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Spontaneous Raman scattering
• The spontaneous Raman effect was discovered by C.V. Raman in 1928
• Third order nonlinear effect
• A beam of light illuminating a sample (solid liquid or gas) is scatteredA beam of light illuminating a sample (solid, liquid or gas) is scattered 

with down-shifted and up-shifted frequencies
• Lower frequencies – Stokes lines 
• Higher frequencies – anti-Stokes linesHigher frequencies anti Stokes lines



Spontaneous Raman scattering

• Energy level diagrams describing Raman scattering

Stokes scattering Anti-Stokes scattering

Th it d t t b ib ti l t ti l t t th t d it b• The excited state can be a vibrational or rotational state that de-excite by 
phonon emission

• In thermal equilibrium the population of higher states is smaller than the• In thermal equilibrium the population of higher states is smaller than the 
ground state  anti-Stokes lines are several orders of magnitude lower 
than the Stokes lines



Stimulated Raman scattering

• Spontaneous Raman scattering is a rather weak process

• Under excitation by an intense laser beam we can get stimulated• Under excitation by an intense laser beam we can get stimulated 
Raman scattering 

• Can be very efficient – more than 10% of the incident power can be 
converted to the Stokes frequency

• Can be used as a gain source



Raman gain

Self-phase modulation is expressed as given earlier  
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The third-order nonlinear coefficient (3) is complex-valued
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Using a non-zero I
(3), we therefore get gain (the Raman gain)
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Raman effect in silica

• In molecular gases  discrete 
vibrational/rotational frequencies

Raman gain spectrum for fused 
silicavibrational/rotational frequencies

• In silica  molecular vibrational 
states generate a continuumstates generate a continuum

Gain extends over a large frequency 
range  can act as broadband optical 
amplifier 





Multi-wavelength Raman Pumpg p
Signal

Broad Flat Gain SpectrumBroad Flat Gain Spectrum

l l l l l
Raman pump source

lp1 lp2 lp3 lp4 lp5

ls1 ls2

• Gain wavelength determined by pump wavelength
• Gain spectrum determined by pump distribution

B bi i diff t l th bt i fl t R i• By combining different wavelengths obtain a flat Raman gain
• No loss filters needed



Cascaded Raman Resonators
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(500 m - 1 km)
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S. G. Grubb et al., “High power, 1.48 mm cascaded Raman laser ingermanosilicatefibers” , in OAA, paper SaA4 (1995).



MULTIWAVELENGTH RAMAN FIBER LASER
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Brillouin scattering
B ti t ti i t f b t iBragg grating : constructive interference between waves in a 
medium with periodically varying refractive index
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Brillouin scattering
B ill i ff t P i d l t t i ti hi h i tBrillouin effect : Pump wave induces electrostriction, which in turn causes a 
periodic modulation of the refractive index--acoustic phonons form a Bragg 
grating moving at speed of sound.
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