Nonlinear optics

Benjamin Eggleton Room 313, A-28 Ben.eggleton@sydney.edu.au Phone: 9351-3604

Y.B. Band, Light and Matter, Wiley

R. W. Boyd, Nonlinear Optics, Academic Press, Latest Edition. In addition, course notes will be distributed.

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 1995

Y. R. Shen, Principals of Nonlinear Optics, John Wiley and Sons, 1984

1. Nonlinear optical media

Nonlinear/Linear optical media Harmonic oscillator Nonlinear Polarization Wave equation in a NL media

2. Second-order nonlinearities

Second harmonic generation
The electro-optic effect
Three wave mixing
Phase matching – TWM

3. Coupled wave theory

SHG Frequency conversion Parametric amplification

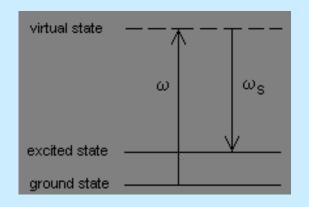
4. Third-order nonlinearities

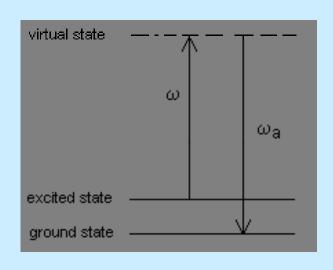
Third-harmonic generation
The optical Kerr effect
Self-phase modulation
Self focusing
Spatial solitons
Cross-phase modulation
Four-wave mixing
Phase matching – FWM

5. Solitons

6. Stimulated inelastic scattering

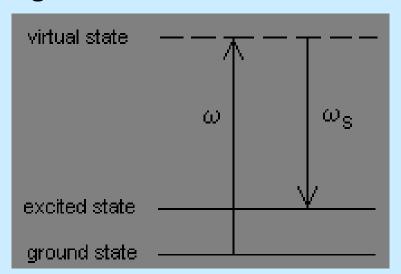
Raman Brillouin


Spontaneous Raman scattering


- The spontaneous Raman effect was discovered by C.V. Raman in 1928
- Third order nonlinear effect
- A beam of light illuminating a sample (solid, liquid or gas) is scattered with down-shifted and up-shifted frequencies
- Lower frequencies Stokes lines
- Higher frequencies anti-Stokes lines

Spontaneous Raman scattering

Energy level diagrams describing Raman scattering


Stokes scattering

Anti-Stokes scattering

- The excited state can be a vibrational or rotational state that de-excite by phonon emission
- In thermal equilibrium the population of higher states is smaller than the ground state → anti-Stokes lines are several orders of magnitude lower than the Stokes lines

Stimulated Raman scattering

- Spontaneous Raman scattering is a rather weak process
- Under excitation by an intense laser beam we can get stimulated Raman scattering

- Can be very efficient more than 10% of the incident power can be converted to the Stokes frequency
- Can be used as a gain source

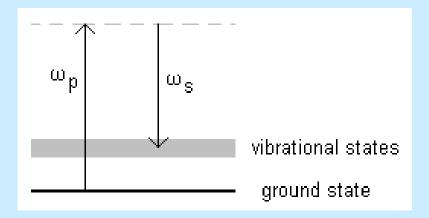
Raman gain

Self-phase modulation is expressed as given earlier

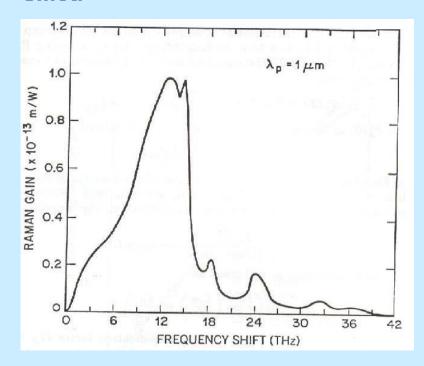
$$E_{SPM}(t) = E_{In}(t)e^{j\Delta\varphi(t)} \qquad \Delta\varphi = k_0 n_2 IL \qquad n_2 = \frac{3\chi^{(3)}\eta_0}{n^2\varepsilon_0}$$

The third-order nonlinear coefficient $\chi^{(3)}$ is complex-valued

$$\chi^{(3)} = \chi_R^{(3)} - j\chi_I^{(3)}$$


Using a non-zero $\chi_l^{(3)}$, we therefore get gain (the Raman gain)

$$E_{Raman}(t) = E_{In}(t)e^{\frac{1}{2}\mathcal{L}} \qquad \gamma = \frac{12\pi\eta_0}{\varepsilon_0} \frac{\chi_I^{(3)}}{n^2} \frac{1}{\lambda_0 A} P$$

