
Create an interactive production wiki using PHP,
Part 1: Introduction and scaffolding
Skill Level: Intermediate

Duane O'Brien (d@duaneobrien.com)
PHP developer
Freelance

13 Feb 2007

This "Create an interactive production wiki using PHP" series creates a wiki from
scratch using PHP, with value-added features useful for tracking production. Wikis
are widely used as tools to help speed development, increase productivity, and
educate others. Each part of the series develops integral parts of the wiki until it is
complete and ready for primetime, with features including file uploading, a
calendaring "milestone" system, and an open blog. The wiki will also contain projects
whose permissions are customizable to certain users.

Section 1. Before you start

This "Create an interactive production wiki using PHP" series is designed for PHP
application developers who want to to take a run at making their own custom wikis.
You'll define everything about the application, from the database all the way up to
the wiki markup you want to use. In the final product, you will be able to configure
much of the application at a granular level, from who can edit pages to how open the
blog really is.

At the end of this tutorial, you will have learned what goes into making a wiki,
considerations in defining your wiki markup, potential pitfalls and challenges in
dealing with file uploads, and some implications involved when setting up an
environment where content is edited by a collective, rather than an individual. Some
of these issues can make wikis tricky. But they can also make them great.

About this series

Part 1 of this series will draw the big picture. You will determine how you want the
application to look, flow, work, and behave. You'll design the database and

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 20

mailto:d@duaneobrien.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/legal/copytrade.shtml

rough-out some scaffolding. Part 2 focuses on the primary wiki development,
including defining the markup, tracking changes, and file uploads. In Part 3, you
define some users and groups, as well as a way to control access to certain aspects
of individual Wiki pages and uploaded files. Part 4 deals with a Calendaring and
Milestones feature to track tasks, to-dos, and progress against set goals. And in Part
5, you put together an open blog to allow discussion of production topics and
concerns.

About this tutorial
PHP is a popular language choice when developing Web applications. Binary and
source versions are available, and while the binaries are Windows®-specific, the
source can be complied for most common platforms. PHP is widely available at most
third-party hosting companies. It's easy to learn, but at the same time, it's powerful,
flexible, and capable. All of these things make PHP a good choice for writing a wiki
engine.

This tutorial focuses on application design. After you get your prerequisites out of the
way, you'll get a picture for how the application is going to look, and jump into the
database design and scaffolding parts. You're building the beginnings of your
custom PHP wiki engine. But rather than refer to it as "your custom PHP wiki
engine," you are going to have to give it an easy-to-remember name, such as Criki.

Topics include:

• What makes a wiki?
• Criki's architecture
• Database design
• Scaffolding

Prerequisites
It is assumed that you have some experience working with PHP and MySQL. We
won't be doing a lot of deep database tuning, so as long as you know the basic ins
and outs, you should be fine. You may find it helpful to download and install
phpMyAdmin, a browser-based administration console for your MySQL database.

System requirements
Before you begin, you need to have an environment in which you can work. The
general requirements are reasonably minimal:

• An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V1.3 with mod_rewrite enabled.

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 2 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.phpmyadmin.net/
http://www.ibm.com/legal/copytrade.shtml

• PHP V4.3.2 or later (including PHP V5). This was written using PHP
V5.0.4

• Any version of MySQL from the last few years will do. This was written
using MySQL V4.1.15.

You'll also need a database and database user ready for your application to use.
The tutorial will provide syntax for creating any necessary tables in MySQL.

Additionally, to save time, we will be developing Criki using a PHP framework called
CakePHP. Download CakePHP by visiting CakeForge.org and downloading the
latest stable version. This tutorial was written using V1.1.13. For information about
installing and configuring CakePHP, check out the tutorial series titled "Cook up Web
sites fast with CakePHP" (see Resources).

Section 2. Introduction

If you've ever had to work on a project with people who were scattered
geographically, you've probably used something to collaborate online. Historically,
collaboration software has been heavy, overbearing, and pointlessly complicated,
often a hindrance to collaboration. But as wikis have risen into common usage,
people have put them to good use as a tool in support of collaboration.

Wikis can be fun tools to use. They derive a lot of power from their openness and
simplicity. Building your own wiki engine from scratch can be an enlightening
exercise as you get a good look at what's going on behind the scenes. But before
you start, you should get an idea for what a wiki typically looks like.

What makes a wiki?
There are many wiki flavors, and wiki engines (the software behind the wiki) have
been written in just about every language suitable for the Web. But most of these
have the same kinds of features:

Browser-based
A wiki typically runs in the context of a Web browser.

Open editing
Generally, anyone who can access the wiki can add to or edit the content.

Wiki markup
A wiki typically uses a sort of meta-language for formatting that acts as a
shorthand version of HTML.

Simplicity

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 20

http://cakeforge.org/projects/cakephp
http://www.ibm.com/legal/copytrade.shtml

Because wikis are used for collaboration, they are generally designed as
simple tools that can easily used by most anyone. The focus is on authoring
and presentation of information.

Some wikis require user registration and are less open. Some allow for use of raw
HTML, rather than a markup language. But these general features hold true when
looking at most Wiki engines.

Section 3. Architecture

In the process of planning the development of Criki, there are several things to
consider. Start by determining how the application is going to flow and consider what
kind of markup will be used, how uploaded files will be stored, what levels of user
permissions will be used, how users will be promoted (and demoted), and how
pages will be protected (and unprotected). Considering these beforehand will give
you a clearer path when coding later.

How is Criki going to flow?
Before you write a line of code, you should spend some time getting a clear picture
for how your application is going to flow. You don't have to have precise
determinations for UI specifics at this point (though having them won't hurt you), but
you need a clear idea of what happens when you submit a page, add a user, edit
text, upload a file, etc. As you go through this process, it is important to keep your
target audience in mind. Sure, it may make sense to you, but you are not the only
one using the application.

Types of users in Criki
What kinds of users will be using Criki? You shouldn't overthink this. Keeping in
mind the open nature of wikis in general, defining every possible kind of user would
be an exercise in frustration. Keep it simple:

Administrators
The highest level of user. Usually there would only be one administrator.
Administrators will have full access to all users and pages within Criki.

Editors
Since Criki is to be used to manage projects, the project managers, team
leaders, or tech leads might be editors. They will have some rights over some
users and some rights over some pages.

Contributors

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 4 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This is your average run-of-the-mill user. Contributors will have no rights over
other users and minimal rights over some pages.

That should be enough user type definition. Remember, wikis derive much of their
power from their openness. As you begin to use Criki more, you may find it
beneficial to add other user types, but for now, these three should suffice.

Administering Criki
You are probably going to be the one administering Criki. And this can serve as a
good place to start. Not because this will represent the most common of your tasks
but because it will represent the most complex of your tasks. And it's the complex
tasks, not the common ones, that will shape the bulk of the back end to Criki.

Start by identifying the tasks only an administrator will be able to perform:

1. Changing Criki configuration options

2. Removing a page completely from Criki

3. Removing a user from Criki

4. Removing an uploaded file from Criki

5. Promoting or Demoting any page to any access level

6. Promoting or Demoting any user to any access level

Promotion and demotion could be accomplished with a single button click. Removing
a page, user, or uploaded file should have a confirmation box or the ability to recover
from mistakes. For simplicity, a confirmation box will be used. Changing Criki
configuration options will require its own page.

Editor tasks in Criki
There could be any number of editors using Criki. They should have access to more
features than contributors, but they should not be able to access administrative
tasks. Specifically, editors should be able to:

• Promote or demote any page to or from editor-level access
• Promote or demote any user to or from editor-level access

Again, promotion and demotion could be accomplished with a single button click.
There's no need to overcomplicate the flow.

The security-minded might raise a hand at this point and point out the potential
problems that come from this kind of structure. If two editors were to get into a

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 20

http://www.ibm.com/legal/copytrade.shtml

disagreement, one of them could simply demote the other, causing arguments,
escalations, hurt feelings, floods, fires, earthquakes, and plagues of locust. These
kinds of concerns are worth considering when dealing with a wiki, but keep in mind
that the general nature of a wiki and, indeed, what gives a wiki its power is its
openness. There is inherent trust in the power structure.

But there doesn't have to be. Editor rights could just as easily be controlled by
configuration settings, indicating what editors can and cannot promote or demote. By
giving the administrator this level of control of the application configuration, you give
the administrator the ability to configure the application to meet the needs at hand.

User registration in Criki
User registration in Criki could take a couple different forms:

• A user could self-register by entering e-mail address, name, and
password.

• Users could only be able to register using a link from an invitation sent by
an administrator or editor.

• Administrators and editors could have the ability to register users directly.
In all three cases, the user registration forms will look identical -- an e-mail field, a
display name, and a password (and confirmation box). The primary difference
between them is who can perform the action.

In the first case, the user registration page is wide open. Anyone can access it and
create an account. In the second case, the user registration page requires a valid
invitation code to work properly, but the access levels for the page are the same as
the first case. In the third case, access to the registration page is restricted.

In all three cases, the user registration process will flow exactly the same way: The
form is filled out, the user is created, and a welcome e-mail is sent. Given the
similarities of the three options, why do them all? The method used can be
controlled using a configuration setting. This allows the administrator to determine
which method works best.

Adding pages to Criki
Is Criki going to allow anyone to add pages to the wiki or will this be restricted to
contributors? This is another place where putting the choice into a configuration
setting can give the administrator power. Regardless of who can add pages to the
wiki, the form to add the page will look exactly the same.

Generally, adding a page to a wiki is a two-part process. First, someone creates a
link to the page that has not yet been created. When the wiki engine renders this link
and sees that the page does not exist, the link is visually changed in some fashion

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 6 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

and is changed to point to the edit page. Then, when someone clicks the link, the
edit page is loaded. When the form is submitted, the page is created.

This is a sensible approach to adding pages to Criki. You could give Criki the ability
to add a page directly, but unless it is linked to by another page, the page will be an
orphan in that it won't be visible from anywhere in the wiki unless you make a page
to show all pages that are not linked to from any other page.

Once you get in the mindset that adding pages is just like editing pages -- potentially
with differing access levels -- all the important questions are answered by identifying
what happens when a page is edited.

Editing pages in Criki
Who can edit pages in Criki? Anyone? Only contributors? Only editors? The same
people who can add pages? Once again, this can be put into a configuration setting,
so the administrator can determine what works best. Generally, if someone can add
a page, someone can edit a page. But that may not always be the case. In some
cases, the administrator may want to restrict edits by default.

More important to consider is what happens when a page is edited? Specifically:

• Is the page locked for editing when someone clicks the Edit button?
• If so, what happens if a user starts an edit and closes the browser?
• If not, what happens if two users edit the same page?
• Can the user preview changes?
• Does the user have to preview changes before submission?
• Is the page history tracked?
• Are you going to provide revision diffs?
• What information are you going to track about edits?

Most of these things wouldn't be of much use as a configuration setting. For
simplicity, Criki will not lock a page when a user clicks an Edit button. If two users
edit the same page at the same time, the last one submitted will win. A full history of
edits will be kept, including the user and IP address of the person who edited the
page. A user can preview pages, but doesn't have to. Criki won't provide version
diffs.

Reading pages in Criki
Now you are getting down to the more mundane tasks in the wiki. Reading pages
will be the bulk of what your users will be doing. Reading a page should be as
simple as passing the page name to a controller, verifying that the user has rights to

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 20

http://www.ibm.com/legal/copytrade.shtml

read the page, and retrieving the text for display.

Access verification should be a simple matter, as the permissions on the actual wiki
pages will be fairly open. But some pages will be only readable by editors and
administrators. Keep in mind that, since the page text was stored in the database in
wiki markup, it is during page retrieval and formatting that this markup will need to be
rendered into HTML.

Uploading files to Criki
Uploading files is a powerful feature, but it needs to be handled with care. Once you
give users the ability to upload files to your application, you open up a world of
potential security issues. For example, if you allow any user to upload any kind of
file, and if the file was directly accessible via a browser, a malicious user could
upload his own PHP file that could be used to manipulate the file system, delete
files, elevate access rights, etc.

Therefore, it follows that file types should be restricted or uploaded files should not
be directly accessible via a browser, or both. For Criki, you will allow the
administrator to control what file types can be uploaded via a configuration setting.
The files will be stored on the file system. Taking this approach puts both the power
and the responsibility firmly in the hands of the administrator.

If a file is uploaded that has the same name as an existing file, the existing file will
be backed up and marked with a revision number.

What markup will Criki use?
No two wiki engines use exactly the same markup. Since you are writing Criki from
scratch, you can tailor the markup to suit your specific needs. For our purposes, the
markup will be kept fairly simple:

• Wrapping text in three equal signs (===) will cause the text to be wrapped
in <h3> tags.

• Wrapping text in three single quotes (''') will cause the text to be wrapped
in <i> tags.

• Wrapping text in three exclamation points (!!!) will cause the test to be
wrapped tags.

• Wrapping text in three underscores (___) will cause the text to be
wrapped in <u> tags.

• Wrapping text in three ampersands (&&&) will cause the text to be
wrapped in <pre> tags.

• Wrapping text in triple braces ([[[like this]]]) will cause the text to be turned
into a link. If the text does not appear to be a URL, the link will be

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 8 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

interpreted as a link to another page on the wiki, stripping out
nonalphanumerics. An alternate name may be provided following a pipe
(|). For example:
• [[[ftp://ftp.yourdomain.com]]] will output a link to ftp.yourdomain.com
with the text "ftp.yourdomain.com"

• [[[ftp://ftp.yourdomain.com|my ftp site]]] will output a link to
ftp.yourdomain.com with the text "my ftp site"

• [[[how to do it]]], [[[howtodoit]]], [[[HowToDoIt]]] and [[[how_to_do_it]]]
will all output links to the wiki page "howtodoit." The text of the link will
be whatever was wrapped in the braces.

• [[[howtodoit|Instructions]]] will output a link to the wiki page
"howtodoit" with the text "Instructions."

• Consecutive lines beginning with an asterisk (*) will be rendered as an
unordered list ().

• Consecutive lines beginning with a pound sign (#) will be rendered as an
ordered list ().

• Three dashes (---) on a line by themselves will be rendered as an <hr />
tag.

• URLS beginning with 'http://' will automatically turned into hyperlinks.
When applying the markup, it will be important to consider the order in which you
apply the various markups. Specifically, the &&& markup should be applied first, as it
is most likely to contain code fragments and comments that could be interpreted as
markup. You should experiment with the application of the various markups to
determine what happens when markups are nested. Criki should handle nested
markup gracefully. That is to say: It's not as important to render the markup properly
as it is to not render the markup badly.

For example, consider the following lines.

===I don't want to fight
*unless I have to===

What's the proper way to render these lines? Taken literally, they would be rendered
something like Listing 1.

Listing 1. Improper rendering of lines

<h3>I don't want to fight

unless I have to

</h3>

That's probably not going to look the way it's intended to or the way the user wanted

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 20

http://www.ibm.com/legal/copytrade.shtml

it to. But it's not as simple as grabbing the biggest match for your patterns (greedy
pattern matching). Consider the following lines:

Listing 2. Lines to be rendered

===I don't want to fight===
*unless I have to
*And I don't want to
===If you have to fight===
*Fight Dirty
*Win

Greedy pattern matching might render the text as shown below.

Listing 3. Poorly rendered lines

<h3>I don't want to fight===
*unless I have to
*and I don't want to
===If you have to fight</h3>

Fight Dirty
Win

Again -- not what you're after. You don't have to solve this problem right now, but it's
a good idea to keep it in the back of your mind, so you can chew on it while you
design the rest of the Criki.

Section 4. How will Criki do all that?

So you know basically how you want Criki to work. Now you can start working out
how you are going to put it together. Since we're doing this in CakePHP, we'll be
using a standard Model-View-Controller (MVC) design.

MVC overview
Model-View-Controller (MVC) refers to a specific method of designing an application.
While a full discussion of MVC is outside the scope of this tutorial, the main points
will be touched on briefly.

MVC breaks an application into three distinctive pieces: Model, View, and Controller.
Each part of the application is responsible for specific tasks.

The Model is primarily concerned with saving and retrieving data. All database
interaction takes place within the Model. The Model takes data from the Controller
and saves it into the database, and the Model retrieves data from the database and

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 10 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

passes it on to the Controller.

The Controller is primarily concerned with logic. This is where the bulk of the
application workload is done. The Controller takes data from the Model, applies
logic, and passes output to the View to be displayed to the user. The Controller also
takes input from user, applies logic, and makes decisions based on the input (such
as passing the input to the Model to be saved or passing other information to the
View to be displayed).

The View is primarily concerned with presentation. This is where the HTML lives.
The View takes output from the Controller, and formats it for display to the user. In
MVC, application logic is separated completely from presentation logic.

Taking the MVC approach has many benefits. If you need to switch to a new
database vendor, for example, you can update the Model code without having to
wade through presentation and application logic. To change the look of the
application, you can update the View code without having to touch the application
logic or database code. Keeping the three layers separate generally makes each
layer and, thus, the application as a whole, easier to maintain.

Designing the database
Now that you have a fairly good idea for how you want Criki to be used and how it
will be put together, you can start thinking about how Criki will go about
accomplishing its various tasks. Looking back through the list of tasks, you should
start to get an idea for how the database is going to look. You're going to need:

1. A table to hold user data -- This will need to hold at least a user name
(unique), e-mail (unique), password, and access level. Other information
you may want would include a numeric ID for the user, creation date, and
last login date.

2. A table to hold page data -- This will need to hold at least a page name
(unique), page content, page access level, last-modified date, user who
last edited the page, and the IP address of that user (for when user
registration is not required). Other information you may want would
include a numeric ID for the page, as well as maybe a revision number
and last-accessed timestamp.

3. A table to hold uploaded file data -- You could probably get by without
this, but by putting uploaded file information into its own table, you
eliminate the need to walk the directory where files have been uploaded,
while making it easier to store things like file access rights. This table will
need to hold at least a file name (unique), location, revision number, and
access rights. Other information you may want would include a numeric
ID for the file, user who uploaded the file, and IP address of the user
uploaded the file (for times when file upload does not require user
registration).

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 20

http://www.ibm.com/legal/copytrade.shtml

4. A table to hold page history -- This will look exactly like the page table,
with the exception that page name need not be unique.

5. A table to hold file history -- This will look exactly like the file table, with
the exception that page name need not be unique.

6. A table to hold configuration settings -- This would probably work best
as an entity-attribute-value (EAV) table. An EAV table is designed to hold
an arbitrary number of values by using generic column names such as
"id" and "value," rather than specific column names like
"enable_fileupload" or "access_level." By storing the configuration
settings in this fashion, you allow yourself room to easily add additional
configuration options to Criki in future releases, while at the same time
making it easier for the administrator to change the configuration options
via a browser interface, rather than via a configuration file. For Criki,
you're going to add a field called "description" that will be used as the
label for the configuration field. See Figure 1.

Figure 1. Criki tables

Six tables -- that's all you should need to get the basics of Criki in place. Go ahead
and run the SQL script included with the source code now. Then we'll use some
built-in CakePHP shortcuts to help us get a leg up on the application.

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 12 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 5. Scaffolding

You have the database created. It's time to get cracking. CakePHP ships with a
script called Bake that will help get you up and running, but before you bake your
controllers and views, you need to create your models.

Creating the models
All the models you create will go in the app\models directory where you installed
Cake. Keep in mind that in CakePHP, models are singular, while database table
names are plural. For example, the basic model for the entries table would be called
entry.php and would look like this:

Listing 4. Basic model entries table

<?php
class Entry extends AppModel {

var $name = 'Entry';

}
?>

Yes -- CakePHP is smart enough to know that the plural form of "entry" is "entries."

