this topic in Chapters 5, 6, and 11.

0.5 SOFT INTRODUCTION TO MATLAB

MATLAB is a computing language based on vectorial computations.10 In this section, we will

introduce you to the use of MATLAB for numerical and symbolic computations.

10MATLAB stands for matrix laboratory. MatWorks, the developer of MATLAB, was founded in 1984 by Jack Little, Steve Bangert, and

Cleve Moler. Moler, a math professor at the University of New Mexico, developed the first version of MATLAB in Fortran in the late

1970s. It only had 80 functions and no M-files or toolboxes. Little and Bangert reprogrammed it in C and added M-files, toolboxes,

and more powerful graphics [49].



30 CHAPTER 0: From the Ground Up!

0.5.1 Numerical Computations

The following instructions are intended for users who have no background in MATLAB but are inter-

ested in using it in signal processing. Once you get the basic information on how to use the language

you will be able to progress on your own.

1. Create a directory where you will put your work, and from where you will start MATLAB. This is

important because when executing a program, MATLAB will look at the current directory, and if

the file is not present in the current directory, and if it is not a MATLAB function, MATLAB gives

an error indicating that it cannot find the desired program.

2. There are two types of programs in MATLAB: the script, which consists in a list of commands

using MATLAB functions or your own functions, and the functions, which are programs that can

be called with different inputs and provide the corresponding outputs. We will show examples of

both.

3. Once you start MATLAB, you will see three windows: the command window, where you will type

commands; the command history, which keeps a list of commands that have been used; and the

workspace, where the variables used are kept.

4. Your first command on the command window should be to change to your data directory where

you will keep your work. You can do this in the command window by using the command CD

(change directory) followed by the desired directory. It is also important to use the command

clear all and clf to clear all previous variables in memory and all figures.

5. Help is available in several forms in MATLAB. Just type helpwin, helpdesk, or demo to get started. If

you know the name of the function, help will give you the necessary information on the particular

function, and it will also give you information on help itself. Use help to find more about the

functions used in this introduction to MATLAB.

6. To type your scripts or functions you can use the editor provided by MATLAB; simply type edit.

You can also use any text editor to create scripts or functions, which need to be saved with the .m

extension.

Creating Vectors and Matrices
Comments are preceded by percent, and to begin a script, as the following, it is always a good idea

to clear all previous variables and all previous figures.

% matlab primer

clear all % clear all variables

clf % clear all figures

% row and column vectors

x = [ 1 2 3 4] % row vector

y = x’ % column vector

The corresponding output is as follows (notice that there is no semicolon (;) at the end of the lines

to stop MATLAB from providing an output when the above script is executed).

x =

1 2 3 4



0.5 Soft Introduction to MATLAB 31

y =

1

2

3

4

To see the dimension of x and y variables, type

whos % provides information on existing variables

to which MATLAB responds

Name Size Bytes Class

x 1x4 32 double array

y 4x1 32 double array

Grand total is 8 elements using 64 bytes

Notice that a vector is thought of as a matrix; for instance, vector x is a matrix of one row and four

columns. Another way to express the column vector y is the following, where each of the row terms

is separated by a semicolon (;)

y = [1;2;3;4] % another way to write a column

To give as before:

y =

1

2

3

4

MATLAB does not allow arguments of vectors or matrices to be zero or negative. For instance, if we

want the first entry of the vector y we need to type

y(1) % first entry of vector y

giving as output

ans =

1

If we type

y(0)

it will give us an error, to which we get the following warning:

??? Subscript indices must either be real positive integers or logicals.

MATLAB also has a peculiar way to provide information in a vector, for instance:

y(1:3) % first to third entry of column vector y



32 CHAPTER 0: From the Ground Up!

giving as expected the first to the third entries of the column vector y:

ans =

1

2

3

The following will give the third to the first entry in the row vector x (notice the difference in the two

outputs; as expected the values of y are given in a column, while the requested entries of x are given

in a row).

x(3:-1:1) % displays entries x(3) x(2) x(1)

Thus,

ans =

3 2 1

Matrices are constructed as an concatenation of rows (or columns):

A = [ 1 2; 3 4; 5 6] % matrix A with rows [1 2], [3 4] and [5 6]

A =

1 2

3 4

5 6

To create a vector corresponding to a sequence of numbers (in this case integers) there are different

approaches, as follows:

n = 0:10 % vector with entries 0 to 10 increased by 1

This approach gives the following as output:

n =

Columns 1 through 10

0 1 2 3 4 5 6 7 8 9

Column 11

10

which is the same as the command

n = [0:10]

If we wish the increment different from 1 (default value), then we indicate it as in the following:

n1 = 0:2:10 % vector with entries from 0 to 10 increased by 2

which gives

n1 =

0 2 4 6 8 10

We can combine the above vectors into one as follows:

nn1 = [n n1] % combination of vectors



0.5 Soft Introduction to MATLAB 33

to get

nn1 =

Columns 1 through 10

0 1 2 3 4 5 6 7 8 9

Columns 11 through 17

10 0 2 4 6 8 10

Vectorial Operations
MATLAB allows the conventional vectorial operations as well as facilitates others. For instance, if we

wish to multiply by 3 every entry of the row vector x given above, the command

z = 3∗x % multiplication by a constant

would give

z =

3 6 9 12

Besides the conventional multiplication of vectors with the correct dimensions, MATLAB allows two

types of multiplications of one vector by another. The first one is where the entries of one vector are

multiplied by the corresponding entries of the other. To effect this the two vectors should have the

same dimension (i.e., both should be columns or rows with the same number of entries) and it is

necessary to put a dot before the multiplication operator—that is, as shown here:

v = x.∗x % multiplication of entries of two vectors

v =

1 4 9 16

The other type of multiplication is the conventional multiplication allowed in linear algebra. For

instance, with that of a row vector by a column vector,

w = x∗x’ % multiplication of x (row vector) by x’(column vector)

w = 30

the result is a constant—in this case, the length of the row vector should coincide with that of the

column vector. If you multiply a column (say x’) of dimension 4 × 1 by a row (say x) of dimension

1 × 4 (notice that the 1s coincide at the end of the first dimension and at the beginning of the

second), the multiplication z = x′ ∗ x results in a 4 × 4 matrix.

The solution of a set of linear equations is very simple in MATLAB. To guarantee that a unique solu-

tion exists, the determinant of the matrix should be computed before inverting the matrix. If the

determinant is zero MATLAB will indicate the solution is not possible.

% Solution of linear set of equations Ax = b

A = [1 0 0; 2 2 0; 3 3 3]; % 3x3 matrix

t = det(A); % MATLAB function that calculates determinant

b = [2 2 2]’; % column vector

x = inv(A)∗b; % MATLAB function that inverts a matrix



34 CHAPTER 0: From the Ground Up!

The results of these operations are not given because of the semicolons at the end of the commands.

The following script could be used to display them:

disp(’ Ax = b’) % MATLAB function that displays the text in ’ ’

A

b

x

t

which gives

Ax = b

A =

1 0 0

2 2 0

3 3 3

b =

2

2

2

x =

2.0000

−1.0000

−0.3333

t =

6

Another way to solve this set of equations is

x = b’/A’

Try it!

