Python Coding in Calibre
1. Introduction:
a. Calibre behaviour can be modified by pressing the Preferences icon on the toolbar or pressing Ctrl-P; this is similar to selecting Tools | Options within Microsoft Office products.

Calibre behaviour can also be modified in another way, which will be explained by the example of adding a book to Calibre.

If the book’s file is called Dr No – Ian Fleming.pdf Calibre will create an entry in which Title is shown as Dr No, and Author as Ian Fleming. This information becomes part of the metadata for the new book.

This occurs because Calibre uses an input mask to control how a string of input characters is handled. The input mask for adding a new book is (?P<title>.+) - (?P<author>[^_]+).
Calibre uses regular expressions (RE) to specify aspects of Calibre’s behaviour. An input mask is a type of RE, and both are examples of programming code.

b. The purpose of this paper is to provide understanding of the regular expressions used by Calibre, so users can modify them to suit other file naming conventions. My books use a <author> <title>.<ext> format (eg Ian Fleming - Dr No.pdf) rather than the Calibre’s default <title> <author>.<ext> format.

c. Refer also Config_Calibre.doc and Using_Calibre.doc.
d. This paper uses the following conventions:
	
	
	Example
	

	Format
	Italic
	metadata
	· Terms to be added to a Glossary are italicised so they can be more easily identified (searched for). Consider creating a new Character Style eg Glossary_Term.

	Style
	RE_Code
	(?P<title>.+) - (?P<author>[^_]+)
	· A regular expression (RE).

	Style
	RE_String
	Dr No – Ian Fleming.pdf
	· Text to be applied to an RE.

	Style
	RE_Convention
	<author> <title>.<ext>
	· Example of

2. String Matching in Calibre (uses Python code)

a. Calibre uses a regular expression (RE) characters (letters, digits, and special characters [eg . , ~ @ #]) and metacharacters to match …
b. Most characters will simply match themselves eg the regular expression test will match the string ‘test’ exactly (but not case sensitive strings such as ‘Test’, ‘TEST’, …).
3. Metacharacters:

a. Some special characters have a separate function as metacharacters. Table 1 identifies the complete list of metacharacters. Table 2 identifies Special Sequences (eg /d), while Table 3 identifies other constructs (eg ?P<FieldName>).
Table 1. Metacharacters used in Calibre
	()
	
	· Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the contents of a group can be retrieved after a match has been performed, and can be matched later in the string with the \number special sequence, described below – complete and clarify this last part.

	[]
	
	· Specify a character class ie a set of characters to be matched.

· Characters can be listed individually eg [abc] or as a range eg [a-c].

· [a-z] specifies a character class containing lowercase letters, while [ABC] specifies a character class containing the (uppercase) letters A, B and C.

	{ }
	Braces
	·

	\
	Back slash
	· 2 purposes:

· As an escape character to enable matching of the character used as a metacharacter (eg /[to match the left square bracket character, and // to match the backslash).

· Table 2 identifies some of the special sequences beginning with a backslash and representing predefined sets of characters
· These sequences can be included inside a character class. For example, [\s,.] is a character class that will match any whitespace character, or ',' or '.'.
· For a complete list of sequencessee the last part of Regular Expression Syntax at http://docs.python.org/library/re.html#re-syntax.

	.
	Period
	· Matches anything except a newline character.

· re.DOTALL is an alternative mode (flag ?) that will also match a newline.

	^
	Caret
	· Complement eg [^5] will match any character except '5'.

	$
	
	·

	|
	Pipe
	·

	*
	
	· Specifies that the previous character can be matched zero or more times.

	+
	
	· Specifies that the previous character is to be matched one or more times.

	?
	
	· Specifies that the previous character can be matched zero times or once. It can be thought of as specifying an optional character.