Save the entry model and create models for entry_revision, settings, upload,
upload_revision, and user. All the models will look almost identical to the one above
-- just a class definition and a $name. If you're not sure you got them right, check the
models in the accompanying source code.

Baking the controllers
Now that you have the database and models in place, you can use the Bake code
generator tool that ships with CakePHP to get a quick scaffold up for Criki. Before
you proceed, you should back up the app directory for your CakePHP installation, as
Bake will overwrite some files that exist there. If you are doing all of your work on a
fresh install, you shouldn't need to back anything up. Additionally, if this is your first
time using the Bake code generator, you may need to change the value of
max_input_time in the php.ini file, as Bake might time out if you take too long.

In this case, running Bake is a snap. cd into the directory where you installed
CakePHP and execute the bake.php script located in cake\scripts\. For example, if
you installed CakePHP in the directory \htdocs, you need to cd into \htdocs and run
php cake\scripts\bake.php.

If you have problems getting Bake to run, make sure you are in the directory where

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 20

http://www.ibm.com/legal/copytrade.shtml

you installed Cake and that the php.exe is in a directory located in your path. If it's
not, you should just be able to specify the full path to the php.exe binary.

To start, you'll be presented with the Bake menu.

Figure 2. Bake menu

Since you have already built the models, you can jump right in to building the
controllers.

Figure 3. Building the controllers

Start from the top and work your way down:

1. Bake will ask, "Would you like bake to build your controller interactively?"
Unless you feel like going down that route, press n to skip interactive
baking.

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 14 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

2. Bake will then ask, "Would you like to include some basic class
methods?" Press y for yes.

3. Bake will then ask, "Would you like to create the methods for admin
routing?" Go ahead and press n for no.

4. Finally, Bake may ask if you want to build unit test files. The unit test files
will not be covered in the tutorial series. Press n and Bake will exit.

Figure 4. Exiting Bake

Repeat these steps for each of the controllers.

Baking the views
Baking the views is almost exactly like baking the controllers. When you select views
from the Bake menu, you are again presented with a list of views that you can
create.

Figure 5. Select views from the Bake menu

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 20

http://www.ibm.com/legal/copytrade.shtml

Start again from the top and work your way down. Bake will ask if you want to build
your views interactively, and if you want to create the views for admin routing. Say
no to both and just let Bake build up the basic views.

Figure 6. Letting Bake build up the basic views

Repeat the above steps for each of the views. Once you're done, access your
application and take a look around. http://localhost/users should take you to the
users list, where you can add, edit and view users. Likewise, http://localhost/entries,
http://localhost/entry_revisions, http://localhost/settings, http://localhost/uploads, and
http://localhost/upload_revisions should take you to the various scaffolds for those
controllers, as well. Feel free to test out putting some data in. In Part 2, start
customizing the views and controllers.

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 16 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/legal/copytrade.shtml

Section 6. Summary

You've got your database together, and you've cobbled together some basic views.
But you're not going to want to use the default layout for Criki. Spend some time
thinking about how you want it to look. For example, where do you want your links?
What colors do you want to use?

Create a default layout (app/views/layouts/default.thtml) and experiment with some
different looks. Use the default template in
cake/lib/views/templates/layouts/default.thtml as a guide when building your new
layout. Just make sure you don't change the original.

Happy coding. Be sure to read Part 2, where we focus on the primary wiki
development, including defining the markup, tracking changes, and file uploads.

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 20

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/legal/copytrade.shtml

Downloads
Description Name Size Download method
Part 1 source code os-php-wiki1.source.zip14KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 18 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-php-wiki1.source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• It seems natural to start with the Wikipedia entry for wiki.
• Check out WikiWikiWeb for a good discussion about wikis.
• Visit the official home of CakePHP.
• Check out the "Cook up Web sites fast with CakePHP" tutorial series for a good
place to get started.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• Find out more about how PHP handles sessions.
• Check out the official PHP documentation.
• Start with the "Considering Ajax" series to learn what you need to know before
using Ajax techniques when creating a Web site.

• Read the five-part "Mastering Ajax" series on developerWorks for a
comprehensive overview of Ajax.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.
• See a tutorial on "How to use regular expressions in PHP."
• Want to learn more about design patterns? Check out Design Patterns:

Elements of Reusable Object-Oriented Software , also known as the "Gang Of
Four" book.

• Source material for creating users.
• Check out the Model-View-Controller on Wikipedia.
• Here is more useful background on the Model-View-Controller.
• Here's a whole list of different types of software design patterns.
• Read about Design Patterns.
• PHP.net is the resource for PHP developers.
• Check out the "Recommended PHP reading list."
• Browse all the PHP content on developerWorks.
• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• To listen to interesting interviews and discussions for software developers,
check out developerWorks' podcasts.

ibm.com/developerWorks developerWorks®

Introduction and scaffolding
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 20

http://en.wikipedia.org/wiki/Wiki
http://c2.com/cgi/wiki
http://www.cakephp.org/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://api.cakephp.org
http://bakery.cakephp.org
http://us3.php.net/manual/en/ref.session.php
http://us3.php.net/manual/en/function.session-set-save-handler.php
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=considering+ajax
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=mastering+ajax
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/edu/os-dw-os-phpexpr-i.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Plan_9_from_outer_space
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/legal/copytrade.shtml

• Stay current with developerWorks' technical events and webcasts.
• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Visit Safari Books Online for a wealth of resources for open source
technologies.

Get products and technologies
• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss
• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Developer Forum.

About the author
Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the Oregon Trail
was text only. His favorite color is sushi. He has never been to the moon.

developerWorks® ibm.com/developerWorks

Introduction and scaffolding
Page 20 of 20 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://ibmdw.safaribooksonline.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/legal/copytrade.shtml

Create an interactive production wiki using PHP,
Part 2: Developing the basic wiki code
Fueling Criki with user registration, entry storage, and custom
markup rendering

Skill Level: Intermediate

Duane O'Brien (d@duaneobrien.com)
PHP developer
Freelance

06 Mar 2007

This "Create an interactive production wiki using PHP" tutorial series creates a wiki
from scratch using PHP, with value-added features useful for tracking production.
Wikis are widely used as tools to help speed development, increase productivity, and
educate others. Each part of the series develops integral parts of the wiki until it is
complete and ready for primetime, with features including file uploading, a
calendaring "milestone" system, and an open blog. The wiki will also contain projects
whose permissions are customizable to certain users.

Section 1. Before you start

This "Create an interactive production wiki using PHP" series is designed for PHP
application developers who want to to take a run at making their own custom wikis.
You'll define everything about the application, from the database all the way up to
the wiki markup you want to use. In the final product, you will be able to configure
much of the application at a granular level, from who can edit pages to how open the
blog really is.

At the end of this tutorial, Part 2 of a five-part series, you will have the basics of your
wiki up and running, including user registration, page creation and editing, history
tracking, and file uploads. It sounds like a lot, but if you've completed Part 1, you're
well over halfway there.

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 29

mailto:d@duaneobrien.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

About this series
Part 1 of this series draws the big picture. You determine how you want the
application to look, flow, work, and behave. You'll design the database and
rough-out some scaffolding. Part 2 focuses on the primary wiki development,
including defining the markup, tracking changes, and file uploads. In Part 3, you
define some users and groups, as well as a way to control access to certain aspects
of individual wiki pages and uploaded files. Part 4 deals with a Calendaring and
Milestones feature to track tasks, to-dos, and progress against set goals. And in Part
5, you put together an open blog to allow discussion of production topics and
concerns.

About this tutorial
This tutorial focuses on writing the core code for the wiki engine. With the database
in place, your next task is getting the wiki engine up and running, including user
creation, signing in, rendering the markup, page creation, file uploads, and more.
With these tasks done, your application ("Criki") will take a definite shape. Covered
topics include:

• User registration
• Page creation
• Rendering markup
• File uploads

Prerequisites
It is assumed that you have some experience working with PHP and MySQL. We
won't be doing a lot of deep database tuning, so as long as you know the basic ins
and outs, you should be fine. You may find it helpful to download and install
phpMyAdmin, a browser-based administration console for your MySQL database.

System requirements
Before you begin, you need to have an environment in which you can work. The
general requirements are reasonably minimal:

• An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V1.3 with mod_rewrite enabled.

• PHP V4.3.2 or later (including PHP V5). This was written using PHP
V5.0.4

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 2 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.phpmyadmin.net/
http://www.ibm.com/legal/copytrade.shtml

• Any version of MySQL from the last few years will do. This was written
using MySQL V4.1.15.

You'll also need a database and database user ready for your application to use.
The tutorial will provide syntax for creating any necessary tables in MySQL.

Additionally, to save time, we will be developing Criki using a PHP framework called
CakePHP. Download CakePHP by visiting CakeForge.org and downloading the
latest stable version. This tutorial was written using V1.1.13. For information about
installing and configuring CakePHP, check out the tutorial series titled "Cook up Web
sites fast with CakePHP" (see Resources).

Criki so far
At the end of Part 1, you were given the opportunity to redesign the default layout
into something that better suited your own tastes. How did you do? It's OK if you
didn't get a chance to work on this particular piece. The source code for this tutorial
contains a basic layout that includes links to the various controllers. You will be
editing this as the series goes on. Copy the file app/views/layouts/default.thtml from
the code archive into your own app/views/layouts/ directory. It should look like Figure
1.

Figure 1. Criki so far

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 29

http://cakeforge.org/projects/cakephp
http://www.ibm.com/legal/copytrade.shtml

If you did get a chance to work on the layout and didn't link to the various controllers
yourself, you can work the following code into your layout wherever you want. The
code in Listing 1 will give you a horizontal menu. Feel free to rework it as you see fit
to suit your own design.

Listing 1. The horizontal menu

[
<?php echo $html->link('home','/') ?>
|
<?php echo $html->link('users','/users') ?>
|
<?php echo $html->link('entries', '/entries') ?>
|
<?php echo $html->link('entry revisions', '/entry_revisions') ?>
|
<?php echo $html->link('uploads', '/uploads') ?>
|
<?php echo $html->link('upload revisions', '/upload_revisions') ?>
|
<?php echo $html->link('settings', '/settings') ?>
]

Now that you have the layouts taken care of, you can get to work on the core code
for Criki. A logical place to start would be with the user registration code.

Section 2. Writing the core code

Now that the basic structure has been baked and you have a layout more suited to
your tastes, it's time to dive into writing the core code for Criki.

The core code is broken into three basic sections: user code, page code, and history
code. The user-related code covers the basic needs for simple user registration and
login. Don't worry at this point about types of users and permissions -- that's covered
in Part 3. The page code covers creating, editing, and reading wiki entries, including
rendering the markup. And the history code will keep track of page revisions.

User registration
The first piece of Criki you need to work on is the user code. Users need to be able
to register for accounts, log in, and log out. There will be a configuration setting later
to control if a user has to register before he can edit, but for now, just build out the
basic user registration code.

Regardless of the configuration settings, basic user registration will look pretty much
the same. You will always need to verify the following:

1. That the username is available

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 4 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

2. That the e-mail address has not been used to register an account already

There's a lot of additional validation you could do at user registration:
minimum/maximum username and password values, e-mail validation, etc. But this
should be enough for the basic user registration.

Register view
For CakePHP, you'll need to make a register view in the app/views/users directory
and a register action in the users controller (app/controllers/users_controller.php).
The register view will look like Listing 2.

Listing 2. The register view

<?php echo $html->formTag('/users/register') ?>
<p>Please fill out the form below to register an account.</p>
<label>Username:</label>
<?php echo $html->inputTag('User/username') ?>
<?php echo $html->tagErrorMsg('User/username', $username_error) ?>

<label>Password:</label>
<?php echo $html->passwordTag('User/password') ?>
<?php echo $html->tagErrorMsg('User/password', $password_error) ?>

<label>Email Address:</label>
<?php echo $html->inputTag('User/email') ?>
<?php echo $html->tagErrorMsg('User/email', $email_error) ?>

<?php echo $html->submitTag('register') ?>
</form>

This is a fairly simple registration form. It includes the basic form elements, and
some CakePHP error message placeholders for invalid registration errors.

Register action
The register action in the users controller will look like Listing 3.

Listing 3. The register action

function register() {
$this->set('username_error', 'username is required');
$this->set('password_error', 'password is required');
$this->set('email_error', 'email is required');
if (!empty($this->data) && $this->User->validates($this->data)) {
if ($this->User->findByUsername($this->data['User']['username'])) {
$this->User->invalidate('username');
$this->set('username_error', 'username already in use');

} else if ($this->User->findByEmail($this->data['User']['email'])) {
$this->User->invalidate('email');
$this->set('email_error', 'email address already in use');

} else {
$this->data['User']['password'] = md5($this->data['User']['password']);
$this->User->save($this->data);
$this->Session->write('User',

$this->User->findByUsername($this->data['User']['username']));

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 29

http://www.ibm.com/legal/copytrade.shtml

$this->Session->setFlash('Thank you for registering.');
$this->redirect('/');

}
} else {
$this->validateErrors($this->User);

}
}

This action sets the default error messages. Check to make sure that the username
and e-mail address are not in use, and if the user is acceptable, the user data is
saved into the Users table (after changing the password to a hash value). The user's
data is read back out of the database and set into session. This will serve to
determine if a user is logged in. The reason the information is read back out of the
database, rather than just using the data from the form submission, is because the
database contains the default access level of the newly created user. This will be
used later when dealing with permissions. Finally, the user is forwarded to the home
page on successful registration.

Section 3. Login/logout

OK -- you've got user registration tackled. Criki has its first piece of
nonscript-generated code. But you're just getting warmed up. It's great that your
users can register, but they also need to be able to use their accounts. This starts
with login and logout. In this section, you will create the login and logout actions as
well as a login view.

Login view
The login view need not be complicated. All you need is the e-mail address and the
password. Given the simple requirements, the login view will look like Listing 4.

Listing 4. Login view

<?php echo $html->formTag('/users/login') ?>
<p>Please log in.</p>

<label>Email Address:</label>
<?php echo $html->inputTag('User/email') ?>

<label>Password:</label>
<?php echo $html->passwordTag('User/password') ?>

<?php echo $html->submitTag('login') ?>

<?php echo $html->tagErrorMsg('User/email', $login_error) ?>

</form>

The form is very straightforward. Now you need a corresponding login action.

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 6 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Login action
On login, you will need to verify the user's password and save the user data into the
session if it's valid. The login action will look like Listing 5.

Listing 5. Login action

function login() {
$this->set('login_error',);
if ($this->data) {
$results = $this->User->findByEmail($this->data['User']['email']);
if ($results && $results['User']['password'] == md5($this->data['User']['password'])) {
$this->Session->write('User', $results['User']);
$results['User']['login'] = date("Y-m-d H:i:s");
$this->User->save($results);
$this->redirect('/');

} else {
$this->User->invalidate('email');
$this->User->invalidate('password');
$this->set('login_error', 'invalid login');

}
}

}

The action also updates the login field with the current time and date. That's all there
is to it.

Logout action
The logout action is much simpler. All you need to do is delete the user information
from the session and redirect to something. The action will look like Listing 6.

Listing 6. Logout action

function logout() {
$this->Session->delete('User');
$this->redirect('/');

}

You will note that many of the redirects point back to / or the root directory. Right
now, that page just looks like the default CakePHP installation. Later, you will edit
this page to be a better landing page for Criki.

Section 4. User cleanup

Your users can now come to Criki, they can create their own accounts, and they can
log in and log out of the application. Now that you have some basic user functionality
in place, you should clean up the user's controller by deleting unneeded actions and

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 29

http://www.ibm.com/legal/copytrade.shtml

locking down the edit action, and you should change the default layout to give
access to the login/logout/register functionality.

User's controller cleanup
A couple other things should be done to the user's controller while you are here. The
delete action won't be needed for now, so go ahead and delete it. Additionally, the
edit action should be changed so users can only edit their own information. When
you're done, the new edit controller will look something like Listing 7.

Listing 7. The new edit controller

function edit($id = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(empty($this->data)) {
if(!$id) {
$this->Session->setFlash('Invalid id for User');
$this->redirect('/user/index');

}
$this->data = $this->User->read(null, $id);

} else {
if ($id == $user['id']) {
$this->cleanUpFields();
if($this->User->save($this->data)) {
$this->Session->setFlash('The User has been saved');
$this->redirect('/user/index');

} else {
$this->Session->setFlash('Please correct errors below.');

}
}

}
}

}

The edit action will not check to ensure that the user is logged in or that the ID of the
user being edited matches the ID of the user performing the edit.

Default layout change
You can access the $session variable in the default layout and display logout links
only to users that are logged in, while displaying login/register links only to users that
are logged out.

Edit app/views/layouts/default.thtml and add the following code to your link menu.

Listing 8. Changing the default layout

<?php if ($session->check('User')) {
echo $html->link('logout', '/users/logout');

} else {
echo $html->link('login', '/users/login');
echo ' | ';
echo $html->link('register', '/users/register');

} ?>

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 8 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

That should be it for now as far as the users go. Now you can get to work on the
entries controller.

Section 5. Creating pages

You now have the basics of what you need out of the users code. It's time to move
on to the meat and potatoes of the wiki: the page code. Your users will need to be
able to create entries for Criki, and it would probably be helpful if those entries could
be read, as well.

As discussed in Part 1, creating pages is not substantially different from editing
pages. Since an edit view and an edit action have already been baked, you can
leverage these to get page creation up quickly. But first, you will need to make a
quick change to the entries model.

Relating the entries to the users
You want to be able to access user information (specifically, the name of the user
who last modified the entry) from the Entries model. In CakePHP, you can do this by
establishing a belongsTo relationship between the models. You've already laid the
groundwork for this in the way the tables were created. Edit app/models/entry.php
and replace it with the following from Listing 9.

Listing 9. Establishing a belongsTo relationship between the models

<?php
class Entry extends AppModel {

var $name = 'Entry';
var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'

)
);

}
?>

Now entry related queries will return the user information for each entry.

Modifying the edit view
The edit view, as it was baked, contains a lot of fields that need to be removed.
Really, the field you need when editing a page is content. It can be helpful to include
the ID of the entry being edited as a hidden field as well, and you will set the title of
the page as a variable and display it in the header (as well as setting it as a hidden

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 29

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

form element). For good measure, you should add a cancel link that points back to
the view for the entry. The redacted edit view should look like Listing 10.

Listing 10. Redacted edit view

<h2>Edit Entry : <?php echo $entry_title?></h2>
<form action="<?php echo $html->url('/entries/edit/'.$html->tagValue('Entry/id')); ?>"
method="post">
<div class="optional">
<?php echo $form->labelTag('Entry/content', 'Content');?>
<?php echo $html->textarea('Entry/content', array('cols' => '60', 'rows' => '10'));?>
<?php echo $html->tagErrorMsg('Entry/content', 'Please enter the Content.');?>

</div>
<?php echo $html->hidden('Entry/id')?>
<?php echo $html->hidden('Entry/title')?>
<div class="submit">
<?php echo $html->submit('Save');?>
<?php echo $html->link('Cancel', '/entries/view/' . $entry_title);?>

</div>
</form>

That should be all you need for the edit view. The real work here will be done in the
edit action of the entries controller.

Modifying the edit action
Take a look at the edit action as it was baked in Listing 11.

Listing 11. Baking the edit action

function edit($id = null) {
if(empty($this->data)) {
if(!$id) {
$this->Session->setFlash('Invalid id for Entry');
$this->redirect('/entry/index');

}
$this->data = $this->Entry->read(null, $id);

} else {
$this->cleanUpFields();
if($this->Entry->save($this->data)) {
$this->Session->setFlash('The Entry has been saved');
$this->redirect('/entry/index');

} else {
$this->Session->setFlash('Please correct errors below.');

}
}

}

Translated into English, the action would read, "If there is no form submission,
display the information for the ID that was passed, if any. Otherwise, clean up the
submitted date fields and save the data."