MATLAB provides a fast way to obtain certain vectors/matrices; for instance,

% special vectors and matrices

x = ones(1, 10) % row of ten 1s

x =

1 1 1 1 1 1 1 1 1 1

A = ones(5, 5) % matrix of 5 x 5 1s

A =

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

x1 = [x zeros(1, 5)] % vector with previous x and 5 0s



0.5 Soft Introduction to MATLAB 35

x1 =

Columns 1 through 10

1 1 1 1 1 1 1 1 1 1

Columns 11 through 15

0 0 0 0 0

A(2:5, 2:5) = zeros(4, 4) % zeros in rows 2−5, columns 2−5

A =

1 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

y = rand(1,10) % row vector with 10 random values (uniformly

% distributed in [0,1]

y =

Columns 1 through 6

0.9501 0.2311 0.6068 0.4860 0.8913 0.7621

Columns 7 through 10

0.4565 0.0185 0.8214 0.4447

Notice that these values are between 0 and 1. When using the normal or Gaussian-distributed noise

the values can be positive or negative reals.

y1 = randn(1,10) % row vector with 10 random values

% (Gaussian distribution)

y1 =

Columns 1 through 6

−0.4326 −1.6656 0.1253 0.2877 −1.1465 1.1909

Columns 7 through 10

1.1892 −0.0376 0.3273 0.1746

Using Built-In Functions and Creating Your Own
MATLAB provides a large number of built-in functions. The following script uses some of them.

% using built-in functions

t = 0:0.01:1; % time vector from 0 to 1 with interval of 0.01

x = cos(2∗pi∗t/0.1); % cos processes each of the entries in

% vector t to get the corresponding value in vector x

% plotting the function x

figure(1) % numbers the figure

plot(t, x) % interpolated continuous plot

xlabel(’t (sec)’) % label of x-axis

ylabel(’x(t)’) % label of y-axis



36 CHAPTER 0: From the Ground Up!

% let’s hear it

sound(1000∗x, 10000)

The results are given in Figure 0.14.

To learn about any of these functions use help. In particular, use help to learn about MATLAB routines

for plotting plot and stem. Use help sound and help waveplay to learn about the sound routines available

in MATLAB. Additional related functions are put at the end of these help files. Explore all of these

and become aware of the capabilities of MATLAB. To illustrate the plotting and the sound routines,

let us create a chirp that is a sinusoid for which the frequency is varying with time.

y = sin(2∗pi∗t.ˆ2/.1); % notice the dot in the squaring

% t was defined before

sound(1000∗y, 10000) % to listen to the sinusoid

figure(2) % numbering of the figure

plot(t(1:100), y(1:100)) % plotting of 100 values of y

figure(3)

plot(t(1:100), x(1:100), ’k’, t(1:100), y(1:100), ’r’) % plotting x and y on same plot

Let us hope you were able to hear the chirp, unless you thought it was your neighbor grunting. In

this case, we plotted the first 100 values of t and y and let MATLAB choose the color for them. In the

second plot we chose the colors: black (dashed lines) for x and blue (continuous line) for the second

signal y(t) (see Figure 0.15).

Other built-in functions are sin, tan, acos, asin, atan, atan2, log, log10, exp, etc. Find out what each does

using help and obtain a listing of all the functions in the signal processing toolbox.

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎ ✶

✕✶

✕✵�✆

✵

✵�✆

✶

t ✭✝✞✟✠

①
✡☛
✮

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎ ✶

✕✶

✕✵�✆

✵

✵�✆

✶

t ✭✝✞✟✠

✭☞✠ ✭✌✠

①
✡✍
✎✍
✏
♥
✮

FIGURE 0.14

(a) Plotting of a sinusoid using plot, which gives a continuous plot, and (b) stem, which gives a discrete plot.



0.5 Soft Introduction to MATLAB 37

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎

✕✶

✕✵�✆

✵

✵�✆

✶

t✭✝✞✟✠

②
✡☛
✮

✵ ✵�✁ ✵�✂ ✵�✄ ✵�☎

✕✶

✕✵�✆

✵

✵�✆

✶

t ✭✝✞✟✠

②
✡☛
✮ ☞
①
✡☛
✮

✌ ✍✎ ✏

✑✍✎ ✏

✭✒✠ ✭✓✠

FIGURE 0.15

(a) Plotting chirp (MATLAB chooses color), (b) sinusoid and chirp (the sinusoid is plotted with dashed lines and

the chirp with solid lines).

You do not need to define π , as it is already done in MATLAB. For complex numbers also you do not

need to define the square root of −1, which for engineers is ‘j’ and for mathematicians ‘i’ (they have

no current to worry about).

% pi and j

pi

j

i

ans =

3.1416

ans =

0 + 1.0000i

ans =

0 + 1.0000i

Creating Your Own Functions
MATLAB has created a lot of functions to make our lives easier, and it allows us also to create—in the

same way—our own. The following file is for a function f with an input of a scalar x and output of a

scalar y related by a mathematical function:

function y = f(x)

y = x∗exp(−sin(x))/(1 + xˆ2);

Functions cannot be executed on their own—they need to be part of a script. If you try to execute the

above function MATLAB will give the following:

??? format compact;function y = f(x)

|
Error: A function declaration cannot appear within a script M-file.



38 CHAPTER 0: From the Ground Up!

A function is created using the word “function” and then defining the output (y), the name of the

function ( f ), and the input of the function (x), followed by lines of code defining the function, which

in this case is given by the second line. In our function the input and the output are scalars. If you

want vectors as input/output you need to do the computation in vectorial form—more later.

Once the function is created and saved (the name of the function followed by the extension .m), MAT-

LAB will include it as a possible function that can be executed within a script. If we wish to compute

the value of the function for x = 2 ( f.m should be in the working directory) we proceed as follows:

y = f (2)

gives

y = 0.1611

To compute the value of the function for a vector as input, we compute for each of the values in the

vector the corresponding output using a for loop as shown in the following.

x = 0:0.1:100; % create an input vector x

N = length(x); % find the length of x

y = zeros(1,N); % initialize the output y to zeros

for n = 1:N, % for the variable n from 1 to N, compute

y(n) = f(x(n)); % the function

end

figure(3)

plot(x, y)

grid % put a grid on the figure

title(’Function f(x)’)

xlabel(’x’)

ylabel(’y’)

This is not very efficient. A general rule in MATLAB is: Loops are to be avoided, and vectorial

computations are encouraged. The results are shown in Figure 0.16.

FIGURE 0.16

Result of using the function f (.)

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵
✵

✵�✶

✵�✷

✵�✁

✵�✹

✵�✂

✵�✻

①

②
❂
❢
✭
✄
✮



0.5 Soft Introduction to MATLAB 39

The function working on a vector x, rather than one value, takes the following form (to make it

different from the above function we let the denominator be 1 + x instead of 1 + x2):

function yy = ff(x)

% vectorial function

yy = x.∗exp(−sin(x))./(1 + x);

Again, this function must be in the working directory. Notice that the computation of yy is done

considering x a vector; the .* and ./ are indicative of this. Thus, this function will accept a vector x and

will give as output a vector yy, computed as indicated in the last line. When we use a function, the

names of the variables used in the script that calls the function do not need to coincide with the ones

in the definition of the function. Consider the following script:

z = ff(x); % x defined before,

% z instead of yy is the output of the function ff

figure(4)

plot(x, z); grid

title(’Function ff(x)’) % MATLAB function that puts title in plot

xlabel(’x’) % MATLAB function to label x-axis

ylabel(’z’) % MATLAB function to label y-axis

The difference between plot and stem is important. The function plot interpolates the vector to be plot-

ted and so the plot appears continuous, while stem simply plots the entries of the vector, separating

them uniformly. The input x and the output of the function are discrete time and we wish to plot

them as such, so we use stem.

stem(x(1:30), z(1:30))

grid

title(’Function ff(x)’)

xlabel(’x’)

ylabel(’z’)

The results are shown in Figure 0.17.