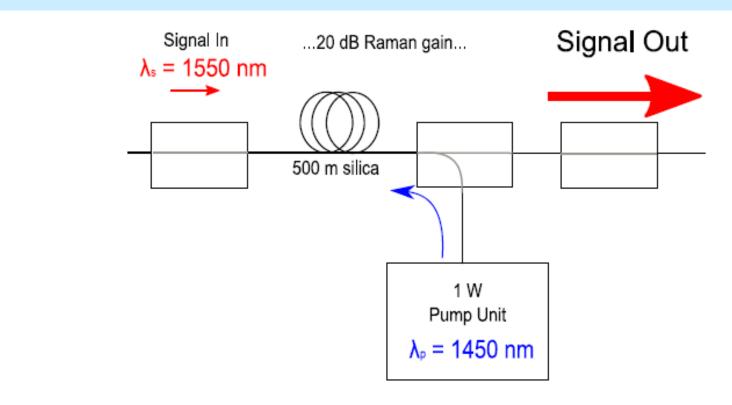
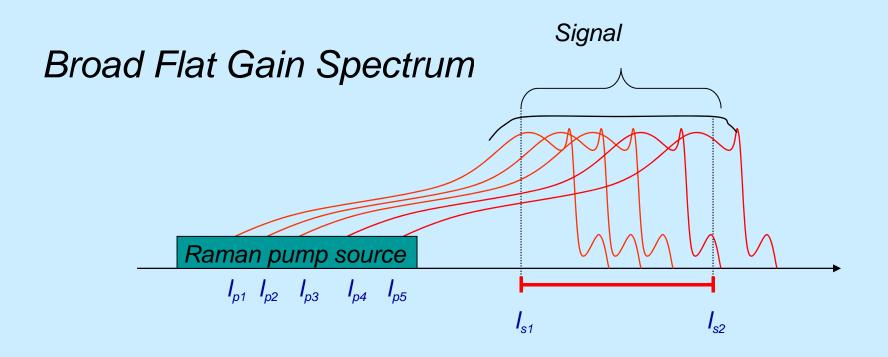

$$g = e^{\frac{1}{2}\mathcal{L}}$$

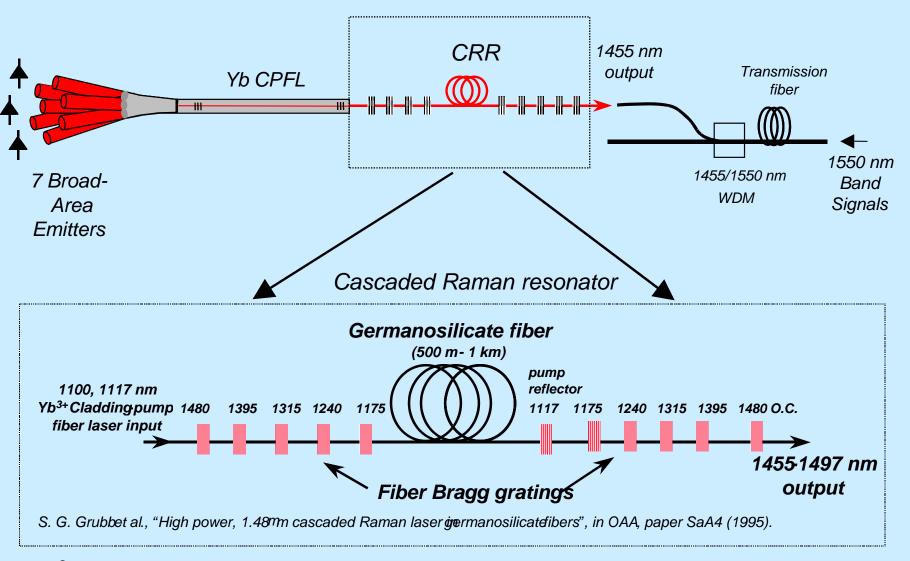
Raman effect in silica

- In molecular gases → discrete vibrational/rotational frequencies
- In silica → molecular vibrational states generate a continuum

