Chapter 6

APPENDIXES

6.1. SINGLE ELECTRON TRANSFER AT AN ELECTRODE

6.1.1. Laplace Transformation. Useful Definitions and Relationships

Laplace transformation is a convenient tool for resolving linear differential,
integrodifferential, and partial derivative equations thanks to their conver-
sion into algebraic equations in Laplace space. We will need only a limited
number of definitions and relationships in the derivations below. They are
summarized in Table 6.1,1 which is to be read from left to right, or vice
versa, according to the case. The variable that undergoes the transformation
is named ¢ here and will be ¢ or 7 in the following applications. In both cases,
the corresponding Laplace variable is denoted s.

6.1.2. Cyclic Voltammetry of Nernstian Systems.
Current- and Charge-Potential Curves

In this section we establish the equation of the forward scan current potential
curve in dimensionless form (equation 1.3), justify the construction of the
reverse trace depicted in Figure 1.4, and derive the charge-potential forward
and reverse curves, also in dimensionless form. Linear and semi-infinite
diffusion is described by means of the one-dimensional first and second Fick’s
laws applied to the reactant concentrations. This does not imply necessarily
that their activity coefficients are unity but merely that they are constant within
the diffusion layer. In this case, the activity coefficient is integrated in the
diffusion coefficient. The latter is assumed to be the same for A and B (D).
The concentrations of A and B thus obey the following system of
partial derivative equations, accompanied by a series of initial and
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TABLE 6.1. Useful Laplace Transforms

Laplace Transform

Original Function
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(s+A)(s+B)(s+C)

—(B—A)(C—B)(A-0C)

R
P + 05 + R yEpny + <P e 32) exp(—At) cos(Bt)
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s[(s+A)" + B2 +3 (Q — AP — YOl Bz) exp(—At) sin(Bt)
boundary conditions:
aC o’C aC o°C
A_pYla B_pYls
Ot Ox? ot Ox?
t=0,x>0 and x=o00,7>0: Ca=C’ Cg=0
0Cy 0OC
x=0,t>0: 2422 _0 (conservation of fluxes)
Ox Ox

F
CA = CB exXp [ﬁ

(E— EO)] (Nernst’s law)

where the electrode potential depends on time according to

0<t<tg:
tg <t <2tg:

E:Ei—Vt
E:Ef+v(l—tR):2Ef—Ei+Vt
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The current is related to the fluxes of A and B according to

P p(RC) L (%
FS ox ). ox /.o

and the charge passed is defined as Q, = J"(;i(n) dn. Since the cathodic
currents are counted as positive, O, quantifies the amount of negative charge
passed from the electrode to the solution at time ¢.

It is useful to introduce normalized variables, functions, and parameters
so as to obtain a dimensionless formulation, resolve the problem at this
level, and finally, come back to the real experimental quantities. This
strategy allows one to find out, here and in more complicated cases, the
minimal number of parameters that are actually governing the electroche-
mical responses. We thus introduce the following normalized variables:

/i th El' —Ef
ime:tT=——1t, TR=——"T"=1U;— U
RT K v !
F F F
potential : é:—ﬁ(E—EO), ui:ﬁ(Ei—Eo), uf:ﬁ(Ef—Eo)
(in practice, u; > Oand uy < 0)
Fv Ca Cs

concentrations: a=—, =—
CO Cco

space:y =X Iﬁ,

i
Fv
FSCO/Dy | —
SC \/_,/RT
FV 1/2
Qe(ﬂ)
FSC%/D

The set of equations above thus becomes

da ©%a ob b

ot oy ot 9y

current: \y =

charge: g, =

tT=0,y>0and y =00,7>0: a=1, b=0
Oa 0Ob
y=0,7>0: a = bexp(—<&), a—;l+a—y:O
where ¢ and 7 are related by
0<t< ¢=C=-u+tr

R<T<2tpt E=¢,=2up+u —1=—up — (1 —18)
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The dimensionless current is given by

Oa ob
V= @ o (a?)

and the dimensionless charge by g, = Io 1) dn. Laplace transformation is
particularly expedient to handle the two partlal derivative equations. We
thus obtain, taking the initial conditions into account,

_ayz
_ 0%
Sb:a—yz

Integration of these two second-order constant-coefficient differential equa-
tions, taking into account the second y = 0 boundary condition, leads to

o (g_y) ] exol_v)

oo (51|

. 1(a_b> ]exp( V)

1
a=-—--+
)

_|_

y:0_7§ /-0 2
Y e
+ | b, O+\/_(ay> ] 5

The coefficient of the term in exp(y/sy), which tends toward infinite with y,
must be nil in both equations since for y = oo, a and b remain finite (equal
to 1/s and 0, respectively). It follows that

1

1y - v
ay:()—;—% —

and b, =
NG

Coming back to the original space, we obtain integral relationships linking, in
dimensionless terms, the concentrations at the electrode surface to the current:

(6.1)

@o=1-—7], \}//T(i—)ndn (62)
Ly
(b)y—o = ﬁL mdn (6.3)
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Adding up these two equations leads to (a),_y + (b),_o = I, which ex-
presses the fact that the sum of the concentrations at the surface is equal to
the concentration of A introduced in the solution.

The integral relationships above are valid for any transient technique
other than cyclic voltammetry, since at this stage of the derivation, the fact
that the potential is a linear function of time has not yet been introduced. It
is also valid in the case where charge transfer is not fast and together with
diffusion, kinetically governs the electrochemical response. In the present
case, the linear relationship between potential and time comes into play
through Nernst’s law, leading to

exp(—¢) B 1

@ =T eand O =TT exp=0)

Thus, over the entire voltammogram,

1J’ AU) 1

Vo E—n n_1+exp(—f)

During the first part of the scan, £ = £, = —u; + 7, and therefore

R ) N T

u; — oo as the starting potential is made more and more positive compared
to the standard potential, thus finally leading to equation (1.5).

During the second part of the scan, we may decompose the interval of
integration in two portions:

L e(n) v 1
\/EL \/r—ndnJr\/%LR \/r—ndn 1+ exp(—¢,)

where /. and ), stands for the forward and reverse current traces, noting
that ¢ on the right-hand side represents the potential during the second part

of the scan (¢ = &, = —us + © — 1z). The preceding equation may be recast
as follows:
1 [* . [ -, 1
_J . (n) dn+ _J Waln) —¥.(n)] dy =
VidoyT=n " Vrl, T 1 +exp(—<,)
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The first term of the left-hand side relates to the first part of the scan and its
prolongation during the second part of the scan. Thus,

LJ’W’M: o 1
Valovt=n T T Texp(=&) 1 +exp(2u +&,)

Thus, if the inversion potential is far beyond the standard potential, meaning
that 2up + ¢, — —o0,

LJ V.(n) dy =1

VA oyt
and thus
) -l 1
\/ELO on T Tren()

Comparing this equation with the equation characterizing the forward scan,

R0 N T
J F " T exp(=0)

Nz

shows that the anodic and cathodic traces are superimposed exactly after
transformations depicted in Figure 1.4 have been performed.

The charge passed is obtained, in dimensionless form, by integrating s
over the O—r interval leading to the normalized charge—time (or —potential)
curves in Figure 6.1a. Figure 6.1b shows that the charge passed during the
reverse scan can be deduced from the charge passed during the forward scan
in exactly the same manner as for the current (Figure 1.4).

A particularly important conclusion concerns the actual charge: At
any point of the scan the charge passed, Q,, is proportional to the concen-
tration and inversely proportional to the square root of the scan rate as

results from the equation
RTD
Q. = FSC°\|——q.
Fv

whereas the current is proportional to the square root of the scan rate.

6.1.3. Double-Layer Charging in Cyclic Voltammetry. Oscillating
and Nonoscillating Behavior

During the forward scan, the Laplace expression of equation (1.10) is written

- - i v
Laszic + ARysic + <=
C;, s
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FIGURE 6.1. a: Dimensionless current (1) and charge passed (g.) in the cyclic voltammetry
of a Nernstian system. b: Construction of the reverse trace from the forward trace.

leading to
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that is, with the definitions of @ and p, given in the text:

- Cde2 Cdva)2

TS 205 1 0?) T S[(s 4 o) + 021 - p2)]
The oscillatory or nonoscillatory behavior of i¢ depends on the roots of the
second-order trinomial in the denominator of the right-hand member being
real or imaginary. These conditions are achieved when AR, > AR and
AR, < AR, respectively, where the critical value, AR, corresponding to
the transitions between the two regimes is given by AR =2,/L,/C,, or
introducing p, = AR,/AR¢, by p, = 1. We also introduce w = 1/1/C4L,.
There are thus three different cases:

1. AR, > AR(p, > 1):

Cdez

~sls + o(p, + /22— Dlls + 0(p, — /72— 1))

ic

leading to

— /02 —1
ic= Cdv{l —i—%exp [—w(pu +4/p2 — l)t]

—1

u
P, +\/pE—1 [ > ]
- % ___exp|l—w - — 1)t
NS (P —/Pe—1)

We note, in passing, that when p, — oo (i.e., when AR, > ARY),

ic =Cyv [1 — exp(—%tﬂ = Cyv [1 — exp (— ARt Cd)]

the same double-layer charging curve as when no positive feedback compen-
sation of the ohmic drop is attempted (equation 1.8), simply by replacing the
total resistance R, by the remaining uncompensated resistance AR,,.

2. AR, = AR, (p,=1):

- Cyve?

lc =
¢ s(s + w)?
leading to

ic = Cqv[l — exp(—wt) — wtexp(—ot)]
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3. AR, < AR, (p,<1):

- CdVCO2 CdV(D2

l =
O 20,05+ 07) (s + p,) + @21 p2)]

leading to

ic = Cqv|1 —exp(—p,wt) cos(wy/1 — p2t)
Pu : 2
— ————-exp(—p,ot) sin(w/1 — p2r)
V1= p?

typical of damped oscillations. Sustained oscillations are obtained when
p = 0. Then

ic = Cyv(1 — coswt).

o thus appears as their pulsation, their period being 27/ w.
During the reverse scan, the Laplace transformation is based on -t as
the time variable. Equation (1.10) then becomes

Lo(s%ic — sCav) + AR, (sic — Cqv) + lC—C S
d N

taking due account of the new initial conditions: namely, that ic = C,v for
t—tg = 0. Thus, introducing the same parameters w and p,, yields

_ —s? —2p,ws + &? 1 20?
lc = —Cdv =Cyv|——
s(s? + 2p,0s + @?) s s(s?+2p,ms + »?)

The equations of the reverse traces are thus derived straightforwardly from
those of the forward scan in the same three cases:

1. AR, > ARS(p, >1):

Pu—Pe— 1 \/T
iC _ CdV{_l — ZWexp —w\ py -+ pu —1 (t—tR>
put VP~ 1 [ ( \/7) ]
+2—-— XL _exp|-w — 21 )(t—t
2\/pg—_1 p Py Py ( R)

We note, in passing, that when p, — oo (i.e., AR, > ARY),

t
ic=Cyv [—1 +2exp<—2£putﬂ = Cdv[—l +2exp<— ARquﬂ
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the same double-layer charging curve as when no positive feedback
compensation of the ohmic drop is attempted [equation (1.9)].

2. AR, = AR(p, = 1):
ic = Cyv{—1+ 2exp[—w(t — tg)] + 2wt exp[—w(t — tr)]}
3. AR, < AR(p, < 1):

ic = Cdv{—l + 2 exp[—p,wt](t — tg) cos [w\/l — p2(t — tR)]
+2\/1'07‘__/)L‘exp( p,mt) sin [CLM /1 —p2(t— ZR)] }

typical of damped oscillations. Sustained oscillations are obtained when
p = 0, thus corresponding to
ic = Cqv(—1+ 2cos wt)

The equations of the forward and reverse traces for oscillatory and
nonoscillatory behaviors are summarized in Table 6.2.

6.1.4. Effect of Ohmic Drop and Double-Layer Charging
on Nernstian Cyclic Voltammograms

This section is devoted to the establishment of equations (1.12) and (1.13).
In addition to the dimensionless variables used previously (Section 6.1.2),
we normalize the Faradaic and double-layer charging current,

l'f ic
W, = Yo =
7 FSCOVD(Fv/RT)' € FSCOVD(Fv/RT)
and the two potentials, E and E':
Fv Fv
N EO - _ -7 E/_EO
E= -t (E-E)) &= (F-E)

We may thus translate the current and potential relationships of Section
1.3.1 [equations (1.11)] into the following dimensionless equations:

0.d¢

¢=¢—pp and l/’c:;E

p and 6. being defined by equations (1.13). Thus,

wcze—ﬁ—ed'# leading to lﬁ—i—@dlp Gdé

p dt dt p dr iy
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TABLE 6.2. Positive Feedback Compensation of Ohmic Drop: Equations of the
Forward and Reverse Traces for Oscillatory and Nonoscillatory Behaviors”

AR, > AR;, Forward scan:

(p,>1)
3 pu_\/pg_l
ic=Cqv{ 1 + —————exp|—w| p,+1/p2— 1|t
24/p2 =1

B M exp {,w <pu - \/;Z“l> [} }

24/p2 -1

Reverse scan:

Pu — \/ pg -1
ic= Cdv{l - 27exp[7w<pu +1/p2 — 1)(t7 tR)]

24/p2 —1

+ 2%\/_%?@@ [—w(pu - \//T—l) (t— fR)] }

leading to equations (1.8) and (1.9) when p, — oo (i.e., AR, > AR)

AR, = AR, Forward scan:
(P =1) ic = Cpv[l — exp(—ot) — otexp(—wt)]
Reverse scan:
ic = Cyv{—1+2exp[—w(t — tg)] + 2wt exp[—w(t — tg)]}

AR, < AR;, Forward scan:

(Pu < 1)
ic = Cdv{l — exp(—p,wt) cos (w,/l - pgt)
Pu : 2
— ———exp(—p,wt) sin <w\ /1— put>
V1-p2

Reverse scan:

ic = Cdv{l + 2exp[—p,wi](t — tg) cos {ww [1—p2(r — IR)}

+ 2\/11071_'026xp(7puw1) sin [w 1—p2(t— tR)]}

p = 0 (sustained oscillations):

Forward scan: ic = C,v[1 — cos(wt)]

Reverse scan: ic = Cyv[—1 + 2 cos(wt)]

%W =1/\/Cala, p = AR,/ AR with ARS = 24/L,/C,.
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with

B f ‘Pf(ﬂ) _ 1
x/ﬁ'Jo N ndn 1 +exp(—¢)

During the forward scan, &= fé = —u;+7, di'/dr =1, and thus

b0 ey,
p

where 1/, stands for the cathodic current (i.e., the current during the forward
scan). It follows that

000 2) o]
VT “dn)t=n Vrloyt—n o 1+exp(—¢)
Since ¢ = —u; + 1 — py,,

LJQ (w _%_ﬁ_@d_%) dn _ 1
Val o, T e Cdn ) \JE =y T texp(=EL+ py.)

and in practice:

er <¢ 0 %) g _ !
vr)- VE = L+exp(=& +py,)

[i.e., equation (1.12), where the subscript ¢ has been dropped for simplicity.]
During the reverse scan, &' = & = —u; — (t — 1g), d&'/dt = —1 and thus

ay,

v, +p+9 =y

where , stands for the cathodic current (i.e., the current during the reverse
scan). It follows that

Gl (o) A ), (w0 e) 72
1
T L +exp(—E, + pyr,)

The first term on the left-hand side relates to the first part of the scan:

1 (™= dy. dn 1
_ 0, =
\/EL <¢C p ra dn ) VT—1 1 +exp(—ur — py,)
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Therefore,
1fé< 0. . dy,\ dn 1
— | (v =+0.5 =
v, p dn ) T=n 1+exp(=&, +pi,)
1

L exp(—uy — pY,)

which allows the computation of the reverse trace, \/,, once the para-
meter uy, which characterized the potential of scan inversion, has been
specified.

The entire cyclic voltammogram is no longer reversible according to the
definition we have attached to this term so far. In other words, the symmetry
and translation operations as in Figures 1.4 and 6.1 do no longer allow the
superposition of the reverse and forward trace. It also appears that the
midpoint between the anodic and cathodic peak potentials does not exactly
coincide with the standard potential. The gap between the two potentials
increases with the extent of the ohmic drop as illustrated in Figure 6.2 for
typical conditions, which thus provides an estimate of the error that would
result if the two potentials were regarded as equal.

AE, (mV)
0 50 100 150 200 250
v by by by by g
1.2 1 :_3()
1 F25
L ‘C’
Q0.8 F20 1
u::;?.. ;r’
<o 0.6 L5 %
o X
1 8
0.4 L10 <
0.2 -5
o+-~———T——7 71— 10
0 2 4 6 8 10
Aép

FIGURE 6.2. Difference between the midpoint between the anodic and cathodic peak
potentials and the standard potential and the extent of ohmic drop (as measured by the
difference between the cathodic peak potentials in the absence and presence of ohmic drop).
Bottom horizontal and left-hand vertical axes: dimensionless representation. Top horizontal
and right-hand vertical axes: potential differences at 25°C. Inversion of the potential scan at
¢ =20 (0.514 V beyond the standard potential).
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6.1.5. Potential Step and Double Potential Step
Chronoamperometry of Nernstian Systems

The analysis is the same as in the preceding section, as long as the
relationship between potential and time has not been introduced. The
same dimensionless approach may also be followed with the exception of
the time variable, which may now be normalized against the inversion time
tg: T = t/tg, leading to the following definition of the normalized current:
Y = i\/fg/FSC°/D. In applying equations (6.1) to the first potential step,
we take into account that in the conditions specified in Section 1.3.2, the
concentration of A at the electrode surface is zero (i.e., a,—o =0), or
equivalently, the concentration of B at the electrode is equal to  (e.,
by—o = 1/s). Tt follows that = 1//s and therefore ¥ = 1/ /n7, thus
yielding equation (1.19). During the second step, equation (6.3) leads to

R RO W A () N RACO .
v R v i v L

and thus

It follows that

thus leading to equation (1.21).

6.1.6. Overlapping of Double-Layer Charging and Faradaic
Currents in Potential Step and Double Potential Step
Chronoamperometry. Oscillating and Nonoscillating Behavior

In the Laplace space, equation (1.22) is written

Lsz—i—AR sz—l—C—d—AE—i—Cd

During the forward scan (Section 6.1.4),
. FsSc’vD
If=——+—
! Vs
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leading to
- AE N FSC°/D
1 =
AR 1 AR 1
L, s? - CyL,| 2 -
a(s + 3 S+CdLa> ) a(s + i s—i—CdLa)\/E

that is, to

i = C4AEf(s) + FSCO\/BJL\;)

s

TABLE 6.3. Double-Layer Charging and Ohmic Drop in Potential Step
Chronoamperometry: Characteristic Function f(s) and f(¢) in the Laplace and
Original Spaces”

AR, > AR;, 70s) w?
s) =

1) = 022202 = VA=) — exp[-w(py + Ve 1)1
Nl
when p, — oo (i.e., AR, > ARS)

1) = exp(—AR,Cyt)

AR,Cy
AR, = AR, _ w?
o fls) = 2
(pu=1) (s+ w)
f(1) = 0*texp(—wr)
AR, < AR;, 0 < p, < 1: damped oscillations
(P, <1)

_ wz

f(s') = [(S‘i‘ pua))2 + 0)2(1 _ p%)]

o) = Jﬁ—pzexpwuwr) sin(y/1 — p2o)

p, = 0: sustained oscillations:
2
- o}
o=

f(t) = wsin(wt)

“w = 1/v/CyLa, p, = AR, JARS with ARS = 2./L,/Cy.
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or in the original space,

= CdAEf(l) +

FSC°/D Jf dn (6.5)

VT of(n) Vi—n

The first term is the double-layer charging response, while the second is a
measure of the overlap between double-layer charging and Faradaic reac-
tion, which eventually tends toward the Faradaic response that would have
been obtained if double-layer charging were absent. As to the expression of
the characteristic functions f(s) and £(¢) in the Laplace and original spaces,
respectively, with the same notations as in Section 6.1.4,

Age — o, L AR, 1
= _ = o =
u ¢ TR VCuLa

three different cases must be distinguished depending on p, being larger,
equal, or smaller than 1. The results are summarized in Table 6.3.