In English, what you need this action to do is something like this: "If there is no form
submission, display the information for the title that was passed, if any. Otherwise,
append appropriate information to the data and save it." In this case, you will be
appending certain data to the form submission, such as the ID of the user that is
performing the edit and the IP address. The new edit action will look like Listing 12.

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 10 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 12. The new edit action

function edit($title = null) {
if(empty($this->data)) {
if(!$title) {
$this->Session->setFlash('Invalid Entry');
$this->redirect('/entries/index');

}
$this->data = $this->Entry->findByTitle($title);
if ($this->data) {
$this->set('entry_title', $this->data['Entry']['title']);

} else {
$this->data['Entry']['title'] = $title;
$this->set('entry_title', $title);

}
} else {
$user_id = 0;
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
$user_id = $user['id'];

}
$this->data['Entry']['user_id'] = $user_id;
$this->data['Entry']['ip'] = $_SERVER['REMOTE_ADDR'];
if($this->Entry->save($this->data)) {
$this->Session->setFlash('The Entry has been saved');
$this->redirect('/entries/view/'.$this->data['Entry']['title']);

} else {
$this->Session->setFlash('Please correct errors below.');

}
}

}

Don't worry about revision number right now. You'll be adding that in once we get to
the revisions section.

Section 6. Entries cleanup

Now that you have add/edit working the way you want it to, you'll need to do some
cleanup on the other views and actions related to the entries.

Entries controller cleanup
Go ahead and delete the add and delete actions in the entries controller. The add
action is essentially replaced by the edit action, and the delete action you don't need
for now. You'll add another one later -- once you have user permissions in place.
Additionally, you need to change the view action. Instead of redirecting back to the
index action for invalid entry titles, the user should be directed to the edit action.

$this->redirect('/entries/edit/' . \
preg_replace("/[^a-z]/", ,
strtolower($title)));

Note that all titles are converted to lowercase and stripped of nonalphabetic

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 29

http://www.ibm.com/legal/copytrade.shtml

characters.

Entries views cleanup
For the entries views, you can go ahead and delete the add view, as it won't be in
use. For the other views, you want to keep in mind that the wiki will be driven by
passing in the title of the wiki page, not the ID.

Index view
The index view should be edited down to just show the title, modified date, and user.
Most of the other information isn't necessary to display at this level. More
importantly, the edit and view links need to be changed to pass in the title, not the
ID. When you're done, the view will look something like Listing 13.

Listing 13. Index view

<div class="entries">
<h2>List Entries</h2>
<table cellpadding="0" cellspacing="0">
<tr>
<th>Title</th>
<th>Modified Date</th>
<th>Modified By</th>
<th>Actions</th>

</tr>
<?php foreach ($entries as $entry): ?>
<tr>
<td><?php echo $entry['Entry']['title']; ?></td>
<td><?php echo $entry['Entry']['modified']; ?></td>
<td><?php echo $entry['User']['username']; ?></td>
<td class="actions">
<?php echo $html->link('View','/entries/view/' . $entry['Entry']['title'])?>
<?php echo $html->link('Edit','/entries/edit/' . $entry['Entry']['title'])?>
</td>

</tr>
<?php endforeach; ?>
</table>
</div>

This gives you the basic information that's worth displaying in the index. Now you
need to modify the view used when displaying an entry.

The view of the view
The existing view of the view contains far more information than needs to be
displayed at this time. Replace app/views/entries/view.thtml with Listing 14.

Listing 14. The view of the view

<div class="entry">
<h2><?php echo $entry['Entry']['title']?></h2>
<p>Modified on <?php echo $entry['Entry']['modified']?>

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 12 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

by <?php echo $html->link($entry['User']['username'], $entry['Entry']['user_id'])?>
[<?php echo $html->link('Edit Entry', '/entries/edit/' . $entry['Entry']['title']) ?>
]</p>
<?php echo $entry['Entry']['content']?>
</div>

This new view contains all the base information you need: the title of the page, the
content, who modified it last, and when, and a link to edit the page. Simple enough.

That gets your information into the wiki. Now for the hard part: getting it back out the
way you want it.

Section 7. Rendering the markup

Your users can create and edit entries in Criki. Now all you need to do is display
them in a way that makes them readable. That means rendering the markup.

You may have noticed that the wiki markup wasn't rendered before the data was
saved. This was by design. For one thing, if the wiki markup was rendered into
HTML before writing the content to the database, the markup would have to be
de-rendered whenever a user wanted to edit an entry. And de-rendering the entry
content is more trouble than it's worth. De-rendering probably isn't even a word.

A better way to approach the problem, would be to write in the content as the user
has submitted it and render the wiki markup when the entry is viewed.

Markup refresher
You'll need to look back at Part 1 for a list of wiki markup that Criki will use. This list
failed to include proper handling of newlines. Specifically in Criki, newlines will
behave as follows:

• A newline on a line by itself will be rendered as [missing text]
• A newline at the end of any list element (lines that begin with * or #) will
signify the end of that list element.

• A newline during any open list or paragraph will close the list or paragraph
This will make more sense as you begin to work on the wiki markup code, itself.
Before you start, you will find it helpful to make an entry full of markup for testing
purposes.

Setting up a test entry

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 29

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

When testing the markup rendering, it will be helpful to have a test entry you can
view, which contains an example of each markup. Use the following text for this
purpose.

Listing 15. Testing the markup

=== This is a h3 ===
''' this should be italic '''
!!! this should be bold !!!
___this should be underlined___
&&& this should be pre &&&
[[[ftp://foo.bar.com]]]
[[[ftp://foo.bar.com|not a real site]]]
[[[how to do it]]] [[[howtodoit]]] [[[How To Do It]]] \
[[[how_to_do_it]]] [[[howtodoit|How To Do It]]]
* this
* should
* be
* a
* list

this
should
be
a
numbered list

http://cakephp.org

If you don't have an entry you can edit for this purpose, remember that editing and
adding pages is essentially the same. Go to http://localhost/entries/edit/markuptest
and paste in the test markup. Save and view the entry, and you'll see what you have
to work with.

Figure 2. Unrendered text

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 14 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This should cover all the basic positive tests -- to make sure it does what it is
supposed to -- for the wiki markup. As you develop the code for rendering the
markup, it will be important to cover negative testing -- making sure it doesn't do
what it's not supposed to -- as well.

Rendering the markup
Time to get down to the nitty-gritty: rendering the markup. Since this was touched on
in Part 1, you should have already been thinking about this particular task --
specifically, the problems that can come from dealing with nested tags.

The markup Criki will be using can be broken into three categories. The first contains
all markup that opens and closes with the same set of characters, such as ===, '''
or !!!. The second category contains all the markup that opens, but never explicitly
closes, such as lines that start with # or * (newline implies closing the tag), as well
as rendering links directly from text starting with http:// (space or newline implies
closing the tag). The third category contains self-closing markup, such as ---, and
the handling of newlines.

At this point in the process, don't get caught up in trying to handle everything the
user might do wrong while entering wiki markup. After you get the base markup
rendering working, you can enhance the code to be as forgiving or as strict as you
like with the users.

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 29

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

For now, rendering the wiki markup into HTML should look generally like this:

• Process the entry until a valid markup is found. Open the tag and
remember that it's open.

• Continue processing the entry until the next markup is found. Open the
tag if it's new, close the tag if it's open.

The exception to this rule is the &&& markup. Since this markup wraps text in <pre>
tags, markup rendering should be turned off while processing &&& markup, and any
open markup tags should be closed.

Doing it the hard way
OK -- so that may be a little deceptive. What might be more accurate is saying,
"Writing it out longhand."

What follows is an example of how you can render the markup as described in such
a way as to pass the positive test post created above. You can reference the
entries_controller.php and follow along, while the code for the view action is broken
into parts.

Initializing variables

For the markup rendering, you will use two variables. The first says that if Criki is
processing markup at all, use $processMarkup = true;.

The second will be used to keep track of what tags are currently being processed.

Listing 16. Keeping track of tags are being processed

$processing = array(
"&&&" => false,
"===" => false,
"" => false,
"!!!" => false,
"___" => false,
"[[[" => false,
"]]]" => false,
"*" => false,
"#" => false,

);

The array keys are the markup tags themselves. The value for the keys initialized to
false.

Now that you have your initial variables, you can move on to processing lines.

Line processing

To process the content lines, start by exploding the content on newlines: $lines =
explode("\n", $content);.

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 16 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Then for each of those lines, take a look at the first character. This is so you can
process list entries first because you know that list entries will always start at the
beginning of a line.

Listing 17. Checking the first character of exploded content

switch (substr($line, 0, 1)) {
case "*" :
if ($processMarkup) {
if (!$processing["*"]) {
$processing["*"] = true;
$line = " " . substr($line, 1) . " ";

} else {
$line = " " . substr($line, 1) . " ";

}
}
break;

This checks to see if $processMarkup is true and, if so, it continues processing. If
the markup encountered (in this case, unordered list) is not currently being
processed, the required HTML entity is opened, and the processing flag is set. The
line is then wrapped in tags, excluding the initial character (the markup
itself). This basic approach will be used for rendering the rest of the wiki markup.

The default case on the switch statement is used to close any open markup, reset
the processing flag and append a
 tag.

Once the line has been processed, you can continue on to processing the words.

Word processing
Continuing to process the text, explode the line being processed on a blank space,
and process each word individually.

Listing 18. Processing each word individually

$words = explode(" ", $line);
foreach ($words as $word) {
$word = trim($word);

It's important to understand that what you are dealing with is now a word in any
traditional sense. It is a block of characters that had a space before and after it. That
block of text could be a URL, a math formula, or a series of bad punctuation
decisions. It will be referred to as a word for the sake of ease.

First-round processing

Each word will need to be looked at in two ways. The beginning of the word (the first
three characters) will need to be examined to see if it contains opening markup,
such as ===This. Whenever opening markup is encountered, if $processMarkup
is true and the markup is not being processed, the markup should be opened. If
$processMarkup is true and the markup is being processed, the markup should be

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 29

http://www.ibm.com/legal/copytrade.shtml

closed. Listing 19 provides an example.

Listing 19. Checking the first three characters

case "===" :
if ($processing["==="] && $processMarkup) {
$processing["==="] = false;
$word = '</h3>' . substr($word,3);

} else {
$processing["==="] = true;
$word = '<h3>' . substr($word,3);

}
break;

You have seen that check against $processMarkup a few times now. It comes
from processing the &&& markup.

Listing 20. Processing the &&& markup

case '&&&' :
if ($processing["&&&"]) {
$processing["&&&"] = false;
$processMarkup = true;
$word = '</pre>' . substr($word,3);

} else {
$processing["&&&"] = true;
$processMarkup = false;
$word = '<pre>' . substr($word,3);

}
break;

The difference in processing the &&& markup is that when the markup begins
processing, $processMarkup is set to false, and it is not turned off until the &&&
markup processing has completed.

The other two exceptions to the first round of word processing are for the ---
markup (this is self-closing, which means there is no need to track if it is processing),
and the case "htt" (for processing URLs). The code for these cases should be
self-explanatory.

The default case to the first round of processing won't make much sense until you
look at the second round of word processing. But to sum it up, it says, "If I am
processing a link, and I'm not the last word, push the word onto the link, not onto the
content stack."

Second-round processing
Now that you have looked at the beginning of the word, you will need to look at the
end of the same word, in particular for cases where a single word is involved in the
markup, ===LikeThis===. Basically, this second round will look much like the first
round of processing, with the exception of the markup]]], which indicates the end
of a link. Walk through the code.

Listing 21. Looking at the end of the word

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 18 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

case "]]]" :
if ($processing["]]]"] && $processMarkup) {
if (!$processing["[[["]) {
$processing["]]]"] .= ' ' . substr($word,0,-3);

} else {
$processing["]]]"] = substr($processing["]]]"],0,-3);

}

The [[[/]]] is the trickiest of the bunch because it spans words but not lines
and because the output may change depending on what the next word is. Back
when the [[[tag was encountered, two processing flags were set. The
processing['[[['] flag was set to true, while the processing[']]]'] tag
was set to the word encountered. Because of the default case in the first round of
processing, each subsequent word is appended to the processing[']]]'] flag.
However, if the markup surrounds a single word -- [[[likethis]]] -- the stack
should not be appended to.

Listing 22. Checking the link for a | character

if (strpos($processing["]]]"], "|")) {
list($alink, $atitle) = explode('|', $processing["]]]"]);

} else {
$alink = $processing["]]]"];
$atitle = false;

}

Check the link for a | character (indicating a link with a title). If there is a title, extract
it, otherwise set the title to false.

Listing 23. Checking to see if the link is an external site

if (strpos($alink, "://")) {
$word = "";

} else {
$word = "<a href='/entries/view/" .
strtolower($alink)) ."'>";

}

If the link appears to be to an external site, link to it. Otherwise, treat the link like an
entry title.

Listing 24. Using the link as a title

if ($atitle) {
$word .= $atitle;

} else {
$word .= $alink;

}

If there is no title, use the link as the title.

Listing 25. Closing and finalizing the link

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 29

http://www.ibm.com/legal/copytrade.shtml

$word .= "";
$processing["[[["] = false;
$processing["]]]"] = false;

}
break;

Finally, close the link and clear out any related processing tags.

The link processing is easily the most tricky of the lot. The rest of the second-round
processing will look much like the first-round processing.

Once you feel like you understand the code, copy the controller into place and view
that test entry you created. It should look something like Figure 3.

Figure 3. Rendered text

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 20 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Start thinking about those negative test cases because they're coming up later.

Section 8. Entry histories

Criki is really taking shape. With user registration and entries being created and
read, it's beginning to turn into a real application.

Now that you can edit and view pages properly, you can look at adding some history
retention for the pages in Criki. Saving the histories will be fairly simple. When a

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 29

http://www.ibm.com/legal/copytrade.shtml

page edit is submitted, the old page is retrieved. If the versions are different, save
the old page into the histories table, then save the newly edited page.

Amending the entries controller
You will recall that the entry_revisions table was identical to the entries table, except
that the title field did not have to be unique. This was intentional, so that minimal
work would have to be done to get the old entry into the revisions table.

For starters, in entries_controller.php, you need to specify that more than just the
Entry controller is being used by adding the following class variable: var $uses =
array('Entry','EntryRevision');.

Note: If you define $uses, you must include ALL models you want to use (not just
additional ones). So, the top of entries_controller.php should now look like Listing
26.

Listing 26. Top of the entries_controller.php

<?php
class EntriesController extends AppController {

var $name = 'Entries';
var $helpers = array('Html', 'Form');
var $uses = array('Entry','EntryRevision');
...

This will allow you to access the EntryRevisions controller from within the
Entries controller, making it easy for you to save the revision.

Now that this is in place, you need to add just a few lines to the controller. In the edit
action, before you update the user_id and ip, add the following lines shown in
Listing 27.

Listing 27. Saving new revisions

$entry = $this->Entry->findByTitle($this->data['Entry']['title']);
if ($entry) {
if ($entry['Entry']['content'] == $this->data['Entry']['content']) {
$this->Session->setFlash('No changes were made.');
$this->redirect('/entries/view/'.$this->data['Entry']['title']);
exit;

} else {
$revision['EntryRevision'] = $entry['Entry'];
unset($revision['EntryRevision']['id']);
$this->EntryRevision->save($revision);

}
$this->data['Entry']['revision'] = $entry['Entry']['revision']+1;

}

Walking through the code in English, it says, "Get the existing entry. If the content
has not changed, don't do anything. If it has, dump the ID and save the data with the
EntryRevision controller, and increment the revision number."

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 22 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

That's all there is. Try editing an entry and visiting http://localhost/entry_revisions to
see a list of revisions. You should see the old version of your entry in the revisions
list.

Updating the EntryRevision model
As with the Entry model, you will need to specify that the EntryRevision model
has a relationship to users so that user data associated with an entry can be
retrieved with the entry. This association will look exactly as it did for the Entry
model.

Listing 28. Specifying a relationship with a user to an EntryRevision model

var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'

)
);

Now that your model is taken care of, you need to update your controller.

Updating the EntryRevisions controller
The EntryRevision controller will only need to serve two purposes. The first is to
display a list of revisions for a particular entry. This will be done by modifying the
index action. The second purpose is to display an individual revision. This will be the
view action. The add, edit, and delete actions should be deleted.

Displaying a revision list

Take a look at the index action.

Listing 29. Index action

function index() {
$this->EntryRevision->recursive = 0;
$this->set('entryRevisions', $this->EntryRevision->findAll());

}

With a slight modification, this can be used to get all revisions for a specific title.

Listing 30. Getting all the revisions for a specific title

function index($title = null) {
$this->EntryRevision->recursive = 0;
if ($title) {
$revisions = $this->EntryRevision->findAllByTitle($title);
if ($revisions) {
$this->set('entryRevisions', $revisions);

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 29

http://www.ibm.com/legal/copytrade.shtml

} else {
$this->Session->setFlash('No Revision History For This Article');
$this->redirect('/entries/view/' . $title);

}
} else {
$this->set('entryRevisions', $this->EntryRevision->findAll());

}
}

Now, by visiting http://localhost/entry_revisions/index/TITLE, you can view the
revisions for the individual entries by title -- once you have updated the views.

Updating the EntryRevisions views
Rather than re-editing the view and index views for EntryRevisions, you can
simply copy those from app/views/entries/ to /app/views/entry_revisions -- that's
copy, not move. These views will serve well as a template for the EntryRevision
views. You should also delete the add and delete views from app/views/entries and
app/views/entry_revisions because they won't be necessary.

You need to change the following things about the view and index views:

• Remove the edit links -- no one may edit a revision.
• Change instances of ['Entry'] to ['EntryRevision'].
• Change instances of entries' to 'entryRevisions.
• Change the view links for revisions to pull the view by ID -- remember,
titles are not unique in the revision history.

• Change the view of the view to display the revision number.
You get the basic idea. Consult the source code if the changes are unclear.

Your new views are in place. Spend some time creating revisions and see how it all
flows.

Section 9. File uploads

Allowing files to be uploaded to a Web application is a task that needs to be handled
with great care. Allowing anyone to upload any kind of file, and having the file be
accessible via a direct Web request, is an incredibly dangerous proposition,
regardless of the precautions you take. At the very least, it can open you up to
malicious code execution on clients visiting your application. At the very worst, if can
lead to arbitrary code execution on your server.

The approach described in this tutorial is not perfect. You are highly encouraged to

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 24 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

consider the problem between now and Part 3.

What's the big deal?
Consider a basic approach to the problem: You want the user to be able to upload
files into Criki in such a way that anyone can use them. Without thinking, one might
simply make a directory in app/webroot, such as uploads, and dump files submitted
for upload in this directory, which would make them accessible via
http://localhost/uploads. This is a fast and easy solution. That should be the first
warning sign that it can go horribly wrong.

For one thing, consider that user uploads a file containing malicious JavaScript of
some new and untold variety -- perhaps it steals session or cookie data or worse:
changes the user's coffee to decaf. Regardless, the script now resides on your Web
server.

Now suppose the same user uploads an HTML file that invokes the JavaScript and
makes it do those horrible things it does. Now any user who views the page will
reveal his cookies, and may find himself sluggish and unable to focus in the early
afternoon for unknown reasons. This is not the behavior you want from Criki.

Getting into the more serious, consider the repercussions of a user uploading a file
called info.php containing valid code to execute phpinfo(): <?php phpinfo();
?>.

It seems like an awfully simple thing -- not inherently malicious. But now anyone can
visit http://localhost/uploads/info.php and execute the script. Now imagine what a
genuinely malicious user could write and upload and execute, directly on your
server, and the damage it can do.