More on Plotting
There are situations where we want to plot several plots together. One can superpose two or more

plots by using hold on and hold off. To put several figures in the same plot, we can use the function

subplot. Suppose we wish to plot four figures in one plot and they could be arranged as two rows of

two figures each. We do the following:
subplot(221)

plot(x, y)

subplot(222)

plot(x, z)

subplot(223)

stem(x, y)

subplot(224)

stem(x, z)



40 CHAPTER 0: From the Ground Up!

FIGURE 0.17

Results of using the function ff(.)

(notice the difference in scale in the

x axis).

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵
✵

✵�✁

✶

✶�✁

✷

✷�✁

①

②
❂
❢❢
✭✂
✮

✄ ✄☎✆ ✝ ✝☎✆ ✞ ✞☎✆

✄

✄☎✝

✄☎✞

✄☎✟

✄☎✠

✄☎✆

✄☎✡

①

②
☛
❢❢
☞✂
✌

In the subplot function the first two numbers indicate the number of rows and the number of columns,

and the last digit refers to the order of the graph that is, 1, 2, 3, and 4 (see Figure 0.18).

There is also a way to control the values in the axis, by using the function (you guessed!) axis. This

function is especially useful after we have a graph and want to improve its looks. For instance, suppose

that the professor would like the above graphs to have the same scales in the y-axis (picky professor).

You notice that there are two scales in the y-axis, one 0-0.8 and another 0-3. To have both with the

same scale, we choose the one 0-3, and modify the above code to the following

subplot(221)

plot(x, y)

axis([0 100 0 3])

subplot(222)

plot(x, z)

axis([0 100 0 3])

subplot(223)

stem(x, y)



0.5 Soft Introduction to MATLAB 41

FIGURE 0.18

Plotting four figures in one.

✵ ✺✵ ✶✵✵
✵

✵�✺

✶

✵ ✺✵ ✶✵✵
✵

✶

✷

✸

✵ ✺✵ ✶✵✵

✵

✵�✺

✶

✵ ✺✵ ✶✵✵

✵

✶

✷

✸

axis([0 100 0 3])

subplot(224)

stem(x, z)

axis([0 100 0 3])

Saving and Loading Data
In many situations you would like to either save some data or load some data. The following is one

way to do it. Suppose you want to build and save a table of sine values for angles between 0 and

360 degrees in intervals of 3 degrees. This can be done as follows:

x = 0:3:360;

y = sin(x∗pi/180); % sine computes the argument in radians

xy = [x’ y’]; % vector with 2 columns one for x’

% and another for y’

Let’s now save these values in a file “sine.mat” by using the function save (use help save to learn more):

save sine.mat xy

To load the table, we use the function load with the name given to the saved table “sine” (the extension

*.mat is not needed). The following script illustrates this:

clear all

load sine

whos



42 CHAPTER 0: From the Ground Up!

where we use whos to check its size:

Name Size Bytes Class

xy 121x2 1936 double array

Grand total is 242 elements using 1936 bytes

This indicates that the array xy has 121 rows and 2 columns, the first colum corresponding to x, the

degree values, and the second column corresponding to the sine values, y. Verify this and plot the

values by using

x = xy(:, 1);

y = xy(:, 2);

stem(x, y)

Finally, MATLAB provides some data files for experimentation and you only need to load them. The

following “train.mat” is the recording of a train whistle, sampled at the rate of Fs samples/sec, which

accompanies the sampled signal y(n) (see Figure 0.19).

clear all

load train

whos

Name Size Bytes Class

Fs 1x1 8 double array

y 12880x1 103040 double array

Grand total is 12881 elements using 103048 bytes

sound(y, Fs)

plot(y)

FIGURE 0.19

Train signal.

✵ ✷✵✵✵ ✹✵✵✵ ✻✵✵✵ ✽✵✵✵ ✶✵✵✵✵ ✶✷✵✵✵

✕✶

✕✵�✁

✵

✵�✁

✶

♥ ✥✂✄☎✆✝✞✂✟

②
❬✠
❪



0.5 Soft Introduction to MATLAB 43

FIGURE 0.20

Clown in gray scale. ♥

♠

✺� ✶�� ✶✺� ✷�� ✷✺� ✸��

✷�

✹�

✻�

✽�

✶��

✶✷�

✶✹�

✶✻�

✶✽�

✷��

MATLAB also provides two-dimensional signals, or images, such as “clown.mat,” a 200 × 320 pixels

image.

clear all

load clown

whos

Name Size Bytes Class

X 200x320 512000 double array

caption 2x1 4 char array

map 81x3 1944 double array

Grand total is 64245 elements using 513948 bytes

We can display this image in gray levels by using the following script (see Figure 0.20):

colormap(’gray’)

imagesc(X)

Or in color using

colormap(’hot’)

imagesc(X)

0.5.2 Symbolic Computations

We have considered the numerical capabilities of MATLAB, by which numerical data are transformed

into numerical data. There will be many situations when we would like to do algebraic or calculus

operations resulting in terms of variables rather than numerical data. For instance, we might want

to find a formula to solve quadratic algebraic equations, to find a difficult integral, or to obtain the

Laplace or the Fourier transform of a signal. For those cases MATLAB provides the Symbolic Math

Toolbox, which uses the interface between MATLAB and MAPLE, a symbolic computing system. In

this section, we provide you with an introduction to symbolic computations by means of examples,

and hope to get you interested in learning more on your own.



44 CHAPTER 0: From the Ground Up!

Derivatives and Differences
The following script compares symbolic with numeric computations of the derivative of a chirp signal

(a sinusoid with changing frequency) y(t) = cos(t2), which is

z(t) = dy(t)

dt
= −2t sin(t2)

clf; clear all

% symbolic

syms t y z % define the symbolic variables

y = cos(tˆ2) % chirp signal -- notice no . before ˆ since t is no vector

z = diff(y) % derivative

figure(1)

subplot(211)

ezplot(y, [0, 2∗pi]);grid % plotting for symbolic y between 0 and 2∗pi

hold on

subplot(212)

ezplot(z, [0, 2∗pi]);grid

hold on

%numeric

Ts = 0.1; % sampling period

t1 = 0:Ts:2∗pi; % sampled time

y1 = cos(t1.ˆ2); % sampled signal --notice difference with y above

z1 = diff(y1)./diff(t1); % difference -- approximation to derivative

figure(1)

subplot(211)

stem(t1, y1, ’r’);axis([0 2∗pi 1.1∗min(y1) 1.1∗max(y1)])

subplot(212)

stem(t1(1:length(y1) - 1), z1, ’r’);axis([0 2∗pi 1.1∗min(z1) 1.1∗max(z1)])

legend(’Derivative (black)’,’Difference (blue)’)

hold off

The symbolic function syms defines the symbolic variables (use help syms to learn more). The signal

y(t) is written differently than y1(t) in the numeric computation. Since t1 is a vector, squaring it

requires a dot before the symbol. That is not the case for t, which is not a vector but a variable. The

results of using diff to compute the derivative of y(t) is given in the same form as you would have

obtained doing the derivative by hand—that is,

y = cos(tˆ2)

z = −2∗t∗sin(tˆ2)

The symbolic toolbox provides its own graphic routines (use help to learn about the different ez-

routines). For plotting y(t) and z(t), we use the function ezplot, which plots the above two functions

for t ∈ [0, 2π] and titles the plots with these functions.