Calculation of the convolution integral in equation (6.5) may be
performed as depicted in Section 2.2.8, leading to the results displayed in
Figure 1.12.

6.1.7. Solvent Reorganization in Marcus-Hush Model

For the sake of simplicity, we first compute the free-energy changes,
AG and AGy, in the case where the reaction site is far enough from
the electrode surface for image effects to be neglected. At any stage
of the first charging process, the number of charge borne by the react-
ant is

z(v) =za +v(z — za) 0<v<)

and the electrical potential at a distance r from the center of the A equivalent
sphere is

y) = e 2(v)
dmey esr

where & is the vacuum permitivity, e, the electron charge, and ¢g the solvent
static dielectric constant. The potential, ¢’,(v), to be considered in the
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computation of
1
AGi = | o\ zn)dv
0

is obtained for r = as (wWhere ay, is the reactant radius), after subtraction of
the self-potential of A>:

A= (o) (1)

47'58() Esaa 47'[80 aa 47'[80 aan \&s

Thus,

AG; = % <l—1) [ZA(Z—ZA)‘FM]

dnegan \&s 2

During the second step, the charge number varies as
z(v) =z+v(za —2) 0<v<l

The potential at a distance r from the center of A is now the sum of its value
at the end of the first step [i.e., (eg/4meg)(z/esr)] and of its variation in a
medium that responds only via the optical dielectric constant, ¢,, (square of
the refractive index). Altogether,

o0) = 1 <Z +M)

dmeg \esr Eopl

The potential, ¢/, (v), to be considered in the computation of AGy, is finally
obtained, for r = ay, after subtraction of the appropriate self-potentials:

R ) R G|

leading to

Overall,

AG; + AGy = }V()(ZA — Z)2
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e (1 1
0 dmeg 2an \&op  Es

In the case of a homogeneous electron transfer between two molecules,

with

A% L D® = AZA—I +DZD+1

the presence of two reacting ions must be taken into account in the
expression of the electrical potentials, and the charging process must be
achieved on both species. Thus, during step I, the numbers of charge borne
by the reactants are

Zaord(v) =ZaorD T V(Zaord - ZAorD)

The z’s with lowercase subscripts designate the current values of the charge
number for the acceptor and donor, respectively, while the z’s with upper-
case subscripts designate the values of the charge number for the acceptor
and donor in the initial state, respectively. The electrical potential at any
point of the space is

() = [ZN) +zd<v>}

dmey | esra estd

where r, and r4 are the distances to the centers of A and D. At the surface of
each ion, the potential minus the self-potential are

o) = o [ (L) 50

where rq now represents the distance between the center of D and any point
at the surface of A:

P4) = 1 [ﬁ (1_ 1) +M}

47'[8() ap &g Fa€s

where r, now represents the distance between the center of A and any point
at the surface of D. Averaging these expressions over the surface of each
reactant, one obtains

o)

des
) = [ (1)
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d being the distance between the centers of the two reactants. The
computation of

1

AG; = e U; PL(v)(za — za)dv + Jo

40) e~ 20) |

thus leads to

- 4me esd

zp(24 — 2p) —l—@] (%— 1> i}

During step II, the numbers of charge borne by the reactants are

2
e ZaZd — ZAZD
AG =21 = +
2 &g aa

Za(za —2a) + M} <l _ 1> 1

+

Zaord(v) = Zaord T V(ZAorD - Zaord)

The potential at any point at a distance r, from the center of A and r4 from
the center of D is the sum of its value at the end of step I:

€o Za 2d
I, + -
Amey \esra  &srq

and of its variation in a medium that responds only via the optical dielectric
constant, &,, (square of the refractive index). Altogether,

/ €0 Za Zd v(za —za)  v(zp — 24)
(paord(v) :4— |: +.—+ . + .

TEY | ESTa &srq Eopla Eoply
After subtraction of the self-potentials and averaging over the surface of

each ion, one obtains

, eo [za (1 za vza—z) [ 1 v(zp — z4)
G [y ey LR I I EIA S S VA (R ) IS R0
(pd(‘)) 47T80 [aA <85 > + dSS + aa <80p + 80pd
., eo [za (1 Za V(i —z) [ 1 V(za — Za)
SR U R T [P A A C VAN (i RS S
Pa(v) 47eg [aD (35 > + deg + ap (sop + Eopd

Computation of

1

Aenza{f¢xw@A—aww+j

0 Owuw&n—awé
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thus leads to

AGy — 4:2;0 { l:(ZA —Z)(2p —2a)  7a(za —2a) ““Za(Zd - ZD)}

S CRURLCRLI R Py

47'[8() Eop Es 261A 261]) d

AGpy = % <L _ l) [(Za —za)’ + (2, — 2) n (za — 2a)(z, — zD)]

—(za—za)=(za—2z0) =X
Goa = A""X? for the reactants, and similarly,

Gop = A" (1 — X)* for the products, with

- A (L)LY
47'580 Eop &s ZaA 2ClD d
[i.e., equation (1.44)].

Similar derivations apply for the electrochemical case when taking the image
force effect into account. More precisely, in the expression of the potential at the
surface of the A sphere, the contribution of the electrical image of A (which
bears an opposite charge and which center is located at a distance d; from the

center of A) has to be taken into account.
In the first step,

7 (v) = -0 l:ZA-FV(Z—ZA) <l_ 1) _ZA+V(Z_ZA):|

B dmegy aa &s d;eg

& |za(z—za) +1(z—2a)7 (1 2a(z—za) +1(z —za)
AG[ = ——1)-=
47'[8() ana &s d,'SS
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In the second step,

_, e [z (1 z v iza—2) [ 1 v(za —2)
=—|—(——1) - —_— 1) ———=
Palv) 47eg [aA (55 > dieg + aa (sop Eopdi

AG xé[z(m-@(l_l)_m—a

= 477.'8() aa &g dl‘SS
(za —2)° < 1 > (za—2)°
+ 1) -
ZCZA Eop 280pdi
e 1 1 1 1
AGI+AGy=—2 [ ——— ) [———(z—za)?
i+ n 47'58() (8017 85) <2CZA 2dl> (Z ZA)
Thus,
Goa = 7§ (z — 2a)?

with

@ (L_I\[ L _ U
0 dmeg \eop s/ |2an  2d;
thus establishing equation (1.27).

6.1.8. Effect of the Multiplicity of Electronic States in the Electrode

The individual forward rate constant for the transfer of one electron from
one electron state in the metal to the acceptor (oxidized form of the redox
couple) in the solution may be expressed as

el FAG]ZéJ
kij =Z"Kajexp| — RT7

where i, ; is the transmission coefficient defined in equation (1.36). The
individual activation free energy for the forward reaction, AG;;, is related to
the reorganization energy, /,, according to

p E-E"\ |1 >
AGH =21 - = ~(E—E°
i 4< A > 47 A= )

where E is the energy of the electron in the metal and E® is its value
when the electrode potential, E, is equal to the formal potential of the redox
couple, E°. The overall rate constant, kg, is obtained after multiplication by
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the Fermi—Dirac probability of finding an electron with the energy E:
1

I +exp {;T (E— EF)}

by integration over the entire set of electron states in the metal:

JOC ) Z(E)p(E)exp [— (@) [A— (E_EO)]Z} N
& = 1+exp[<%> (E—EF)]
koo s JOO Kel(E)p(E)exp {— (%”) [ — (E—E")]z] N
e 1+exp [(%) (E—EF)}

where k,, is the maximal rate constant and p(E) is the density of states
corresponding to the energy E.
Similarly, for the oxidation process,

FAGY,
RT

el
kpj = Z K, jexp (—

with

4 ) 4

The overall rate constant, k;, is obtained after multiplication by the Fermi—
Dirac probability of finding a hole with the energy E

1

pe REATE

by integration over the entire set of holes states in the metal:

exp [_L[A,+(E_E°)]2]

_E%?
AG;:&<1+ENE> J—M+4E—Em2

o0 4RT.
| rampm - 0E
. 1+exp[—ﬁ(E—Ep)}
koo_ F 1 0\12
. exp |~ 7, o (BB

dE

lim(Er —E’ < /) J Kk (E)p(E)

F
o 1 +exp [_E(E_EF)]
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Assuming, as discussed in Section 1.4.2, that p and «,; are independent of E,
introducing ( = F[(E — Er)/RT], and taking into account that —Er = E
and —E° = E°, we obtain

RT [ F 0 :
o P _4F,1t{RTV” (E-E )]_C} ]
d
K | 1+exp<c> ‘
- N
) ~ P\ T4pi \RT
lim(E—E< —
Similarly, introducing ( = —F[(E — Er)/RT] gives us
RT 0 :
. eXp[ 4F,1,{RTV“’ (E-E )]_C} ]
WL Lren(0) «
koo RT ( F . . 2
i o P _4F/1,{ﬁ[ﬂ’_(E_E ) _C}
lim(E—E"> A
im( > ,)Joo T exp(0) d¢
An alternative change of integration variable is as follows:
F
U:C—ﬁ[ﬂt—i‘(E—EO)]
Fl,
YRT
leading to
o exp(—v
Fl4e F [A+ e
Xp —— X
ko P\RT" Ply* RTU
T S 2
00 lim(E—EO<<—/1;) . CXP )dl}
1+exp{RT E—E")] }exp(w [42, )

lim(E—E° < —4))
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and thus

ke 1 (™ exp(—v?) dv

o0 F F
1+ exp{ﬁ [;u[ + (E — EO)] } exp( 47, ﬁv)

Similarly,
ky 1 JOO exp(—v?) dv
ke /T

14+ exp{% (2 — (E—E")] } exp(@v)

with ks, = Zk,. At zero driving force (E = E°), ky = k, = ks, with

ks 1 J"’O exp(—v?)dv

() o]

ko VT
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The expressions of the rate constants given in equations (1.37) to (1.39) follow.

6.1.9. Cyclic Voltammetry of Two-Electron Nernstian
Systems. Disproportionation

In the absence of disproportionation reaction taking place in solution,
the concentrations of A, B, and C obey the following system of partial deriv-

ative equations:

GIoN 0’Ca
o P2
0y _ PG
or T ox2
0Cc *Ce
—<_p
ot Ox?2

(6.6)
(6.7)

(6.8)

whereas if the disproportionation—coproportionation reaction is taken into

account, the governing partial derivative equations become

oC 0*C

G—tA —D ax2A + kpC: — k_pCaCc
oC ’C

a_zB - Da—f — 2(kpCg — k_pCaCc)
occ _ ,¥Cc

or =D——— o +kDCB k_pCaCc
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In both cases the accompanying initial and boundary conditions are:

t=0, x>0 and x=00,>0: Coa=C", Cg=0, Cc=0
0C, 0Cy 0OC
A B+ C:

= >0:
¥=0. 120 Ox * Ox Ox 0
Ca F o AE°
Cs F o  AE°

There are two contributions to the current:

L (%Y (%

FS ox /). ox /.o
We may therefore combined linearly the three partial derivative equations as
follows in both cases:

0(Ca 4 Cg + Co) Daz(cA + Cg + C¢)

ot Ox2

0(Ca —Cc) _ D6>2(cA — Cc)
ot ox?

taking into account the appropriate initial and boundary conditions:

(CA)x:() (CB)x:() (CB)xZO
St Clemn ) BBdemt (6.11)

and

Fve

(CA)X:() . (CC)x:O —-1— JRT i n
C? co 0 Fv [Fvt
FSCO/D\| == —==—

O\ p\R"r
Combination of equations (6.9) to (6.12) leads to the final expression of
the current [equation 1.58)], which is therefore exactly the same in the
presence and absence of the disproportionation reaction, provided that the
diffusion coefficients of the three species are the same. The individual

fluxes and concentration profiles are different, however, as exemplified in
Figure 6.3.

(6.12)
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concentration

concentration
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distance to
the electrode

distance to
the electrode

FIGURE 6.3. Concentration profiles for two separated waves (Figure 1.25) at a potential
located beyond the second wave. a: with no disproportionation process. b: In the presence of a
fast disproportionation. —, A; ---, B; ——, C.

6.2 COUPLING OF HOMOGENEOUS CHEMICAL REACTIONS
WITH ELECTRON TRANSFER

6.2.1. The EC Mechanism

In the framework of Scheme 2.1, we start with the case where the electron
transfer does not interfere kinetically. As compared to the simple Nernstian
electron transfer case (Section 6.1.2), the main change occurs in the partial
derivative equation pertaining to B, where a kinetic term is introduced in
Fick’s second law. A corresponding equation for C should also be taken into
account, leading to the following system of partial derivative equations,
accompanied by a series of initial and boundary conditions (assuming that the
diffusion coefficients of A, B, and C are the same):

oCh _ [,
or  ox?
0Cg 0°Cy
— =D— —k,Cg +k_C
6t 62 +B+ C
oCc °Ce
o = 62+k+CB—k Cc
t=0,x>0andx =00, t >0: Ca=C" Cg=0, Cc=0

0Cx  0C
x=0,1>0: —24—L—90 (conservation of fluxes)
Ox 0x
F 0 ,
Ca = Cpexp [RT (E—E )] (Nernst's law)
0Cc

. =0 (C is not reduced at the electrode)
X
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where the electrode potential depends on time according to

0<r<tg: E=E —vt
tR<t<2g: E=FE+v(t—tg) =2E —E;+vt

The current is related to the fluxes of A and B according to

j 0
L _p(%a) _ _p(%
FS ox /. ox /.o
We introduce the same normalized variables and parameters as in Section
6.1.2 and, in addition,

_ RTk; _ RTk- B : Ao ki

which characterize the competition between the homogeneous reaction and
diffusion.
The set of equations above thus becomes

da 0%
E_a_yz (6.13)
ob b A
a = a—yz — )urb + A_cC (614)
dc ¢ .
a—a—yz—F/urb—)_C (6.15)
t=0,y>0andy=00, 7>0: a=1, b=0, ¢c=0
Oa Ob Oc
y=0720:  a=bexp(-8), F+gl=0.
where ¢ and 7 are related by
0<t<1R: ¢=¢,=—u+r (6.16)

R<T<2t8: {=¢, = 2ur+u; — 1= —up — (1 — 1) (6.17)

The dimensionless current is given by:

Oa ob
lp B <a> y:()_ - <a> y=0
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Equations (6.14) and (6.15) may be combined linearly as

ob+c) *b+o)

ot 0y?
and

O(Kb—c) 0*(Kb—c) .
T R AKb — c)

Integration of equation (6.13) leads as in Section 6.1.2 to

B U A 4 C))
(o=t ﬁjomd”
Similarly, from equation (6.18),
_ L[ v
(b)y:O + (C)y:() — ﬁJO \/’f—:—ﬁdn

Integration of equation (6.19) in the Laplace space leads to

375

(6.18)

(6.19)

(6.20)

(6.21)

Kb—c= |(Kb—¢), o — ! [a(Kb - C)] exp(—V/s + 4y)
Vs+ 4 Oy 3=0 2
z 1 (Kb —c¢ 1
+ |(Kb—2),_o+ [ ( C)} exp (Vs + )
Vs+ 2 Oy =0 2
and thus to
_ K B
Kb—¢) ,=
Ko = O =7
Returning to the original space (see Table 6.1), we have

(&~ )y =2 [ explite -]y

A combination of equations (6.21) and (6.22) leads to

o=z [ {rigeml-ate - ml e e}

N 1+ K 1+KJ /1—7

0

(6.22)

(6.23)
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TABLE 6.4. Equations of the Voltammograms for the EC Mechanism

Zone Dimensionless Expression of the Voltammogram
KG fexp(=¢) ' ¥ (n) exp(=9)| 1 [F ¥ , _
NG 1—|—KLGXP[ At —1)] _T_ndn—k 1+ 14K ﬁ[o r—ndﬂ_l
DO | K small LJ v !
and/or ValoyT=1 T T exp(—9)
/. small
KO K large exp(—¢) J ¥(n) 1 J v(n)
———| exp[—A(z — dn +—= dn =1
vl p[—4(r —n)] =Mt | =
KP K large, Y exp(—¢) LJT v(n) -1
A large, NG ValoT=1 n
V2/K small
{i.e.,l//exp(ffc) +LJI vin) dn, with: £ =¢+1n \/5}
VrloyT=1
KE | K large, ey K _peqy L A0 _
7 Targe Y exp(=¢") Z= o [1+ exp(—¢)] 7= v !
with & = ¢+ 1nK
DE | 7 large, LJT ¥(n) 0= 1
ViJK VI o /T—1 1 + exp(—¢&%Y)
large with & = & +In(1 +K)

Application of Nernst’s law to equations (6.20) and (6.23) finally leads to
the dimensionless expression of the voltammogram in the general case (KG
zone in Figure 2.1) reported in Table 6.4.

The response depends on two dimensionless parameters, K and A. The
number of independent parameters decreases for limiting values of
the parameters where asymptotic behaviors are met, corresponding to the
various zones in the kinetic zone diagram in Figure 2.1. The corresponding
dimensionless expressions of the voltammograms are given in Table 6.4. As
they stand in the table, the integral equations contain both the time (t) and
potential (£) dimensionless variables and are therefore suited for calculation
of both the cathodic and anodic traces, using the relationships between & and
T pertaining to each part of the scan [equations (6.16) and (6.17), respec-
tively]. Derivation of the characteristics of the forward trace is simplified
when it is assumed, as is always the case in practice, that the initial potential
is much more positive than the peak potential. Then integration over the 0—t
interval may be replaced by an integration over the —oo—¢ interval.
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It is worth noting that for large values of 4,

1 J ' Y (n) Y
— | exp[—A(tr —7) dn=—
vV )o | | VT Vi
as results immediately from examining the Laplace transform:
Vi ¥
Vs + A Vo

The disappearance of the time variable s in front of 4 corresponds to
establishment of the steady state discussed in Section 2.2.1, leading to

byo = —— (6.24)

It may also be obtained directly by equating to zero the term in the partial
derivative equation (6.25) that governs the variations of the B concentration
with time

ob %
—=—=—Ab 6.25
ot ay2 Ay ( )
leading to
o°b
a—}}z —_— ;L_l’_b
After multiplication by 0b/0y,
hop_, o
o2y oy

and integration, one obtains

2
(2—?) = ) b* + Cst

The constant is, in fact, zero, since there are points outside the thin reaction
layer where both b and 0b/0y are equal to zero. It follows that

ob\ > )
(@) =
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leading, therefore, for y =0, to equation (6.24). This possibility of an
alternative demonstration of equation (6.24) will be precious when dealing
with higher-order reactions, giving rise to nonlinear differential equations.