What should you do instead?
That's an excellent question. You should think about it between now and Part 3,
where a suggestion solution will be provided. Here are the parameters:

1. Files a user uploads should be accessible by other users.

2. At some point, you may want to allow users to add images to entries via
new wiki markup.

3. Under no circumstances do you want a remote user to be able to
somehow execute a file uploaded on your server.

4. You want to involve a mechanism for controlling what file types can be
uploaded.

5. Any solution you come up with should balance the need for security

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 29

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/legal/copytrade.shtml

against performance.

There are lots of ways to approach this. None of them are without flaw. See what
you can come up with.

Filling in the gaps
You've gotten a lot done. The basic structure code of your wiki is in place. But
there's a lot that can be done to improve it. Specifically, try to address the following:

1. If an entry is edited by an user who is not logged in, an offset error occurs
on the view page. This is because the username is unknown. Fix this so
that, if the username is not known, the IP address is displayed instead.

2. The code to translate the wiki markup could use some work:
• Try entering raw HTML into a content box. What happens? How
would you fix it? What other negative test cases can you identify?

• Experiment with nested markup and see if you can get it to break.
• Clean up the wiki markup translation code. It could easily be reduced
in a number of ways.

• The view action of the EntryRevisions controller should look just
like the view action for the entry controller. But rather than copy all of
the ugly wiki markup translation code over, wait until you have gotten
it more compact, then copy it over.

3. Don't forget to ponder The Problem of File Uploads.

This should give you more than enough to keep you coding until Part 3, where you
work Users and Permissions into Criki. Until then, happy coding.

Section 10. Summary

You've gotten quite a lot done. The core code for Criki is up and running, including
user registration, entry storage, and markup rendering. You've also started to take a
look at file uploads and the problems they present. In Part 3, you address the file
uploads problem. Once that's done, you define user types, and write code to define
and apply permissions to entries and uploaded files.

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 26 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/legal/copytrade.shtml

Downloads
Description Name Size Download method
Part 2 source code os-php-wiki2.source.zip19KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 29

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-php-wiki2.source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• Read Part 1 and Part 3 of this "Create an interactive production wiki using PHP"
series.

• Check out the Wikipedia entry for wiki.
• Check out WikiWikiWeb for a good discussion about wikis.
• Visit the official home of CakePHP.
• Check out the "Cook up Web sites fast with CakePHP" tutorial series for a good
place to get started.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• Find out more about how PHP handles sessions.
• Check out the official PHP documentation.
• Read the five-part "Mastering Ajax" series on developerWorks for a
comprehensive overview of Ajax.

• Check out the "Considering Ajax" series to learn what developers need to know
before using Ajax techniques when creating a Web site.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.
• See a tutorial on "How to use regular expressions in PHP."
• Want to learn more about design patterns? Check out Design Patterns:

Elements of Reusable Object-Oriented Software , also known as the "Gang Of
Four" book.

• Check out the Model-View-Controller on Wikipedia.
• Here is more useful background on the Model-View-Controller.
• Here's a whole list of different types of software design patterns.
• Read more about Design Patterns.
• PHP.net is the resource for PHP developers.
• Check out the "Recommended PHP reading list."
• Browse all the PHP content on developerWorks.
• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• To listen to interesting interviews and discussions for software developers,

developerWorks® ibm.com/developerWorks

Developing the basic wiki code
Page 28 of 29 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://en.wikipedia.org/wiki/Wiki
http://c2.com/cgi/wiki
http://www.cakephp.org/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://api.cakephp.org
http://bakery.cakephp.org
http://us3.php.net/manual/en/ref.session.php
http://us3.php.net/manual/en/function.session-set-save-handler.php
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=mastering+ajax
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=considering+ajax
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/edu/os-dw-os-phpexpr-i.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/legal/copytrade.shtml

check out developerWorks podcasts.
• Stay current with developerWorks' Technical events and webcasts.
• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Visit Safari Books Online for a wealth of resources for open source
technologies.

Get products and technologies
• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss
• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Developer Forum.

About the author
Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the Oregon Trail
was text only. His favorite color is sushi. He has never been to the moon.

ibm.com/developerWorks developerWorks®

Developing the basic wiki code
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 29 of 29

http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://ibmdw.safaribooksonline.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/legal/copytrade.shtml

Create an interactive production wiki using PHP,
Part 3: Users and permissions
Taking control of Criki

Skill Level: Intermediate

Duane O'Brien (d@duaneobrien.com)
PHP developer
Freelance

20 Mar 2007

This "Create an interactive production wiki using PHP" tutorial series creates a wiki
from scratch using PHP, with value-added features useful for tracking production.
Wikis are widely used as tools to help speed development, increase productivity and
educate others. Each part of the series develops integral parts of the wiki until it is
complete and ready for prime time, with features including file uploading, a
calendaring "milestone" system, and an open blog. The wiki will also contain projects
whose permissions are customizable to certain users. In Part 2, you got the basic
wiki working. Now it's time to add some control over who can do what when
accessing Criki.

Section 1. Before you start

This "Create an interactive production wiki using PHP" series is designed for PHP
application developers who want to to take a run at making their own custom wikis.
You'll define everything about the application, from the database all the way up to
the wiki markup you want to use. In the final product, you will be able to configure
much of the application at a granular level, from who can edit pages to how open the
blog really is.

At the end of this tutorial, Part 2 of a five-part series, you will have the basics of your
wiki up and running, including user registration, page creation and editing, history
tracking, and file uploads. It sounds like a lot, but if you've completed Part 1, you're
well over halfway there.

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 26

mailto:d@duaneobrien.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

About this series
Part 1 of this series draws the big picture. You determine how you want the
application to look, flow, work, and behave. You'll design the database and
rough-out some scaffolding. Part 2 focuses on the primary wiki development,
including defining the markup, tracking changes, and file uploads. Here in Part 3,
you define some users and groups, as well as a way to control access to certain
aspects of individual wiki pages and uploaded files. Part 4 deals with a Calendaring
and Milestones feature to track tasks, to-dos, and progress against set goals. And in
Part 5, you put together an open blog to allow discussion of production topics and
concerns.

About this tutorial
This tutorial, Part 3 of a five-part series, focuses on users and permissions primarily.
Criki (your new wiki engine) has already taken a lot of shape as it allows you to edit,
view, and track the history of various entries. Once you get users and permissions
sorted out, you have a good foundation on which you can start to add those
production related features in the next tutorials.

Covered topics include:

• File uploads
• User types
• User permissions

Prerequisites
It is assumed that you have some experience working with PHP and MySQL. We
won't be doing a lot of deep database tuning, so as long as you know the basic ins
and outs, you should be fine. You may find it helpful to download and install
phpMyAdmin, a browser-based administration console for your MySQL database.

System requirements
Before you begin, you need to have an environment in which you can work. The
general requirements are reasonably minimal:

• An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V1.3 with mod_rewrite enabled.

• PHP V4.3.2 or later (including PHP V5). This was written using PHP
V5.0.4

developerWorks® ibm.com/developerWorks

Users and permissions
Page 2 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.phpmyadmin.net/
http://www.ibm.com/legal/copytrade.shtml

• Any version of MySQL from the last few years will do. This was written
using MySQL V4.1.15.

You'll also need a database and database user ready for your application to use.
The tutorial will provide syntax for creating any necessary tables in MySQL.

Additionally, to save time, we will be developing Criki using a PHP framework called
CakePHP. Download CakePHP by visiting CakeForge.org and downloading the
latest stable version. This tutorial was written using V1.1.13. For information about
installing and configuring CakePHP, check out the tutorial series titled "Cook up Web
sites fast with CakePHP" (see Resources).

Section 2. Criki so far

At the end of Part 2, you were given a few things to work on: fixing the error that
happens when an article is edited by a user who is not logged in, further enhancing
the wiki markup translation code, and you were to ponder the problems of file
uploads. How did you do?

Logged-out user editing
When a logged-out user edited an entry, if the entry was viewed, you would have
seen the following error:

Figure 1. Error

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 26

http://cakeforge.org/projects/cakephp
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/legal/copytrade.shtml

This error originates in the model, though it's not the model doing anything wrong.
You will recall that you established a relationship between the entry model and the
user model, such that when an entry was retrieved, associated user information was
also retrieved. In the case of a logged-out user, the user_id for the entry will be
empty because there is no user date to retrieve.

The error doesn't bubble up to the surface until you try to output the user data in the
view in line 4 of app/view/entries/view.thtml.

by <?php echo $html->link($entry['User']['username'], $entry['Entry']['user_id'])?>

The best way to address this is to verify that the username is set and display the IP
address if it's not.

Listing 1. Fixed user link in entries view

by
<?php
if (isset($entry['User']['username'])) {

echo $html->link($entry['User']['username'], $entry['Entry']['user_id']);
} else {

echo 'Anonymous: ' . $entry['Entry']['ip'];
}
?>

Now when you view the entry that was edited by a logged-out user, it should look
more like Figure 2.

developerWorks® ibm.com/developerWorks

Users and permissions
Page 4 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 2. Fixed error

That was fairly simple, with what was hopefully a simple solution for you.

Wiki markup revisions
You had four tasks to resolve regarding the wiki markup:

1. Identify and fix negative test cases, such as rendering raw HTML.

2. Resolve nested markup problems.

3. Clean up the Wiki markup translation code.

4. Set up the View action of the EntryRevisions controller.

Each task should have presented a unique set of problems, but they can be covered
in a couple pieces.

Negative test cases and nested markup

You tested to make sure that Criki was doing what you wanted it to. But it's far more
important to test that it doesn't do what it's not supposed to do. Consider the
following.

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 26

http://www.ibm.com/legal/copytrade.shtml

Listing 2. Negative markup test

===I don't want to fight
*unless I have to===

===I don't want to fight===
*unless I have to
*And I don't want to
===If you have to fight===
*Fight Dirty
*Win

=== if you ___have___ to '''fight''' ===

<h4>this is a h4 tag</h4>

<script>alert('boo!')</script>

[[[thingy" onclick="alert('boo!')]]]

You should recognize those first two lines from the initial markup discussion. Paste
this entry into your version of Criki. What happens?

The most important thing to fix in the code shown in Listing 2 is the HTML rendering.
It leads to embedding malicious JavaScript, cross-site scripting, and a tectonic plate
shift. You have two choices when it comes to dealing with the HTML: strip it out
completely or convert it to HTML entities.

To strip it out completely, you can use PHP's strip_tags function. It's a draconian
approach, but it gets the job done. However, if a user wants to paste in an HTML
code sample, he would be out of luck.

If you want to convert the HTML special characters (using PHP's
htmlspecialchars function), you run into a different problem. You can't do the
conversion before saving the data to the database because & and ' characters
would be converted (thus breaking the wiki markup). You could do the conversion on
display, but if the conversion fails for some reason, the embedded HTML would be
rendered normally.

Probably the safest way to deal with this problem is to use a preg_replace to
replace problem characters. The idea here is to change as little of the original text as
possible, while still keeping Criki secure. So, in the edit action, before you save the
entry, you would do something like that shown below.

$patterns = array ('/</', '/>/');
$replacements = array ('<', '>');
$this->data['Entry'] = preg_replace($patterns, $replacements, $this->data['Entry']);

You need to edit the problem entry before the HTML in the entry ceases rendering,
and the revisions will still show the HTML. If you feel adventurous, you can work on
stripping out HTML after wiki markup rendering, as well. But be forewarned: It can
get tricky. Speaking of wiki markup rendering, that also needed some cleaning up.

developerWorks® ibm.com/developerWorks

Users and permissions
Page 6 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Clean up the markup; add an EntryRevisions view action
Were it not for the <pre> markup, most of the wiki markup rendering could be done
with a couple regular expressions. However, the code provided in Part 2 to render
the wiki markup can still be simplified significantly. Without reproducing large blocks
of the code here, you will remember that the wiki markup rendering code consisted
of some switch statements that looked something like Listing 3.

Listing 3. Old markup switch case

case "!!!" :
if ($processing["!!!"] && $processMarkup) {
$processing["!!!"] = false;
$word = substr($word,0,-3) . '';

} else {
$processing["!!!"] = true;
$word = substr($word,0,-3) . '';

}
break;

Most of the cases looked exactly the same, which meant that the code could be
streamlined by building an array to hold some markup information, calling out
deviant cases specifically, and handling normal cases with code similar to the
following.

Listing 4. New markup processing

if ($markup[$key]['processing']) {
$markup[$key]['processing'] = false;
$word = $markup[$key]['close'] . substr($word,3);

} else {
$markup[$key]['processing'] = true;
$word = $markup[$key]['open'] . substr($word,3);

}

In the source code for this tutorial, the entries_controller.php contains the old view
action (renamed to review), as well as a new view action. Compare the two. The
review action is more immediately readable, but is less efficient overall and requires
more work if markup is added. The view action is less immediately readable, but
more efficient overall and can handle most new markup by simply adding the
markup to the markup array. Do you see room for improvement? You should, there's
plenty!

Once you have the action working the way you want, remember to copy it to the
EntryRevisions controller. There wasn't a view action for that controller at the end of
Part 2.

That about covers the "Filling in the Gaps" section from Part 2. Now you need to
finish addressing the problem of file uploads.

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 26

http://www.ibm.com/legal/copytrade.shtml

Section 3. File uploads, continued

To review, at the end of Part 2, you were given some parameters to consider when
solving how to upload files securely:

1. Files a user uploads should be accessible by other users.

2. At some point, you may want to allow users to add images to their entries
via new wiki markup.

3. Under no circumstances do you want a remote user to be able to
somehow execute a file uploaded on your server.

4. You want to involve a mechanism for controlling what file types can be
uploaded.

5. Any solution you come up with should balance the need for security
against performance.

Examining these points more closely, you should be able to rank them in terms of
importance. Least important would be the ability to add images via markup. When
designing your solutions, you should consider the "maybe" requirements, but not
write your code to them.

Most important would be -- in order of importance -- security, sharing, and access
control. Balancing the security against performance shouldn't be ignored, but it's
more of an overall guiding principle than a requirement.

Why not store them in a database?
Given the purpose of Criki (a wiki to track production tasks), users will probably be
more likely to upload files like word documents, PDFs, flat files, etc. In other words,
large files. Writing and retrieving large files from the database is not a task well
suited for the configuration under which Criki is likely to be installed (single server,
no database tuning).

Storing the files on the file system
Rather than trying to store large files in the database, you'll store them on the file
system. The basic approach:

• The files will be stored in a directory not directly Web-accessible.
• The files will be served to the user for download by way of an action in the

developerWorks® ibm.com/developerWorks

Users and permissions
Page 8 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

files controller.
• File information and versioning will be stored in the database.

Following this approach, you should be able to meet the base requirements: The
files cannot be accessed directly using a Web browser or executed directly on the
system; other users can get access to the files; and you have the ability to check
access control in the action that serves the files.

Now that you know what you're going to do with uploaded files, you can start putting
it all together. You'll need a directory to store the files, a view to present the upload
form, and an action in the uploads controller to handle the incoming file.

Creating the directory
Uploaded files are initially stored in the server's default tmp directory unless you
change this in the php.ini file. If you want to keep them around, you'll want to move
them from the tmp directory to someplace more stable.

Start by making a directory to hold the uploaded files. This directory should be
outside the web root directory you used for CakePHP. For example, if your web root
is /var/htdocs, you would want to create something like /var/uploads as a directory to
hold uploaded files. This directory will need to be readable and writable by the same
user your Apache server uses.

Additionally, you want to define a constant somewhere to hold the location of this
directory. The following line should be added to app/config/bootstrap.php: define
('UPLOADS_DIRECTORY', '/var/uploads/');, where /var/uploads/ is the
directory you created. Note the trailing slash.

Creating the view
Now that you have a place to keep the files, you need a form to be used to upload.
Create the basic view app/views/uploads/files.thtml shown below.

Listing 5. Upload file view

<h2>Upload File</h2>
<form enctype="multipart/form-data" action="<?php echo $html->url('/uploads/file'); ?>"
method="post">
<div class="optional">

<?php echo $form->labelTag('Upload/file', 'Filename');?>
<?php echo $html->file('Upload/file');?>
<?php echo $html->tagErrorMsg('Upload/file', 'Please enter a file.');?>

</div>
<div class="submit">

<?php echo $html->submit('Upload');?>
</div>
</form>
<ul class="actions">
<?php echo $html->link('List Uploads', '/uploads/index')?>

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 26

http://www.ibm.com/legal/copytrade.shtml

Listing 5 is short, straightforward, and to the point. Most of the rest of the upload
information you don't need from the user; it will either be in session or derived from
the file itself.

Creating the file action
You have a place to keep files and a view to allow the user to upload files. Now you
need to do something with the uploaded files.

For starters, just create the following file action in
app/controllers/uploads_controller.php.

Listing 6. Debug uploads file action

function file() {
if(empty($this->data)) {
$this->render();

} else {
$this->cleanUpFields();
debug($this->data);

}
}

This is a simple action that will take the uploaded file and output to the screen the
contents $this->data.

Save the controller and try uploading a file. You should get output that looks roughly
like the following (format notwithstanding).

Listing 7. Debug output of $this->data

Array
(
[Upload] => Array
(
[file] => Array
(
[name] => testupload.txt
[type] => text/plain
[tmp_name] => /tmp/php4LVxoe
[error] => 0
[size] => 19

)
)

)

Does that file information look familiar? It's the same information you would access
through the $_FILES variable: original filename, MIME type according to the
browser, temporary filename, errors if any, and size in bytes. CakePHP pulls the
information into $this->data to make your life that much easier (you're always
going to the same place for your data).

The basic steps (for now) you'll want to take are: verify the file, copy the file to your
storage directory, and create an entry in the uploads database for the file. (Later,

developerWorks® ibm.com/developerWorks

Users and permissions
Page 10 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

you'll cover keeping track of revisions). The resulting action for accomplishing these
steps looks like Listing 8.

Listing 8. Upload file action

function file() {
if(empty($this->data)) {
$this->render();

} else {
if ($this->data['Upload']['file']['error'] == 0) {
if (move_uploaded_file($this->data['Upload']

['file']['tmp_name'], UPLOADS_DIRECTORY .
$this->data['Upload']['file']['name'])) {

$this->Session->setFlash('The file has been saved.');
$this->data['Upload']['filename'] = $this->data['Upload']

['file']['name'];
$this->data['Upload']['location'] = UPLOADS_DIRECTORY;
$user_id = 0;
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
$user_id = $user['id'];

}
$this->data['Upload']['user_id'] = $user_id;
$this->data['Upload']['ip'] = $_SERVER['REMOTE_ADDR'];
if($this->Upload->save($this->data)) {
$this->redirect('/uploads/view/'.$this->Upload->id);

} else {
$this->Session->setFlash('An error occurred saving the

upload information.');
}

} else {
$this->Session->setFlash('The file successfully uploaded

but an error occurred.');
}

} else {
$this->Session->setFlash('There was an error uploading the file.');

}
}

}

Take the new action for a spin. You should be able to upload a file from
http://localhost/uploads/file and be directed to the uploads view. You should also be
able to see the uploaded file in the uploads directory you created earlier.

You did it. You're able to upload files. Now, you need to be able to get them back.

Retrieving files
Sending the files back to the user is actually the easy part. You know where the files
are, and you have saved that information into the uploads table. All you need now is
an action to get the file and send it to the browser for download. This will require a
new action: fetch.

It will look something like Listing 9.