The numeric computations differ from the symbolic in that vectors are being processed, and we are

obtaining an approximation to the derivative z(t). We sample the signal with Ts = 0.1 and use again



0.5 Soft Introduction to MATLAB 45

✵ ✶ ✷ ✸ ✹ ✺ ✻

⑧✶

⑧✵�✺

✵

✵�✺

✶

t

❝✁✂✭t
✄
✮

✭☎✮

✭✆✮

✵ ✶ ✷ ✸ ✹ ✺ ✻

⑧✶✵

⑧✺

✵

✺

✶✵

t

⑧✷ ✂✝✞✭t
✄
✮ t

❉✟✠✡☛☞✌✡☛✟ ✍✎✏☞✑✒✓

❉✡✔✔✟✠✟✕✑✟ ✍✎✏✖✟✓

FIGURE 0.21

Symbolic and numeric computation of the derivative of the chirp y(t) = cos(t2). (a) y(t) and the sampled signal

y(nTs), Ts = 0.1 sec. (b) Displays the exact derivative (continuous line) and the approximation of the derivative at

samples nTs. Better approximation to the derivative can be obtained by using a smaller value of Ts.

the function diff to approximate the derivative (the denominator diff(t1) is the same as Ts). Plot-

ting the exact derivative (continuous line) with the approximated one (samples) using stem clarifies

that the numeric computation is an approximation at nTs values of time. See Figure 0.21.

The Sinc Function and Integration
The sinc function is very significant in the theory of signals and systems. It is defined as

y(t) = sinπ t

π t
−∞ < t < ∞

It is symmetric with respect to the origin, and defined from −∞ to ∞. The value of y(0) can be found

using L’Hôpital’s rule. We will see later (Parseval’s result in Chapter 5) that the integral of y2(t) is



46 CHAPTER 0: From the Ground Up!

equal to 1. In the following script we are combining numeric and symbolic computations to show

this. First, after defining the variables, we use the symbolic function int to compute the integral of the

squared sinc function, with respect to t, from 0 to integer values 1 ≤ k ≤ 10. We then use the function

subs to convert the symbolic results into a numerical array zz. The numeric part of the script defines

a vector y to have the values of the sinc function for 100 time values equally spaced between [−4, 4],

obtained using the function linspace. We then use plot and stem to plot the sinc and the values of the

integrals, which as seen in Figure 0.22 reach a value close to unity in less than 10 steps. Please use

help to learn more about each of these functions.

clf; clear all

% symbolic

syms t z

for k = 1:10,

✕✹ ✕✸ ✕✷ ✕✶ ✵

✭�✁

✭✂✁

✶ ✷ ✸ ✹

✵

✵✄☎

✶

t

✶ ✷ ✸ ✹ ☎ ✆ ✝ ✞ ✟ ✶✵
✵

✵✄✷

✵✄✹

✵✄✆

✵✄✞

✶

♥

FIGURE 0.22

(a) Computation of the integral of the squared sinc function (b) Illustrates that the area under the curve of this

function, or its integral, is unity. Using the symmetry of the function only the integral for t ≥ 0 needs to be

computed.



0.5 Soft Introduction to MATLAB 47

z = int(sinc(t)ˆ2, t, 0, k); % integral of sincˆ2 from 0 to k

zz(k) = subs(2∗z); % substitution to numeric value zz

end

% numeric

t1 = linspace(−4, 4); % 100 equally spaced points in [-4,4]

y = sinc(t1).ˆ2; % numeric definition of the squared sinc function

n = 1:10;

figure(1)

subplot(211)

plot(t1, y);grid;axis([−4 4 −0.2 1.1∗max(y)]);title(’y(t)=sincˆ2(t)’);

xlabel(’t’)

subplot(212)

stem(n(1:10), zz(1:10)); hold on

plot(n(1:10), zz(1:10), ’r’);grid;title(’
∫

y(τ ) dτ ’); hold off

axis([1 10 0 1.1*max(zz)]); xlabel(’n’)

Figure 0.22 shows the squared sinc function and the values of the integral

2

k
∫

0

sinc2(t)dt = 2

k
∫

0

[

sin(π t)

π t

]2

dt k = 1, . . . , 10

which quickly reaches the final value of unity. In computing the integral from (−∞, ∞) we are using

the symmetry of the function and thus the multiplication by 2.

Chebyshev Polynomials and Lissajous Figures
The Chebyshev polynomials are used in the design of filters. They can be obtained by plotting two

cosine functions as they change with time t, one of fix frequency and the other with increasing

frequency:

x(t) = cos(2π t)

y(t) = cos(2πkt) k = 1, . . . , N

The x(t) gives the x axis coordinate and y(t) the y axis coordinate at each value of t. If we solve for t in

the top equation, we get

t = 1

2π
cos−1(x(t))

which then replaced in the bottom equation gives

y(t) = cos
[

k cos−1(x(t))
]

k = 1, . . . , N

as an expression for the Chebyshev polynomials (we will see in Chapter 6 that these equations can

be expressed as regular polynomials). Figure 0.23 shows the Chebyshev polynomials for N = 4. The

following script is used to compute and plot these polynomials.



48 CHAPTER 0: From the Ground Up!

✤✶ ✵ ✶

✤✵�✁

✵

✵�✁

✶

①

②

✂ ❂❝✄☎✭✆✝t✮✞ ✟ ❂❝✄☎✭✆✝t✮ ✂ ❂❝✄☎✭✆✝t✮✞ ✟ ❂❝✄☎✭✠✝t✮

✂❂❝✄☎✭✆✝t✮✞ ✟❂❝✄☎✭✡✝t✮✂❂❝✄☎✭✆✝t✮✞ ✟❂❝✄☎✭☛✝t✮

✤✶ ✵ ✶

✤✵�✁

✵

✵�✁

✶

①

②

✤✶ ✵ ✶

✤✵�✁

✵

✵�✁

✶

①

②

✤✶ ✵ ✶

✤✵�✁

✵

✵�✁

✶

①

☞✌✍ ☞✎✍

☞✏✍ ☞✑✍

②

FIGURE 0.23

The Chebyshev polynomials for n = 1, 2, 3, 4. First (a) to fourth (d) polynomials. Notice that these polynomials

are defined between [−1, 1] in the x axis.