Still another approach to the notion of pure kinetic conditions and the
related concept of reaction layer involves the following normalization of
space and concentration:

X

Y =y =

ky

(i.e., the distance to the electrode is normalized toward the thickness of the

reaction layer) and
RT k
b =b\[)y = CB\/—F 7*

which converts the very small b into a quantity, b*, that is commensurable to
1 over the reaction layer. Equation (6.25) thus becomes
10b b, jioe OB
J, 0T 0y*2 )

b* (6.26)

Integration of equation (6.26) again leads to equation (6.24).

The pure kinetic conditions still apply if electron transfer is not uncondi-
tionally fast and Nernst’s law has to be replaced by the law that governs the
electron transfer kinetics as boundary condition, that is, in dimensionless terms,

Y = Ap(E)lay=0 — by=o exp(—<)]

with

thus leading to

1 +¢6Xp(—é)} _q 1JT vin)

‘”[Af@) Vi “Valoyr=a

Since the wave is irreversible, interest is concentrated on the cathodic trace:

lp[] +¢6XP(—5)}:1 1J5 )

Af(é) \/1 _% —0 /T —H
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thus leading to equation (2.22). When the Butler—Volmer law applies,

Ar(&) = Aexp(xd),

and therefore

W

exp(—océ)+¢exp(—é)] ] F AU

A NG Vi) o /T

thus leading to equation (2.11).

6.2.2. The CE Mechanism

In the framework of Scheme 2.2, we consider the case where the elec-
tron transfer is fast enough for not interfering kinetically. The govern-
ing system of partial derivative equations and of initial and boundary
conditions writes in this case

aC o*C
=D~k CathiCo
%:DGZCB
ot Ox?
oC, o*C
a—l’C:DWZC_‘_k_CA_kJFCC
K o
t=0, x>0and x = t>0:Cr=——-C° Cg =0, Cc =
,x20and x =00, t > A1+K,B 7C1+K
0 oC
sz,IEO:&ﬁ——B:O
Ox Ox
F 0
CA:CBeXp ﬁ(E_E)
0Cc
=0
Ox

The electrode potential depends on time according to the same relationships
as in the preceding section.
The current is related to the fluxes of A and B according to

P () (2
FS ox /). ox /.o

We introduce the same normalized variables and parameters as in Section
6.2.1, and in addition,
_ RTky _ RTk- Av kg

— I = A=/ J_ —="=K
+ F v F v At A Ao k-
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which characterize the competition between the homogeneous reaction and
diffusion. The set of equations above thus becomes

% = 2276;— /_a+Aic (6.27)
%:Ziy]; (6.28)
%: giyi%—i_a —Jsc (6.29)
t=0,y>0and y=00,7 > 0: a=1, b=0, ¢c=0
Oa Ob Oc

y=0,7>0: a =bexp(=¢&), 0, 0

o

where & and t are related by the same relationships as in the preceding
section. The dimensionless current is given by

Oa ob
w B <a> y:()_ - <a> y=0

Equations (6.27) and (6.29) may be linearly combined as

da+c) *a+c)

5 = 37 (6.30)
and
o(Kc —a) 0*(Kc—a) |
= — MKce — 31
> 3 A(Kc —a) (6.31)
Integration of equation (6.28) leads to
[0
b),_o= —J d 6.32
Similarly, from equation (6.30),
L (" ym)
=1-— .
(@),—o + (¢)y—o \/EJ() — ndn (6.33)
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Integration of equation (6.31) in the Laplace space leads to

e o like_a L [Ke-a)] |exp(—Vs+7y)
- 1 [o(Ke—a) exp(vs + 1)
and thus to

(Ke —a),_o = \/;ﬁﬁ

Coming back to the original space (see Table 6.1), we have

(Ke —a),_og=—=| exp[-A(r —n)] dn (6.34)

Vo N

Combination of equations (6.33) and (6.34) leads to

(@), = HLK [1 - \/LEJO {1 + eXp[_)"Ig - n)]} \/'i("T)ndn] (6.35)

1 J W(n)

Application of Nernst’s law to equations (6.32) and (6.35) finally leads to
the dimensionless expression of the voltammogram in the general case (KG
zone in Figure 2.8) reported in Table 6.5.

The response depends on two dimensionless parameters, K and 4. The
number of independent parameters decreases for limiting values of
the parameters where asymptotic behaviors are met, corresponding to
the various zones in the kinetic zone diagram in Figure 2.8. The corres-
ponding dimensionless expressions of the voltammograms are given in
Table 6.5. As they stand in the table, the integral equations contain both
the time (7) and potential (¢) dimensionless variables and are therefore
suited for calculation of both the cathodic and anodic traces, using the
relationships between ¢ and t pertaining to each part of the scan
[equations (6.16) and (6.17), respectively]. Derivation of the character-
istics of the forward trace is simplified, when it is considered, as always
the case in practice, that the initial potential is much more positive than
the peak potential. Then integration over the 0—t interval may be replaced
by an integration over the —oo—¢ interval.
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TABLE 6.5. Equations of the Voltammograms for the CE Mechanism

Zone Dimensionless Expression of the Voltammogram
KG 1 [ exp[—A(t—1n)] 14K v(n) B
ﬁjo{l-l— X t—% exp(—¢&) T_”dn_l
DO | Asmall LJT V(n) dn — K 1
ValoyT=i T T KT Fexp(—0)
KO | K small 1 JT w(n)
— ex + exp(—¢& dn =K
72 ), (Pl =]+ exa(=0)
KP K Small, \/Zexp(_é) T lp(y,)
/ large, v+ = J — dn =KV,
K7 vr 0+ n
small , exp(—¢) [*_v(n) ¢
{1.6.,1&—5— NG L — dn—K\/anhf E—nvV7
plateau-shaped wave with, as plateau height, (¢ — co) = Kv/4
and as half-wave location, & = 0.17
KE | 7 large ¥ (1) J (1)
+ [1 +exp(=E9)] —= dn=1
P (1 4 exp(—¢*)] N Vi
ith &9 — £ _
with &= ¢ —1n <1+K>
DE | A large, KV LJT v o 1
large ValovT=1 1T exp(—¢*)
. K
with gea —
¢ E+ ln(1 " K)

6.2.3. Double Potential Step Responses for Processes Involving
First- or Second-Order Follow-up Reactions

The governing dimensionless partial derivative equations are similar to those
derived for cyclic voltammetry in Section 6.2.2 for the various dimerization
mechanisms and in Section 6.2.1 for the EC mechanism. They are summar-
ized in Table 6.6. The definition of the dimensionless variables is different,
however, the normalizing time now being the time #z at which the potential is
reversed. Definitions of the new time and space variables and of the kinetic
parameter are thus changed (see Table 6.6). The equation systems are then
solved numerically according to a finite difference method after discretization
of the time and space variables (see Section 2.2.8). Computation of the
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TABLE 6.6. Governing Equations for Mechanisms Involving First- or
Second-Order Follow-up Reactions

Dimensionless Variables
Mechanism A= Governing Equations and Parameters
EC kig da _oa S
a - @ R’ Dty
b _ oG, G
o a’ G
RRD kaCOty a_a _ 62_a Initial and Boundary Conditions
0t 62’2 t=0,y>0andy=o00,7>0:
%:a_l;_z;v[f a=1,b=0
ot Oy
y=0,7>0: ba O _
RSD-ECE | kiC'tp | Oa_?%%a Ty oy
ot 0y? f . .
> rst potential step:
aﬂzal,mb y=0,0<t<1l:a=0
ot 0y?
RSD-DISP1 kyCOte da 2a reverse potential step:
% oy y=0,1<t:b=0
2
8_b _ 6_127 — 2)ab Anodic-to-Cathodic Current Ratio
ot Oy )
RSD-DISP2| KikpC¥rp | Qa_O%a
ot 0y? Rops = — 1 (0a/y), >
b _Tb 0 1—(1/v2) (0a/0y), g1
ot 0y? ’

gradient of a then allows one to obtain the anodic-to-cathodic current ratio
taken at the end of each step, according to the relationship given in Table 6.6.

6.2.4. The ECE and DISP Mechanisms

We consider the case where the follow-up reaction is irreversible, thus being
characterized by the rate constant k, and the electron transfer is so fast as to obey
Nernst’s equilibrium law. The governing equations may thus be expressed as

0Cx _ 0
ot ox?
0Cx 0°Cp
i —k
or o KCs
0 o?
Cc =D Ce + kCpg

ot Ox2
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oCp  *Cp
or  Ox?
r=0,x>0andx=00,1>0: Ca=C" Cg=0, Cc=0, Cp=0
0Cx 0Cg 0Cc  9Cp
—0,1>0: —4=B_9 —C4=P_j
o = Ox Ox T Ox + Ox
F
Ca = Cpexp [ﬁ (E — EO)] (Nernst's law)

Cc =0 (C is reduced at the electrode as soon as formed)

where the electrode potential depends on time according to
0<t<1g: E=E —vt
tr <t < 2p: E=Ef+v(t—tg) =2E —E; + vt
The current is the sum of two contributions, i1, which corresponds to the
reduction of A, and i,, which corresponds to the reduction of C:

=1+

(%A _p(%C
FS ox /). ox /.o
b (%) _ _p(%
FS ox /. ox /.

The main difference with the EC mechanism (Section 6.2.1) is that C is
reduced as soon as it reaches the electrode: hence the replacement of the
boundary condition (0C¢/0x),_, =0 by the condition (Cc),_,=0. A
second difference is the contribution to the current provided by the
reduction of C. Introduction of the same normalized variables and para-
meters as in Sections 6.1.2 and 6.2.1 leads to

da d%a
ob b
dc %
a—a—yz—i—ib (6.38)
t=0,y>0and y=00, 7> 0: a=1, b=0, ¢c=0
Oa 6b_

y:O,TZO: a:bexp(_é)7 6_I_a_y_o’

where ¢ and 1 are related by equations (6.16) and (6.17).
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The dimensionless current is the sum of two contributions given by

Y=y, +¥,

Oa ob
Vi= (@ P <a>

oc od
V2= (@) i (a—y)

We see that to obtain the two contributions to the current, it is not necessary
to take the partial derivative equation concerning d into consideration.

In the Laplace plane, equation (6.37) becomes, taking into account the
initial condition on b,

thus,

b= |(b)._, - 1 <@) exp(—vs+1y)
= y=0 /S + /1 ay =0 2
_ 1 ob exp(Vs + 1)
T Cheo+ 7 <a_> — 2
and from the y = oo boundary condition,
. 2
b) =
( )y_O \/m
Coming back to the original plane, we have
L[ ¥i(n)
o == | expl=re =]

Since, as in the absence of follow-up reactions,

L)
(a)y:()—l ﬁjox/f—ﬂdn
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Application of Nernst’s law as an y = 0 boundary condition thus leads to

exp(—¢) [* %(ﬂ) A,
TLCXP[_M n))——= d —i—\/_j _____dﬂ—l (6.39)

The second contribution to the current may then be derived as follows.
Addition of equations (6.37) and (6.38) leads to

ob+c %b+c
ot 0y?

Using Laplace transformation in the same manner as in Section 6.2.1, we
obtain

1 |[/ob oc

by +¢o +— (—) —l—(—) =0

\/7 ay y=0 ay y=0

and thus

ViV _ by (6.40)

That is, in the original space,

O L[
ﬁjox/f—ﬂdn_\/ﬁjo\/ @ = bo

and finally,

sl wse

exp(—<¢) (*
S explse-m ()
For each value of the kinetic parameter, 4, once \/, has been computed from
equation (6.39), ¥/,, and thus the total dimensionless current /, is obtained
from equation (6.41).

The pure kmetlc conditions, which are achieved for large values of /,
implies that by =, /v/2 — 0 and thus, from equation (6.40), y, = ;. It
follows that the current is exactly the double of the irreversible EC current
obtained under pure kinetic conditions along the entire current—potential curve.
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In the DISP case the governing partial derivative equations and the set of
initial and boundary conditions are written

0Cy . 0%Ca
——— =D kpCgC
or o + kpCpCc
oCg O*Cp
oCc . 9*Ce
F:D az +kCB—kDCBCC
oCp . 9%Cp
—— =D—++kpCgC
or o + kpCBCc
t=0,x>0andx=00,1>0: Ca=C" Cg=0, Cc=0, Cp=0
6CA aCB a(:C acwD
=0,t>0: —_— =0, —+—=0
rEhI= Ox T Ox ox  Ox
F
Ca = Cgexp [R— (E — EO)] (Nernst's law)

where the electrode potential depends on time according to
0<1<t: E=E —vt
tr <t <2 E=Ef+v(t—tg) =2E —E; + vt

Since reaction B — C is the rate-determining step, the concentration of C
obeys the steady-state approximation leading to

Ce=p
and therefore to
aa% -D aa(’;*‘ +kCy
aa% =D a;szB — 2kCg
aaC;D =D a;;‘) + kCg

Only the reduction of A contributes to the current. Thus,

i 0Ca B 0Cg
FS D( 6x> D< 6x>
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In dimensionless terms,

da 0%a
a_r_a_yﬁ’“’ (6.42)
ob b
a_a_yz_m’ (6.43)
t=0,y>0and y=o00,7>0: a=1, b=0
0 ob
y=0120:  a=bexp(~d), Fog=

where £ and 1 are related by equations (6.16) and (6.17). The dimensionless

current is given by
Oa ob
V= <6y>y_o_ <@y>y_o

Addition of equations (6.42) and (6.43) leads to

0(2a+b) 0*(2a+b)

ot 0y?

It follows that in the Laplace plane, taking into account the initial conditions

_ - 0*(2a + b)
sa+h)—2=—75

and therefore, taking account of the boundary conditions for y = oo, we
have

2@),_o + (b),_o + % _ % _o

Coming back to the original space we find that

P O A 4U))
20+ (D) =2 == | 2y

and thus, taking account of Nernst’s law as y = 0 boundary condition,

1 J Y (n)

(b),—o1 +2exp(=&)] =1—-—=

=)
Q
|
=
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Integration of equation (6.42) with due attention to the initial and boundary
conditions leads to

L[ y(n)
b),_ :—J exp|—24(t — )| —==—=dpn
The dimensionless voltammogram is thus finally given by the equation
142 =l [
VT 0 VT Vo /T

When A — oo, the pure kinetic conditions are achieved, and the wave is
much displaced toward negative & values. It follows that

TE (N7 S

2 Valovi=n

exp(—¢)

that is,

%eXP(—éD)Jr%J; f_/_zndn with 2 = ¢ +1In(v/7/2)

The current is then exactly twice that in the irreversible EC case under pure
kinetic conditions after a shift of the potential scale by a factor of
(RT/2F)In2.

Investigation of the competition between the ECE and DISP pathways
requires considering the full partial derivative equation system involving all
three species A, B, and C. In dimensionless terms,

da oa .

5 _ _ayf + Jpbc (6.44)

b 0%

T Oy

de O

a—iza—yj—i-ib—/lpbc (6.46)
1T=0,y>0and y=00,7>0: a=1, b=0, ¢c=0

Oa 0Ob

y=0,7t>0: a=bexp(—¢), £+6:O’ c=0

where ¢ and 1 are related by equations (6.16) and (6.17).
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The dimensionless current is the sum of two contributions given by

Y=y, +¥,

_ (da\  (db
h=(5) o (&)
n=(5). ).

The first of the partial derivative equation may be replaced by

0R2a+b+c) *2a+b+c)

ot 0y?
leading to
_ 7 _ v+, 2
Z(a)y:O + (b)yZO + (C)yzo + \/E - ; =0
and therefore, since (C)y:o =0, to
- 7 Vit 2
@)+ (B + P02 S0

That is, in the original plane and taking Nernst’s law into account, we
have

(b), o[l + 2exp(—&)] =2 — lrw dn

Vi) 2 Jt—7
Insofar as the pure kinetic conditions are achieved (1 — o0), the wave

is shifted toward positive potential (i.e., toward negative values of &).
Thus,

_LJT%‘F‘PQ dn
vrlo 2 TeT

These conditions also imply that 0b/0t ~ 0 and Oc/0t ~ 0. Thus, after
introduction of the renormalized variables, y* = y\/2, b* = b\V/2, ¢* = ¢V/2,
which are suited to pure kinetic conditions as discussed in Section 6.2.1,

(b)y_gexp(—=¢) =1
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equations (6.45) and (6.46) become

vt . p ..
ay*z —b" — Wb c=0
626* % iD ¥ %
ay*2+b _Wb c=0

The problem is defined entirely by these partial derivative equations,
associated with the following boundary conditions:

*

Y= oo: b*=0, =0

y'=0: b*exp(—¢&)=1-—

1 Jr%‘f'lﬁz dn «
— . c
Vrlo 20 T

It follows that the dimensionless current, defined by

ob* oc*
Ty, = - +
lpl lpz (ay*>}'*=0 <ay*>y><:0

is a function of a single competition parameter:

A
DISP
PECE = 312
Ap

6.2.5. Electrodimerization

In the radical-radical dimerization case, the governing partial derivative
equations and the set of initial and boundary conditions are written

oCa DGZCA
or w2
oC o’C
& ~ D MG

(note that with this formulation, k,; is the rate constant for the formation of
the dimer)

t=0,x>0and x =00, r > 0: Ca=C" Cp=0
6CA 6CB F 0
x=0,7>0 T =0 Ca CBeXp[RT( )



392 APPENDIXES

where the electrode potential depends on time according to
0<t<tg: E=E —vt
tr <t <2tp: E:Ef'+v(f—lR):2Ef—Ei+Vt

the current being given by

() (%
FS ox /). ox /.o

Introducing the usual dimensionless variables plus the dimensionless para-
meter measuring the competition between diffusion and dimerization,

RT kyC°
ld = — 6.47
¢ F v ( )
leads to the following dimensionless formulation:
da ©%a
=z 6.48
ot 0y? (6.48)
ob 0%
= — 24b* 6.49
ot 0y? *d (6:49)
tT=0,y>0and y=00,7>0: a=1, b=0
0a 0O
y=0,7>0: a = bexp(—&), 6_z+6_i:0

where ¢ and 7 are related by equations (6.16) and (6.17). The dimensionless

current is given by
Oa 0b
w a <ay> y:()_ <ay> y=0

As seen in several other cases, integration of the first partial derivative
equation (6.48), taking into account the corresponding initial and boundary
conditions leads to

L[ v@)
= (b ) =1-— d
(@0 = (O)-ge(-0) =1~ | Sy
In the general case, integration of equation (6.49) requires a finite
difference computation (see Section 2.2.8). However, when pure kinetic
conditions are achieved (14 — o0), 0b/0t ~ 0 in equation (6.49), which
may then be integrated as follows:

oo
0y?dy d Jy
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the integration of which, after account has been taken of the fact that for
y = 00, not only b = 0 but also 0b/0y = 0, leads to

ob\? 2M4 5
(a) N

Application for y = 0 provides a relationship between the current and the
concentration of B at the electrode surface:

l//2/3

RNPYE

and therefore the dimensionless expression of the voltammogram:

Vrep(-8 1 J v,
(244/3)" Vo=
that is,
2/3 I S A0
pRexp(—em) =1 - | Sy
with

wd _ « Lo 20 F 1 2RT kyC°
(M=l gin =t = - | (BB |+ 3F v

In the RSD-ECE case, the problem may be formulated in dimensionless
terms as

da 0%a

o Jqaab (6.50)
ob b

o Jqab (6.51)
oc o

with the same definition of A; as in equation (6.47):

T=0,y>0and y =00, 1> 0: a=1, b=0, ¢c=0
Oa 0b

y=0,7t>0: a = bexp(—9&), a_y 5:
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where ¢ and 7 are related by equations (6.16) and (6.17). The dimensionless
current is given by the sum of two contributions, one, ¥/,, pertaining to the
reduction of A, and the other, ,, pertaining to the reduction of C:

Oa ob dc
G IR I G

Subtraction of equation (6.49) from equation (6.50) and addition of
equations (6.51) and (6.52) leads to

oa—b) O*(a—Db)
ot 0y?

and

ob+c) *(b+c)

ot 0y?

respectively. Integration in the Laplace plane and application of the initial
and boundary conditions yields

_ 2 1
(@)y—0 = (b)y—p + % Ty 0
and
(B)ymg + (@)= — % =0 and thus % = (b)y—

Besides of the irreversibility of the cyclic voltammetric trace, pure
kinetic conditions (4; — 00) entail important simplifications. One is that
the wave is shifted to infinitely positive potential from the standard
potential. Another is that (b),_, is very small. It follows that

Y

%:%:E,

and since (b),_, < (a),_, that

Therefore,
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Focusing attention on equation (6.51), another implication of pure
kinetic conditions is that 0b/dt ~ 0. Also, the fact that (3a/dy),_,+
(0b/3y),—_o = 0 and (b),_, < (a),_, implies that in the thin reaction layer
containing the entire concentration profile of B,

a+b~(a),_o+(b) and a =~ (a),_,

y=0
Equation (6.51) may thus be reformulated as

o%b 0bd*b ob
_— = / h _—— = Y R
e /Ld(a)y:()b and thus 3y )7 /Ld(a)y:() R

and after integration, account being taken that for y = co, not only does
b =0, but also 0b/0y = 0:

Vi

(b)y—g = ——
- 4a(@)y—o

and thus, after application of Nernst’s law,

yexp(—2¢/3) 1 J )

=1
(42)"" Valoye=n"

The kinetic parameter may be incorporated in the dimensionless potential
variable by introducing

rsdECE F 0 1 RdeCO
T — ¢ i) = [ (B - B9 + 3 (4T

thus leading to the final dimensionless expression of the cyclic voltammetric
response under pure kinetic conditions:

P . _2érsdECE> B _L T l//(;,I)
poem(-2—) <1- o e

With the RSD-DISP mechanism, the governing equations are written
similarly:

da ©%a
= 557~ e+ Jac + Inbe (6.53)
b

b_0b — Aqab + J_4c — Apbc (6.54)

ot 62
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with the same definition of 4, as in equation (6.47) and with

RTk_yg /a4
;L‘_d =" —
F v Kﬁ

It is, moreover, assumed that C obeys the steady-state approximation:

idab

Agab — A_gc = =
qab — A_yc = Apbc c PR

Thus equations (6.53) and (6.54) become

da 0%
ob 9% J.pb?
a = a—yz — Zida —)L_d T /1Db (656)

Equations (6.55) and (6.56) are accompanied by initial and boundary
conditions:

1=0,y>0andy=00,7120: a=1 b=0
da b
y=0,t1>0:  a=bexp(={), a_;’Jr@:O

where £ and 1 are related by equations (6.16) and (6.17). The dimensionless

current is given by
Oa ob
lp B <ay> y:()_ <ay> y=0

Integration of equation (6.55) leads to the familiar relationship

L (" ¥(n)
= (b -fH=1—— d
(a)y:O ( )y:()exp( é) \/EJO\/fTﬁ n
There are two subcases, according to whether the coupling step or the
disproportionation step is rate-determining.
The first situation, termed the rsd—DISPI mechanism, prevails when
A_q < Apb. Then equation (6.56) becomes

ob b
g = a—yz — 2&dab
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For the same reasons as in the ECE case, the pure kinetic conditions allow
this equation to be simplified as

’b .
a—yz = 2Ad(a)>,:0b
integration of which, similarly to the ECE case, leads to

4

(5), g = e
U Pala),

y=

thus leading to

y exp(=2¢6/3) 1 J vy,

Q)P Valoyie

and to the final dimensionless expression of the cyclic voltammetric
response under pure kinetic conditions:

23 _zérsdDISP1> B _L T w(n)
V] exp( —5 =1 ﬁL 7:_ndn

after incorporation of the kinetic parameter in the dimensionless potential
variable

‘ 1 F 1 RT k,C°
rsdDISP1 1 N _ 50 Z AL R
£ _<§—|—2ln(2/Ld)— [ T(E E)]+21n<2 7y )

The situation where the radical-substrate coupling is a preequilibrium to
the homogeneous electron transfer step, termed the rsdDISP2 mechanism,
prevails when A_; > Apb. Then equation (6.56) becomes

ob 0% 5
a = a_yz — ZKdlDab
with
=—=K,;C
Kd P d

For the same reasons as in the ECE and DISPlcases, the pure kinetic
conditions allow this equation to be simplified as

o*b

a—y2 = 2Ka'/1D (G)y:0b2
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integration of which, similar to the rrc case, leads to

¢2/3
1/3
<% Kd/lD (a)y:())

thus leading to

PRep(-) L[ )
k=== ——an
(% Kd)uD(a)yZO) " ﬁ JO ‘ 1

and to the final dimensionless expression of the cyclic voltammetric
response under pure kinetic conditions:

12 _3érsa’D1SP2 _ _L T w(n)
e

after incorporation of the kinetic parameter in the dimensionless potential
variable:

, 1. /4 F 1. [4RT K \pC”
rsdDISP2 __ - - — _ _ 0 _ TS Rd/D-
¢ —~f+3ln<3xdiD> {RT(E E)}+3ln<3F . )

A graphical representation of the dimensionless irreversible voltammograms
obtained for the four dimerization mechanisms under pure kinetic conditions
is given in Chapter 2 (Figure 2.14) together with their peak characteristics.

6.2.6. Competition Between Dimerization of and Electron Transfer
to Intermediates

In a reaction scheme where dimerization of an intermediate and its reduction
compete as in Scheme 6.1 (taking reductions as an example), the location
and characteristics of the second wave in cyclic voltammetry at which the
intermediate B is reduced are governed by the outcome of this competition.

- 0 ap
A+e” = B Ej ok

k
2B ~% ¢

- 0 ap
B+e- — D Eja,.kg,

D fa_st products

SCHEME 6.1
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The two successive electron transfer reactions are assumed to obey the
Butler—Volmer law with the values of standard potentials, transfer coeffi-
cient, and standard rate constants indicated in Scheme 6.1. It is also
assumed, matching the examples dealt with in Sections 2.5.2 and 2.6.1,
that the reduction product, D, of the intermediate C, is converted rapidly into
other products at such a rate that the reduction of B is irreversible. With the
same dimensionless variables and parameters as in Section 6.2.4, the
following system of partial derivative equations, and initial and boundary
conditions, is obtained:

da %

—=— 6.57

Ot 0y? (6:57)

ob b

— = —2b” 6.58

ot 0y? *d (6.58)
t=0,y>0and y =00, 1t>0: a=1, b=0 (6.59)

y=0,7>0:
o F o F
Y, = A, exp[—%(E —E(f)] {a - bexpﬁ(E —E?)} (6.60)

Yy = Az exp [—%—IT: (E - Eg)] b (6.61)

There are two contributions, ¥/, and /,, to the total dimensionless current,
Y, with

Oa
Yy = <5>y0 (6.62)
lﬂ2 - lpl = <Z_i> . (6-63)
y=

¢ and 7 are related by equations (6.16) and (6.17):

RT RT RTk,CY
A= KO Ay = K gy = A
=50V EvD 2752\ Bp d Fv

The potential distance between the first and second waves depends, in
dimensionless terms, on the parameter

RT
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Thus, the dimensionless current—potential curves depend on the dimension-
less parameters Ay, A1, A&, o, and o,. Simulating the dimensionless cyclic
voltammograms then consists of finite difference resolutions of equations
(6.57) and (6.58), taking into account all initial and boundary conditions.
Examples of such responses are given in Section 2.5.2 (Figure 2.35).

The preceding analysis is made simpler if, as often the case, the first as
well as the electron transfer step may be regarded as totally irreversible, and
dimerization is so fast that pure kinetic conditions are fulfilled. The last
simplification implies that 0b/0t = 0 in equation (6.58). Integration of this
equation, taking into account initial and boundary conditions (6.59) and
equations (6.63), leads to

3
by—o = 4, () — )" (6.64)

Combining equations (6.64) and (6.61), then leads to

3
4}\,[1

RT (. [|RT
R = E0+oc2F (ksg\/m> (6.66)

It just remains to compute ¥/, from equations (6.57), (6.59), (6.62), and the
simplified version of equation (6.60), which takes into account the assumed
irreversibility of the first electron transfer step:

Y, = Alexp[—R—I;(E EO)] <1—%£%dﬂ> (6.67)

The potential scale may then be redefined as

O(zF
RT

b2 = 0|~ o (€~ B v (6.65)

with

o= | & - 9]

after introduction of a potential, EX, characterizing the irreversible reduction

of A:
T [RT
Ef:E()+R—1 K R
FvD
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leading to a simple integral equation for ¥/,:

Since the waves are irreversible, the forward scan response,

&
Yy = exp(oiéy) [1 - \/%-J %dn] (6.68)

is the only one needed. Equation (6.65) may be recast as

3
V2 = gexpla (& — W — ) (6.69)
with
F | (4RTkyCO
e = o (Ef = Ey) + 5 —In| ———* 6.70
Per RT( : 2)+3O€2 n( 3Fv > (6.70)

Combining equations (6.68) and (6.69) finally leads to the total forward scan
response. Examples are given in Figure 6.4.

The same analysis may also be applied when B is a secondary radical
formed upon fast and irreversible transformation of a primary radical, B’

s o o o o
N w N W ()}
| I |- I | I |- I | I |

o
=

S
L L L
=20 0 20 40 60 80 100 120

[=]

FIGURE 6.4. Dimensionless cyclic voltammograms for Schemes 6.1 and 6.2 for various
values of the dimensionless competition parameter p,,, [equation (6.69)], from left to right:
—20, 0, 20, 40, 60, 80.
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0 ap .
Er.o.kg stepwise
A + e” —— B’

/;/
concerted\\ B fast

kq
2B —— C

B+e —= D Edankd
fast
D —— product

SCHEME 6.2

(Scheme 6.2). In the previous mechanism, B was formed in concert with
electron transfer, whereas the present mechanism follows the stepwise
pathway. (The stepwise vs. concerted dichotomy is discussed in detail in
Chapter 3 for the cased where the B’ — B step is a bond-breaking reaction.)
Although equation (6.51) still applies, equation (6.58) is replaced by

v b

— - )&« / .71
0t 0y? b (6:71)
ob %

502 + A — 2)4b° (6.72)

where / is the dimensionless rate factor corresponding to the rate constant
k(2 = RTk/Fv). Equation (6.59) still applies, while for y =0, 7 > 0,

OCIF

v, :Alexp[ T(E—E(l))]a gDz:Azexp[—jé—I;(E—Eg)]b

with

n=(),. (). 673
by = (2_I;>y_o (6.74)

Addition of equations (6.71) and (6.72) leads to

3(b' +b) (b +b) 5
ot 0 — 2/ab
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which may be transformed into

3(b' +b) (b +b)
ot 02

—20q4(b' + b)? (6.75)

noting that b’ is very small. Indeed, integration of equation (6.71), taking
equation (6.74) into account, leads to

_
b/ ,
Vi

in which 7 is very large.
From equations (6.73) to (6.75), under pure kinetic conditions,

3
(b + b), o~ by—o = 4, (Y — lpz)m

We are thus back to equation (6.64), showing that the current—potential
responses are the same as in the concerted case.

6.2.7. Homogeneous Catalysis

We first consider the case where the rate-determining step is the forward
homogeneous electron transfer step (rate constant k,). The governing
equations are

Gle GHe
5, =D +kCoCa
oC, 0*C
= =Dr5 5t~ keCoCa
oC GHe
= DagE ke
with, as initial and boundary conditions:
t=0,x>0and x =00, r > 0: Cr=C), Co=0, Cr=C%
0Cp 0C
x=0,1>0: G—P + G—Q =0 (conservation of fluxes)
X X

F
Cp = Cqexp [ﬁ (E— Eg/Q)] (Nernst's law)

0Ca

r =0 (A is not reduced at the electrode at the
X

potential where the catalytic wave occurs).
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Conversion into a dimensionless formulation follows the same principle
and notations as in the preceding sections with, in addition, the following
definitions:

S N

RT Fv
FSC\/Dpy | —
PVEPNRT
& G G Q&
P=c 17 T
RT k,CY Dp
Je = — Oop = —
F v Dy
Thus
p_Fp
—=—+4 6.76
5~ oyr T e (6.76)
dqg q
— =5 — /e 6.77
5r oy e (6.77)
Oa 0%a
— =0p=—5— /e 6.78
o0 P2 aa (678)
t=0,y>0and y=o00, 7> 0: p=1, gq=0, a=vy
op Oq Oa
=0,7>0: —~—+=—=0, —=0 = -
y=012> R i 4 qexp(—<)

& and 7 are related by equations (6.16) and (6.17) and

_ (% _ (%
lp_ <ay>y_0 <ay>y—0

Addition of equations (6.76) and (6.77) leads to

6p+q_62p+q
ot 0y?

integration of which, taking the initial and boundary conditions into
account, provides an essential relationship in all catalytic problems:

(p)yzo + (q)y=0 = 1 (679)
and insofar as Nernst’s law is obeyed,

1

g (6.80)

(q)y:()
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Resolution of the problem may therefore be pursued looking only at the fate
of g and a.

A simple situation is reached if the excess is big enough for a to remain
unconditionally equal to y whatever 7 and £. More precisely, this situation is
reached when /,/y — 0, ensuring that the consumption of a is negligible.
Equation (6.77) then becomes

o] B 62q P
a_[ - ayz E’yq
integration of which leads to

1 [Texp[—Ze(r —1)] B 1
v ve=i o TS T g

When 4, — 0, we are back to the reversible Nernstian wave. When,
conversely, 1, — oo (pure kinetic conditions),

Ve
1+ exp(—¢)

(6.81)

W

leading to a plateau-shaped wave, the forward and reverse trace being
superimposed [equations (2.18) and (2.19)]. The variation of the current—
potential responses with 4, between the reversible Nernstian wave and the
plateau-shaped wave [equation (6.81)] is represented in Figure 2.18.

The total catalysis situation is reached when 4, — oo and 4,/y — o0. a is
not longer independent of the space coordinate. Since A, is large, pure
kinetic conditions are achieved and the ¢ profile is squeezed into a thin
reaction layer within which a is a constant equal to its value at the electrode

surface, a,—. Equation (6.77) may thus be simplified into
62
a_yg — Detty—og ~ 0 (6.82)

leading after integration to
v B 1
Vi T T exp(=9)

a,—o may be obtained as follows. Subtraction of equation (6.82) from
equation (6.78), taking the pure kinetic conditions into account, leads to

q 2 q
0—— 0 -
0o _05) _ #loip)

ot ot 0y?
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and after integration,

PPN B B
= opl+exp(—¢) rJovopT—1
and thus
lp[1+exp(—é)]: y+i 1 —LJTM dn }1/2
Ve opl+exp(=¢) VrloVopyT—1

In the total catalysis zone (Figure 2.17), the current—potential response
splits into two waves. One is the mediator reversible wave. The other is
an irreversible wave arising in a much more positive potential region. The
characteristics of the latter may be derived from the integral equation above,
noting that since the wave is located at a very positive potential,
1/[1 + exp(—¢&)] is small compared to y and 1 + exp(—¢&) ~ exp(—¢). Thus,

wexp<—5>:[ ! wan dn ]“2

Ve VE oo T
Introducing
e ———
Tvep FSCR\/D_A\/;
and

1. (2 F 1. (RTkCY Dp
ey (2 ) = - L (E—ES, ) 4-In| iR 2P
<=ty “(ya[) rr E~Ere) 43 n<Fv o DA>

one finally obtains

T gt 1/2
W' exp(—Ete) = [1 - \/LEL 1//{ (_’7)17d11:|

that is, an irreversible peak-shaped curve (Figure 6.5), whose peak char-
acteristics are

e tc __ tc tc  __
lpp = 0.609 fp = 0.409 ép —Spp = 1.41

leading to equations (2.20) to (2.22).
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FIGURE 6.5. Homogeneous catalysis electrochemical reactions. Cyclic voltammetric
response in a total catalysis situation.

Homogeneous Catalytic EC Mechanism The system is governed by
the following dimensionless equations (we need not consider equations
involving p, since as in all preceding cases, p = 1 — g), where two additional
normalized rate parameters are introduced:

_ﬂk*" ] _RTE

y | = —
F v Fv

g %

—=——1 A_eb(1 —

e o2 et (1-4q)

Oa 0%a

— =0p=—— /e l_.b(1 —

or - P aq + A-¢b(1 — q)

ab o%b

_— = _— —"7 1— p—

> (3Day2+/leaq A_eb(1 —q) — b
t=0,y>0andy=o00, 1 >0: q=0, a=y

1 Oa

=0, —:O
1 +exp(—=&)" Oy

y=0,7>0: q
& and 7 are related by equations (6.16) and (6.17) and the normalized current
is given by y = —(8¢/0y),_, In most cases the reactions that destroy the
transient intermediate B are faster than its production, meaning that it obeys
the steady-state approximation

b Aeaq
o /1 + i—e(l — q)
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Thus
Oq 0%g Aleaq
ot 02 A+ .(1—¢q) (6.:83)
Oa 0%a Adeaq (6.84)

&Z Da_yz_ivL/Le(l—Q)

showing that the system depends on two parameters, /. and the competition
parameter A_,/A.

Two-Electron Catalytic Reactions The steady-state approximation may
be applied to both transient intermediates B and C. It follows that not only
does

Aeraq

[ —
;b+/1—el(1 _q)

but also, b = A.pcq, where A, = (RT/F)(ke>/v) and thus

oq g M1 (2a)q

= 6.85
ot 0y A+ia(l—g9q) (6.85)
and
0(2a) 0%(2a) Ade1(2a)q
=9 — 6.86
ot P 0?2  d+ia(l—gq) (6:86)

with as boundary conditions

t=0,y>0and y=o00,7t > 0: q=0, (2a)=2y
1 Oa

=0,7>0: = —
Y t= 1 1 +exp(—¢) Oy

=0

& and 7 are related by equations (6.16) and (6.17) and the normalized current

is given by
Oq
Oy y=0

1 0(2
y=0,7>0: q (24)

“I+exp(—8) dy
Comparison of equations (6.85) and (6.86) with equations (6.83) and (6.84)

shows that the previous analysis of the catalytic EC mechanism is applicable
to the catalytic ECE mechanism after replacement of y by 2.