Listing 9. Upload fetch action

function fetch($id = null) {
if(!$id) {

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 26

http://www.ibm.com/legal/copytrade.shtml

$this-<Session-<setFlash('Cannot file the file indicated.');
$this-<redirect('/uploads/index');

}
$upload = $this-<Upload-<read(null, $id);
if ($upload) {
header('Content-Type: application/octet-stream');
header('Content-Disposition: attachment;

filename="' . $upload['Upload']['filename'] . ' "');
header('Content-Length: ' filesize($upload['Upload']

['location'].$upload['Upload']['filename']));
readfile($upload['Upload']['location'].$upload['Upload']['filename']);
exit;

} else {
$this-<Session-<setFlash('Cannot file the file indicated.');
$this-<redirect('/uploads/index');

}
}

The most important parts of this action are the header calls and the readfile. The
header calls say, in order, "Browser, prepare to receive a stream for download. Here
is the filename. Here is the size." The readfile opens the file to be served and
outputs it to the stream.

To test it, you need to add a link to the fetch action. You can add this to
app/views/uploads/index.thtml so the actions available are as follows.

<?php echo $html->link('View','/uploads/view/' . $upload['Upload']['id'])?>
<?php echo $html->link('Fetch','/uploads/fetch/' . $upload['Upload']['id'])?>

Go ahead and try it out on a file you uploaded. Go to http://localhost/uploads/ and
click Fetch. You should be prompted to download the file. Once you have
downloaded the file, open it and verify that the contents are valid.

File revisions
You're able to upload files and retrieve them from Criki. As with the entries, it will be
helpful to keep some history for uploaded files. Keeping track of the file history will
look much like tracking entry history. You will start by querying the uploads table to
see if a version of the file already exists. If a file with the same name already exists,
you'll save that the information for that file into the upload_revisions table before you
save the new upload data (with an updated revision number). However, there is
additional work to be done: You need to keep the previous version of the file on the
file system and update the filename (and potentially the file location) in the
upload_revisions table.

The scheme for keeping prior versions of a file will be very straightforward. When a
file is backed up, the file will be renamed to FILENAME.REVISION. So, if the file is
test.txt and the revision is 3, the file will be renamed "test.txt.3" when the revision is
backed up. The file name will be corrected when the revision is fetched.

To accomplish this, you need to update the uploads controller, UploadRevision
Model, and the UploadRevisions controller.

developerWorks® ibm.com/developerWorks

Users and permissions
Page 12 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Updating the uploads controller
As you did when setting up the entry revisions tracking, you need to specify that an
additional model is being used by the controller. This means declaring the $uses
class variable in uploads_controller.php: var $uses =
array('Upload','UploadRevision');.

Now the uploads controller has access to the UploadRevision model for the purpose
of saving revisions. But you still need to make some changes to the uploads
controller. Specifically, the file action needs to be changed to save revision data and
file backups, as discussed. After verifying that the file was uploaded successfully,
the code to save the revision should look like Listing 10.

Listing 10. Additional uploads file action code

if ($upload) {
$revision['UploadRevision'] = $upload['Upload'];
unset($revision['UploadRevision']['id']);
$revision['UploadRevision']['location'] = UPLOADS_DIRECTORY;
rename($upload['Upload']['location'].$upload['Upload']['filename'], UPLOADS_DIRECTORY .

$upload['Upload']['filename'] . '.' . $upload['Upload']['revision']);
$this->UploadRevision->save($revision);
$this->data['Upload']['revision'] = $upload['Upload']['revision']+1;
$this->data['Upload']['id'] = $upload['Upload']['id'];

}

Of particular interest is setting the upload revision location to the value of
UPLOADS_DIRECTORY. This is done so that if the value of the constant is ever
changed, files will still be copied to and fetched from the correct location.

Updating the UploadRevision model
So that you can display and access user data associated with an upload, you need
to make the same kind of model association in the upload and UploadRevision
models. This association will look identical to the association you did for the entry
and EntryRevisions models.

Listing 11. UploadRevision model association

var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => '',
'order' => '',
'foreignKey' => 'user_id'

)
);

Make sure to add this association to app/models/upload.php and
app/models/upload_revision.php so both can access the necessary models.

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 26

http://www.ibm.com/legal/copytrade.shtml

Updating the UploadRevision controller
The UploadRevision controller will serve purposes similar to the EntryRevisions
controller: Displaying a list of revisions for a file and fetching individual revisions.
These tasks will be accomplished by the index and fetch actions, respectively. All
other actions should be deleted.

Displaying a revision list

Similar to what you did with the index action in the EntryRevisions controller, you
will make slight modifications to the index action to get all revisions for a specific
filename.

Listing 12. Modified UploadRevisions index action

function index($filename = null) {
$this->UploadRevision->recursive = 0;
if ($filename) {
$revisions = $this->UploadRevision->findAllByFilename($filename);
if ($revisions) {
$this->set('uploadRevisions', $revisions);

} else {
$this->Session->setFlash('No Revision History For This File');
$this->redirect('/uploads/view/' . $filename);

}
} else {
$this->set('uploadRevisions', $this->UploadRevision->findAll());

}
}

Now, by visiting http://localhost/upload_revisions/index/FILENAME, you can view the
revisions for the individual uploaded files by title -- once you have updated the views.

Fetching a previous revision

The fetch action for the UploadRevisions controller will look much like the fetch
action for the uploads controller, except that the file being retrieved for the fetch has
had the revision number appended to the end of the filename.

Listing 13. UploadRevisions fetch action

function fetch($id = null) {
if(!$id) {
$this->Session->setFlash('Cannot file the file indicated.');
$this->redirect('/upload_revisions/index');

}
$upload = $this->UploadRevision->read(null, $id);
if ($upload) {
header('Content-Type: application/octet-stream');
header('Content-Disposition: attachment;

filename="' . $upload['UploadRevision']['filename'] . '
"');

header('Content-Length: ' .
filesize($upload['UploadRevision']['location'].$upload['UploadRevision']['filename']));

readfile($upload['UploadRevision']
['location'].$upload['UploadRevision']['filename'] .

'.'.$upload['UploadRevision']['revision']);
exit;

developerWorks® ibm.com/developerWorks

Users and permissions
Page 14 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

} else {
$this->Session->setFlash('Cannot file the file indicated.');
$this->redirect('/upload_revisions/index');

}
}

To see it in action, make a quick modification to the
app/views/upload_revisions/index.thtml file, removing unnecessary actions and
adding a link to the fetch.

<?php echo $html->link('Fetch','/upload_revisions/fetch/' .
$uploadRevision['UploadRevision']['id'])?>

You should now be able to go to http://localhost/upload_revisions and fetch a
previous revision of a file. Try it out.

You've gotten a lot done so far. You can upload files, keep track of revisions, and get
files back from Criki. You are to the point now that user types and permissions begin
to become important.

Section 4. User types

As you will recall from Part 1, three types of basic users were identified: contributors,
editors, and administrators. Thus far, nothing has been done to distinguish one from
the other, save that there is a general sense that a contributor is a base user, an
editor is a kind of super-contributor with some rights over other contributors, and an
administrator is a kind of super-editor, with power over editors and contributors.

By defining the user groups in this sort of hierarchy, you have simplified the task of
defining and assigning user permissions. You'll learn more about that later. For now,
you can focus on the task of user promotion/demotion.

Note: CakePHP comes with an excellent access control system using Access
Control Lists, Access Request Objects, and Access Control Objects. The system
would be well suited for solving this particular problem, since it is specific to
CakePHP. A more general approach has been used here to allow you to apply the
same principles directly to non-CakePHP projects.

How users will be promoted
When you created the users table, you included a field called access. This field was
declared as int(1) meaning that it would hold integer values, one-digit maximum.
You might correctly assume from this that user types will, therefore, be represented
with numbers.

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 26

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

So that you have room to grow and expand the different types of users, you will use
the following system:

• Access of 0 will represent a contributor
• Access of 4 will represent an editor
• Access of 8 will represent an administrator

For now, user types and user permissions will follow these rules:

• No user may demote another user of higher access (Editor cannot
demote Administrator, but can demote editor).

• No user may promote another user to an access above his own (Editor
can promote Contributor to Editor, but not Editor to Administrator).

• No user may demote content of a higher access then his own (Editor
cannot demote Administrator-level content).

• No user may promote content to an access higher than his own (Editor
cannot promote content past Editor-level access).

That may sound a little confusing, but remember: It's all just numbers. It will make
more sense as you write the code. As for the actual mechanics of user
promotion/demotion, it can all be done with a link.

Creating the promote and demote user actions
User promotion and demotion will require a pair of actions in the users controller:
promote and demote. They will look very similar. A user ID will be queried, the
access levels will be verified, and if the action is permitted, it will proceed. Both
actions will require that the user be logged in. The promote action looks like Listing
14.

Listing 14. Users promote action

function promote($id = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(!$id) {
$this->Session->setFlash('Invalid id for User');
$this->redirect('/users/index');
exit;

}
$user = $this->User->read(null, $user['id']);
if ($user['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot promote.');
$this->redirect('/users/view/'.$id);
exit;

}
if ($user['User']['id'] == $id) {
$this->Session->setFlash('You cannot promote yourself.');
$this->redirect('/users/view/'.$id);
exit;

}

developerWorks® ibm.com/developerWorks

Users and permissions
Page 16 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

$subject = $this->User->read(null, $id);
if ($user['User']['access'] > $subject['User']['access']) {
$subject['User']['access'] += 4;
$this->User->save($subject);
$this->Session->setFlash('The User has been promoted');
$this->redirect('/users/view/'.$id);

} else {
$this->Session->setFlash('You cannot promote a User of equal or higher clearance');
$this->redirect('/users/view/'.$id);

}
} else {
$this->Session->setFlash('You must be logged in to perform this action');
$this->redirect('/users/login');

}
}

Pay attention to the kinds of checks you are doing here. Is the user logged in? Was
an ID passed? Is the user a contributor? (Since they can't promote anyone, you can
throw out the request immediately.) Is the user trying to promote himself? (This
would fail anyway when the access levels are checked, but this way, the user knows
you are on to him.) All of these checks take place before the subject of the
promotion is even looked at. As for the actual promotion method, since the access
levels are evenly spaced, you can simple add a fixed number to the subject's
access, resulting in promotion. It's a little simplistic, but it's sufficient for
demonstration purposes.

The demote action is going to look very similar.

Listing 15. Users demote action

function demote($id = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(!$id) {
$this->Session->setFlash('Invalid id for User');
$this->redirect('/users/index');
exit;

}
$user = $this->User->read(null, $user['id']);
if ($user['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot demote.');
$this->redirect('/users/view/'.$id);
exit;

}
$subject = $this->User->read(null, $id);
if ($subject['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot be demoted.');
$this->redirect('/users/view/'.$id);
exit;

}
if ($user['User']['access'] >= $subject['User']['access']) {
$subject['User']['access'] -= 4;
$this->User->save($subject);
$this->Session->setFlash('The User has been demoted');
$this->redirect('/users/view/'.$id);

} else {
$this->Session->setFlash('You cannot demote a User of higher clearance');
$this->redirect('/users/view/'.$id);

}
} else {
$this->Session->setFlash('You must be logged in to perform this action');
$this->redirect('/users/login');

}
}

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 26

http://www.ibm.com/legal/copytrade.shtml

You are performing the same basic kinds of checks before proceeding with
demotion, with one exception: If the user wants to demote himself, go ahead and let
him. Additionally, you need to check to make sure the subject is not already a
contributor -- there is nothing lower to demote him to.

Now that you have the actions in place, a couple quick modifications to the user
views will make user promotion/demotion a cinch.

Showing the right links
You want to modify the index view and the "view" view, so that promotion and
demotion links are only shown when the actions can be performed by the user. For
this tutorial, the changes will only be made to the index view. You will need to apply
the same kind of changes to the "view" view.

Amending the index view
The users index view still contains some links that should be removed -- namely, the
links to the edit, delete, and add actions. You should pull those links out while you
are here, but mainly, you need to add code to pull the logged-in user's data and
conditionally display the promote and demote links. When you are done, the actions
table cell should look like Listing 16.

Listing 16. Users index view update

<?php $user_data = $session->read('User');
if ($user_data['access'] > $user['User']['access']

&& $user_data['id'] != $user['User']['id']) {
echo $html->link('Promote','/users/promote/' . $user['User']['id']);
echo " ";

}
if ($user_data['access'] >= $user['User']['access']

&& $user['User']['access'] != 0) {
echo $html->link('Demote','/users/demote/' . $user['User']['id']);

}
?>

Save the view and pop over to the database and set your user's access level to 8, so
you can do some promotion and demotion. (You'll need to log in and log out for the
change to take effect.) Then go to http://localhost/users and try out your new
powers. You may have to register a few additional users so you have test cases.

This is very basic user-type management. You can promote and demote users, and
you're doing some checks around the user permissions before doing so. The next
step will be to promote and demote the access levels of your content (entries and
uploads).

developerWorks® ibm.com/developerWorks

Users and permissions
Page 18 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 5. Content access levels

Before you can control access to the various types of content in Criki, you need to
define what the access levels are for the content, and provide a mechanism for
promoting and demoting the content itself. This will mean promote/demote actions
for entries and uploads.

Access levels
The access levels for files and entries will look almost exactly like the access levels
for the users:

• Content with access level 0 can be accessed by anyone.
• Content with access level 4 can only be access by editors and
administrators.

• Content with access level 8 can only be accessed by administrators.
In these rules, "accessed" means "viewed and/or modified." You could get very
granular down the line defining permissions, but these access levels will suffice as
broad examples.

The rest of the tutorial will deal primarily with entries: promoting and demoting
access levels, verifying access before taking actions, etc. You'll need to make the
same kinds of changes for the uploads later.

Creating promote and demote actions for the entries
The promote action for the entries controller will look similar to the one you created
for users.

Listing 17. Entries promote action

function promote($title = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(!$title) {
$this->Session->setFlash('Invalid title for Entry');
$this->redirect('/entries/index');
exit;

}
$user = $this->Entry->User->read(null, $user['id']);
if ($user['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot promote.');
$this->redirect('/entries/view/'.$title);
exit;

}
$subject = $this->Entry->findByTitle($title);
if ($user['User']['access'] > $subject['Entry']['access']) {

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 26

http://www.ibm.com/legal/copytrade.shtml

$subject['Entry']['access'] += 4;
$this->Entry->save($subject);
$this->Session->setFlash('The Entry has been promoted');
$this->redirect('/entries/view/'.$title);

} else {
$this->Session->setFlash('You cannot promote an

Entry of equal or higher clearance');
$this->redirect('/entries/view/'.$title);

}
} else {
$this->Session->setFlash('You must be logged in to perform this action');
$this->redirect('/entries/login');

}
}

The primary differences are that entries are driven by title, not by ID, and you don't
have to verify that the entry is trying to promote itself. Everything else will look
basically the same. This is also true of the demote action.

Listing 18. Entries demote action

function demote($title = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(!$title) {
$this->Session->setFlash('Invalid title for Entry');
$this->redirect('/entries/index');
exit;

}
$user = $this->Entry->User->read(null, $user['id']);
if ($user['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot demote.');
$this->redirect('/entries/view/'.$title);
exit;

}
$subject = $this->Entry->findByTitle($title);
if ($subject['Entry']['access'] == 0) {
$this->Session->setFlash('This Entry cannot be demoted any further.');
$this->redirect('/entries/view/'.$title);
exit;

}
if ($user['User']['access'] >= $subject['Entry']['access']) {
$subject['Entry']['access'] -= 4;
$this->Entry->save($subject);
$this->Session->setFlash('The Entry has been demoted');
$this->redirect('/entries/view/'.$title);

} else {
$this->Session->setFlash('You cannot demote a Entry of higher clearance');
$this->redirect('/entries/view/'.$title);

}
} else {
$this->Session->setFlash('You must be logged in to perform this action');
$this->redirect('/users/login');

}
}

Again, everything in this action is driven by title, not ID, and you don't have to verify
that the entry is trying to demote itself.

With the promote and demote actions completed, you can move on to modifying the
entries index view to show the correct links.

Showing the right links

developerWorks® ibm.com/developerWorks

Users and permissions
Page 20 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Displaying the correct links on the index view looks similar to the code you used to
show/hide the promote/demote links on the users index view.

Listing 19. Entries index view update

<?php $user_data = $session->read('User');
if ($user_data['access'] > $entry['Entry']['access']) {
echo $html->link('Promote','/entries/promote/' . $entry['Entry']['title']);
echo " ";

}
if ($user_data['access'] >= $entry['Entry']['access']

&& $entry['Entry']['access'] != 0) {
echo $html->link('Demote','/entries/demote/' . $entry['Entry']['title']);

}
?>

Make the change to the index view, save it, and go to http://localhost/entries and try
out your new promote/demote buttons. You should find that you cannot promote
content so high that you can't read it, and you can't demote content below 0.

Now that you have user types defined and content access levels in place, you can
apply access control to the content. After all the groundwork you have laid, you will
find this remarkably easy.

Applying access controls
You've set the stage. Your users have access levels defined. So do your entries.
Now it's time to put the two together and apply access controls to your content.
Again, this will be applied only to the entries in this tutorial. You will need to apply
the same principles to the uploads later.

Checking the access
In the entries controller, you need to check access rights for any action related to a
specific entry. This has already been done for the promote and demote actions, so
you should only need to add the access control to the edit and view actions.

It's as simple as adding the following lines after the entry has been retrieved.

Listing 20. Code to control access

$user = $this->Session->read('User');
$user = $this->Entry->User->read(null, $user['id']);
if ($user['User']['access'] < $entry['Entry']['access']) {
$this->Session->setFlash('Access Denied.');
$this->redirect('/entries/index');

}

Walking through the code in English, you're pulling fresh user information from the
database. (If the user has been promoted or demoted while logged in, the access
level in session will be inaccurate.) If the user has an access level below that of the

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 26

http://www.ibm.com/legal/copytrade.shtml

entry, he is refused access.

Go ahead and add the code to the view and edit actions for the entries controller.
You can use the code in the archive for reference if need be. When you're done, try
viewing or editing entries above your access level, and you will be met with an
Access Denied error.

Filling in the gaps
You've got all kinds of room for improvement in Criki. But there are some specific
tasks you should complete between now and starting Part 4.

1. Using the principles demonstrated in promoting, demoting, and protecting
entries, add the code necessary to promote, demote, and protect uploads.

2. Go through all the controllers and remove any actions not currently in use.
This includes the review action from the entries controller.

3. Similarly, go through the views and remove links to actions that are no
longer valid.

4. Just as you performed an access check to determine if you should show
or hide the promote/demote buttons, you could use the same access
check to show the view/edit links, or to hide content completely to which
the user has no rights. Spend some time experimenting with this and see
what you find. You could also take the opportunity to streamline the menu
bar in the default layout and link revisions to specific articles or uploads.

5. The access control system, as it has been designed, presents two
problems. How would you address the following?

1. User access levels changes require a login/login to take full effect.

2. Revisions retain access levels from the past, meaning that
promoting or demoting an entry or upload does not change the
access levels of any related revisions.

6. Think about the wiki markup for linking to an uploaded file.

That's plenty to keep you going, for certain. Happy coding.

Section 6. Summary

You now have file uploads working. You're tracking revisions for the uploaded files

developerWorks® ibm.com/developerWorks

Users and permissions
Page 22 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/legal/copytrade.shtml

and sending them to the user. You have a system in place for promoting and
demoting users and content, and you're able to control access to the content. Criki
continues to grow, as do your skills. Why don't you put some of them to use before
you start Part 4?

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 26

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/legal/copytrade.shtml

Downloads
Description Name Size Download method
Part 3 source code os-php-wiki3.source.zip22KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Users and permissions
Page 24 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-php-wiki3.source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• Read Part 1 and Part 2 of this "Create an interactive production wiki using PHP"
series.