clear all;clf

syms x y t

x = cos(2∗pi∗t); theta=0;

figure(1)

for k = 1:4,

y = cos(2∗pi∗k∗t + theta);

if k == 1, subplot(221)

elseif k == 2, subplot(222)

elseif k == 3, subplot(223)

else subplot(224)

end

ezplot(x, y);grid;hold on

end

hold off



0.5 Soft Introduction to MATLAB 49

✕✶ ✕✵�✁ ✵ ✵�✁ ✶

✕✵�✁

✵

✵�✁

✶

①

②

✕✵�✁ ✵ ✵�✁ ✶

✕✵�✂
✕✵�✄
✕✵�☎

✵
✵�☎
✵�✄
✵�✂

①

②

✆ ❂ ❝✝✞✭✷✟t✮✠ ✡ ❂ ☛☞✷ ❝✝✞✭✷✟t ✰☛☞✌✟✮

✕✵�✁ ✵ ✵�✁ ✶

✕✵�✂
✕✵�✄
✕✵�☎

✵
✵�☎
✵�✄
✵�✂

①

②

✆ ❂ ❝✝✞✭✷✟t✮✠ ✡ ❂ ✍☛☞✌ ✞✎✏✭✷✟t✮

✕✵�✁ ✵ ✵�✁ ✶

✕✵�✂
✕✵�✄
✕✵�☎

✵
✵�☎
✵�✄
✵�✂

①

②

✆ ❂ ❝✝✞✭✷✟t✮✠ ✡ ❂ ✍☛☞✑ ✞✎✏✭✷✟t ✰☛☞✌✟✮

✒✓✔ ✒✖✔

✕✶ ✕✵�✁ ✵ ✵�✁ ✶

✕✵�✁

✵

✵�✁

✶

①

②

✆ ❂❝✝✞✭✷✟t✮✠ ✡❂❝✝✞✭✷✟t✮ ✆ ❂ ❝✝✞✭✷✟t✮✠ ✡ ❂ ❝✝✞✭✷✟t✮

✆ ❂❝✝✞✭✷✟t✮✠ ✡❂✍✞✎✏✭✷✟t✮

✕✶ ✕✵�✁ ✵ ✵�✁ ✶

✕✵�✁

✵

✵�✁

①

②

✆ ❂ ❝✝✞✭✷✟t✮✠ ✡ ❂ ❝✝✞✭✷✟t ✰☛☞✌✟✮

✕✶ ✕✵�✁ ✵ ✵�✁ ✶

✕✵�✁

✵

✵�✁

①

②

✕✶ ✕✵�✁ ✵ ✵�✁ ✶

✕✵�✁

✵

✵�✁

①

②

✆ ❂❝✝✞✭✷✟t✮✠ ✡ ❂✍✞✎✏✭✷✟t ✰☛☞✌✟✮

FIGURE 0.24

Lissajous figures: (a) (four left plots) case 1 input and output of same amplitude (A = 1) but phase differences

of 0,π/4,π/2, and 3π/4; (b) (four right plots) case 2 input has unit amplitude but output has decreasing

amplitudes and same phase differences as in case 1.

The Lissajous figures we consider next are a very useful extension of the above plotting of sinusoids in

the x and y axes. These figures are used to determine the difference between a sinusoidal input and its

corresponding sinusoidal steady state. In the case of linear systems, which we will formally define in

Chapter 2, for a sinusoidal input the outputs of the system are also sinusoids of the same frequency,

but they differ with the input in the amplitude and phase.

The differences in amplitude and phase can be measured using an oscilloscope for which we put

the input in the horizontal sweep and the output in the vertical sweep, giving figures from which

we can find the differences in amplitude and phase. Two situations are simulated in the following

script, one where there is no change in amplitude but the phase changes from zero to 3π/4, while

in the other case the amplitude decreases as indicated and the phase changes in the same way as

before. The plots, or Lissajous figures, indicate such changes. The difference between the maximum

and the minimum of each of the figures in the x axis gives the amplitude of the input, while the

difference between the maximum and the minimum in the y axis gives the amplitude of the output.

The orientation of the ellipse provides the difference in phase with respect to that of the input.

The following script is used to obtain the Lissajous figures in these cases. Figure 0.24 displays the

results.

clear all;clf

syms x y t

x = cos(2∗pi∗t); % input of unit amplitude and frequency 2*pi

A = 1;figure(1) % amplitude of output in case 1

for i = 1:2,

for k = 0:3,



50 CHAPTER 0: From the Ground Up!

theta = k∗pi/4; % phase of output

y = Aˆk∗cos(2∗pi∗t + theta);

if k == 0,subplot(221)

elseif k == 1,subplot(222)

elseif k == 2,subplot(223)

else subplot(224)

end

ezplot(x, y);grid;hold on

end

A = 0.5; figure(2) % amplitude of output in case 2

end

Ramp, Unit-Step, and Impulse Responses
To close this introduction to symbolic computations we illustrate the response of a linear system

represented by a differential equation,

d2y(t)

dt2
+ 5

dy(t)

dt
+ 6y(t) = x(t)

where y(t) is the output and x(t) the input. The input is a constant x(t) = 1 for t ≥ 0 and zero other-

wise (MATLAB calls this function heaviside, but we will call it the unit-step signal). We then let the

input be the derivative of x(t), which is a signal that we will call impulse, and finally we let the input

be the integral of x(t), which is what we will call the ramp signal. The following script is used to find

the responses, which are displayed in Figure 0.25.

clear all; clf

syms y t x z

% input a unit-step (heaviside) response

y = dsolve(’D2y + 5*Dy + 6∗y = heaviside(t)’,’y(0) = 0’,’Dy(0) = 0’,’t’);

x = diff(y); % impulse response

z = int(y); % ramp response

figure(1)

subplot(311)

ezplot(y, [0,5]);title(’Unit-step response’)

subplot(312)

ezplot(x, [0,5]);title(’Impulse response’)

subplot(313)

ezplot(z, [0,5]);title(’Ramp response’)

This example illustrates the intuitive appeal of linear systems. When the input is a constant value (or

a unit-step signal or a heaviside signal) the output tries to follow the input after some initial inertia

and it ends up being constant. The impulse signal (obtained as the derivative of the unit-step sig-

nal) is a signal of very short duration equivalent to shocking the system with a signal that disappears

very fast, different from the unit-step signal that is like a dc source. Again the output tries to follow

the input, eventually disappearing as t increases (no energy from the input!), and the ramp that is



0.5 Soft Introduction to MATLAB 51

✵ ✶ ✷ � ✁ ✺

✵

✵✂✵✺

✵✂✶

✵✂✶✺

❯✄☎✆✝✞✆✟✠ ✡✟✞✠☛✄✞✟

✵ ✶ ✷ � ✁ ☞

✵

✵✂✵✺

✵✂✶

✵✂✶✺

■✌✠✍✎✞✟ ✡✟✞✠☛✄✞✟

✵ ✶ ✷ � ✁ ✺

✵

✵✂✷

✵✂✁

✵✂✏

t

❘✑✌✠ ✡✟✞✠☛✄✞✟

FIGURE 0.25

Response of a second order system represented by a differential equation for input of the unit-step signal, its

derivative, or the impulse signal and the ramp signal that is the integral of the unit-step input.

the integral of the unit-step signal grows with time, providing more and more energy to the system

as time increases, thus the response we obtained. The function dsolve solves differential equations

explicitly given (D stands for the derivative operator, so D is the first derivative and D2 is the sec-

ond derivative). A second-order system requires two initial conditions, the output and its derivative

at t = 0.

We hope this introduction to MATLAB has provided you with the necessary background to understand the

basic way MATLAB operates, and shown you how to continue increasing your knowledge of it. Your best

source of information is the help command. Explore the different modules that MATLAB has and you will

become quickly convinced that these modules provide a great number of computational tools for many areas

of engineering and mathematics. Try it—you will like it! Tables 0.1 and 0.2 provide a listing of the numeric

and symbolic variables and operations.