=0
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Deactivation of the Mediator In the framework of Scheme 2.10 the
system is governed by the following dimensionless equations and conditions:

2

0

61; 3 I; + Ae1aq + Aercq

dq

a_f[] a Z /Lelaq iech - /Lqu

Oa 0%a

Pl 5Da—y2 — e1aq
le1aq = Lepcq + Licq = (Aez + Ain)cq (steady-state approximation on C)
tT=0,y>0and y=00,7>0: g=0, a=y

Oa

y=0,t>20:  p=gexp(—¢), @20

& and 7 are related by equations (6.16) and (6.17) and the normalized current is
given by ¥ = —(9¢/0y),_ The relationship (6.79), characterizing unper-
turbed catalytic mechanisms leading to equation (6.80), is no longer applic-
able. The partial derivative equation system above may be recast as follows:

op p ;%1 2
I+——— (2 6.87
ot @y + + Aer + Ain (2a)q ( )
g %
a a PWo) )»el(za) (6'88)
0(2a) 0%(2a)
= — 2 .

Combining equations (6.87) and (6.88), integrating, and applying Nernst’s
law leads to

. Tr B 1 Le2
el A2

1y
Jo VT~ de

VT

which may serve as boundary conditions for the simultaneous computation
of equations (6.88) and (6.89). It is useful to introduce the deactivation
parameter, p. = .2/ (Ae2 + Ain), thus leading to

[(1+p.) +2exp(—E)]gy=0 =2 — (1 — p,) %JO \/wf—(ﬁ:)ﬁd”
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In summary, the system is governed by the following set of equations,
thus depending on three independent parameters, Z.;, 7, and p,:

0q %
i G NG
e oy 2a)
0(2a) 0%(2a)
ar = 5D ayz - }uel (2a)q
1=0,y>0and y=00,7>0: q=0, 2a=2y
1 [T(n)/2
1—(1—-p.)— d
i-p)=| V2w
y=0,7>0: q= o , a_:()
¢ 4+ exp(—&) Y

£ and 7 are related by equations (6.16) and (6.17) and the normalized current
is given by Y = —(0q/0y),_, When p, — 1, we are back to the two-
electron ECE homogeneous catalytic mechanism analyzed in the preceding
subsection. When p, — 0, there is no catalysis; the cyclic voltammograms
are then obtained from the same two partial derivative equations and for the
boundary condition at the electrode surface:

)2
y=0,7>0: qg= i 0V il , a_a:O
Lrep-g

Numerical resolution of the system above leads to the examples of current—
potential responses and of i,/ ig vs. p, plots in Figure 2.22.

Two-Step (Push-Pull, Ping-Pong) Mechanisms Dealing with Scheme
2.11a we impose two simplifying conditions, often fulfilled in practice. One
is that there is no consumption of the substrate [a(y,7) = y]. The other is
that the intermediate C disappears faster than it is produced, thus obeying
the steady-state approximation. Under these conditions, and introducing as
rate parameters 4,7 = (RT/F)(kiC%/v) and J, = (RT/F)(kyCo/v) the
catalytic response is governed by the following dimensionless equations and
conditions:

op p ,
a—lj = a—y’; + 217q + Aod (6.90)
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g %
2_-1_9 91
3~ oy A17q (6.91)
od  %d
—=—+4+ 4179 — 92
0 6y2+ 17q — A2d (6.92)
T=0,y>0and y=00,7>0: p=1, ¢g=0, d=0
od

y=0,7t>0: p = qgexp(—9), 0

dy
& and 7 are related by equations (6.16) and (6.17) and the normalized current
is given by y = —(8¢/0y),_, Numerical resolution of the system allows the
derivation of any cyclic voltammogram, such as, for example, those
represented in Figure 2.23, which correspond to pure kinetic conditions
(large values of A;y). Under these conditions, and in the case where 4, is
also large, variation of the plateau current with the rate parameters may be
depicted by a closed-form expression that can be derived as follows.
Appropriate linear combination of equations (6.91) and (6.92) gives

Lt I

ot N 0y? A1y

which after integration leads in the Laplace plane to

_ 2\ - ¥
o+ (2-22)d - =0
9=0 < m) = ST &

Since /, is large,

22 U
o+ (2——)dyeo——==0
=0 ( 7»17’) = Via

Addition of equations (6.90) to (6.92) and integration leads to p,—o+

Qy:() + dy:() == 1
At the level of the plateau, p,—o = 0 and thus, finally,
‘ﬁ — 2— Pe
VA1 2
1 - Pet 4/ —

c

(pe = 22/ 217 = k2C2 Jk1 CY), from which Figure 2.23a has been constructed.

We now go to Scheme 2.11b with the same two simplifying conditions as
before. We introduce the same rate parameters and, in addition, two
dimensionless potential variables referred to the standard potentials of the
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P/Q and C/D couples, respectively:

& = _% <E -~ Eg/Q> and & = —% <E - Eg/D>

The governing equation system is thus

2_Z _ 227‘21 — Aiyq (6.94)
% = giyg + Z17q (6.95)
Z_f — 227‘2’ — Jod (6.96)

t=0,y>0andy=00,7>0: p=1, ¢=0, ¢=0, d=0

op + Oc+d
yZO,TZOZ p:lep(_él)v C:dexp(_€2)7 uzoa ay =

Oy 0

&, and 1 are related by equations similar to equations (6.16) and (6.17) and
& =& 4+ AE, with

F
0 _ 0 0
AL = =T (Ec/p — Epjq)

There are two contributions, ¥/, and /,, to the total dimensionless current,
Y, involving the P/Q and the C/D couples, respectively. In normalized terms,

@) 0), e
wl <ay>y0 <ay y=0 and lpz ay y=0 ay y=0

Addition of equations (6.93) to (6.96) followed by integration leads to
Py=0 + dy=0 + ¢y—0 + dy—0 = 1
and after introduction of the two Nernst’s laws to
qy=0[1 + exp(—&1)] + dy=o[1 +exp(=&)] = 1 (6.97)

Addition of equations (6.93) and (6.96), followed by integration, leads in the
Laplace plane to

- 1
Py=o +dymg =~ ~ (6.98)
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that is, in the original plane,

L ("(n) —¥o(n)
Dy—0 + dy— :1——J ———="dy 6.99
Yy 0 y 0 \/'7'% 0 \/m ( )
Since we assume that both 4; and A, are large (pure kinetic conditions),
2 2
Gy—0 = and d,—g = ——=—
=0 Vary =0 Vi

as demonstrated repeatedly in previous sections.
At the first wave, dy—g = 0, , = 0, and thus, from equation (6.99),

1 T
LeXP(—fl) =1 ——J i) dn
VA Vit )o /T
(i.e., the equation of voltammogram corresponding to an irreversible EC
mechanism). At the second wave, since p,—o = 0, equation (6.98) becomes

c_l _‘Pz_l ‘h—‘ﬁz

N/ RN

and since 4, is large,

- - 1 ) 1
Y= Le., lﬁl—‘/fz:ﬁ

At the level of the second wave, the right-hand side of the second equation
is practically nil, thus leading to ¥/, = ¥/, = /2. Equation (6.97) may be
recast as

qy=0 + dy—o[1 +exp(=&)] =1

that is,

- 2
V= 1 N 1 N exp(—¢&)
Vay Vi V7

thus leading to equation (2.23) or, alternatively, to

w( Lo 1)_ 1 B 1
2\Var VA _1+exP(—rfz)_l+exp(—€z,C)
Via

VZiy

1+
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with

N
527c:§2+ln(1+ «2>
A1y

thus leading to equation (2.24).

6.2.8. Product Distribution in Preparative Electrolysis

As in preceding discussions, we take reductions as an example. Transposi-
tion to oxidations just requires a few changes of sign. In the case of a simple
A 4+ e~ — B reaction, equations (2.30) and (2.31) are obtained from the
integration of equations (2.28) and (2.29), with (C%),_, = C® and (C%),_, =
0 as initial conditions, respectively. In the absence of coupled homogeneous
reactions, the gradients of both A and B are constant over the entire diffu-
sion layer (Figure 2.31). Thus, in the case where the potential the surface
concentration of A is zero,

i _(dC)  _(dCx) _Ch-0_ Vv
FSD \dx ) _; \dx/)_, &  SD dt

It follows that

dct t - .

— = —d|— [tc is defined by equation (2.32)]

CA tc

Hence, knowing that (C%),_, = C°, equation (2.30) is obtained. Addition of

equations (2.28) and (2.29), followed by time-integration, leads to
Ch+Cp=C"

and thus, taking equation (2.30) into account, to equation (2.31).
In the case of constant reactant concentration—constant potential electro-
lysis, equation (2.28) does not apply since
ac, _
dar

i [dCa _[dCcy\ %
FSD \dx)._5; \dx)._, &
is still valid. It follows that equations (2.29) may be recast as

o
Ifc

0 (Ck=C

although

dch =C
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leading, after integration, to equation (2.33), since
(C]l;),:() = 0.

In constant reactant concentration—constant current electrolysis, the bulk
concentration of B also increase proportionally with time, but the propor-
tionality factor is i/FV instead of o /tc [equation (2.34)].

When the reaction scheme involves first- or pseudo- first-order reactions,
fast enough for pure kinetic conditions to be achieved (/D/k < 0), the
concentration profile of B is squeezed within a thin reaction layer adjacent
to the electrode surface as represented in Figure 2.31 (bottom diagram).
Starting from the electrode surface, the following relationships apply.

At the electrode surface (i.e., for x = 0),

i dCp dCg
=— =—|— 6.100
FSD < dx >x0 < dx >x0 ( )
dCc
— =0 6.101
( dx >x0 ( )
Within the reaction layer (i.e., for 0 < x < p),
Ca > (Ca),
d*Cg
D —kCg =0 6.102
dx? B ( )
d*Cc
D kCg =0 6.103
A2 + kCs ( )

At the reaction layer/diffusion layer boundary (i.e., for x = p),

dCA dCA i
C ~ (C — “\ e ~ FSD
( A)x=0 ( A)x=u7 ( dx >x,u < dx >x0 FSD

dCy
(CB)— =0, <§> o 0 (6.104)

(Cc)yy = (Co)yy,

Within the diffusion layer (i.e., for u < x < 9),

dCh _ (dC)  _ (dCn) _ (dC\ _ _i
dc  \dx )., \dx)._s \dc/,_, FSD

dCC dCC dCC
—=|— — 6.105
dx < dx >xy < dx )x5 ( )
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At the diffusion layer—solution boundary, (i.e., for x = J),

i dact dCx
——_yZZA_SD
F dt =5 < dx >
dct. dCc
V—C=-5D 6.106
dt < dx > 5 ( )

Addition of equations (6.102) and (6.103), followed by integration, taking
equations (6.100), (6.101), and (6.104) into account, leads to

dCc)  _ (dCs\ __ i
d« )., \dx)._, FSD

dCc) _ (dCc) i
dx x:o,_ dx x:u_ FSD

which, taking equation (6.106) into account, means that the production of C
follows exactly the same rules as the production of B in the preceding case.
Dealing now with Scheme 2.16, which involves two competing first-order
reactions, the A concentration profile and gradients are not modified. The
following differential equations govern the concentration profiles of the
intermediate B and the two products C and D within the reaction layer:

and therefore to

d*c
D=5 % (ki 4+ ky)C =0 (6.107)
d*C
D— — kG =0 (6.108)
d>C
D— — 2 +kCp =0 (6.109)

with as additional boundary conditions at the electrode surface,

<@) =0 <@> =0 (6.110)
dx x=0 dx x=0

while, outside the reaction layer, equation (6.105) and a similar equation for
D apply. At the diffusion layer—solution boundary,

dct. dCc dch, dCp
Vv—C—=_8D v—L2_—_sp 6.111
dt <dx>_5 dt (dx)_(; ( )
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Summing equations (6.107) to (6.109) and integrating, taking equations
(6.100), (6.104), (6.110), and (6.111) into account leads to

d(C¢ + Cp)

Vv
dt

_ _sp [d(Cc + CD):|X5 i

dx ~F
meaning that the build up of the sum of the two products follows exactly the

same laws as B in the case of a simple electron transfer in any of the electro-
lysis regimes. Then, linear combination of equations (6.107) and (6.108),

ki +k
d2<CB—|- IZ_ 2Cc)
D =0

1
dx?

followed by integration, with due account of the pertinent boundary
conditions, leads to

act ki

dt ki +k F

thus yielding equations (2.35).

Passing to Scheme 2.17, where the competition involves two follow-up
reactions of different orders, the governing differential equations for B, C,
and D are now

d2CB 2
D —kiCg — 2k Cz; =0 6.112
P 1CB 2 ( )
d*Cc
D kiCg =0 6.113
A2 +kiCp ( )

with the same boundary conditions as in the preceding case. From the linear
combination of equations (6.112) to (6.114) and integration, taking the
appropriate boundary conditions into account, one obtains

d(Ch +2Ch)

\%
dt

— _SD |:d(CC + 2CD)] 1
x=0

dx - F

This means that the build up of the sum of the first-order reaction product
and twice the second-order reaction product follows exactly the same laws
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as B in the case of a simple electron transfer in any of the electrolysis
regimes. The yields are obtained from

b dC
,dCh 2< D
YD — 1 —yC = dt -

=— ==
dCg. N deD <dcc> Lo &)
dt dt dx x=0 X ) x=5

Addition of equation (6.112) and twice equation (6.114) leads to

d*(2Cp + C
D (2Cp + Cg)

2 =k Cp

(i.e., after integration), taking into account equations (6.104) and (6.110),

d2C dc, =0
D( D) :D<—B> +k1J Cp dx
dx x=0 dx x=0 x=0

and therefore

d x=0
—D (CB> —k; J Cgdx
dx =0 x=0

YP=1-v"= :
FS
that is, taking account of equation (6.100),
x=08
k] J CBd)C
YD:1—YC:1—);7# (6.115)

The concentration profile of B is squeezed within the reaction layer. It may
be analyzed in dimensionless term so as to obtain the expression of the
yields with introduction of a minimal number of parameters. This is arrived
at by normalizing the space variable versus the reaction layer thickness as
y* = x/ki/D(y* =1 corresponds to x = u) and the concentrations as

FS FS FS
b* = CB\/le—, C* = ch/le—, d* = CD\/le—'
1 1 1

in the two constant-concentration regimes considered so far. In the constant-
current regime, the normalizing factor is indeed a constant, independent
of time. This is also true for the constant-potential regime when the
potential is negative enough for the condition (Ca),_, = 0, implying that



COUPLING OF HOMOGENEOUS CHEMICAL REACTIONS 419

i/FS = C°D/$ is also time-independent. The competition between the two
follow-up reactions is consequently a function of a single parameter:

k i
2nd __ 2
Prse = WFSDI/Z (6116)

which applies as such in the constant-current regime and becomes

p2nd2£C0D1/2
Ist k%/z 5

in the constant-potential regime just defined.
With these changes of variables, the expression of the yields in equation
(6.115) becomes

Y =00
* (6.117)

YD:1—YC:1—J b*dy
y'=0

while equation (6.102) is transformed into
d*b*
& — (6.118)

* 2nd 7,%>
=b"+2p7,'b

the integration of which, taking equation (6.104) into account, leads to

db* 4 1/2
=b"(1+=p>p* 6.11
dy* < +3 3 lst ) ( 9)

The integral in equation (6.117) may be recast as

y'=00 b =(b"),e o b*db*
[l 2
“—() b =0 db /dy*

Jb* (b")y =0 db* 3

4 2nd
\/1 + s ) - 1]

2nd 2p 3

b*=0 4p 4pis
1 St b*
3

where (b*),._, is provided by the application of equation (6.119) for y* =0

4 1/2
o150 o] =1
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leading to an alternative expression of the yields:

3 1
YW=1-v"=1—-—— | ———1
2p2nd [(b*)y*o ]

Ist
Computation of Y€ and Y” as a function of the competition parameter from
the two equations above leads to the curves in Figure 2.32. Since Cé +2Ch
increases proportionally with time and since the competition parameter is
independent of time, the concentration of each product also increases
proportionally with time.
In the exhaustive electrolysis constant potential regime,

C% = C%exp (— i)
Ic

t
chb+2ch =c° [1 —exp<—t—>]
C

and

We therefore introduced newly normalized concentrations, taking the
exponential time variation into account:

t t t
b* = b*exp <—> ¢t =c*exp <—> d* = d*exp <—>
fc fc tc

as well as a modified form of the competition parameter,

oyt 111 t
Pt = p2rd exp <— E) (6.120)

Equation (6.118) still applies to these modified variables and parameter,
leading to the following expressions:

a*p* 2
A
d>ct

dy

dsz o anA A2

o —Pig b
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The yields ensue (ECP for exhaustive constant potential electrolysis):

Jmc [1 - r@ bt dy*} exp(—11) di

(YD)ECP =1- (YC)ECP == . P
1 - exp(——)

Ic

that is,

pst
(YD>ECP =1- (YD)ECP = 12,,[, ~ oudA (6.121)
Dig Pist

where (YP) . is the yield under constant concentration conditions. At the
end of the electrolysis (t/tc — o0),

D C Lo D
Y"=1-Y :MJ (Y")ccdn (6.122)
Pist Jo
The curves in Figure 2.32b are thus obtained from integration of the curves
in Figure 2.32a.

The reduction of carbon dioxide (Section 2.5.4) raises the question of
possible competition between a radical-radical coupling and a radical-
substrate coupling according to Scheme 6.3, in which the competition
shown in the upper part of Scheme 2.34 is represented symbolically.

At+e == B

k. k.
2B —~ D B+A ==C K="
k k_

ECE DISP

k

C+e == F B+C —>F

SCHEME 6.3

The mechanism, albeit somewhat more complicated than in the preceding
case, also involves competition between a first- and second-order follow-up
reaction. For this reason, a similar analysis applies and the yields vs.
competition parameter curves can be derived from those pertaining to the
preceding case.
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The data shown in Figure 2.36 were gathered at constant current with a
value of the current density that brought the electrode potential at the foot of
the current—potential characteristic of the system. The concentration of
substrate may thus be considered as constant. As discussed in Section 2.5,
we consider only the case where the second electron transfer in the radical—
substrate coupling pathway occurs at the electrode (ECE). The following
equations and conditions apply.

