Nonlinear optics

Benjamin Eggleton Room 313, A-28 Ben.eggleton@sydney.edu.au Phone: 9351-3604

Y.B. Band, Light and Matter, Wiley

R. W. Boyd, Nonlinear Optics, Academic Press, Latest Edition. In addition, course notes will be distributed.

G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, 1995

Y. R. Shen, Principals of Nonlinear Optics, John Wiley and Sons, 1984

- 1. Nonlinear optical media Nonlinear/Linear optical media Harmonic oscillator Nonlinear Polarization Wave equation in a NL media
- 2. Second-order nonlinearities Second harmonic generation The electro-optic effect Three wave mixing Phase matching – TWM
- 3. Coupled wave theory SHG Frequency conversion Parametric amplification

4. Third-order nonlinearities

Third-harmonic generation The optical Kerr effect Self-phase modulation Self focusing Spatial solitons Cross-phase modulation Four-wave mixing Phase matching – FWM

- 5. Solitons
- 6. Stimulated inelastic scattering Raman Brillouin

Spontaneous Raman scattering

- The spontaneous Raman effect was discovered by C.V. Raman in 1928
- Third order nonlinear effect
- A beam of light illuminating a sample (solid, liquid or gas) is scattered with down-shifted and up-shifted frequencies
- Lower frequencies Stokes lines
- Higher frequencies anti-Stokes lines

Spontaneous Raman scattering

• Energy level diagrams describing Raman scattering

- The excited state can be a vibrational or rotational state that de-excite by phonon emission
- In thermal equilibrium the population of higher states is smaller than the ground state → anti-Stokes lines are several orders of magnitude lower than the Stokes lines

Stimulated Raman scattering

- Spontaneous Raman scattering is a rather weak process
- Under excitation by an intense laser beam we can get stimulated Raman scattering

- Can be very efficient more than 10% of the incident power can be converted to the Stokes frequency
- Can be used as a gain source

Raman gain

Self-phase modulation is expressed as given earlier

$$E_{SPM}(t) = E_{In}(t)e^{j\Delta\varphi(t)} \qquad \Delta\varphi = k_0 n_2 IL \qquad n_2 = \frac{3\chi^{(3)}\eta_0}{n^2\varepsilon_0}$$

The third-order nonlinear coefficient $\chi^{(3)}$ is complex-valued

$$\chi^{(3)} = \chi^{(3)}_{R} - j\chi^{(3)}_{I}$$

Using a non-zero $\chi_{l}^{(3)}$, we therefore get gain (the Raman gain)

$$E_{Raman}(t) = E_{In}(t)e^{\frac{1}{2}\gamma L} \qquad \gamma = \frac{12\pi\eta_0}{\varepsilon_0}\frac{\chi_I^{(3)}}{n^2}\frac{1}{\lambda_0 A}P$$
$$g = e^{\frac{1}{2}\gamma L}$$

Raman effect in silica

- In molecular gases → discrete vibrational/rotational frequencies
- In silica → molecular vibrational states generate a continuum

Raman gain spectrum for fused silica

Gain extends over a large frequency range → can act as broadband optical amplifier

Figure 2.3: Schematic illustrating Raman amplification through the transfer of energy from the pump beam to the signal beam, in a counterpropagating regime. In silica based systems, ~ 500 m of fibre are necessary to amplify a signal 100 times, for 1 W pump units.

Multi-wavelength Raman Pump

- Gain wavelength determined by pump wavelength
- Gain spectrum determined by pump distribution
- By combining different wavelengths obtain a flat Raman gain
- No loss filters needed

Cascaded Raman Resonators

9

MULTIWAVELENGTH RAMAN FIBER LASER

Optical Power Spectrum

Prototype Device

OFS PROPRIETARY

Brillouin scattering

Bragg grating : constructive interference between waves in a medium with periodically varying refractive index

$$\vec{k}_{Pump} = \vec{k}_{Bragg} + \vec{k}_{Re \ flected}$$

$$\omega_{Pump} = \omega_{Bragg} + \omega_{Re \ flected}$$
Momentum and energy conservation
$$\left|\vec{k}_{Bragg}\right| = 2\left|\vec{k}_{Pump}\right|$$

$$\frac{2\pi}{\Lambda} = 2\frac{2\pi n}{\lambda_{Pump}}$$

$$\boxed{\Lambda = \frac{\lambda_{Pump}}{2n}}$$

Condition of constructive interference (in reflexion) for the scattered waves

Brillouin scattering

Brillouin effect : Pump wave induces electrostriction, which in turn causes a periodic modulation of the refractive index--<u>acoustic phonons</u> form a Bragg grating moving at speed of sound.