• Check out the Wikipedia entry for wiki.
• Check out WikiWikiWeb for a good discussion about wikis.
• Visit the official home of CakePHP.
• Check out the "Cook up Web sites fast with CakePHP" tutorial series for a good
place to get started.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• Find out more about how PHP handles sessions.
• Check out the official PHP documentation.
• Read the five-part "Mastering Ajax" series on developerWorks for a
comprehensive overview of Ajax.

• Check out the "Considering Ajax" series to learn what developers need to know
before using Ajax techniques when creating a Web site.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.
• See a tutorial on "How to use regular expressions in PHP."
• Want to learn more about design patterns? Check out Design Patterns:

Elements of Reusable Object-Oriented Software , also known as the "Gang Of
Four" book.

• Check out the Model-View-Controller on Wikipedia.
• Here is more useful background on the Model-View-Controller.
• Here's a whole list of different types of software design patterns.
• Read more about Design Patterns.
• PHP.net is the resource for PHP developers.
• Check out the "Recommended PHP reading list."
• Browse all the PHP content on developerWorks.
• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• To listen to interesting interviews and discussions for software developers,

ibm.com/developerWorks developerWorks®

Users and permissions
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 26

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://en.wikipedia.org/wiki/Wiki
http://c2.com/cgi/wiki
http://www.cakephp.org/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://api.cakephp.org
http://bakery.cakephp.org
http://us3.php.net/manual/en/ref.session.php
http://us3.php.net/manual/en/function.session-set-save-handler.php
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=mastering+ajax
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=considering+ajax
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/edu/os-dw-os-phpexpr-i.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/legal/copytrade.shtml

check out developerWorks podcasts.
• Stay current with developerWorks' Technical events and webcasts.
• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

• Visit Safari Books Online for a wealth of resources for open source
technologies.

Get products and technologies
• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss
• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Developer Forum.

About the author
Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the Oregon Trail
was text only. His favorite color is sushi. He has never been to the moon.

developerWorks® ibm.com/developerWorks

Users and permissions
Page 26 of 26 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://ibmdw.safaribooksonline.com/
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/legal/copytrade.shtml

Create an interactive production wiki using PHP,
Part 4: Task management
Customizing the controller and modifying the views

Skill Level: Intermediate

Duane O'Brien (d@duaneobrien.com)
PHP developer
Freelance

03 Apr 2007

This "Create an interactive production wiki using PHP" tutorial series creates a wiki
from scratch using PHP, with value-added features useful for tracking production.
Wikis are widely used as tools to help speed development, increase productivity and
educate others. Each part of the series develops integral parts of the wiki until it is
complete and ready for prime time, with features including file uploading, a
calendaring "milestone" system, and an open blog. The wiki will also contain projects
whose permissions are customizable to certain users and will contain projects whose
permissions are customizable to certain users. In Part 3, we added some control over
who can do what. Now it's time to add some task management.

Section 1. Before you start

This "Create an interactive production wiki using PHP" series is designed for PHP
application developers who want to to take a run at making their own custom wikis.
You'll define everything about the application, from the database all the way up to
the wiki markup you want to use. In the final product, you will be able to configure
much of the application at a granular level, from who can edit pages to how open the
blog really is.

At the end of this tutorial, Part 4 of a five-part series, you will have basic task
management functionality working in your wiki, including assigning tasks, viewing
tasks, and marking task progress.

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 28

mailto:d@duaneobrien.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/legal/copytrade.shtml

About this series
Part 1 of this series draws the big picture. You determine how you want the
application to look, flow, work, and behave. You'll design the database and
rough-out some scaffolding. Part 2 focuses on the primary wiki development,
including defining the markup, tracking changes, and file uploads. In Part 3, you
define some users and groups, as well as a way to control access to certain aspects
of individual wiki pages and uploaded files. Part 4 deals with a Calendaring and
Milestones feature to track tasks, to-dos, and progress against set goals. And in Part
5, you put together an open blog to allow discussion of production topics and
concerns.

About this tutorial
This tutorial deals mainly with task management. Criki (your new wiki engine) has all
the basic wiki features you need, but it still lacks those features that will make it
useful as a tool to assist in production. When it comes to production, task
management stands at the top of the needed features list.

Covered topics include:

• Tasks workflow design
• Building out the tasks database table
• Basic task management features

Prerequisites
It is assumed you have completed Part 1, Part 2, and Part 3 of this "Create an
interactive production wiki using PHP" series. And it is assumed that you have some
experience working with the PHP programming language and MySQL. We won't be
doing a lot of deep database tuning, so as long as you know the basic ins and outs,
you should be fine.

System requirements
Before you begin, you need to have an environment in which you can work. The
general requirements are reasonably minimal:

• An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V1.3 with mod_rewrite enabled.

• PHP V4.3.2 or later (including PHP V5). This was written using PHP
V5.0.4

developerWorks® ibm.com/developerWorks

Task management
Page 2 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/legal/copytrade.shtml

• Any version of MySQL from the last few years will do. This was written
using MySQL V4.1.15.

You'll also need a database and database user ready for your application to use.
The tutorial will provide syntax for creating any necessary tables in MySQL.

Additionally, to save time, we will be developing Criki using a PHP framework called
CakePHP. Download CakePHP by visiting CakeForge.org and downloading the
latest stable version. This tutorial was written using V1.1.13. For information about
installing and configuring CakePHP, check out the tutorial series titled "Cook up Web
sites fast with CakePHP" (see Resources).

In addition, you may find it helpful to download and install phpMyAdmin, a
browser-based administration console for your MySQL Database.

Section 2. Criki so far

At the end of Part 3, you were given a few things to work on. You needed to add
accesscControl to uploaded files. There was some cleanup work to be done in
the controllers and the views. You should have experimented with using access
checks to display or hide links and content. There were a couple problems with the
access control system to be worked out. And you never defined any wiki markup for
linking up uploaded files. How did you do?

Uploaded file access control
Defining permissions and access controls for file uploads should look much like it did
for entries. In the uploads controller, you want to add code to the fetch action to
verify the user's access level before serving the file.

Listing 1. Access control in the uploads fetch action

...
$upload = $this->Upload->read(null, $id);
if ($upload) {
$user = $this->Session->read('User');
$user = $this->Upload->User->read(null, $user['id']);
if ($user['User']['access'] < $upload['Upload']['access']) {
$this->Session->setFlash('Access Denied.');
$this->redirect('/uploads/index');
exit;

}
header('Content-Type: application/octet-stream');

...

You also need some promote/demote code added to the uploads controller to allow
the user to protect the files. The promote and demote actions look almost identical to

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 28

http://cakeforge.org/projects/cakephp
http://www.phpmyadmin.net
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/legal/copytrade.shtml

those you created for the entries controller. Rather than reproduce both here, just
the promote action has been shown. Both actions are included in the code archive
below.

Listing 2. Uploads controller promote action

function promote($id = null) {
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if(!$id) {
$this->Session->setFlash('Invalid id for Upload');
$this->redirect('/uploads/index');
exit;

}
$user = $this->Upload->User->read(null, $user['id']);
if ($user['User']['access'] == 0) {
$this->Session->setFlash('Contributors cannot promote.');
$this->redirect('/uploads/view/'.$id);
exit;

}
$subject = $this->Upload->findById($id);
if ($user['User']['access'] > $subject['Upload']['access']) {
$subject['Upload']['access'] += 4;
$this->Upload->save($subject);
$this->Session->setFlash('The Upload has been promoted');
$this->redirect('/uploads/view/'.$id);

} else {
$this->Session->setFlash('You cannot promote an Upload of equal or higher clearance');

$this->redirect('/uploads/view/'.$id);
}

} else {
$this->Session->setFlash('You must be logged in to perform this action');
$this->redirect('/users/login');

}
}

Finally, you'll need to modify the uploads views (index and view to show the
appropriate promote/demote links. This will look much like it did for entries, with the
exception that you are passing the upload id, not the title. For example, in the index
view, the code to show the promote/demote links might look like Listing 3.

Listing 3. Promote/demote links in uploads index view

$user_data = $session->read('User');
if ($user_data['access'] > $upload['Upload']['access']) {
echo $html->link('Promote','/uploads/promote/' . $upload['Upload']['id']);
echo " ";

}
if ($user_data['access'] >= $upload['Upload']['access'] && $upload['Upload']['access']

!= 0) {
echo $html->link('Demote','/uploads/demote/' . $upload['Upload']['id']);

}

Remember: There's an outstanding task related to access control on revisions. We
will address that shortly.

Controller and view cleanup (including enhanced access
checks)

developerWorks® ibm.com/developerWorks

Task management
Page 4 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

There were many unused actions and links across the controllers and views as a
result of the initial baking you did and the shape Criki took. The changes are too
numerous to spell out here. The updated code in the source code for this tutorial
contains cleaned-up versions of all the controllers and views. If you have deviated
heavily from the code as provided, you should make sure to go through the code
archive to see what changes have been made.

Mainly, you just want to be sure that unused actions (like the delete action for the
uploads controller) and links to the unused actions (like the link to the delete action
in the uploads view view) have been removed. See the source code for details.

Included in the view updates are the enhanced access checks to show
promote/demote links for entries and uploads in useful places, such as the related
view views. The code for showing these links looks like it did when you wrote it for
the index views. See the source code for details.

Access control issues
There were two main access control issues you needed to address: user
access-level changes requiring a user login/logout to take effect (for proper view
rendering), and access control across revisions.

Updating user access levels without login/logout

The solution to this particular problem is simple. Recall that when a user logs in, the
user data is set into the session.

$this->Session->write('User',
$this->User->findByUsername($this->data['User']['username']));

The simplest way to avoid forcing a login/logout for updated user permissions is to
take advantage of the various access checks you perform in the controllers. Anytime
you retrieve the user's information to verify access, write the information back into to
session. For example, in the view action of the entries controller, the user
information is retrieved to verify access levels.

Listing 4. Retrieving user data in the entries controller

...
if ($entry) {
$user = $this->Session->read('User');
$user = $this->Entry->User->read(null, $user['id']);
if ($user['User']['access'] < $entry['Entry']['access']) {
$this->Session->setFlash('Access Denied.');
$this->redirect('/entries/index');

}
...

This is a good opportunity to write the information back into session.

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 28

http://www.ibm.com/legal/copytrade.shtml

Listing 5. Amended entries user retrieval code

...
if ($entry) {
$user = $this->Session->read('User');
$user = $this->Entry->User->read(null, $user['id']);
$this->Session->write('User', $user);
if ($user['User']['access'] < $entry['Entry']['access']) {
$this->Session->setFlash('Access Denied.');
$this->redirect('/entries/index');

}
...

If you really wanted to, you could just pull the user's information on every page load,
but that adds an additional query to each page load, which isn't efficient.

Access control across revisions
When you promote or demote an entry or an upload, any associated revisions are
not promoted or demoted. It may not be necessary to promote or demote revisions.
But if you find it necessary to do so, you can do it in one of two ways: by taking
advantage of the relationship to the revisions table and updating the revisions with
the new access level (which is heavy-handed, but would probably be a little tighter in
terms of security), or you can check the access level of the master record when
viewing a revision and allow or deny access based on the access check. Neither
method seems especially useful to Criki, as the revisions will retain the access level
they held before revision. Editing an entry with an access level of 4 will create a
revision with an access level of 4. This should be sufficient, provided you add basic
access controls as outlined in the source code.

Wiki markup for uploaded files
There are many ways to deal with wiki markup for uploaded files. The cheapest,
laziest, and easiest way is to make your users just provide links to uploaded files,
like any other link.

[[[http://localhost/uploads/view/1|Uploaded File]]]

For that matter, if the user pasted the URL to the uploaded file without using wiki
markup, it would still be rendered as a link.

That's a pretty cheap way to go about it, but it demonstrates an important concept:
It's not always necessary to reinvent the wheel.

A couple other ways to address the problem would be to either use new markup to
indicate that a file is being referenced (wrapping the filename in +++, for example) or
adding handling to the link-managing markup allowing the user to specify that the
link is to a file, not an entry title -- such as [[[file:FileName.txt]]]. Neither concept is
written into Criki at this time. If you've got a great solution to the problem, feel free to

developerWorks® ibm.com/developerWorks

Task management
Page 6 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

incorporate it into the code from the source code.

You've filled in the gaps. It's time to sink your teeth into the next feature: task
management.

Section 3. Defining user tasks

Since Criki is intended to be a wiki used to track production, the next logical step in
developing Criki would be to add the ability to assign tasks to users and for users to
be able to keep an eye on their tasks. This will represent a whole new workflow that
hasn't yet been thought through. Before you jump into getting a table together writing
some code, spend some time thinking about how the tasks workflow will look.

Thinking through the tasks workflow
Before you can write a line of code, you need to get a clear image in your head for
how the tasks workflow will look. Unless you know where you're going, you'll find it
hard to get there, or even know when you've gotten there.

There are several questions that need to be addressed when thinking through the
tasks workflow. What information will need to be tracked for a task? Who can assign
tasks to whom? How will a user mark a task completed? How will a user see what
tasks are assigned to him? Considering these questions will help the tasks workflow
to take on a definite shape.

What information will need to be tracked for a task?
Before you can start thinking about how to assign or view tasks, you have a more
important question to answer: What is a task? You might say, "A thing that needs to
be done." And that's a good place to start. But you need to know what the thing
looks like. You can do this by defining what information you're tracking.

For each individual task, there will be specific pieces of information that need to be
tracked. You should strive to keep this information minimal, but make sure to cover
the basics. Tasks should be somewhat loose and conceptual, not tight and
restrictive. For example, while you might track such things as last modified, last
viewed, number of views, etc., most of that information isn't especially useful to the
user. The following basic pieces of information represent the basic necessary
information for a task:

1. Who has the task been assigned to?

2. Who assigned the task?

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 28

http://www.ibm.com/legal/copytrade.shtml

3. When is the task to be completed?

4. What is the task?

5. How much of the task has been completed?

It can also be helpful to include a title for the task, so that the task can be briefly
described in a list. You might be able to argue that other information should be
tracked, but this basic list should do for now.

Who can assign tasks to whom?
Now you know what a task is, and you probably are starting to think about what the
a record in the tasks table will look like. You can start thinking about tasks and who
can assign them.

In keeping with the open spirit of Criki, the tasks workflow will not be tightly
controlled. The rules about who can assign tasks to whom are very simple:

• A user must be logged in to assign a task.
• A user cannot assign a task to someone with an access level higher than
his own. For example, an editor cannot assign a task to an administrator,
but an editor can assign a task to another editor.

The idea here, once again, is to leverage the basic trust at work within the structure
of the wiki. Derive strength from the openness of the wiki. In some cases, this
structure might not work for you. You may want tighter control over how tasks are
assigned. After you get the basic tasks structure built, you can tweak it to suit your
own needs.

How will a user's tasks be viewed?
You know what a task looks like, and you know who can assign them. As a user,
now you need to be able to see your tasks.

When it comes to viewing tasks, there are several ways to display task information
to the user. A list of tasks across users will be helpful when trying to determine which
users have less to do. Viewing a list of tasks for a specific user will be helpful for the
user and for anyone interested in the user's current workload. Of course, individual
tasks should be viewable. And displaying the information in a calendar-style format
will make it easy for a user to visualize what tasks are coming up when.

The task structure as it is being defined doesn't include things like setting task
permissions or controlling access to individual tasks. It's not necessary to include it
at this time, but it would be a good exercise for you to try adding permissions and
access controls to tasks, since you learned all about that in Part 3.

developerWorks® ibm.com/developerWorks

Task management
Page 8 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

How will a user mark a task completed?
You can now see your task. You've finished whatever the task called for. Now you
need to be able to mark your task complete. A user should be able to update tasks,
indicating how far along he has gotten in completing a task.

A user shouldn't be able to change anything else about a task -- not the description,
the title, or the due date. As for completion, this will be tracked as a basic
percentage, broken into quarters: 0, 25, 50, 75, 100 percent. Getting more granular
than this in tracking the percentage of task completion probably isn't necessary. The
more choices you give the user, the more time he will spend trying to determine
which is most accurate. In most cases, it's not really important if a task is 20 or 25
percent done because both numbers translate into "Not yet half."

It might be easier to think of the percentage breakdowns as phrases: "Not started,"
"Just started," "Half done," "Mostly done," and "Completed." Breaking the
percentages into coarse pieces will also pay off when it comes time to display the
tasks in a calendar.

You have a pretty good idea at this point for how the tasks workflow will be put
together. Now you can jump in and start putting it together.

Defining the tasks database
At this point, you should have a pretty good idea for what your tasks database is
going to look like. You'll want an ID field set to auto_increment, as with other
tables. You'll need a field to hold the ID of the user to whom the task has been
assigned, as well as a field to hold the ID of the user who assigned the task. You
also need something to hold the due date, a title, description and percentage
complete. The SQL to create the table is shown below.

Listing 6. Tasks table SQL

CREATE TABLE 'tasks' (
'id' int(10) NOT NULL auto_increment,
'user_id' int(10) NOT NULL default '0',
'assigned_id' int(10) NOT NULL default '0',
'duedate' datetime NOT NULL default '0000-00-00 00:00:00',
'title' varchar(255) NOT NULL default ,
'description' text NOT NULL,
'percent' enum('0','25','50','75','100') NOT NULL default '0',
PRIMARY KEY ('id')
) ENGINE=MyISAM DEFAULT CHARSET=latin1 ;

It's all pretty straightforward, with the possible exception of the user_id and
assigned_id fields, which represent the user to whom the task has been assigned
and the assigning user, respectively. You may have questions as to how to establish
the necessary model relationships to get the data back the way you want it. That's
good. It means you're paying attention.

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 28

http://www.ibm.com/legal/copytrade.shtml

Creating the task model
Now that you have the tasks table created, you need to write the model to get data
from the table. But the task model won't look like your other models. All the models
you have defined so far have either had no model associations or very simple ones.
For example, consider the entry model below.

Listing 7. Entry model

<?php
class Entry extends AppModel {

var $name = 'Entry';

var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'
)

);
}
?>

This model has a simple belongsTo relationship defined to indicate that the
user_id field in the entries table references a row in the users table. If you have
debugging turned on in CakePHP, you might see a SQL statement like this when
viewing an entry (formatted to easier reading), as shown below.

Listing 8. SQL statement to retrieve an entry

SELECT
'Entry'.'id',
'Entry'.'title',
'Entry'.'content',
'Entry'.'access',
'Entry'.'modified',
'Entry'.'user_id',
'Entry'.'ip',
'Entry'.'revision',
'Entry'.'accessed',
'User'.'id',
'User'.'username',
'User'.'email',
'User'.'password',
'User'.'access',
'User'.'created',
'User'.'login'

FROM
'entries' AS 'Entry'

LEFT JOIN
'users' AS 'User'

ON
'Entry'.'user_id' = 'User'.'id'

WHERE
('Entry'.'title' = 'foo')

LIMIT 1

If you've worked with SQL much at all, you should be able to parse this statement
fairly easily. It's a query on the entries table, which is joined to users by the

developerWorks® ibm.com/developerWorks

Task management
Page 10 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

user_id field.

But what you want for a task is to join tasks to the users table on two different fields:
user_id (the user to whom the task has been assigned) and assigned_id (the
user who assigned the task). You can probably write out the SQL statement just fine.