At the electrode surface (i.e., for x = 0),

(Cc)yg =0 (6.123)
dCp
— =0 6.124
< dx >x—0 ( )
dCr)  _ _(dCc (6.125)
dx x=0 dx x=0 .
i d(Cg + Cp)
—=-D|——= 6.1
FS [ dx :|x=0 (6.126)
Within the reaction layer (i.e., for 0 < x < p),
d*Cp
b=e = 2k C3 + ky COCy (6.127)
dZCC 0
D = —k,,C"C 6.128
dx? B ( )
d*Cp
D—5+ k,Ca =0 (6.129)
d*Cr
-0 6.130
In the rest of the diffusion layer (i.e., for u < x < 9),
dCg
Csg=0 —=0 6.131
B dx ( )
dCe¢
—=0 6.132
dx (6.132)
d*Cp
—F=0 6.133
d*C
T—0 (6.134)

dx?
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At the diffusion layer—solution boundary (i.e., for x = 9),

dc? dC dc? dC
V=D _—_sp (—D> V=E—_sD (—F>
dt x=0 dx x=0

The yields in the two products are obtained from

WO yF_ dcp/dr dCp /dx,_;

TG G (4 (4
dt dt dx x=0J dx x=0
A first linear combination of equations (6.127) to (6.130) aiming at the
elimination of the kinetic terms gives

DdZCB +Cc+2Cp +2Cr

dx? 0

which is valid within and outside the reaction layer. Integration, taking into
account equations (6.124), (6.125), (6.131), and (6.132), leads to

D d2Cp +2C)| D dCg +Cg)| i
dx x:(;_ dx x,o_ FS

The yields are thus expressed as

Another linear combination involving equations (6.127) to (6.129) gives

d*Cg — Cc + 2C,
ptte—CctCp 2k, C'Cy
dx?

and after integration and introduction of (6.124), (6.125), (6.131), and
(6.132),

d(2C ' ¥=0
—D{ ( D)} — L 2k,sC°J Cg dx
=5 FS x=0
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and therefore

X=0
2krsC0J Cg dx
YPP=1-v=1- X;O (6.135)
FS

The search of the minimal number of competition parameters calls for
normalizing the space and concentration as follows:

2k, CO
D

FS
b* = Cg/2k,;C'D—
i

Then equations (6.127) and (6.133) become, after introduction of a single
dimensionless competition parameter,

*

y =X

k i
oo __ r
Pra1 = (2k )3/2 FSD1/2C03/2 (6.136)
y* =00
YD:I—YF:l—J b*dy* (6.137)
y=0
dzb* * rr *2
&7 =b"+2p.b (6.138)

Comparison of equations (6.136), (6.137), and (6.138) with equations
(6.116), (6.117) and (6.118), respectively, shows that the variations of the
yields with the competition parameter are exactly the same as already
computed for the case of competition between a first- and second-order
follow-up reaction (Scheme 2.17), although definition of the competition
parameter is different.

For the ECE-DISP competition, the following equations and conditions
apply. At the electrode surface (i.e., for x = 0),

d d
(ﬂ) __ <&> (6.139)
dx ) dx )

dCc dCpe

= = _ 6.140
( dx )xO < dx >x0 ( )
dCpp

=0 6.141

( dx )xO ( )

(Cc)yg=0 (6.142)
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For a constant-potential regime, if the electrode potential is set negative
enough (for a reduction, positive enough for an oxidation), (CA)x:O = 0. For
a constant-current regime,

i dCx dCc
== -— 6.143
FSD < dx )x=0+< dx )x:O ( )

is maintained constant.
Within the reaction layer (i.e., for 0 < x < ),

d*Cy

D= 5"+ koCyCe =0 (6.144)
Dd;;B — kCp — kpCpCc =0 (6.145)
Dd;gc + kCp — kpCsCc =0 (6.146)
Ddi;fE =0 (6.147)

Ddili’;[’ +kpCpCc =0 (6.148)

At the reaction layer—diffusion layer boundary (i.e., for x = p),
dCg
=0 (%) =0 (6.149)

and the conditions expressing the continuity of concentrations and gradients
for A, C, D, and D".
Within the diffusion layer (i.e., for u < x < 9),

d;fz’* =0 (6.150)

d;ccf =0 (6.151)

Ddizi?E =0 (6.152)
Ddz(;?" =0 (6.153)

Cp = 9o _ (6.154)

“dx
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At the diffusion layer—solution boundary (i.e., for x = 9),

dch dCyx
—V—=A=58D
dt ( dx )

in exhaustive electrolysis, and Cx = C? in constant-concentration regimes.
In addition,

dct. dCe¢
—V=C€=5D 6.155
dt < dx >x ) ( )

dct, dCyy
—v—D —gp(—=D 6.156
dt < d'x >x(3 ( )

act, dCpp
—v—b —gp(—2 6.157
dt < dx >X=5 ( )

Linear combination of equations (6.144) to (6.146) leads to

d*2Cp + Cg + Cc
D
dx?

=0 (6.158)

which applies not only within the reaction layer but also over the entire
diffusion layer [from equations (6.150) to (6.154)]. It follows that

2CA + CB + CC = 2(CA)x:O + (CB)x:O =+ (CC)x:()

ac dc dc (6.159)
() (@) ()
dx x=0 dx x=0 dx x=0

+ (%) xo]x (6.160)

in view of equations (6.140) and (6.143), and of the fact that (Cp),_, ~ 0
(achievement of pure kinetic conditions). Application of equation (6.160)
for x = ¢, taking equation (6.154) into account, gives

() )
x=0 dx x=0

which becomes

dC
2Ca + Cp + Cc = 2(Ca),_o + [( d;)

2(Ca)x=s + (Ce)yms = 2(Ca)yp + [(%)
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It also results from equation (6.145) that

[7(0) dcC dcC dC
(%) () (@) (&)
dx x=0 dx x=0 dx x=0 dx x=0
Therefore,

From equations (6.150) and from the fact that y < d, we infer that

(d&) _ (CA)x=5 - (CA)x=,u
dx ) _s o—pu
N (Ca)res — (Ca) ey _(Ca)ys — (Ca) o

0 0

and similarly, from equation (6.151),

(d&) (Cc)yes — (Cc)ry
dx J s

Therefore,

2(Ca)y—s T (Cc) s = 2(Ca) =

427

+2[(Ca)ss = (Ca)my) + [(Ce) s — (Co) iyl

Since (Ca),_, ~ (Ca),—, and (Cc),_, ~ 0, then

x=[

d& _ (CC )x:(S
dx ) ._s 0

implying that

dct  ,SD
dt

Cyvs

Since there is no C at the start of electrolysis, the concentration of C and its
gradient are negligible [on the order of (Cg),_,] within the diffusion layer.

Thus, (dCc/dx),_, = 0 may serve as a boundary condition.
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Addition of equations (6.144) to (6.148) gives

DdZCA +Cg+ Cc + CDE + CDD B

dx? 0

which applies within the reaction layer but also outside it [equations (6.150)
to (6.154)]. It follow that the sum of all gradients is conserved from x = u to
x = 0. Thus, taking into account equations (6.140) to (6.142) and (6.149)

and the fact that
dC) _ (dG)
dx ) ._ 5_ dx X=u_
(‘B) P
dx x=0
(). (5) ()
dx x=0 dx x=0 dx x=0

meaning that the production of the sum of D* and D equals the consump-
tion of A.
From equations (6.147) and (6.152),

dCye\  [(dCpye
dx x:(5_ dx x=0

and therefore from equation (6.140),

dCpe)  (dCc
dx x:(S_ dx x=0

In constant-concentration regimes,

and

It follows that:

t
Che+CPy = C'—
Ic

to dCc
ch, == (=5
D Ic ( dx )xO

and
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The yields are thus expressed as

yP oyt = 2 (dCe
CO\ dx ) _,

The gradient of C at the electrode surface may be obtained from the
simultaneous resolution of equations (6.145) and (6.146). As in the
preceding case, convenient dimensionless expressions are obtained after
normalization of the space variable as y* = x\/k; /D and of the concentra-

tion as
Cy \/E Cc \/E Co \/E
o\Vp® < To\VDp o \'D

in the constant-potential regime and

FS FS
b* :CB\/k]D—. C* :ch/k]D—.
1 1

in the constant-current regime with introduction of the competition
parameters

PSP _ k C°D' an o iD'2
ECE k?/z 0 kf/2 FS

in the two regimes, respectively, convert equations (6.145) and (6.146) into

the following dimensionless system, which depends on the single competi-

tion parameter p2Lr.

d2b* * * %
dzc* * * %
il Peceb'c

with as boundary conditions

(dc*) <db*> 5
dy* =0 dy* y=0
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[from equations (6.142) and (6.160)]

(€)ycg=0

(b*)y*:oo =0

(dc*) _0
ay* ) y—oo

Finite difference resolution of this system of partial derivative equations
with their boundary conditions allows calculation of (dc*/dy”),._, and

thereby of
YDE —1_ YDD _ <dc*>
dy* =0

finally leading to the curves in Figure 2.33a.

As in the preceding case, yields at the end of a constant-potential
exhaustive electrolysis are obtained by integration of the constant-concen-
tration yields [see the establishment of equations (6.121) and (6.122)]:

DISP

1 P
YDE 1 YDD _ TSPJ ECE (YDE> dn
PEce Jo cc

finally leading to the curves in Figure 2.33b.

The competition between H-atom transfer and electron + proton transfer,
exemplified by the reduction of aryl halides in Section 2.5.5, corresponds to
the symbolic Scheme 6.4.

A +e — B

kl
B — C
k,
C — F+G
ECE DISP
kD
C+e =—= DE B+C — A 4+ DP
k
G+es == H B+G —— A+ H
SCHEME 6.4

This three-cornered competition may be analyzed on the basis of three
two-cornered competitions, ECE-HAT, DISP-HAT, and ECE-DISP, where
“HAT” stands for the formation of products F and H even if this type of
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reaction scheme may involve reactions other than H-atom transfer and sub-
strates other than aryl halides. The ECE-DISP competition was just analyzed
in Section 6.2.7. Before examining the ECE-HAT and DISP-HAT pathways
separately, we establish several relationships that hold when both pathways are
involved simultaneously and are therefore valid in each of the two cases.

At the electrode surface,

(dCA> (dCB> ~ (6.161)
e
<%> (6.163)
(%) <dCH>x0 (6.164)

CC)x 0=0 (CG)x:O =0

For a constant-potential regime, if the electrode potential is set negative
enough (for a reduction, positive enough for an oxidation), (Ca),_, = 0.
For a constant-current regime,

i dCa dCc dCg
—=|— — — 6.165
FSD < dx >x—0+< dx >x—0+< dx >x—0 ( )

1s maintained constant.
Within the reaction layer (i.e., for 0 < x < p),

d?Cy

D 2 + kpCrCc + kpCgCg =0 (6166)
d*Cy
D 2 kiCg — kpCgCc — kpCgCs =0 (6.167)
d*Cc

D—— 72 + kiCg — krCc — kpCgCc =0 (6168)

d*Cp
D—— e + kpCgCc =0 (6.169)

d’Cr
D—— 2 +kCec =0 (6.170)
d*C
b dx2G + kyCc — kpCgCg =0 (6171)
d*C

D= 4 kpCsCs =0 (6.172)

dx?
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At the reaction layer—diffusion layer boundary (i.e., for x = p),

U

Within the diffusion layer (i.e., for u < x < 9),

d*Ca
— =0
dx?
acy
dx
dCc
dx
dCo
dx
d*Cp
dx?
2
D d-Cr
dx?
d*Cy
dx?

(6.173)

(6.174)

(6.175)

(6.176)
(6.177)
(6.178)

(6.179)

(6.180)

(6.181)

(6.182)

At the diffusion layer—solution boundary (i.e., for x = J) there is
no production of B, C, and G because there is no gradient of these
species. We are thus left with the following boundary conditions, which
express the consumption of the substrate and the generation of the

products DE, F, and G:

dct
_VZA_SD dﬂ
dt dx ) ._s
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in exhaustive electrolysis, and C2 = C° in constant-concentration regimes.
In addition,

dc? d
——ii:ﬂ%£% (6.183)
dt X ) s
dct dCr
—Vv—E—spl— 6.184
dt < dx >x5 ( )
dct, dCy
—v—H_gsp(—= 6.185
dr < dx >x5 ( )

Addition of equations (6.171), (6.172), and subtraction of equation (6.170)
yields

d*(Cg + Cy — C)

D
dx?

=0

which is valid within and outside [equations (6.179), (6.181), (6.182)] the
reaction layer. After integration, while taking account of equation (6.179),

acry _ (dC
dx x:(5_ dx x=0

meaning that, as expected, the rates of production of F and G are the same.
Summing equations (6.166) to (6.169), (6.171), and (6.172) leads to

d*(Ca + Cp + Cc + Cp + Cg + Cy)

D
dx?

=0

which is valid within and outside [equations (6.176) to (6.180) and (6.182)]
the reaction layer. Therefore,

D d(Ca+ Cg + Cc + Cp + Cg + C)
dx x=0

_D|:d(CA +C +CC + Cp + CG +CH):|
X=0

dx

and thus, in view of equations (6.162) to (6.164) and (6.177) to (6.179), the
first member of the equation above is equal to zero. Therefore,

d(CD + CForH) _ @
dx X:5_ dx x=0
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meaning, after application of equations (6.183) to (6.185) that the produc-
tion of D and H (or F) amounts to the consumption of A.

Still another linear combination of the reactant, intermediate, and product
concentrations leads to

d*(2Cp + Cg + Cc + Cg)

D
dx?

=0

which is valid within [equations (6.166) to (6.168) and (6.172)] and outside
[equations (6.176) to (6.179)] the reaction layer. After integration,

i dCyg dCc dCg dCa
_— = - — _ _ = 2
FSD ( dx >x0+< dx >x0+< dx >x0 ( dx >x<5

Because the ratio of the reaction layer over the diffusion layer thickness
tends toward zero, (Ca),_, =~ (Ca),_o, and thus

() (1) () L aGhm
dx ) ., dx ) ., dx )., 0

It also follows that

i dCA d(CD + CForH)
= [ =2 = |2 6.186
2FSD ( dx >x=5 [ dx s ( )

From equations (6.163), (6.170), and (6.181),

dc =0
D <—F> = —kz J Ccdx
dx x:5 XZO

As in the preceding cases, the following transformations are suggested by
search for the minimal number of governing parameters, thanks to the fact
that pure kinetic conditions are assumed to hold: y* = x\/k; /D and of the
concentration as

2FS 2FS 2FS
b* = CB le—_ C* = CC\/le—_ g* = CG le—_
i i i
with introduction of two competition parameters:

k
i =1 (6.187)
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and

pDISP: kD iDl/2
HAT k2 2FS

(6.188)

We may note in passing (compare equations (6.187) and (6.188) with
equation (2.37)) that

DISP

PrAT _  DISP
ECE ~— YECE
PHAT

These transformations apply for both the constant-current and constant-
potential regimes, noting that in the latter case, i/2FS = DC’§ in the condi-
tions assumed to hold so far where the electrode potential is negative enough
for (Ca),_, = 0. Then, equations (6.167), (6.168), and (6.171) become

de* pDISP
—— b AL pr (1 g") =0 (6.189)
dy*? Piiat
. S
b bt S EHAT et =0 (6.190)
dy*? Piar Prar
g 1 Pt
> - b*'g* =0 (6.191)
dy? " pEst  Phar

with, as boundary conditions,

()0 = (8o =0

db* dc* dg*
—( ) +< C*> +< g*> —2 (6.192)
dy* ) o \&*) o \dV*) g
It follows that:

dct  SD <ch> i S 1 Jy*oo .
x=0

-=F - - *d
dx 2FSVpEGE |, %

dr %

Combination with equation (6.186), taking equations (6.183) to (6.185) into
account leads to

dCi oy ~
= c ay .
% dCl}; oH P gg%: y=0

dt dt
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In the two constant-concentration regimes, all terms of equation (6.193) are
independent of time. Therefore,

T 1 v * *
YFOHZI—YDZWJ Cdy (6194)
PHAT Jy=0

In the exhaustive electrolysis regime, following the analysis as developed
previously to derive equations (6.121) and (6.122), the yields are obtained
by integration of the constant-concentration yields:
DISP
I;Z?ZA (YFert) cedn

(YForH)ECP =1- (YD)ECP = HATDISP . DISPA (6195)
Prar — PHAT

where

A t
ot =it exo( - ) (6.19)

At the end of the electrolysis (7/tc — o0),

DISP
1 PHAT

) R & = o JO (YForthy . dn (6.197)

Based on these general relationships, we may now examine separately
the ECE-HAT and DISP-HAT pathways.

In the ECE-HAT competition, pokr. /pECE = p2F — 0. Equations (6.189)
to (6.191) simplify to

d’*b*
d*c* 1
b — e =0 (6.199)
dy* HAT
dPg 1
o =0 (6.200)
dy?  phgE

Addition of equations (6.198) to (6.200), followed by integration, taking
into account equations (6.173) to (6.175) leads to

db* dc* dg*
(@), (), () 0
dy =0 dy y=0 dy ¥=0
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implying after connection with equation (6.192) that

<db*> _q
dy*/ o

Applying this condition after integration of equation (6.198) leads to
b* = exp(—y*), and therefore from integration of equation (6.199),

Phar Y

¢ =TT exp(—y") —exp [ - —e
1 — phar VPiaT

It then follows from equation (6.194) that in the constant-concentration

regimes,

yForH — 1 —yP (6.201)

1
U+ VP
In the exhaustive electrolysis regime, the same relationship applies as results
from the combination of equations (6.195) and (6.201). The resulting
variations are represented in Figure 2.38a.
In the DISP-HAT competition, piiof /pESE = pPIF — oo. An homoge-
neous steady-state is established for C, resulting in

. Dirb
1+ Rz b

and

d*b*
dy*Z

<db*> _ s
dy* =0

b* = V2exp(—v2y")

—2b"=0

with

It follows that

and thus that

o V2Pl exp(—V2y")
T+ V2B exp(—v2r)
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The yields in the two constant concentration regimes are thus obtained by
application of equation (6.194):

DISP
YF()rH —1— YD — ln(l + \/ipHAT) (6202)

V2Pt

In the exhaustive electrolysis regime, combination of equations (6.202) and
(6.195) leads to

Jﬁpﬁﬁ In(1 +7) i

DISPA
V2p HAT n

A
V2 (Pt - piisrt)

(YporH)ECP =1- (YD)ECP =

At the end of the electrolysis (7/tc — o0),

-DISP
YFOI‘H — 1 _ YD — 1 JpﬁHAT 1n(1 + 7’]) d”]

Vit o 1

The resulting variations are represented in Figure 2.38b.

6.3. ELECTRON TRANSFER, BOND BREAKING,
AND BOND FORMATION

6.3.1. Contribution of the Cleaving Bond Stretching to Internal
Reorganization of the First Step of the Stepwise Mechanism

Assuming that the most important contribution to the internal reorganization
is the stretching of the cleaving bond, the free energy surfaces for the
reactant (Grx) and product (Grx+-) may be written as

Grxie- = Aorxte —rx* X + Dpx{l — exp[—B(y — yrx)|} (6.203)

Grx~ = Ao rxerxe- (1 = X)? + Drx-{1 — exp[—B(y — yrx- )]}
FAG e e (6.204)

It is also assumed that the repulsive terms in the two Morse curves are
approximately the same, leading to an equation that relates the difference in
the equilibrium distances to the ratio of the dissociation energies:

1 DRX

- = 4+ —1In
YRX YRX 28" Daxe-

(6.205)
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Equations (6.203) and (6.204) may then be recast as follows:

Grxi+ew = DRY? + Jorx e corx+ X (6.206)
[ 2
Grx*- = Drx [(1 - X > - Y] +0RX+e —rx (1 — X)2
Dgrx
+ AGRy ye-—rx+ (6.207)
with
Y =1—exp[-B(y — yrx)] (6.208)

The activation free energy is then obtained by the usual minimization
procedure, thus leading to equation (3.22).

