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2.3.2 Physics of CFD Solver - RANS 

The RANS solver is used for CFD analysis throughout this dissertation as it is the most 

accurate method for the time and computational resources available.  The aim of the RANS 

solver is to solve the Reynolds Averaged Navier-Stokes equations as set out below. 
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This equation contains the ݑ௜
ᇱݑ௝

ᇱ term which represents the 6 components of the Reynolds 

Stress and so introduces an additional 6 unknown variables as opposed to the single unknown 

before the Reynolds Averaging process was applied to the Navier-Stokes equations.  To solve 

for the Reynolds Stress a turbulence model must be used to close the equation set.  The most 

common method for this is to use an Eddy Viscosity/Boussinesq model.  An Eddy Viscosity 

turbulence model introduces a Turbulent Viscosity variable (்ߥ) that is a function of the flow, 

not the fluid, and is used to close the equation set by defining the relationship between the 

turbulence and the mean flow.  One downfall of the Eddy Viscosity method is that it results in 

a scalar eddy viscosity (isotropic) when in actual fact it is a tensor and the turbulence is non-

isotropic.  Non-Eddy Viscosity models (tensor) can also be used to close the equation set and 

are much more accurate but many times more computationally expensive and so are not 

commonly used and require a much more refined grid to accurately resolve the turbulence in 

all directions without diverging. 

 

2.3.3 Mesh Requirements - RANS 

To solve the flowfield the solver requires a discretised domain.  The domain must first be 

generated in a software package such as Pointwise Gridgen and include the geometry that is to 

be analysed and the relevant external domain or internal details.  There are numerous ways to 

discretise the domain and each has a different effect on the solver and the accuracy of the 

results.  The mesh generation process is critical to obtaining a CFD result that is comparable to 
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3.4 Oil Flow Visualisation 

3.4.1 Clean Wing 

 
Figure 3.14 - Oilflow Visualisation - Clean Wing Complete and Edge 

The above image and Figure 3.15 show the resultant particle distribution on the surface of the 

Clean Wing from a run at h/c = 0.09 and 1 degree angle of attack.  This residual flow 

visualisation shows that the wing profile was designed with a separation bubble along the span 

of the wing.  This design feature is included to trip the boundary layer from laminar to 

turbulent so that the profile can further resist separation.  This effectively fixes the transition 

point of the wing.  However, there are some sections where the fluid passes through the 

designed separation bubble and laminar flow is retained until further downstream on the wing 

surface.  A large separation region exists at the trailing edge of the wing and it appears to 

separate into regions of vortical flow.  An edge vortex is present at the extremities of the wing 

and this provides the additional energy to withstand separation towards the wing tips. 
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