Listing 9. SQL statement to retrieve a task

SELECT
'Task'.'id',
'Task'.'user_id',
'Task'.'assigned_id',
'Task'.'title',
'Task'.'description',
'Task'.'duedate',
'Task'.'percent',
'User'.'id',
'User'.'username',
'User'.'email',
'User'.'password',
'User'.'access',
'User'.'created',
'User'.'login',
'Assigned'.'id',
'Assigned'.'username',
'Assigned'.'email',
'Assigned'.'password',
'Assigned'.'access',
'Assigned'.'created',
'Assigned'.'login'

FROM
'tasks' AS 'Task'

LEFT JOIN
'users' AS 'User'

ON
'Task'.'user_id' = 'User'.'id'

LEFT JOIN
'users' AS 'Assigned'

ON
'Task'.'assigned_id' = 'Assigned'.'id'

WHERE
('Task'.'id' = 1)

LIMIT 1

It's a long query, but it's not terribly complicated. And it may seem difficult to get the
model to retrieve the data in this way. But it's actually very simple. When you define
the belongsTo for the task model, you will define two tables, both of them users,
but with different aliases. It should look like Listing 10.

Listing 10. Task model with belongsTo aliases

<?php
class Task extends AppModel {

var $name = 'Task';

var $belongsTo = array(
'User' => array (

'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'

),
'Assigned'=>array(

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 28

http://www.ibm.com/legal/copytrade.shtml

'className'=>'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'assigned_id'

)
);

}
?>

You are basically just aliasing the user as assigned, and specifying the foreign key
to be used. Easy as pie.

But you won't be able to see this in action until you get your controllers and views
into place. You can short-circuit the process by using Bake, as you did before.

Baking the tasks controller and views
I hope you are somewhat accustomed to using Bake at this point. You used it in Part
1, and you've probably played with it on your own or followed the "Cook Up Web
sites Fast with CakePHP tutorial series" (see Resources), which also walks you
through using Bake. However, as a reminder, you need to make sure the PHP
executable is in your PATH and that you have changed into the directory where you
installed Cake.

To run bake, use php cake\scripts\bake.php. Walk through the menus
specifying that you want to bake first a controller for the tasks table. When you have
baked a controller, bake the views for tasks. If you need a refresher on the bake
menus, consult Part 1 of this series.

Once you have the controller and views baked, turn the debugging up to at least 2 if
you haven't already. This will show you the SQL involved in page rendering. In
app/config/core.php, use define('DEBUG', 2);.

That should be it. Create a couple basic tasks and check out the SQL statement
that's generated when you view them. It should look exactly like the one you wrote
out above to join tasks to users and assigned (the users alias).

That gives you the basic controller and views. Now it's time to tweak them to better
suit your needs.

Section 4. Customizing the controller

Hang onto your hats. It's going to get bumpy.

The controller you baked should have had some basic actions in it to index, add,

developerWorks® ibm.com/developerWorks

Task management
Page 12 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/legal/copytrade.shtml

view, edit, and delete tasks. None of the actions are suitable for Criki as written,
and some will be deleted altogether. Looking back at the workflow you've designed
for tasks, you should be able to make a list of things to be done with the tasks
controller:

• The index action needs to accept filtering parameters. In this case,
user_id and duedate.

• The view action needs to set a variable to show or hide the edit link.
• The add action needs heavy reworking to perform access checks and
tweak or verify data before insertion.

• The edit action needs to be changed to set the values of the
percent-select list.

• The delete action will go away completely.
• A new action will be added called buildCalendar and will be used to
generate an array with dates and associated tasks, for use in displaying a
Calendar element.

Rather than go over this line by line, the highlights will be covered, leaving you on
your own to dig into the source code if you want to get a closer look at all the
changes. Even taking this approach of focusing on the highlights, there's a lot to
cover.

Modifying the index action
The index action is baked to pull all tasks and format them for display. You need to
change this action so you can use it to pull all the tasks for a specific user, or all the
tasks for a specific user on a specific day.

For starters, you'll want to specify that the index action receives two parameters:
$user_id and $duedate.

function index($user_id = null, $duedate = null) {

Now when you access http://localhost/tasks/USERID/DUEDATE, you pass in the
value of USERID as $user_id and the value of DUEDATE as $duedate.

But passing the DUEDATE will be much easier to pass as a UNIX® timestamp rather
than a date-formatted string. This will mean additional work, as the database will be
expecting a date-formatted string. You will translate back and forth between the two.

The rest of the action is pretty straightforward. Since you want the index action to
pull all tasks, all tasks for a user, or all tasks for a user on a date, you need to check
to see what parameters have been passed, if any, and tailor your data retrieval
accordingly. For details, consult the source code.

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 28

http://www.ibm.com/legal/copytrade.shtml

Modifying the view action
The view action doesn't need much modification. You just need to set a variable the
view can use to show or hide an edit link for the task. The rule here is that a task can
only be edited by the user to whom it has been assigned.

Listing 11. Setting the showedit variable

$showedit = false;
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
if ($task['Task']['user_id'] == $user['id']) {
$showedit = true;

}
}
$this->set('showedit', $showedit);

The rest of the action is pretty much the same, though the view will be heavily
edited.

Modifying the add action
The add action needs the most modification. You have more checking to do at this
step, and some additional data massaging is also involved.

For starters, you'll need to make sure that the task is not being assigned in the past.

Listing 12. Deny adding past tasks

if ($this->data['Task']['duedate'] < strtotime('today')
&& $duedate < strtotime('today')) {

$this->Session->setFlash('you cannot assign tasks in the past');
$this->redirect('/tasks/index');
exit;

}

It's important to call exit after the redirect, as redirect does not imply exit and the
action could continue to execute.

Next, you need to make sure the target user exists and that the target user's access
level is not higher than the assigning user.

Listing 13. Verify target user exists and access levels

if (!$target) {
$this->Session->setFlash('User not found');
$this->redirect('/tasks/index');
exit;

} else if ($target['User']['access'] > $user['access']) {
$this->Session->

setFlash('You cannot assign tasks to users with higher access than your
own.');
$this->redirect('/users/login');

developerWorks® ibm.com/developerWorks

Task management
Page 14 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

exit;
}

The last main point is to make sure you remember to set the 'assigned_id' value
to be the ID of the user performing the action. By the time you get to that stage of
the action, the logged-in user's information is in the variable $user. While you are
setting that value, you should set the default percentage of completion to 0, and
format the duedate.

$this->data['Task']['percent'] = '0';
$this->data['Task']['duedate'] = date('Y-m-d H:i:s', $this->data['Task']['duedate']);
$this->data['Task']['assigned_id'] = $user['id'];

The rest of the action should be fairly straightforward. Consult the source code for
details.

Modifying the edit action
The edit action doesn't need much work (or does it?). Mainly, you need to set the
$percents variable for the view to use when rendering the percent-select list.

$this->set('percents', array ('0' => '0%', '25' => '25%', '50' => '50%',
'75' => '75%', '100' => '100%'));

You'll be modifying the view later to only display the percent field for modification.

Adding the buildCalendar action
If you've been looking at the actions as defined in the tasks controller in the source
code, you'll have seen references to a new action: buildCalendar. They look
something like this:

$this->set('month', $this->buildCalendar($task['Task']['user_id'],
$task['Task']['duedate']));

Setting the output of the buildCalendar action to the month variable allows you
to create something new: a Calendar element. This will allow you to put the
Calendar wherever you like, without having to reproduce lots of code. It's a great
time-saver.

This new action will be used to generate an array of dates to be displayed in a
standard Calendar format. The buildCalendar action will need to accept two
parameters: $user_id (the user for whom the Calendar is being displayed) and
$date (the base date to be used when building the Calendar data).

This action begins by looking for tasks for the provided $user_id, building out an

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 28

http://www.ibm.com/legal/copytrade.shtml

array of dates if there are tasks, and including the status (percentage complete) of
the task.

Listing 14. Building a dates/tasks array

$dates = array();
if ($user_id) {
$tasks = $this->Task->findAllByUserId($user_id);
foreach ($tasks as $task) {
$dates[strtotime($task['Task']['duedate'])][] = $task['Task']['percent'];

}
}

Once this array is built, the base date needs to be evaluated. Since you are building
a list of date information for use in displaying a Calendar, you want the first date to
be a Sunday. Therefore, check to see what day the base date is and set
base_date to the previous Sunday if the date is not a Sunday.

Listing 15. Tweaking the base date

$base_date = date('Y-m-d', strtotime($date));
$dow = date('w', strtotime($date));
if ($dow != 0) {
$base_date = date('Y-m-d', strtotime($base_date . '- ' . $dow . ' days'));

}

The number of weeks to be shown has been hardcoded to three. This will allow you
to include the Calendar on any page without taking up too much real estate, while
still allowing a multiweek look at what needs to be done.

Listing 16. Initialize the $month variable

$month = array(
'1' => array(),
'2' => array(),
'3' => array(),

);

Finally, you'll need to iterate through the days following the base_date, checking to
see if there are tasks for that day. If there are tasks, update the status of that day to
the least-completed task. You will use this information to color-code the Calendar.

Listing 17. Walking the dates

$n=0;
for ($i = 0; $i < 21; $i++) {
$status = null;
if ($i % 7 == 0) {
$n++;

}
$date = strtotime($base_date . ' +' . $i . ' days');
if ($dates && array_key_exists($date, $dates)) {
foreach ($dates[$date] as $task) {
if ($status == null) {
$status = $task;

} else {

developerWorks® ibm.com/developerWorks

Task management
Page 16 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

$status = $task < $status ? $task : $status;
}

}
}
$month[$n][] = array('date' => $date, 'status' => $status);

}

Last but not least, slide in the user data for the Calendar (so you don't have to call
it up later) and return the data.

$month['user_data'] = $this->Task->User->findById($user_id);
return $month;

Phew! That's a lot of groundwork. But now that you have built the buildCalendar
action and set its output to the month variable, you can create an element to take
advantage of it.

Creating the Calendar element
In CakePHP, an element is simply a small block of presentation code you want to
display in multiple places. A good example would be a list of menu items. Like other
views, an element is just a PHP file that specifically outputs formatted data in HTML.

In Criki, you've laid the groundwork to use a Calendar element. In the controller,
you made an action to create an array of data that the Calendar element can use.
You've called the action a few times and assigned the results to the month variable.
Any subsequent view or action should be able to then access the information via the
$month variable.

The Calendar element template
Take a look at app/views/elements/calendar.thtml in the source code. The full text is
too long to reproduce here, but most of it is HTML anyway. The important parts will
be covered. For starters, look at the top of the element below.

Listing 18. Calendar element variable inits

<?php
$caluser = $month['user_data'];
unset($month['user_data']);
$caluser_id = $caluser['User']['id'];
$calusername = $caluser['User']['username'];
$begin = current(current($month));
$end = end(end($month));
$base_month = date('M', $begin['date']);
$base_day = date('d', $begin['date']);
$base_year = date('o', $begin['date']);
$last_month = date('M', $end['date']);
$last_day = date('d', $end['date']);
$last_year = date('o', $end['date']);
$base_color = '#eeeeee';
$colors = array (
'0' => '#dd0000',

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 28

http://www.ibm.com/legal/copytrade.shtml

'25' => '#ff9966',
'50' => '#ffff00',
'75' => '#ccff33',
'100' => '#00cc66',

);
?>

The file starts by pulling the user data out of the $month variable, setting some
variables for use later. Then, the beginning and ending dates from the $month array
are identified, so that the Calendar element can be labeled intelligently. Finally,
some colors are defined, using the same coarse percentages you defined earlier as
array keys. This will allow you to set color-coded backgrounds in the Calendar
element, ranging from Red (0-percent complete) to Yellow (50-percent complete) to
Green (100-percent complete).

The only other potentially sticky bit is setting the background color for a specific day.
It's helpful to change the background colors slightly if the Calendar element spans
multiple months, but mainly you want to show the background color that corresponds
to the completion status of the tasks for the given day.

Listing 19. Setting Calendar day background colors

<?php
foreach ($week as $day):
if ($base_month != date('F', $day['date'])) :
$base_month = date('F', $day['date']);
$base_year = date('o', $day['date']);
$base_color = $base_color == '#eeeeee' ? '#dddddd' : '#eeeeee';

endif;
if ($day['status'] != null) {
$color = $colors[$day['status']];

} else {
$color = $base_color;

}
$bg_color = $color;

?>

The rest of the Calendar element should look like a regular view. The days
themselves link to the tasks view for the user in question.

Now that you've got the Calendar element defined, you need to put it someplace
where it can be used.

Modifying the default layout
The easiest way to include the Calendar element would be to conditionally include
it in the default layout. You will recall that you modified
app/views/layouts/default.thtml to customize the look and feel of Criki. By modifying
this file further, you can include the Calendar element. You simply check to see if
the $month variable has been defined. If it has, include the element as shown
below.

Listing 20. Including the Calendar element

developerWorks® ibm.com/developerWorks

Task management
Page 18 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

<?php if (isset($month)) : ?>
<div id="calendar">
<?php echo $this->renderElement('calendar', array("month" => $month)); ?>
</div><?php endif; ?>

If you have some tasks defined, and if you are using the code from the source code
for this tutorial, you should be able to view the tasks for a user and see the
Calendar element in action.

Figure 1. Calendar element in action

In order to get the element to fit into the layout, some modification was done to the
default CSS file (app/webroot/css/cake.generic.css). If your layout doesn't look much
like the screenshot, make sure you replaced your version of the default CSS file with
the one from the source code.

Setting the Calendar data from the users controller
It would be especially helpful to see the Calendar element for a given user when
viewing that user's profile. To do this, you will need to use modify the view action in
the users controller to set the month variable using the requestAction method.

Listing 21. Modifying the view action in the users controller

function view($id = null) {
if(!$id) {
$this->Session->setFlash('Invalid id for User.');
$this->redirect('/user/index');

}
$this->set('user', $this->User->read(null, $id));
$this->set('month',

$this->requestAction('/tasks/buildCalendar/'.$id.'/'.date('Y-m-d')));
$this->set('user_id', $id);

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 28

http://www.ibm.com/legal/copytrade.shtml

}

The requestAction method is used by a controller to call an action on another
controller. You'll remember that the buildCalendar action took in two parameters:
the $user_id and the $date to be used as the base_date. Calling the action with
requestAction should look familiar to you -- it's exactly like calling it via a URL.

Once you've modified the view action in the users controller, view any user,
preferably one with tasks assigned to him. It should look like Figure 2.

Figure 2. User view with Calendar element

You've got the Calendar element working, and you're putting it to good use. Now
it's time to clean up those task views you baked earlier.

Section 5. Customizing the views

You're almost there. Your controller should be in good shape. You've got a fancy
Calendar element to show what tasks are coming up at a glance. Now you need to
make some modifications to those views you baked earlier. Each view needs
modified in some way. As with the controllers, rather than fully reproduce the code
for each view, the primary changes will be highlighted.

Modifying the index view
The index view modifications are very straightforward. You'll want to show the user

developerWorks® ibm.com/developerWorks

Task management
Page 20 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

name for the user to whom the task has been assigned rather than the user's ID.
The same goes for the user who assigned the task. You can omit displaying the full
description of the task -- that's why you included the shorter title field.

Of particular interest may be the following:

Listing 22. Showing the edit link

<?php
if ($task['Task']['user_id'] == $user['id']) :
echo $html->link('Edit','/tasks/edit/' . $task['Task']['id']);

endif;
?>

Recall that the standing rule for editing a task is that only the user to whom the task
has been assigned can edit the task, and even then, he can only change the
percent-complete field. By checking in the view to see if the user_id for the task is
the same is the ID of the logged-in user, you can determine if the edit link should be
shown.

We see the whole view in the source code at app/views/tasks/index.thtml.

Modifying the add view
The add view doesn't need much modification at all. We want to trim back the fields
the user can fill in, as fields like assigned_id should be set by the controller. As for
the duedate field, the approach that has been taken is that it is passed to the initial
request to load the add view, and the value is passed as a hidden field. In the view,
the net result is a need to format the duedate.

<?php echo $form->labelTag('Task/duedate', 'Duedate');?>
<?php echo date('F d, Y', $task['Task']['duedate']) ?>
<?php echo $html->hidden('Task/duedate');?>

The idea behind this approach is to simplify the user experience by reducing the
number of fields to be filled out. If you looked at the way the duedate field was
rendered when baking the views, you'd have seen something like Figure 3.

Figure 3. Many fields in the add view

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 28

http://www.ibm.com/legal/copytrade.shtml

Rather than having to modify all those fields, it should be much simpler to click on a
date in a user's calendar and create a task for him. If your users dislike the
approach, you can experiment with different approaches and find what works.

Modifying the edit view
The most important thing about modifying the edit view is to remove all editable
fields except for the percent field. You shouldn't remove all the information. You can
display the user name and the due date. Just don't provide the ability for the user to
modify the fields. The only field a user should need to modify is percent.

Listing 23. Edit view percent field

<?php echo $form->labelTag('Task/percent', 'Percent');?>
<?php echo $html->selectTag('Task/percent', $percents,

$html->tagValue('Task/percent'), array(), array(), true);?>
<?php echo $html->tagErrorMsg('Task/percent', 'Please select the Percent.') ?>

Also of note in the edit view is some modification to the list of actions a user can
perform. You have access to a lot of information in the edit and view views. You
should use the information to provide convenient links (see Figure 4).

Figure 4. Edit view actions

developerWorks® ibm.com/developerWorks

Task management
Page 22 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

These same actions will be of particular use in the view view.

Modifying the view view
The view view shouldn't need much modification. Again, you'll want to show users'
names, rather than their IDs. This is the only place that the full task description can
be seen. Remember to leave it in. Mainly, you just want to modify the actions links to
point to actions the user can perform. The links will look much like they did on the
edit page.

Figure 5. View view actions

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 28

http://www.ibm.com/legal/copytrade.shtml

That should wrap it up! The controller is doing its job. Your Calendar element is
working overtime. You have the views looking like they should. Spend some time
playing with task management. See if you can find ways to improve it.

Filling in the gaps
As usual, there are many ways in which Criki can still be improved. See what you
can do with these tasks:

• There's at least one glaring security hole in the task management edit
workflow. Find it and fix it, as well as any others you recognize.

• Wouldn't it be great to be able to use the wiki markup when writing task
descriptions? Come up with a way to render wiki markup in task
descriptions without rewriting the wiki markup code yet again. (Hint: Take
a look at how the buildCalendar action is put together.)

• In the tasks views from the source code, where user names are displayed
as text, they could be displayed as links to the users controller to allow for
easy viewing of a user's profile. What would that look like?

You are encouraged to get your fingers deep into the code. Find something you
don't like? Think it should work differently? Think it's broken? Awesome. Fix it. It's
the best way to learn.

Section 6. Summary

developerWorks® ibm.com/developerWorks

Task management
Page 24 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Good task management should now be easy for everyone. Assigning a task to a
user should be intuitive. As a user, task management should help the user keep
track of priorities, rather than hindering by burdening with overly complicated
workflows. The task management system you have put in place for Criki should
meet these basic standards. Be sure to read our final tutorial in this "Create an
interactive production wiki using PHP" series (Part 5), where we add an open blog to
Criki to allow discussion of production topics and concerns.

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 28

http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki5.html
http://www.ibm.com/legal/copytrade.shtml

Downloads
Description Name Size Download method
Part 4 source code os-php-wiki4.source.zip26KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Task management
Page 26 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-php-wiki4.source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• Read Part 1, Part 2, and Part 3 of this "Create an interactive production wiki
using PHP" series.

• Check out the Wikipedia entry for wiki.
• Check out WikiWikiWeb for a good discussion about wikis.
• Visit the official home of CakePHP.
• Check out the "Cook up Web sites fast with CakePHP" tutorial series for a good
place to get started.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• Find out more about how PHP handles sessions.
• Check out the official PHP documentation.
• Read the five-part "Mastering Ajax" series on developerWorks for a
comprehensive overview of Ajax.

• Check out the "Considering Ajax" series to learn what developers need to know
before using Ajax techniques when creating a Web site.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.
• See a tutorial on "How to use regular expressions in PHP."
• Want to learn more about design patterns? Check out Design Patterns:

Elements of Reusable Object-Oriented Software , also known as the "Gang Of
Four" book.