6.3.2. Morse Curve Model of Intramolecular Dissociative
Electron Transfer

The classical Morse curve model of intramolecular dissociative electron trans-
fer, leading to equations (3.23) to (3.27), involves the following free energy
surfaces for the reactant (Grx+-) and product (Ggr+;x-) systems, respectively:

GRXF = iO7RX.7(—>R.+X7X2 + DRX" Y2 (6'209)
Gresx- = dorxs —resx- (1 = X)* + Dy (1 — ¥)?
+ AGRye _geix- (6.210)

As previously, X is a fictitious charge borne by the X portion of the molecule
serving as index for solvent reorganization upon shifting the charge from the
R to the X portion of the molecule:

Y =1—exp[—f(y — yrx*-)]

with f = v.(2n? /DRX-—)I/ 2 (y: bond length, yrxe-: equilibrium value of y
in the anion radical, v.: frequency of the cleaving bond, m: reduced mass) is
a variable representing the stretching of the cleaving bond. The saddle
point on the intersection of the two surfaces leads, exactly as for the
Marcus model of outer-sphere electron transfer or for the Morse curve
model of extramolecular dissociative electron transfer, to equations (3.23) to
(3.27).
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Extension of the model to take into account the bond bending effect and
the interactions within the product cluster leads to the following modifica-
tion of equations (6.209) and (6.210), in which the diabatic character of the
surfaces is emphasized in the subscript notations:

b
Grx* dia = Aorx* —R+x X + Drx+- ¥? +% 0,

Dre x-
Gresx-dia = Jorx+ ore4x (1 = X)* + Drxe- (1 - R—’i( - Y)

Jo o 0
+ 2 0," + AGrye- g1 x-
where 0, is the bending angle and fthe corresponding force constant. Dg- x-
is a measure of the energy of interaction in the product cluster. Mixing the
two diabatic surfaces through the following secular determinant produces

the two adiabatic surfaces

GRX" dia Gadia,:l: H

Gadia,i =0

H GR'JrX’,diu - Gadia,i
with H = hy0,, thus leading to

Grx* dia + GR*+X" dia
2

1
* 5 \/(GRX",dia - GR'+X’,dia)2 + 4(ho(9b)2

Gadia,i (Xv Y, 0) =

The transition state corresponds to

aGadia,f aGadia,f aGadia,f

00, 19).¢ oY
It follows that
X" = vz
- Dr x-
Drx+-
:l 14 AG}O{X'*—>R‘+X’
2 Drex\’ 202
Jorx* Rt - + Dpex- [ 1 — R*X7) _“%o
0RX*~—R*+X~ T DRr* x ( DRX~> I
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and
2
07 = ho 1 — AGORX"HR'JrX’
f Do x— 2 2h 2
ZoRX*oR*+x- + Dre x- <1 — Di;:) _ f—bo
Finally,
7 # AGR arix ’
—ARAX-
Gadia,:l: = A(;() 1 + r—#r
4AG|
with

2

Dar x-
e 1 /755)
0 ArX' DArX“ _h(_)z

4 2fp

thus showing the validity of equation (3.31) as an expression of the intrinsic
barrier.

AG] =

6.4. ANALYSIS OF SUPPORTED MOLECULAR CATALYSIS
BY ROTATING DISK ELECTRODE VOLTAMMETRY
AND CYCLIC VOLTAMMETRY

6.4.1. Catalysis at Monolayer Electrode Coatings

The sum of the surface concentrations of the two forms of the catalyst I'p
and I'q is equal to the total catalyst surface concentration, I'’. In the case of
a Nernstian system,

and therefore
Iq 1

0= 7 . (6.211)
1 + exXp ﬁ(E — EP/Q)
Material balance in the monolayer electrode coating leads to
dr i
— Kk To(Ch)y (6.212)

dt  FS
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Since RDEV experiments entail steady-state conditions, d I'q/dt = 0, and thus

i
7S kI'g(Ca),—o (6.213)
Diffusion of A between the bulk of the solution and the electrode coating is

expressed as

d
Da <%> — KTo(Ca) g (6.214)
X x=0
It follows that
dCy DACY (Ca),—o
Dyl—2) = 1— =01 — kI'o(C 6.215
() - S| oGy (6219
and thus that
(Cadimg _ 1 (6.216)
o - k%6 I'g
Da T°

Combination of equations (6.211), (6.213) to (6.215) finally leads to
equations (4.1) to (4.3).

We consider now the case where the kinetics of the electrode electron
transfer may interfere. Equations (6.213) and (6.214) are still valid and
Nernst’s law is replaced by equation (4.9). Combination of these three
equations leads to equation (4.10), and from it, to equation (4.11).

In cyclic voltammetry, equation (6.212) applies and, in general, d I'q/dt # 0.
For a Nernstian electrode electron transfer, from equation (6.211),

P E— By
X e —
drq _ o5 C|RT T

di {1 +exp {%(E—EQ/Q)H

which is the current response of the immobilized catalyst in the absence of
substrate. Diffusion of the substrate from the bulk of the solution to the
electrode surface is described by the following integral equation:

Da <dd%> X:O(n)

(6.217)

Fv
Fv 0. /"D
(Ca)eo _ IJRTI Y d 6.218
=01 L (6:218)
Ca V7)o Fv
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The total current, i, may be corrected by subtraction of dI'q/dt as given by
equation (6.217):

L (E—EY)
o @ dlq i FPIRT P/Q

S (FO e |

FS FS dr FS

Then
icorr acA
= D _—
FS A( ax >x—0
and
Leorr _ kI (CA))C:O& (6.219)
Fsct 22 p " op o
AVRT™Y VRT™A
It follows that
icorr
Fv
FSC%\/—D
AVRT A ] )
lcorr(”)
Fv
0
kIO 1 L J%fFSCA ﬁDAd
p— —_—— S — ’/I
Fv F 0 ﬁ 0 Fv
J—D 1+exp[ E—-FE } i
RT A ( 1J/Q) RT n

thus leading to equation (4.12).
In the case where the electrode electron transfer kinetics interferes,
equation (4.9) replaces Nernst’s law, and therefore

i Fok"”(E) Iq F
i f 0
= 1——321+ E—_E
Fv Fv { re { =P [RJ ( P/Q)} }}

FSC%, 77 Da =7 DA

(6.220)

Equation (6.219) is still valid. Its combination with (6.220) thus yields
equation (4.15).
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6.4.2. Inhibition of Electron Transfer at Partially
Blocked Electrodes

As pictured in the top right-hand corner of Figure 4.16, diffusion takes
places in two dimensions, denoted x and R, within the constrained diffusion
layer, which can be expressed by means of the following set of partial
derivative equation and initial and boundary conditions:

0’°Cx  10C, ©°Ca

- -0
o TRorR TR

GCA i
=2Ry, 0 < R <Ry D —
o 0¥ =" =70 Aox  FS

0
R=0,0<x< 2Ry &:

or

0
R:Ro,0§x§2R0: &:0

or

0
x=0,R, <R <Ry &:O

Ox

and for 0 < R < R,(=RoV1—10),

0Cx
2%
ol -]

and thus

:(1—9)kf(E)[(CA)xo{1+eXP[RT(E EP/Q)”_eXP[;T@ ES/Q)H
(6.221)

An approximate resolution of the system above leads to an equation relating
the substrate concentration at the active sites, (CA))CIO’ to its value at the
boundary between the constrained diffusion layer and the linear diffusion

layer’ (CA )X:2R() :

(Ca)ico _ (CA)ecam,  06Ro i (6.222)

QA DACOV1 — OFS
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At the external boundary of the constrained diffusion layer, application of
the linear diffusion characteristic equations leads to

o (9)
Fv A
(CA)x:2RO —1_ LJRT’ Ox Y=2R, di
Cg VT lo 0 Fv D th
ARrOAN R T
Fv ‘ !
1 [RT e
- ——J £S dn (6.223)
VT )o oo [ [FY
AMRTOAN R T

Combining equations (6.221) to (6.223) finally produces equation (4.16).

6.4.3. Equivalent Diffusion and Migration Laws for Electron
Hopping Between Fixed Sites

In the monolayer j the two members of the redox couple undergo the
electron transfer reactions depicted in Scheme 6.5 with the molecules
located in the j + 1 and j — 1 layers. The rates of the two electron transfer
reactions between two adjacent sites may be written as

dCp. dCq.

7} - _7] = —ki1Cp Co,, +k_(i-1)Cp, Co

+kj+1Cle+lCQj - kj+1CPfCQj+] (6224)

P; Pj+1

k_gj_1y Kien) k_ge1)

Qj Qj+1
0j-1 0; Bj1

The k and the ¢ are the rate constants and electrical potential, respectively.

SCHEME 6.5
The rate constants may be expressed as functions of the self-exchange rate

constant, ky, and the potential difference, linearizing the activation—driving
force law and taking a value of 0.5 for the symmetry factor. Thus,

ki koexp[zRT(qﬁ (]5]-])} kg1)=koexp{ 2RT(¢ ¢jl):|

k1) = ko exp [ZRT (¢j+1 - ¢j):| k1) = ko exp[ RT (¢j+1 - 45,)]
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Since the variation of the electrical potential between two adjacent sites are
small, the exponentials can be linearized, leading to

ki—1 = ko [1 + ZRLT(d) (bj_l)} k_j-1)=ko [1 - 27€—T(¢ ¢ 1)}
F F
ki1 = ko [1 +ory (B — ¢j):| k_j+1) = ko [1 ~ 57 (i1 — d)j):|

Substitution in equation (6.224) thus leads to

dCp,  dCq F
I = L = kyCACp. , — 2C C k
dt dt 0Ce{Ce,, Pt G b+ YoORT

X [_{[CP;’CQ,' - CPi(CQj - CQ./'—I)] + [CP/CQ,' - CQj(CPj - CP_/'—I)]}
X (¢; — ¢j_1) +{[Cp,Cq, + (Cp,,, — Cp,)Cq)]
+ [CPJ'CQ./' + CPj(CQj+l - CQf)]}(¢j+l - ¢])]

that is,

dCp. F
& = dt = koCe{Cp_, —2Cp, + Cp,,, } + k()ﬁ{CPjCQj(d)jH

o 2¢/ + d)j—l) + [CPj(CQj - CQj—I) + CQj(CPj - CPj—I)](d)j - (Z)j—l)
+[Cp(Cq,,, — Cq,) + Co,(Cpy,, — Cp)](Pj1 — ¢;)}

Replacement of the finite difference expression by the corresponding
differential expression finally leads to equations (4.22) to (4.24).

6.4.4. Catalysis at Multilayered Electrode Coatings

For the simple irreversible reaction, Q + A — P + B, the concentrations of
the various species at steady state are solutions of the following set of
differential equations and boundary conditions:

d*c

D~ ——+kCaCq =0 (6.225)
d>C

D~ =~ kCrCu =0 (6.226)
d*c

Ds=——2 — kCACq =0 (6.227)

dx?
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From the combination of equations (6.225) and (6.226), it follows that
Cp + Cq = C, throughout the film.
At the plateau of the first wave,

dCp
(Cp)ieg =0  (Cq)yp =C. (E) e 0

and the current is given by

iL:De @ =-D, d&
FS dx ) ., dx ) .,

At a still more negative potential (for reductions, positive for oxidations),
the plateau of the second wave is reached, where the substrate is reduced (or
oxidized) directly at the electrode. Then

(Cp)yg =0 (CQ)r—o = Ce (Ca)y—o =0

and the current is given by

i, + i, dCq dCa
D Th D
FS < dx + S\Udx =0

At the film—solution interface,

aco\
dx X:df a

It is convenient to introduce the following dimensionless variables: y =
x/d, ¢ = Cq/C,, and a = Ca/kC%. Introduction of these changes in vari-
ables into equations (6.226) and (6.227) leads to

d2

i, d—yZ —iag =0 (6.228)
d2

is T iag =0 (6.229)

dy?
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i, is, and i; being defined by equations (4.29) to (4.31). The fourth
characteristic current, i, relative to substrate diffusion in solution (Levich
current), is defined as

in _ DACY
FS 6

At the plateau of the first wave,

da
gy=0 =1 () =0
y dy =0

and the current is given by

At the plateau of the second wave, g¢,—g = 1, a,—o = 0 and the current is

given by
_— . <dq> L <da>
1 l, = —lg| — Is| —
l ’ ‘ dy y:O dy y:O

At the other boundary,

dq) (da) ia
M) _o () g
<dy - dy 1 s ( y 1)

Subtraction of equation (6.228) from equation (6.229) after integration and
taking the appropriate boundary conditions into account, provides an
equation relating a to g:

i d i
a=1—.—e[qy1—q—<d—q> <1+.—s—y>]
Is Y/ y=0 IA

at the first wave and

iA ie ie
= 1+—(1—gqy= ——( -
at the second wave. After substitution in equation (6.228), one obtains the
set of differential equation and boundary conditions given in Table 4.1 under
the heading ““General Case.”
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An alternative formulation is based on a rather than on q. It starts with the
expression of g as a function of @ and introduction in equation (6.229). After
integration, taking into account the appropriate boundary conditions, one
obtains, at the first wave, i;; = ia(1 — ay—1), with

da is (da)
@Y _o 1og,=8(%
<dy) y=0 = A dy y=1

and at the second wave, i;; + ip = ia(1 — ay—;), with

d2q ik is iA
iy S D B S T Y
0 isa l_ea+ i (1 —ay—)y

is (da
ao=0 e = (G)
y:l

Manipulation of these equations or of those pertaining to the g formulation
for various limiting values of the two dimensionless parameters defining the
zone diagram allows derivation of the expressions of the plateau currents
given in Table 4.1. With the two-step reaction scheme discussed in Section
4.3.6, a similar procedure may be used to obtain the various expressions of
the plateau currents given in Table 4.2.

We assumed that the adduct formed between the substrate and the active
form of the catalyst obeys the steady-state assumption. Equations (6.225) to
(6.227) are thus replaced by

d*Cp N kikyCaCq

=0 6.230

¢ dx? k.1 + k2CQ ( )
d*’Cq  kikaCaCq

D — = 6.231

¢ dx? k_q+ szQ ( )
d*Cn  kikaCaC

g—  2TATQ (6.232)

dx? k_q +k2CQ N

while boundary conditions and expressions of the plateau currents remain
the same. After introduction of the two currents characterizing catalysis
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TABLE 6.7. Expressions of the REDV Plateau Currents
for the Reaction Scheme in Figure 4.21 in the General

Case
In terms of ¢: d
At the first wave, i;; = —i, (d_q) with
Y/ y=0
. 1-= %'zl_q_<d_) (1+.——Y)
Pq i s ) o\ ia Y
dy> i, e 1+ qu a

U,

dq
Gy—0 = ]7 (—) =0
= dy y=1
iA

At the second wave, ij; + ipp = - " [is +i.(1 — gy—1)] with
is .

iA

iA i() ie
T+ —g)|y-20-
qu_Lk lS+lA|: +lS( q}fl):ly lS( q)

e 14y

lk|
dq
qy=0 = 15 (7) =0
Y dy 1

In terms of a:

=0

ls 17N
 [—— ay:o—a—i-i—(l — y—1)y
s

At the first wave, i = i (1— ayzl)vwith
dza ik le r :|

d is [d
(8),or-ene=5(5)
Y y=0 IA dy y=1

At the second wave, iy + ip = ia(1 — ay—1) with

is  ia
, 1+—=a——(1—a-
q i, SR et o
dy? i i is i v
o 1+.—k{l+fsa—.i(l—ay:1)y}

173 le le

is da
ay—p = O, 1-— ay—1 = a <d7y>
y=1

[equations (4.32) and (4.33)], the same procedure as applied earlier allows
derivation of the various expressions of the limiting currents gathered in
Tables 6.7 and 6.8. The expressions given in Table 4.2 apply for the

particular case where i /i, — 0.
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TABLE 6.8. Expressions of the REDV Plateau Currents for the Reaction Scheme in

Figure 4.21: Limiting Cases”

R
O 1+
= MK
o IA 3
1 1 1 .
—=—+—1inKL
in I Is
E+R S+R
d
in = —i, (—q> with
dy) o 0
i (d 11 \/ L+
2 1+f£<dﬁ> ] Loty Ve gk
; i _ i i
M,l‘i‘ A .y =0 o \/f;:igtanh<\/l.z>
dyr i, 1+'l_kq . is
lkI
: (dq) B 1
D=0="5 gy =1 in+ip ia
1 1 1
. — = —+— linKL
in+in Ia s
ER SR
N
3
1 1 in (ik1> 1 i3
1731 A lile 179 174 _ ki q:
2|——In[— —=—+——=—"1inKL
|:ik1 n<ik1>:| t ta VIS
1 1 1 in=>0
_ _ — | linKL .
in+in Ia s
ER+S
LN 2
173
o )
inia e lsz['l_k_ln(.l_k)}
Uiy U,
1 1 1
- — = —+— linKL
in+in ia s
N S+E E
1 1 1 . 1 i 1 . .
— =— 4+ —1inKL =8 — linKL inn = i, linKL
in I s in  Istlela s+l .
in=>0 in="0 i =0

“linKL, linear Koutecky—Levich plots.
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6.5. ENZYMATIC CATALYSIS RESPONSES

6.5.1. The Ping-Pong Mechanism in Homogeneous
Enzymatic Catalysis

Under the assumption that the reactions in the catalytic cycle are so fast as
to make the various forms of the enzyme be at steady state, their
concentrations (noted [species]) obey the following equations, obtained by
expressing the steady-state conditions for each form of the enzyme:

E;S:  ki[S][Bi] = (ki—1 +ki2)[E1S] (i.e, [El]:%[aso

Ey:  ki2[EiS] +ky 1 [E2Q] = k21 [Q][Ez] (ice, ki2[EiS] = k22[E2Q))

B0: Q] = (o +hen) B (i, B =2 22 E:0))

leading to:

Ce
I k1 +koy 1 {1 +k1,—1 +k1,2}

__i_i -
kyp  kaikap[Q] ki ki 1[S]

ki2[EiS] = k22 [E2Q] =

or in terms of the rate constants and Michaelis constants defined in
equations (5.1) and (5.2):

Cp
ki 2[E1S] = k22 [E2Q] = I I I I
"
k(Q]  kyp  kip ki[S]

The diffusion-reaction problem is set by the following partial derivative
equations accompanied by a set of initial and boundary conditions.
For Q:

3 2 o
([;2] =Dy a)[g — k2 1[Q][E2] + k2, -1 [E2Q] = Dp 6)[3] ~k2alE2)
that is,
o . @[] Ce
P T T T (6:233)

Rl ke ko kiS)
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For S:
I _ p OB SIE + k a[ES] = Ds Y ke
o 8 ae 1,1 2 L-1E1S] = Ds =3 1211
that is,
os] _ , o’[S] Cp
o Psoa T 1 1 (6:234)

b
k[Q] ko kip k[S]

where Ds and Dp are the diffusion coefficient of the substrate and
cosubstrate, respectively; and

t=0,x>0and x=o00,1>0: [Q =0, [S]=Cg
0 0[S
x=0,r>0: Q] = Cr , L:0
| Fe_py &
—+ exp RT( P/Q

where C2 and CJ are the bulk concentration of substrate and cosubstrate,
respectively; E is the electrode potential; and EIO,Q is the standard potential of
the P/Q couple. Q is assumed here to be produced by a reduction process.
Transposition to oxidation is straightforward. The current flowing through
the electrode is obtained from

The potential is scanned according to equations (1.2).