	{m,n}
	
	· specifies there must be at least m repetitions, and at most n
(m and n are decimal integers)

b. Metacharacters are generally not active inside classes eg [akm$] will match any of the characters 'a', 'k', 'm', or '$' ('$' is usually a metacharacter).
4. Repetition:
a. To provide repetition 3 metacharacters (ie * + ?) and an additional construct ({m,n}) are available.

i. * specifies that the previous character can be matched zero or more times eg:

the RE ca*t will match the 2 strings cat and caat, with respectively one and 3 occurrences of ‘a’ (the preceding character).
ca*t will also match the string ct because * allows for zero occurrences of the previous character.

ii. + specifies that the previous character is to be matched one or more times. While ca*t will match ct, ca+t won’t, because ca+t requires that ‘a’ must occur at least once..

iii. ? specifies that the previous character can be matched zero times or once. It can be thought of as specifying an optional character eg home-?brew matches either homebrew or home-brew.

iv. {m,n} specifies there must be at least m repetitions, and at most n (where m and n are decimal integers) eg:

a/{1,3}b will match a/b, a//b, and a///b. It won’t match ab (which has no slashes) or a////b (which has four).
(a) If either m or n are omitted (eg a/{,3}b or a/{1,}b) a reasonable value is assumed for the missing value. Omitting m is interpreted as a lower limit of 0, while omitting n results in an upper bound of infinity

(b) The * + ? qualifiers can also be expressed using the {m,n} notation:

· {0,}
is the same as
*
· {1,}
+
· {0,1}
?

b. Repetitions such as * are greedy; when repeating a RE, the matching engine will try to repeat it as many times as possible. If later portions of the pattern don’t match, the matching engine will then back up and try again with few repetitions.

i. A step-by-step example will make this more obvious. Let’s consider the expression a[bcd]*b. This matches the letter 'a', zero or more letters from the class [bcd], and finally ends with a 'b'. Now imagine matching this RE against the string abcbd.
Clarify: I can see that a[bcd]*b will match the string ‘abcb’ but not ‘abcbd’ (matching in turn ‘a’, ‘b’, ‘c’, and ‘d’). I don’t understand backing-up and current position.

	Step
	Matched
	Explanation

	1
	a
	· The a in the RE matches.

	2
	abcbd
	· The engine matches [bcd]*, going as far as it can, which is to the end of the string.

	3
	Failure
	· The engine tries to match b, but the current position is at the end of the string, so it fails.

	4
	abcb
	· Back up, so that [bcd]* matches one less character.

	5
	Failure
	· Try b again, but the current position is at the last character, which is a 'd'.

	6
	abc
	· Back up again, so that [bcd]* is only matching bc.

	6
	abcb
	· Try b again. This time the character at the current position is 'b', so it succeeds.

ii. The end of the RE has now been reached, and it has matched abcb. This demonstrates how the matching engine goes as far as it can at first, and if no match is found it will then progressively back up and retry the rest of the RE again and again. It will back up until it has tried zero matches for [bcd]*, and if that subsequently fails, the engine will conclude that the string doesn’t match the RE at all.

Table 2. Special Sequences
	
	Matches any
	and is equivalent to the class

	\d
	decimal digit
	[0-9].

	\D
	non-digit character
	[^0-9].

	\s
	whitespace character
	[\t\n\r\f\v].

	\S
	non-whitespace character
	[^ \t\n\r\f\v].

	\w
	alphanumeric character
	[a-zA-Z0-9_].

	\W
	non-alphanumeric character
	[^a-zA-Z0-9_]

Table 3. Other constructs

	
	

	?P<FieldName>
	· The characters following this label are associated with the specified FieldName such as one of the column titles (ie author, title, series, series_index).

· eg ?P<author>

	
	·

	
	·

5. Notes:

a. To match the literals '(' or ')', use \(or \), or enclose them inside a character class: [(], [)].
b. Python offers two different primitive operations based on regular expressions: match checks for a match only at the beginning of the string, while search checks for a match anywhere in the string (this is what Perl does by default).
File: DB.PythonCodingInCalibre.doc
Saved 2-Feb-12 (2:01 PM)
Page 4 of 4