52 CHAPTER 0: From the Ground Up!

Table 0.1 Basic Numeric Matlab

Special variables ans Default name for result

pi π value

inf, NaN infinity, not-a-number error (e.g., 0/0)

i, j i = j = √−1

Function(s) Operation

Mathematical abs, angle magnitude, angle of complex number

acos, asine, atan inverse cosine, sine, tangent

acosh, asinh, atanh inverse cosh, sinh, tanh

cos, sin, tan cosine, sine, tangent

cosh, sinh, tanh hyperbolic cosine, sine, tangent

conj, imag, real complex conjugate, imaginary, real parts

exp, log, log10 exponential, natural and base 10 logarithms

Special operations ceil, floor round up, round down to integer

fix, round round toward zero, to nearest integer

.∗, ./ entry-by-entry multiplication, division

. ˆ entry-by-entry power

x’, A’ transpose of vector x, matrix A

Array operations x=first:increment:last row vector x from first to last by increment

x=linspace(first,last,n) row vector x with n elements from first to last

A=[x1;x2] matrix A with rows x1, x2

ones(N,M), zeros(N,M) N × M ones and zeros arrays

A(i,j) (i, j) entry of matrix A

A(i,:), A(:,j) i row ( j-column) and all columns (rows) of matrix A

whos display variables in workspace

size(A) (number rows, number of colums) of matrix A

length(x) number rows (colums) of vector x

Control flow for, if, elseif for loop, if, else-if loop

while while loop

pause, pause(n) pause and pause n seconds

Plotting plot, stem continuous, discrete plots

figure figure for plotting

subplot subplots

hold on, hold off hold plot on or off

axis, grid axis, grid of plots

xlabel, ylabel, title, legend labeling of axes, plots, and subplots

Saving and loading save, load saving and loading data

Information and managing help help

clear, clf clear variables from memory, clear figures

Operating system cd, pwd change directory, current working directory



Problems 53

Table 0.2 Basic Symbolic Matlab Functions

Function Operation

Calculus diff differentiate

int integrate

limit limit

taylor Taylor series

symsum summation

Simplification simplify simplify

expand expand

factor factor

simple find shortest form

subs symbolic substitution

Solving equations solve solve algebraic equations

dsolve solve differential equations

Transforms fourier Fourier transform

ifourier inverse Fourier transform

laplace Laplace transform

ilaplace inverse Laplace transform

ztrans Z-transform

iztrans inverse Z-transform

Symbolic operations sym create symbolic objects

syms create symbolic objects

pretty make pretty expression

Special functions dirac Dirac or delta function

heaviside unit-step function

Plotting ezplot function plotter

ezpolar polar coordinate plotter

ezcontour contour plotter

ezsurf surface plotter

ezmesh mesh (surface) plotter

PROBLEMS

For the problems requiring implementation in MATLAB, write scripts or functions to solve them

numerically or symbolically. Label the axes of the plots, give a title, and use legend to identify dif-

ferent signals in a plot. To save space use subplot to put several plots into one. To do the problem

numerically, sample analog signals with a small Ts.



54 CHAPTER 0: From the Ground Up!

0.1. Bits or bytes

Just to get an idea of the number of bits or bytes generated and processed by a digital system consider the

following applications:

(a) A compact disc is capable of storing 75 minutes of “CD-quality” stereo (left and right channels are

recorded) music. Calculate the number of bytes and the number of bits that are stored in the CD.

Hint: Find out what “CD quality” means in the binary representation of each sample, and what is the

sampling rate your CD player uses.

(b) Find out what the vocoder in your cell phone is used for. Assume then that in attaining “telephone

quality” you use a sampling rate of 10,000 samples/sec to achieve that type of voice quality. Each

sample is represented by 8 bits. With this information, calculate the number of bits that your cell

phone has to process every second that you talk. Why would you then need a vocoder?

(c) Find out whether text messaging is cheaper or more expensive than voice. Explain how text mes-

saging works.

(d) Find out how an audio CD and an audio DVD compare. Find out why it is said that a vinyl long play

record reproduces sounds much better. Are we going backwards with digital technology in music

recording? Explain.

(e) To understand why video streaming in the Internet is many times of low quality, consider the amount

of data that need to be processed by a video compressor every second. Assume the size of a video

frame, in picture elements or pixels, is 352 × 240, and that an acceptable quality for the image is

obtained by allocating 8 bits/pixel, and to avoid jerking effects we use 60 frames/sec.

■ How many pixels would have to be processed every second?

■ How many bits would be available for transmission every second?

■ The above are raw data. Compression changes the whole picture (literally); find out what some of

the compression methods are.

0.2. Sampling—MATLAB

Consider an analog signal x(t) = 4 cos(2π t) defined for −∞ < t < ∞. For the following values of the

sampling period Ts, generate a discrete-time signal x[n] = x(nTs) = x(t)|t=nTs .

■ Ts = 0.1 sec

■ Ts = 0.5 sec

■ Ts = 1 sec

Determine for which values of Ts the discrete-time signal has lost the information in the analog signal. Use

MATLAB to plot the analog signal (use the plot function) and the resulting discrete-time signals (use the

stem function). Superimpose the analog and the discrete-time signals for 0 ≤ t ≤ 3; use subplot to plot the

four figures as one figure. For plotting the analog signal use Ts = 10−4. You also need to figure out how to

label the different axes and have the same scales and units. In Chapter 7 on sampling we will show how to

reconstruct sampled signals.

0.3. Derivative and finite difference—MATLAB

Let y(t) = dx(t)/dt, where x(t) is the signal in Problem 0.2. Find y(t) analytically and determine a value of Ts

for which 1[x(nTs)]/Ts = y(nTs) (consider Ts = 0.01 and Ts = 0.1). Use the MATLAB function diff or create

your own to compute the finite difference. Plot the finite difference in the range [0,1] and compare it with

the actual derivative y(t) in that range. Explain your results for the given values of Ts.



Problems 55

0.4. Backward difference—MATLAB

Another definition for the finite difference is the backward difference:

1[x(nTs)] = x(nTs)− x((n − 1)Ts)

(1[x(nTs)]/Ts approximates the derivative of x(t).)

(a) Indicate how this new definition connects with the finite difference defined earlier in this chapter.

(b) Solve Problem 0.3 with MATLAB using this new finite difference and compare your results with the

ones obtained there.

(c) For the value of Ts = 0.1, use the average of the two finite differences to approximate the derivative of

the analog signal x(t). Compare this result with the previous ones. Provide an expression for calculating

this new finite difference directly.

0.5. Differential and difference equations—MATLAB

Find the differential equation relating a current source is(t) = cos(�0t)with the current iL(t) in an inductor,

with inductance L = 1 H, connected in parallel with a resistor of R = 1� (see Figure 0.26). Assume a zero

initial current in the inductor.

(a) Obtain a discrete equation from the differential equation using the trapezoidal approximation of an

integral.

(b) Create a MATLAB script to solve the difference equation for Ts = 0.01 and three frequencies for

is(t),�0 = 0.005π , 0.05π , and 0.5π . Plot the input current source is(t) and the approximate solution

iL(nTs) in the same figure. Use the MATLAB function plot. Use the MATLAB function filter to solve the

difference equation (use help to learn about filter).