Assuming that pure kinetic conditions are fulfilled, the Q profile is
confined within a thin layer adjacent to the electrode surface. It therefore
follows from the condition (0[S]/0x),_, = 0 that [S] may be regarded as
constant throughout the reaction layer and equal to its value, [S],_,, at the
electrode surface. Within this framework, we consider the case where the
catalytic response is controlled by the enzymatic reaction. Equations (6.233)
may be simplified upon consideration that [S] = C3 and also from the fact
that pure kinetic conditions implies that 0[Q]/0r = 0. It follows that

&’[Q] Ce
dx2 | 1 1 1
—t—+—+
k172 kl Cg k2,2 k2 [Q]

Dp

=0 (6.235)

In addition, at x = oo, not only [Q] = 0, but also, because of the thinness of
the reaction layer, d[Q]/dx = 0.
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A dimensionless formulation is obtained by means of the following
changes of variables and parameters.

Thus,

(6.236)
with

z=0: q (6.237)

1 + exp(—¢)

and an additional boundary condition indicating that there exists a point
outside the reaction layer where both

d
g=0 and d—q ~0 (6.238)
Z

The dimensionless current and thus the current are obtained from

_ i _ a_‘l>
= FSCO D/ CY (az =0

We may now integrate equation (6.236), taking conditions (6.237) and
(6.238) into account. It follows that

In(1+-—0
i _ |2 1 1 + exp(—¢)
FSCY\/Dp+\/krCY o |1+ exp(—¢) o

thus establishing equation (5.3).
Passing now to control by substrate diffusion, a simplification of equation
(6.235) and of the expression of the competition parameter ¢ arises from the
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fact that the substrate concentration is small:

W _, 70
o ¢ o2 ror
k2[Q]  ki[S]
J:b@
ki C2

and thus, equation (6.236) becomes

o’q q
07 4oL =0
$z=0

with s = [S]/CY. After integration,

qz=0
In(fl1+o
R P (R

(p =
o S:-0 o

which, owing to the fact that ¢ is large, may be further simplified to

o 2

= S;= 6.239
2qz:0 (p z=0 ( )

An expression of s,—o may be derived from the combination of equations
(6.233) and (6.234):

o([S] — [Q]) _ &*(Ds[S] — De[Q))

ot Ox2

which can be approximated by

(6.240)

because, since pure kinetic conditions are fulfilled, 0[Q]/0¢ = 0. In dimen-
sionless terms, introducing y = x+/Fv/R1TDs,
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and thus, after integration,

with

DpCY
sy0:V<1+D Con 0~ Ilﬁ)

c? i
Y =0 and Y = =
P FS\/DEC(S)\/R—;
1y = J Yrdn _Lf Ydn
VEloT=I V) e

qy—o 1s small compared to 1 because the wave occurs at a more positive
potential than the standard potential of the P/Q couple. It follows that
sy—0 = y(1 — Iy). Introducing this expression in equation (6.239) or in the
following equivalent equation,

leads to

that is,

26Iy:O -

lpz
,Dp DpRT k1 cY
Ds F

=11y

42

[1 4+ exp(=¢)]

2DP RTIqCO
Ds F

Yr=1-1y

qz=0

Introducing a new potential variable,

with

5=€+m<

Dp RT ki C2 F )
—— =——(E-E 241
Ds F v ( ) (6.241)

RT. (DpRTk,CY
0 p 1~E
E = EWQ*’ ln< S2F > (6.242)
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Since the kinetic term is large, it follows that the equation of the wave becomes
Y2 exp(—&) =11y

The peak characteristics are thus ¢, = 0.609, é;, = 0.409, and f;, - f; =
1.41, thus establishing equations (5.6) to (5.8).

6.5.2. Catalysis and Inhibition in Homogeneous Systems

Derivation of Equation (5.10) The equation governing the space and
time variation of the reduced cosubstrate concentration is written, in the
framework of Scheme 5.3,

oQ_ , o[Q]
el Dp a2 (k2,1 [Q][E1] — k2,1 [E1Q])
— (k3,1[Q][Ea] — k3,—1[E2Q]) — ks[Q][E;] (6.243)

calling for an evaluation of the various forms of the enzyme. These can be
expressed as follows under the steady-state assumption, which applies in
this range of substrate concentrations:

kit ki

ES:  KuilSIE] = (b1 + Ki2)[BS] (e, [B] = et BS]

E;: ki 2[ES] + k> _1[E1Q] + k5[Q][E3] = k2,1 [Q][E]
. ko1t kan
(i.e., [E] = 7]{2’1[@
EQ: k2 1[Q][Ei] = (k2,—1 + k22)[EiQ]
(i.e., k]z[ES] + ks [Q] [E3] = k272 [ElQ])
E): k2 [E1Q] + k31 [E2Q] = k3,1[Q][Exz] + k4[S][E;]
(i.e., kzg[ElQ] = k372[E2Q] + ky [S] [Ez])
E»Q: k3 1[Q][Ez] = (k31 + k32)[E2Q)]
) k31t ksp
(i.e., [E] =Tl [E2Q]
Es: ky[S][E2] = {ks[Q] + ke }[Es]

It follows that equation (6.243) may be rewritten as

o0l A {, Kuko
—==Dp _ I/ I
ot Ox? k3,71 + k3’2

[E1Q]

[wm+&mmHmmm@
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Because the primary catalytic loop is much faster than reactivation of the
enzyme through pathway 5, the two last kinetic terms are negligible in front
of the first, thus leading to

o[Q] o’[Q]
o - PP

{2k3 [Q] + k4[S] (1 + ks[’g][—(fké) }[Ez] (6.244)

Introduction of the following dimensionless variables and parameters:

_[E _[E] _[Eq _[Es]

=0 €1 =" €2 =" €3 ="

CE CE CE CE
R, R0, RIKQ
“rRr TN wmm, 1T ~F v

SPTARE
k3o ko kiCyg

l 1 1 1
e et Crav el
x K3 m ’ ki klc(s)

ks C2 ke
Pe=7—79 and e=-—5;
ksCp ksCp
leads to
oqg *q

Since reactions E/E; and E,/E jointly govern the kinetics of the primary
catalytic loop, [E;] and [E Q] are negligible. The forms remaining into play
are thus E, ES, E,, E;Q, and E;. The following expression of the E,
concentration follows from the steady-state expression of the concentrations
of the various forms of the enzyme, taking into account that k3[Q] > k4[S]:

1

k31 C 0 1 1 kyC2
+q{k3,1 +k32+ ’ P\kia klc(s) +k5CgQ+ke

€y =

Thus,

e =—7Hn——
]+Q+L
L qte
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Introduction of this expression into equation (6.245) leads to

3 _oq 14 N £1q
ot oy @+ (xtegtyp.te) ¢+ (x+e)g+rlp, +e)

Taking into account the fact that a pure kinetic situation prevails, the
equation above becomes

o’q 19" N 614

o @+ (tegtalp.+e) @+ (x+e)g+ o, +e)

Changing y into y* = yv/2 and introducing

6q> i i
B <5 o Fv ~ FSC%/Dp\/2ksC0
Y /v=0" peen /Dy "z PVIRV IatE

integration of the previous partial derivative equation, according to the same
procedure as in Section 2, leads to

o—3 \/ 792dq N J ! exqdq

oq +(+e)g+rlp,+¢) Joa®+ (x+e)g+xlp, +e)
=V2vI ¥ 1L

¢ =1 corresponds to the maximal plateau current that can be obtained
when E; /E is the rate-determining step of the primary catalytic loop:

iy = FSCp/Dpy/2k3CY

that is, the plateau current in the absence of inhibition and of Michaelis—
Menten saturation. ¢ thus expresses a normalization of the current vs. this
maximal value.

We now proceed to the integration of the foregoing expression of ¢,
introducing the function lms(y, p,, ¢) defined as follows: If A = (y + &)*—
4x(p, +¢) <0,

e 1+x+etalp.+e  (x+e)’ —2xlp, +2)
L =yq1— In +
2 2(pe +€) V-A

X |:tanl w —
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L=¢y llnl—H{—I—(%L}C(pe—hg)—X—'—8 tan_142+X+8—tan_l—X+8]
’ 2 1(pe +¢) VAN V=A V=A

If A = (x+¢)* —4x(p, + ¢) >0,

2 x(p+e)

+(x+s)2—2;g(pe+a)ln 24 54+e—VAyr+e+ VA
2VA 24 yte+VAr+e— VA

3 1 A
I :Xll—xﬂln +x+e+x(p, +¢)

1 1+y+et+ylp,+e) z+e, (24+r+e—VAr+e+VA
ex|=In - 1
24+ +e+VAr+e—VA

n
2 1(pe+¢) 2VA

If A= (x+e) —4x(p, +¢) =0,

xte

T+2=— (40 1 1
L=3{1—(z+¢n x+§ —(X4) VETAVET
2 L
X+ e
- 5T e I
h=agyh=r 1t L ATE T
2 ) 2

Thus, Ims(y, p,, &) = V2+/I) + I, leading to equation (5.10).

Control by Substrate Diffusion At low concentrations of H,O, and when
the pure kinetic conditions are fulfilled, the diffusion—reaction equations
pertaining to Q and S are written

Q]

Q0 kS
ot

ox2 EX1[S] 4 &3[Q]
os] . [S] o ki[Sk[Q]
ET T T ]

0=

= Dp

Subtracting the first of these equations to the second leads to
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with as initial and boundary conditions,

t=0,x>0and x=o00,1t>0: Q] =0, [S]:Cg
cY 0[S]
:0 >O = P —:O
xR Q 1 + exp[(F/RT)(E — Eg/Q]’ Ox

The current is given by i = FSDp(0[Q]/0x),_,. In dimensionless terms, after
introduction of s = [S]/C% and of the excess factor y = CJ/CS, we obtain

Integration leads to

qy
2DsC?
with
g [y |

s CY Fv

2FS\/DsC?%4 | —

SUS\IRT
and

M:LJ’ y'dy :LF y'dy
Vil vii VRl i

Since, as seen next, g,—q is small compared to 1 because the wave occurs at
a more positive potential than the standard potential of the P/Q couple. It
follows that s,—o ~ y(1 — Ij/').

The dimensionless expression of the catalytic current may be recast from
Section 6.5.1 as

212
alﬁ 2:GQy—O_ln<1+UQy—O>
22 (sy:()) Sy=0

taking into account the fact that because the substrate concentration is small,
the expression of the parameter ¢ simplifies to ¢ = k3Cp/k; CY. Kinetic
control by reaction (1) and by the diffusion of the substrate requires large
values of a. It follows that in the expression of the current above, the log
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term may be neglected, leading to

o’
2/1‘1y:0

= Sy=0 = y[l - Ilpl]

and therefore,

Y21 + exp(=¢)] :
) & = [1 —Ilﬁ]

2y0 Ds

Introducing a new potential variable:

3 :é+1n<@ﬂ’“cg> __F

DsF Vv

with

, RT. (DpRTk;C?
E' = E, +TIH<D_ST ‘ E>
It follows since the kinetic term is large that the equation of the wave
becomes /> exp(—¢&') = 1 — I/, leading to a wave that is under complete
control of the substrate diffusion and is shifted toward positive potentials as
compared to the standard potential of the P/Q couple. The peak character-
istics are i, = 0.609, &, = 0.409, and &, — é;/z = 1.41. Thus,

Fv

i, = 2 x 0.609FS\/DsC§ =7

reflecting a total control by substrate diffusion under the conditions of total
catalysis (see Section 2.2.6).

6.5.3. Catalysis at Multilayered Electrode Coatings

For the simple system that contains a single active layer at a distance L from the
electrode surface and separated from it by a series of inactivated monolayers,
the current is given by the following equation adapted from equation (5.13), in
which [Q],_,, is replaced by [Q],_, and [S],_, by [S],_; = C%:

2FSTY, 1 L S
i k€ kia o kp o kQl_,
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From the electrode to the film—solution interface, the following boundary

conditions apply:
(). (2).
(), (),
() - (),

P, = [P]x:L+ and [Q],_, = [Q:IXZL+

In the solution

_c0_ [P Jt o[p] dn
[P]x =L, — CP T Jo Ox w=L, m

Q. = —\/ITZa J (ag)m ﬂ—n

Thus,
[P}sz, + [Q]sz, = [P]x=LJr + [Q],\C:LJr = C‘l(3

On the plateau of the wave, [P] _, = 0, and therefore

[P] i
—_— = —X
CS  FSDpC)

In particular,

[P]X:L, — i
0 FSDpCY

and

{Q]xEL, =1= l - L
& FSDpCY

Equations (5.31) to (5.33) ensue.
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The diffusion-reaction problem in the more general case occurs in a
system containing n — 1 inactivated enzyme layers adjacent to the electrode
surface on top of which N — n active layers have been deposited. Table 6.9
lists the equations that govern the fluxes of the two forms of the cosubstrate
in such systems.

Proper combination of the equations in Table 6.9 results in the following

TABLE 6.9. Fluxes Equations in an Enzyme Film Containing n — 1 Inactive and
N — n Active Layers

) ) :
L09),9),
).
.0

o) (%) o+ (m—2)
Ox (m—1) Ox )
m—1: =2k Ig, [Q}(mfl)

2o) o)
(&) ()& )
DP(&EP]> _DP($) lo+(m—=1)I

~o(*2) -ng (2Q) ) =2%kI% ),
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() on ()
|

flux relationships:

TABLE 6.9. (Continued )

X
)., (&) (&), )
oP op

Dp(a[_x] <m+>_DP(a[_x]) (m+1) v
B N
- D akreQ
N-1 :DQ(%S] (NU-DQ(%])(NU 2o s, [Q

(2 (&) (8) ()

oo (P _p (P
N: IEQaE@)é@N) gzx( ag]v) N:2k2FEZ[Q]N lo+ (N — 1)l
fs P aa[z])fs_DP aa[z])JrN’D(y)ﬁ_DP(ag’g])+N

[Ply = xp[P;, [Qly = 10 [Ql

[Pl =Cp — Br (?)f \/fn—n[Q]fv—\/gJ; (‘@)Ip\;n—n
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from which one infers, using the two integral equations, that

[Pl + [Ql = CS and therefore [P], + [Q]y = C°

P

The second space derivative of the concentration at each enzyme layer
may be approximated by the difference between the two gradients on each
side of the layer:

o°[P] @)_@) >’[Q) <¥>‘($)

ox2 / ox2 /

It thus follows from what precedes that

0°Dyp[P] + Dqg[Q]

Ox? =0

and therefore,

() n(12) () ()
D[P, + Do[Qly = Dp[P] + Dq[Q] = Dp[P]y + Dqo[Qly

Within this finite difference framework the following approximations are
also valid:

(6[1’]) (a[P]>
P  \ox/,, \ox/_, [P, —2P,+MP,,
o), I B I

A consequence of the fact that the diffusion layer is much thicker than the
enzyme film is that the fluxes in the solution are negligible compared to the
fluxes in the film. The two time-dependent integral equations relating the
fluxes and the concentrations at the film—solution interface may be thus be
replaced by

0-ofiE) - (E), wm -0(38) (),
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which allows the equations pertaining to the enzyme layer N to be simpli-
fied as:

I'kg is the surface concentration of the reduced form of the enzyme in
each of the active enzyme layers. As seen earlier,

1’*0
I'g, = £

2 1 1 1
1 4 k[Q] (E+E+kl [S]>

The exact number and nature of independent factors that the system depends
on may be obtained after introduction of the following dimensionless
variables and parameters:

Q P Tk, IO I
P P QL-pPQ 0
1 1 1

a:kCO<—+—+—)

Pk ko ki[S]

il , Dq Dp
= with dgq=-2, Op=—1
V=75 cp " T D T Dig

The concentrations of Q and P are normalized to the values they would have
if the film were exposed to a concentration of Q or P equal to the bulk
concentration of cosubstrate, C9, taking into account the two partition
coefficients, xp and k. The kinetic parameter 4 measures the competition
within the enzyme film between diffusion represented by the term doD/!
and the rate term kI %. The current is normalized toward the parameters of
the diffusional transport of the cosubstrate in the solution in the solution.
The set of equations listed in Table 6.10 ensues.

The system thus obtained involves N —n + 1 variables, including 1,
related by the same number of equations. Since N —n of these are
nonlinear equations because of the og term, an iteration procedure is
needed. One starts from a set of g values obtained for ¢ = 0. The
equations then become linear and the Gauss elimination method may
thus be used to obtain these starting g values. In a second round, these
values are used in the og term and a new set of g values are obtained by
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TABLE 6.10. Dimensionless Equations

Gn — qn-1+foy =0

2/q»
Gn1 — qn + o = 1+ 0g,
22qy
qni2 — 2%+| +aqn = &
1 + 0qn+1
2qm—1
m — 2 m— m-2 = 7 __
q Gm—1 + Gm—2 1+ oy,
22Gm
qm+1 — 2qm +Gqm-1 = 1+ T
24
Gm+2 = 2qme1 + qm = il
1+ 0qm+1
2/qn-1
— 2y 4 gy = —ANTL
4N — 2gN-1 T gN-2 1+ ogn
zin
—gy +agv_1 =
qN T gN—-1 1+ ogn
51) 5P
é—qN + (I’l— 1 +f0)lp = 5_
Q Q

means of the Gauss elimination method. The procedure is repeated until
the desired accuracy has been reached. The current and the concentration
profiles may thus be obtained in this manner. The procedure also applies
to the case where the amount of enzyme is not the same in each layer. It
suffices to enter each value in the parameter / and proceed with the
calculation in the same way.

Each of these calculations requires inputting four independent para-
meters: A, o, fy, and dp/dq. Thus, if an estimate of / is to be derived from
experimental values of the plateau current obtained with known values of
the cosubstrate and substrate bulk concentrations, one ought to know
from independent sources the three rate constants; the surface concen-
tration of enzyme in each layer; the ratio of the distance between the
electrode and the first enzyme layer to the distance between two
successive layers, fy, in case it differs from 1; the diffusion coefficient
of the cosubstrate in the solution; Dpg, the ratio of the diffusion
coefficients of the active form of the cosubstrate in the film and in the
solution; dq; and Jp.



REFERENCES AND NOTES 469

REFERENCES AND NOTES

1. Bateman, H. Tables of Integral Transforms, McGraw-Hill: New York, 1954, Vol. 1,
Chaps. IV and V.

2. Subtraction of the self-potential before computing the charging work is equivalent to the
more traditional procedure for estimating the Born solvation free energy which involves
subtracting the charging work in vacuum from the charging work in the solvent.

3. Bockriss, J. O’M.; Reddy, A. K. N. Modern Electrochemistry, Plenum Press: New York,
1970, Vol. 1, Chap. 2.