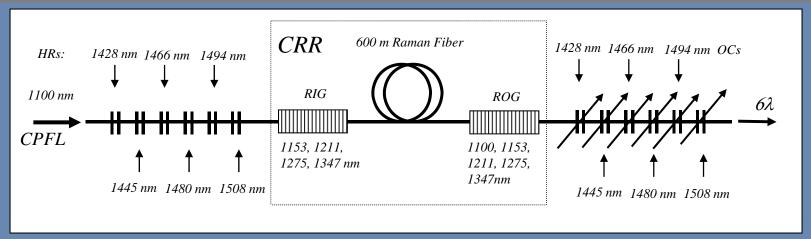
Raman gain spectrum for fused silica

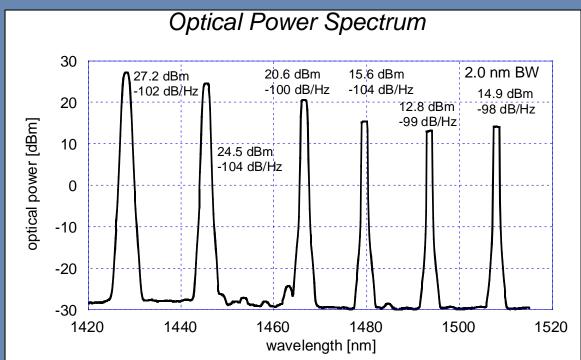
Gain extends over a large frequency range → can act as broadband optical amplifier


Figure 2.3: Schematic illustrating Raman amplification through the transfer of energy from the pump beam to the signal beam, in a counterpropagating regime. In silica based systems, ~ 500 m of fibre are necessary to amplify a signal 100 times, for 1 W pump units.

Multi-wavelength Raman Pump




- Gain wavelength determined by pump wavelength
- Gain spectrum determined by pump distribution
- By combining different wavelengths obtain a flat Raman gain
- No loss filters needed

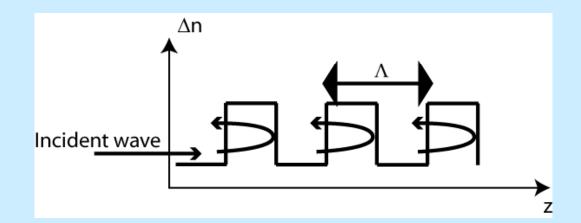
Cascaded Raman Resonators

MULTIWAVELENGTH RAMAN FIBER LASER

Prototype Device

Brillouin scattering

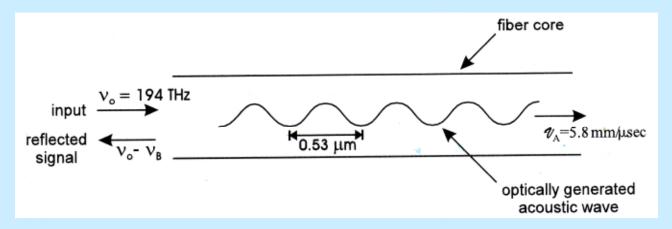
Bragg grating: constructive interference between waves in a medium with periodically varying refractive index


$$ec{k}_{\it Pump} = ec{k}_{\it Bragg} + ec{k}_{\it Re flected}$$
 $\omega_{\it Pump} = \omega_{\it Bragg} + \omega_{\it Re flected}$

Momentum and energy conservation

$$\left| \vec{k}_{Bragg} \right| = 2 \left| \vec{k}_{Pump} \right|$$

$$\frac{2\pi}{\Lambda} = 2\frac{2\pi n}{\lambda_{Pump}}$$


$$\Lambda = \frac{\lambda_{Pump}}{2n}$$

Condition of constructive interference (in reflexion) for the scattered waves

Brillouin scattering

Brillouin effect: Pump wave induces electrostriction, which in turn causes a periodic modulation of the refractive index--acoustic phonons form a Bragg grating moving at speed of sound.

$$\vec{k}_{Pump} = \vec{k}_{Acoustic} + \vec{k}_{Stokes}$$

$$\omega_{Pump} = \omega_{Acoustic} + \omega_{Stokes}$$

Momentum and energy conservation

$$\omega_{Acoustic} = \left| \vec{k}_{Acoustic} \right| v_{Acoustic} \approx 2 \left| \vec{k}_{Pump} \right| v_{Acoustic}$$

Dispersion relation

$$\Delta f_{Brillouin} = \frac{\omega_{Acoustic}}{2\pi} \approx \frac{2nv_{Acoustic}}{\lambda_{Pump}}$$

Brillouin shift (~11 GHz)