(c) Solve the differential equation using symbolic MATLAB when the input frequency is �0 = 0.5π .

(d) Use phasors to find the amplitude of iL(t) when the input is is(t) with the given three frequencies.

FIGURE 0.26

Problem 0.5. RL circuit: input is(t) and output

iL(t).

✐s✭t ✮

✐▲✭t ✮

✶�✶✂

0.6. Sums and Gauss—MATLAB

Three rules in the computation of sums are

■ Distributive law:

∑

k

cak = c
∑

k

ak

■ Associative law:

∑

k

(ak + bk) =
∑

k

ak +
∑

k

bk



56 CHAPTER 0: From the Ground Up!

■ Commutative law:

∑

k

ak =
∑

p(k)

ap(k)

for any permutation p(k) of the set of integers k in the summation.

(a) Explain why the above rules make sense when computing sums. To do that consider

∑

k

ak =
2

∑

k=0

ak

and similarly for
∑

k bk. Let c be a constant, and choose any permutation of the values [0,1,2] for

instance [2,1,0] or [1,0,2].

(b) The trick that Gauss played when he was a preschooler can be explained by using the above rules.

Suppose you want to find the sum of the integers from 0 to 10000 (Gauss did it for integers between 0

and 100 but he was then just a little boy, and we can do better!). That is, we want to find S where

S =
10000
∑

k=0

k = 0 + 1 + 2 + · · · + 10000

To do so, consider

2S =
10000
∑

k=0

k +
0

∑

k=10000

k

and apply the above rules to find S.

(c) Find the sum of an arithmetic progression

S =
N

∑

k=0

(α + βk)

for constants α and β, using the given three rules.

(d) Find out if MATLAB can do these sums symbolically (i.e., without having numerical values).

0.7. Integrals and sums—MATLAB

Suppose you wish to find the area under a signal using sums. You will need the following result found

above:

N
∑

n=0

n = N(N + 1)

2

(a) Consider first x(t) = t, 0 ≤ t ≤ 1, and zero otherwise. The area under this signal is 0.5. The integral can

be approximated from above and below as

N−1
∑

n=1

(nTs)Ts <

1
∫

0

tdt <

N
∑

n=1

(nTs)Ts



Problems 57

where NTs = 1 (i.e., we segment the interval [0,1] into N intervals of width Ts). Graphically show that

the above equation makes sense by showing the right and left bounds as approximations for the area

under x(t).

(b) Let Ts = 0.001. Use the symbolic function symsum to compute the left and right bounds for the above

integral. Find the average of these results and compare it with the actual value of the integral.

(c) Verify the symbolic results by finding the sums on the left and the right of the above inequality using

the summation given at the beginning of the problem. You need to change the dummy variables.

(d) Write a similar MATLAB script to compute the area under the signal y(t) = t2 from 0 ≤ t ≤ 1. Let

Ts = 0.001. Compare the average of the lower and upper bounds to the value of the integral.

0.8. Integrals and sums—MATLAB

Although sums behave like integrals, because of the discrete nature of sums one needs to be careful with

the upper and lower limits more than in the integral case. To illustrate this, consider the separation of an

integral into two integrals and compare them with the separation of a sum into two sums. For the integral

we have that

1
∫

0

tdt =
0.5
∫

0

tdt +
1

∫

0.5

tdt

Show that this is true by computing the three integrals. Then consider the sum

S =
100
∑

n=0

n

Find this sum and determine which of the following is equal to this sum:

S1 =
50
∑

n=0

n +
100
∑

n=50

n

S2 =
50
∑

n=0

n +
100
∑

n=51

n

Use symbolic MATLAB function symsum to verify your answers.

0.9. Sum of geometric series

The geometric series

S =
N−1
∑

n=0

αn

will be used quite frequently in the next chapters, so let us look at some of its properties:

(a) Suppose α = 1; what is S equal to?

(b) Suppose α 6= 1; show that

S = 1 − αN

1 − α

This can be done by showing that (1 − α)S = (1 − αN). Why do you need the constraint that α 6= 1?

Would this sum exist if α > 1? Explain.



58 CHAPTER 0: From the Ground Up!

(c) Give an expression of the above sum for all possible values of α.

(d) Suppose now that N = ∞; under what conditions will S exist? If it does, what would S be equal to?

Explain.

(e) Suppose the derivative of S with respect to α is

S1 = dS

dα
=

∞
∑

n=0

nαn

Obtain an expression to find S1.

0.10. Exponentials—MATLAB

The exponential x(t) = eat for t ≥ 0 and zero otherwise is a very common analog signal. Likewise, y[n] = αn

for integers n ≥ 0 and zero otherwise is a very common discrete-time signal. Let us see how they are

related. Do the following using MATLAB:

(a) Let a = −0.5; plot x(t).

(b) Let a = −1; plot the corresponding signal x(t). Does this signal go to zero faster than the exponential

for a = −0.5?

(c) Suppose we sample the signal x(t) using Ts = 1; what would be x(nTs) and how can it be related to

y(n) (i.e., what is the value of α that would make the two equal)?

(d) Suppose that a current x(t) = e−0.5t for t ≥ 0 and zero otherwise is applied to a discharged capacitor

of capacitance C = 1 F at t = 0. What would be the voltage in the capacitor at t = 1 sec?

(e) How would you obtain an approximate result to the above problem using a computer? Explain.

0.11. Algebra of complex numbers

Consider complex numbers z = 1 + j1, w = −1 + j1, v = −1 − j1, and u = 1 − j1.

(a) In the complex plane, indicate the point (x, y) that corresponds to z and then show a vector Ez that joins

the point (x, y) to the origin. What is the magnitude and the angle corresponding to z or Ez?

(b) Do the same for the complex numbers w, v, and u. Plot the four complex numbers and find their sum

z + w + v + u analytically and graphically.

(c) Find the ratios z/w, w/v, and u/z. Determine the real and imaginary parts of each, as well as their

magnitudes and phases. Using the ratios find u/w.

(d) The phase of a complex number is only significant when the magnitude of the complex number is

significant. Consider z and y = 10−16z; compare their magnitudes and phases. What would you say

about the phase of y?

0.12. Algebra of complex numbers

Consider a function of z = 1 + j1,

w = ez

(a) Find log(w).

(b) Find the real and the imaginary parts of w.

(c) What is w + w∗, where w∗ is the complex conjugate of w?

(d) Determine |w|, ∠w.

(e) What is | log(w)|2?

(f) Express cos(1) in terms of w using Euler’s equation.

0.13. Euler’s identity and trigonometric identities

Use Euler’s identity to obtain an expression for e j(α+β) = e jαe jβ ; obtain its real and imaginary components

and show the following identities:

■ cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

■ sin(α + β) = sin(α) cos(β)+ sin(β) cos(β)

Hint: Find real and imaginary parts of e jαe jβ and of e j(α+β).



Problems 59

0.14. Euler’s identity and trigonometric identities

Use Euler’s identity to find an expression for cos(α) cos(β), and from the relation between cosines and sines

obtain an expression for sin(α) sin(β).

