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Spontaneous Raman scattering

The spontaneous Raman effect was discovered by C.V. Raman in 1928
Third order nonlinear effect

A beam of light illuminating a sample (solid, liquid or gas) is scattered
with down-shifted and up-shifted frequencies

Lower frequencies — Stokes lines
Higher frequencies — anti-Stokes lines




Spontaneous Raman scattering

Energy level diagrams describing Raman scattering

Stokes scattering Anti-Stokes scattering

The excited state can be a vibrational or rotational state that de-excite by
phonon emission

In thermal equilibrium the population of higher states is smaller than the
ground state = anti-Stokes lines are several orders of magnitude lower
than the Stokes lines



Stimulated Raman scattering

 Spontaneous Raman scattering is a rather weak process

« Under excitation by an intense laser beam we can get stimulated
Raman scattering

« Can be very efficient — more than 10% of the incident power can be
converted to the Stokes frequency

 Can be used as a gain source



Raman gain

Self-phase modulation is expressed as given earlier
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The third-order nonlinear coefficient 4 is complex-valued
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Raman effect in silica

In molecular gases = discrete Raman gain spectrum for fused
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Figure 2.3: Schematic illustrating Raman amplification through the transfer of energy from the pump
beam to the signal beam, in a counterpropagating regime. In silica based systems, ~ 500 m of fibre are
necessary to amplify a signal 100 times, for 1 W pump units.



Multi-wavelength Raman Pump

Signal
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Gain wavelength determined by pump wavelength

Gain spectrum determined by pump distribution

By combining different wavelengths obtain a flat Raman gain
No loss filters needed



Cascaded Raman Resonators
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600 m Raman Fiber
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Brillouin scattering

Bragg grating : constructive interference between waves in a
medium with periodically varying refractive index
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Brillouin scattering

Brillouin effect : Pump wave induces electrostriction, which in turn causes a
periodic modulation of the refractive index--acoustic phonons form a Bragg

grating moving at speed of sound.
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