0.15. Algebra of complex numbers

(a) The complex conjugate of z = x + jy is z∗ = x − jy. Using these rectangular representations, show that

zz∗ = x2 + y2

1

z
= z∗

zz∗

(b) Show that it is easier to find the above results by using the polar representation z = |z|e jθ of z where

|z| =
√

x2 + y2

is the magnitude of z and

θ = tan−1
( y

x

)

is the angle or phase of z. Thus, whenever we are multiplying or dividing complex numbers the polar

form is more appropriate.

(c) Whenever we are adding or subtracting complex numbers the rectangular representation is more

appropriate. Show that for two complex numbers z = x + jy and w = v + jq; then,

(z + w)∗ = z∗ + w∗

On the other hand, when showing that (zw)∗ = z∗w∗ the polar form is more appropriate.

(d) If the above conclusions still do not convince you, consider then the case of multiplying two complex

numbers:

z = r cos(θ)+ jr sin(θ)

w = ρ cos(φ)+ jρ sin(φ)

Find the polar forms of z and w and then find zw by using the rectangular and then the polar forms

and decide which is easier. As a bonus you should get the trigonometric identities for cos(θ + φ) and

sin(θ + φ). What are they?

0.16. Vectors and complex numbers

Using the vectorial representation of complex numbers it is possible to get some interesting inequalities:

(a) Is it true that for a complex number z = x + jy:

|x| ≤ |z|?

Show it geometrically by representing z as a vector.

(b) The so-called triangle inequality says that for any complex (or real) numbers z and v we have that

|z + v| ≤ |z| + |v|

Show a geometric example that verifies this.

0.17. Complex functions of time—MATLAB

Consider the complex function x(t) = (1 + jt)2 for −∞ < t < ∞.

(a) Find the real and the imaginary parts of x(t) and carefully plot them with MATLAB. Try to make

MATLAB plot x(t) directly. What do you get? Does MATLAB warn you? Does it make sense?



60 CHAPTER 0: From the Ground Up!

(b) Compute the derivative y(t) = dx(t)/dt and plot its real and imaginary parts. How do these relate to the

real and the imaginary parts of x(t)?

(c) Compute the integral

1
∫

0

x(t)dt

(d) Would the following statement be true (remember ∗ indicates complex conjugate)?





1
∫

0

x(t)dt





∗

=
1

∫

0

x∗(t)dt

0.18. Euler’s equation and orthogonality of sinusoids

Euler’s equation,

e jθ = cos(θ)+ j sin(θ)

is very useful not only in obtaining the rectangular and polar forms of complex numbers, but in many other

respects as we will explore in this problem.

(a) Carefully plot x[n] = e jπn for −∞ < n < ∞. Is this a real or a complex signal?

(b) Suppose you want to find the trigonometric identity corresponding to

sin(α) sin(β)

Use Euler’s equation to express the sines in terms of exponentials, multiply the resulting exponentials,

and use Euler’s equation to regroup the expression in terms of sinusoids.

(c) As we will see later on, two periodic signals x(t) and y(t) of period T0 are said to be orthogonal if the

integral over a period T0 is

∫

T0

x(t)y(t)dt = 0

For instance, consider x(t) = cos(π t) and y(t) = sin(π t). Check first that these functions repeat every

T0 = 2 (i.e., show that x(t + 2) = x(t) and that y(t + 2) = y(t)). Thus, T0 = 2 can be seen as their period.

Then use the representation of a cosine in terms of complex exponentials,

cos(θ t) = e jθ + e−jθ

2

to express the integrand in terms of exponentials and calculate the integral.

0.19. Euler’s equation and trigonometric expressions

Obtain using Euler’s equation an expression for sin(θ) in terms of exponentials and then

(a) Use it to obtain the trigonometric identity for sin2(θ).

(b) Compute the integral

1
∫

0

sin2(2π t)dt



Problems 61

0.20. De Moivre’s theorem for roots

Consider the calculation of roots of an equation,

zN = α

where N ≥ 1 is an integer and α = |α|e jφ a nonzero complex number.

(a) First verify that there are exactly N roots of this equation and that they are given by

zk = re jθk

where r = |α|1/N and θk = (φ + 2πk)/N for k = 0, 1, . . . , N − 1.

(b) Use the above result to find the roots of the following equations:

z2 = 1

z2 = −1

z3 = 1

z3 = −1

and plot them in a polar plane (i.e., indicating their magnitude and phase).

(c) Explain how the roots are distributed around a circle of radius r in the complex polar plane.

0.21. Natural log of complex numbers

Suppose you want to find the log of a complex number z = |z|e jθ . Its logarithm can be found to be

log(z) = log(|z|e jθ ) = log(|z|)+ log(e jθ ) = log(|z|)+ jθ

If z is negative it can be written as z = |z|e jπ and we can find log(z) by using the above derivation. The log

of any complex number can be obtained this way also.

(a) Justify each one of the steps in the above equation.

(b) Find

log(−2)

log(1 + j1)

log(2e jπ/4)

0.22. Hyperbolic sinusoids—MATLAB

In filter design you will be asked to use hyperbolic functions. In this problem we relate these functions to

sinusoids and obtain a definition of these functions so that we can actually plot them.

(a) Consider computing the cosine of an imaginary number—that is, use

cos(x) = e jx + e−jx

2

Let x = jθ and find cos(x). The resulting function is called the hyperbolic cosine or

cos( jθ) = cosh(θ)

(b) Consider then the computation of the hyperbolic sine sinh(θ); how would you do it? Carefully plot it

as a function of θ .



62 CHAPTER 0: From the Ground Up!

(c) Show that the hyperbolic cosine is always positive and bigger than 1 for all values of θ .

(d) Show that sinh(θ) = −sinh(−θ).
(e) Write a MATLAB script to compute and plot these functions between −10 and 10.

0.23. Phasors!

A phasor can be thought of as a vector, representing a complex number, rotating around the polar plane

at a certain frequency expressed in radians/sec. The projection of such a vector onto the real axis gives a

cosine. This problem will show the algebra of phasors, which would help you with some of the trigonometric

identities that are hard to remember.

(a) When you plot a sine signal y(t) = A sin(�0t), you notice that it is a cosine x(t) = A cos(�0t) shifted in

time—that is,

y(t) = A sin(�0t) = A cos(�0(t −1t)) = x(t −1t)

How much is this shift1t? Better yet, what is1θ = �01t or the shift in phase? One thus only need to

consider cosine functions with different phase shifts instead of sines and cosines.

(b) You should have found the answer above is 1θ = π/2 (if not, go back and try it and see if it works).

Thus, the phasor that generates x(t) = A cos(�0t) is Ae j0 so that x(t) = Re[Ae j0e j�0t]. The phasor

corresponding to the sine y(t) should then be Ae−jπ/2. Obtain an expression for y(t) similar to the one

for x(t) in terms of this phasor.

(c) According to the above results, give the phasors corresponding to −x(t) = −A cos(�0t) and −y(t) =
−sin(�0t). Plot the phasors that generate cos, sin, −cos, and −sin for a given frequency. Do you see

now how these functions are connected? How many radians do you need to shift in a positive or

negative direction to get a sine from a cosine, etc.

(d) Suppose then you have the sum of two sinusoids, for instance z(t) = x(t)+ y(t), adding the corre-

sponding phasors for x(t) and y(t) at some time (e.g., t = 0), which is just a sum of two vectors, you

should get a vector and the corresponding phasor. Get the phasor for z(t) and the expression for it in

terms of a cosine.