• Check out the Model-View-Controller on Wikipedia.
• Here is more useful background on the Model-View-Controller.
• Here's a whole list of different types of software design patterns.
• Read about Design patterns.
• Read more about Design Patterns.
• PHP.net is the resource for PHP developers.
• Check out the "Recommended PHP reading list."
• Browse all the PHP content on developerWorks.
• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

ibm.com/developerWorks developerWorks®

Task management
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 27 of 28

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://en.wikipedia.org/wiki/Wiki
http://c2.com/cgi/wiki
http://www.cakephp.org/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://api.cakephp.org
http://bakery.cakephp.org
http://us3.php.net/manual/en/ref.session.php
http://us3.php.net/manual/en/function.session-set-save-handler.php
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=mastering+ajax
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=considering+ajax
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/edu/os-dw-os-phpexpr-i.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/legal/copytrade.shtml

• To listen to interesting interviews and discussions for software developers,
check out developerWorks podcasts.

• Stay current with developerWorks' Technical events and webcasts.
• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies
• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss
• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Developer Forum.

About the author
Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the Oregon Trail
was text only. His favorite color is sushi. He has never been to the moon.

developerWorks® ibm.com/developerWorks

Task management
Page 28 of 28 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/legal/copytrade.shtml

Create an interactive production wiki using PHP,
Part 5: The open blog
An environment for open discussion

Skill Level: Intermediate

Duane O'Brien (d@duaneobrien.com)
PHP developer
Freelance

10 Apr 2007

This "Create an interactive production wiki using PHP" tutorial series creates a wiki
from scratch using PHP, with value-added features useful for tracking production.
Wikis are widely used as tools to help speed development, increase productivity and
educate others. Each part of the series develops integral parts of the wiki until it is
complete and ready for prime time, with features including file uploading, a
calendaring "milestone" system, and an open blog. The wiki will also contain projects
whose permissions are customizable to certain users and will contain projects whose
permissions are customizable to certain users. In Part 4 we added some task
management. Now you will create an open blog, which will allow users a place to
hold public discussions.

Section 1. Before you start

This "Create an interactive production wiki using PHP" series is designed for PHP
application developers who want to to take a run at making their own custom wikis.
You'll define everything about the application, from the database all the way up to
the wiki markup you want to use. In the final product, you will be able to configure
much of the application at a granular level, from who can edit pages to how open the
blog really is.

At the end of this tutorial, Part 5 of a five-part series, you will have an open blog
working in your wiki. You should not continue until you have completed the first four
tutorials.

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 1 of 25

mailto:d@duaneobrien.com
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/legal/copytrade.shtml

About this series
Part 1 of this series draws the big picture. You determine how you want the
application to look, flow, work, and behave. You'll design the database and
rough-out some scaffolding. Part 2 focuses on the primary wiki development,
including defining the markup, tracking changes, and file uploads. In Part 3, you
define some users and groups, as well as a way to control access to certain aspects
of individual wiki pages and uploaded files. Part 4 deals with a Calendaring and
Milestones feature to track tasks, to-dos, and progress against set goals. Here in
Part 5, you put together an open blog to allow discussion of production topics and
concerns.

About this tutorial
This tutorial deals with creating an open blog for Criki. You have built the basic wiki
features, and you have added task management for your users. An open blog is
another valuable feature that will allow your users a place to hold public discussions.
Topics include:

• What is meant by "open blog"
• Blog workflow design
• Building out the blog database table
• Basic blog features

Prerequisites
It is assumed you have completed Part 1, Part 2, Part 3, and Part 4 of this "Create
an interactive production wiki using PHP" series. And it is assumed that you have
some experience working with the PHP programming language and MySQL. We
won't be doing a lot of deep database tuning, so as long as you know the basic ins
and outs, you should be fine.

System requirements
Before you begin, you need to have an environment in which you can work. The
general requirements are reasonably minimal:

• An HTTP server that supports sessions (and preferably mod_rewrite).
This tutorial was written using Apache V1.3 with mod_rewrite enabled.

• PHP V4.3.2 or later (including PHP V5). This was written using PHP
V5.0.4

developerWorks® ibm.com/developerWorks

The open blog
Page 2 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/legal/copytrade.shtml

• Any version of MySQL from the last few years will do. This was written
using MySQL V4.1.15.

You'll also need a database and database user ready for your application to use.
The tutorial will provide syntax for creating any necessary tables in MySQL.

Additionally, to save time, we will be developing Criki using a PHP framework called
CakePHP. Download CakePHP by visiting CakeForge.org and downloading the
latest stable version. This tutorial was written using V1.1.13. For information about
installing and configuring CakePHP, check out the tutorial series titled "Cook up Web
sites fast with CakePHP" (see Resources).

Section 2. Criki so far

At the end of Part 4, you were given several items to complete. There was at least
one glaring security hole in the task management edit workflow. You were tasked
with finding a way to use wiki markup when writing task descriptions, without
reproducing the wiki markup rendering code. And the tasks views contained user
names as text, which could have been made into links to the users' profiles. How did
you do?

Securing the task management edit workflow
There are two specific problems in the task management edit workflow to address.
Alert code monkeys will have noticed them already. The first should be fairly
obvious. Consider this line from the tasks edit view in Listing 1.

Listing 1. Tasks edit view excerpt

<?php
if ($task['Task']['user_id'] == $user['id']) :
echo $html->link('Edit','/tasks/edit/' . $task['Task']['id']);

endif;
?>

This displays the edit link for only the user to whom the task has been assigned.

Now consider the task edit action in Listing 2.

Listing 2. Task edit action

function edit($id = null) {
if(empty($this->data)) {
if(!$id) {
$this->Session->setFlash('Invalid id for Task');
$this->redirect('/task/index');

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 3 of 25

http://cakeforge.org/projects/cakephp
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://www.ibm.com/legal/copytrade.shtml

}
$task = $this->Task->read(null, $id);
$this->data = $task;
$this->set('task', $task);
$this->set('percents', array ('0' => '0%', '25' => '25%', '50' => '50%', '75' =>

'75%', '100' =>
'100%'));

$this->set('month', $this->buildCalendar($task['Task']['user_id'],
$task['Task']['duedate']));
} else {
$this->cleanUpFields();
if($this->Task->save($this->data)) {
$this->Session->setFlash('The Task has been saved');
$this->redirect('/tasks/view/' . $this->data['Task']['id']);

} else {
$this->Session->setFlash('Please correct errors below.');

}
}

}

At no time in this action do you verify that the user who has submitted the data for
edit is the user to whom the task has been assigned. It is not enough to simply keep
from showing the link to the user. Once the HTML has been sent to the user, it can
easily be modified.

While this seems an unlikely case, it is easily reproduced. In your favorite tabbed
browser, Firefox, for example, open two tabs to Criki. In one tab, log in as User A
and navigate to the edit task page for any task. Then in the second window, log out
of Criki and log in again as User B. Return to the tab with the edit task page loaded,
and you will find you can successfully edit the task, even though the task belongs to
User A, and you are now logged in as User B.

Always verify your data. Always. Twice if you're not certain.

The second half of the Edit action might look more like Listing 3.

Listing 3. Verify that the user is assigned to the task

$user = $this->Session->read('User');
$task = $this->Task->read(null, $this->data['Task']['id']);
if ($user['id'] == $task['Task']['user_id']) {
$this->cleanUpFields();
if($this->Task->save($this->data)) {
$this->Session->setFlash('The Task has been saved');
$this->redirect('/tasks/view/' . $this->data['Task']['id']);

} else {
$this->Session->setFlash('Please correct errors below.');

}
} else {
$this->Session->setFlash('You cannot modify this task.');
$this->redirect('/tasks/view/' . $this->data['Task']['id']);

}

The second security problem with the task edit action may have been a little harder
to spot. You will recall that the primary directive for editing a task was that the user
should not be able to edit anything but the percentage complete. Only the
percentage field was presented to the user via the task edit view.

But, just as you verified the user, you should verify that the fields the user have

developerWorks® ibm.com/developerWorks

The open blog
Page 4 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

submitted match the fields you are expecting. Or, if you prefer, make sure you only
use the data from the fields that you desire (a whitelisting approach). Achieving this
is fairly simple. You can build a new array of data to be saved, including only those
elements from the submitted data you desire. Just remember to format the array
correctly.

Listing 4. Whitelisting form fields

$user = $this->Session->read('User');
$task = $this->Task->read(null, $this->data['Task']['id']);
if ($user['id'] == $task['Task']['user_id']) {
$this->cleanUpFields();
$savedata = array (
'Task' => array (
'id' => $this->data['Task']['id'],
'percent' => $this->data['Task']['percent'],

)
);
if($this->Task->save($savedata)) {
$this->Session->setFlash('The Task has been saved');
$this->redirect('/tasks/view/' . $this->data['Task']['id']);

} else {
$this->Session->setFlash('Please correct errors below.');

}
} else {
$this->Session->setFlash('You cannot modify this task.');
$this->redirect('/tasks/view/' . $this->data['Task']['id']);

}

You can test that this works as you expect it to by adding a field to the task edit view
that will allow the user to modify the title of a task.

<?php echo $html->input('Task/title', array('size' => '60'));?>

Save the view and edit the action, making sure to change the percentage and the
title. You should find that only the percentage is modified. This approach of
whitelisting form fields is a powerful tool that can help protect you from maliciously
inserted form data. Always verify your data. Always. Twice if you're not certain.

Take some time now to look back over the code for Criki. See if you can find other
places where you should be verifying your data.

Future versions of CakePHP will automatically apply this form of whitelisting for form
fields generated using the form helper.

Reusing the wiki markup rendering code
Using the wiki markup rendering code you already wrote to allow wiki markup in task
descriptions could be done a couple different ways.

One way would be to create an action in the entries controller called
renderMarkup. This would work much like the buildCalendar action you wrote
for the tasks controller. You could then call it via requestAction, passing in the
unformatted task description and getting back the task description after the wiki

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 5 of 25

http://www.ibm.com/legal/copytrade.shtml

markup has been rendered.

Another way -- and, perhaps, a better way -- would be to create a custom helper,
specifically for rendering wiki markup into HTML, and using this helper in your views.
This would be a more versatile and somewhat more elegant approach. To do this,
you would create the file app/views/helpers/wiki.php.

Listing 5. Creating the WikiHelper

<?php
class WikiHelper extends Helper {
function render($content) {
...
...
...

}
}

?>

The Render function is far too long to reproduce here (you need to import it to the
EntryRevisions controller), but it is functionally the same, save that $content is
passed into the function, rather than being pulled from $this>data, and a
$return variable necessary (as the rendered markup is not being set in
$this>data.)

Once you have created the helper, you need to add the helper to any controller you
want to have access to it.

var $helpers = array('Html', 'Form', 'Wiki');

Now that the wiki markup rendering code is in a helper, you can significantly reduce
the size of the entries view action.

Listing 6. New entries view action

function view($title = null) {
if(!$title) {
$this->Session->setFlash('Invalid Entry.');
$this->redirect('/entries/index');

}
$entry = $this->Entry->findByTitle($title);
if ($entry) {
$user = $this->Session->read('User');
$user = $this->Entry->User->read(null, $user['id']);
$this->Session->write('User', $user['User']);
if ($user['User']['access'] < $entry['Entry']['access']) {
$this->Session->setFlash('Access Denied.');
$this->redirect('/entries/index');

}
$this->set('entry', $entry);

} else {
$this->redirect('/entries/edit/' . preg_replace("/[^a-z]/", , strtolower($title)));

}
}

Now you should be able to use the helper to output data in a view. For example, if

developerWorks® ibm.com/developerWorks

The open blog
Page 6 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

you added wiki to the list of helpers for the Entries controller, and if you changed the
entries view action to the one above, then in the entries view view, instead of using
echo to output the content, you would use echo to output the result of passing the
content through the wiki helper.

<?php echo $wiki->render($entry['Entry']['content'])?>

Save the view and view any entry. You should see no actual change; the entry
should be rendered normally, just as before. However, now you have a helper you
can use to render wiki markup across the application.

This means you can replace the EntryRevisions view action with one more like the
new one you wrote for the Entries controller. All you need to do is include the wiki
helper and pass the content through $wiki render in the view. The same goes for
using wiki markup in the Tasks controller: Include the wiki helper and pass the task
description through $wiki render. You can even apply the same principle for the
open blog you will write in this tutorial.

Adding user profile links
Changing the various task views to output links to user profiles instead of just user
names should have been the easiest gap to fill. The code for it has appeared many
times in the entry and upload views. It should look something like this:

echo $html->link($task['User']['username'], '/users/view/'.$task['Task']['user_id']);

The source code for this tutorial has updated task views that contain this code. You
should either update your code with the code from the archive or, at the very least,
compare the two sets of code to make sure you understand the changes before
proceeding with the next task.

Section 3. Creating the open blog

In this section, we will create the open blog, thus allowing any user to post to the
Criki blog.

What is an open blog?
To start, don't get too wrapped up in the terminology. It'll help to understand an open
blog by specifying what is meant by blog in the first place.

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 7 of 25

http://www.ibm.com/legal/copytrade.shtml

A blog is basically a Web site where the content is generated by a user. Generally,
the content is displayed with the newest information at the top. Frequently (but not
always), readers are able to leave comments about specific blog postings, allowing
for discussion.

In an open blog, the content is not generated by a user. It's generated by any user.
Conceptually, it's much like a cross between a forum -- where many users partake in
threaded discussions -- and a blog. By allowing any user to post to the blog, you are
further enhancing the open nature of Criki. It should be remembered that this can
sometimes be a double-edge sword. Comment spam in blogs is an everyday
problem. That problem could become significantly worse when you open up a blog
to allow any user to post. If the open blog is external-facing, it will require more
regular moderation and babysitting. If the open blog is internal-facing (such as an
intranet), this is less of an issue.

Keeping these potential pitfalls in mind, you can jump into the design work for the
open blog.

Doing the design
As you did with the other parts of Criki, you should spend some time thinking
through how the blog will work before you start writing code or building tables.

For this open blog, some general principles will be adhered to:

• Only registered users will be able to post, though anonymous users will
be able to comment.

• Comments and posts will reside in distinct tables.
• Editors can delete posts and comments from contributors. Administrators
can delete posts and comments from anyone.

• The information that will be maintained for the blog will be minimal.
• The blog will use the same wiki markup that has already been written.

With these principles in mind, you should have some ideas for how the code will look
and behave in the controllers. But don't jump ahead to that yet. You should get the
database tables sorted out first.

Building the blog database tables
The open blog will consist of two tables. One table, called posts, will hold blog posts.
The other table, called comments, will hold blog comments. One could argue
successfully that posts and comments could reside in the same table, as a comment
could be described as a post with no parent. But there are merits to keeping posts
and comments segregated. For example, you can more easily change post or
comment behavior without one affecting the other, you have more granular control

developerWorks® ibm.com/developerWorks

The open blog
Page 8 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

over the way the controllers will behave, and you can more easily apply different
sets of security rules.

One of the directives is to keep the information being maintained minimal. Minimal
does not imply Spartan. Finding the mix between "The least amount of useful
information" and "The most information that can be recorded" is important. The least
amount of useful information in a post would be content. Without content, there is no
post. But you could go in ever-widening circles trying to catch all the information
related to a post.

A minimal posts table would need to record the following:

• Id
• Title
• Content
• Author
• Access
• Date
• Ip

The SQL to create the table might look like this:

Listing 7. Posts table SQL

CREATE TABLE 'posts' (
'id' int(10) NOT NULL auto_increment,
'title' varchar(255) NOT NULL default ,
'content' text NOT NULL,
'user_id' int(10) NOT NULL default '0',
'access' tinyint(4) NOT NULL default '0',
'date' datetime NOT NULL default '0000-00-00 00:00:00',
'ip' varchar(15) NOT NULL default ,
PRIMARY KEY ('id')

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

For the comments table, you need a different set of information:

• Id
• Post Id
• Content
• Author
• Access
• Date
• Ip

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 9 of 25

http://www.ibm.com/legal/copytrade.shtml

The SQL to create this table might look like this:

Listing 8. Comments table SQL

CREATE TABLE 'comments' (
'id' int(10) NOT NULL auto_increment,
'post_id' int(10) NOT NULL default '0',
'content' text NOT NULL,
'user_id' int(10) NOT NULL default '0',
'access' tinyint(4) NOT NULL default '0',
'date' datetime NOT NULL default '0000-00-00 00:00:00',
'ip' varchar(15) NOT NULL default ,
PRIMARY KEY ('id')

) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ;

In both cases, you will notice the IP address is being recorded. For posts, this can
be helpful for tracking problem users, but it's much more important for comments,
where you will be allowing anonymous comments. What you may notice is the
absence of tracking things like last modified, last read, hits, or comment count. Keep
the application simple where you can. The extra data generally won't be necessary.

Go ahead and create the tables, if you haven't already. Next, you write the models,
bake the controllers and views, and dive in to building out your open blog.

Section 4. Basic blog functionality

By now, you've written a few models, and you should be pretty familiar with Bake. If
you feel ambitious, you can write the controllers out by hand and skip the Bake
section below. But you should at least read through the models information provided
because the model associations for your blog tables are important.

Writing the models
You will need to define two models -- one for posts and one for comments. Setting
up the associations for these models will be important and slightly differently model
associations from what you've done before.

The post model

The post model will have two associations. It will have a belongsTo association to
user, just like the entry and task models. But the post model will also have a
hasMany association to comment. The code for the model might look like this:

Listing 9. Post model

<?php
class Post extends AppModel {

developerWorks® ibm.com/developerWorks

The open blog
Page 10 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

var $name = 'Post';

var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'

)
);

var $hasMany = array('Comment' => array (
'className' => 'Comment',
'conditions' => ,
'order' => 'Comment.date DESC',
'foreignKey' => 'post_id'

)
);

}
?>

By setting up this hasMany association, you are able to get the post and comments
all at once. The order key defined above will sort the comments for you.

That takes care of the post model. The comment model looks a little different from
what you might expect.

The comment model

It seems like the comment model would have two associations. A comment belongs
to a user in the sense that the user was the author, and a comment belongs to a
post, as the comment is tied to the post by ID. However, specifying the post
association is not necessary in this context, as comments will not be retrieved
outside the context of their parent posts, with the exception of editing comments,
which does not require the post information. By not specifying the post association,
you will save some query overhead.

Listing 10. Comment model

<?php
class Comment extends AppModel {

var $name = 'Comment';

var $belongsTo = array('User' => array (
'className' => 'User',
'conditions' => ,
'order' => ,
'foreignKey' => 'user_id'
)

);

}
?>

Now that you've got your models sorted out, you can start baking.

Baking the basics

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 11 of 25

http://www.ibm.com/legal/copytrade.shtml

Since you used Bake in Parts 1 and 4 of this series, you don't need to be reminded
that you need to make sure the PHP executable is in your PATH and that you have
changed into the directory where you installed Cake.

So, run bake, as shown below.

php cake\scripts\bake.php

Walk through the menus baking the controllers for post and comment, then baking
the views for post and comment. If you need a refresher on the Bake menus, consult
Part 1 of this series (see Resources). Once everything is baked, you can jump right
in to customizing the code.

Customizing the code
There are several things you need to change about the controller and view code that
you just baked. A list of the principal changes will help you to understand the scope:

• Comment and post add actions need to set the value of date.
• Comment and post add and edit actions need to restrict the directly
editable fields.

• Comment and post add and edit views need to display only editable
fields.

• Comment view action and view can be removed.
• Comment add, edit and delete actions should redirect the user to the
parent post.

• Post view action needs to be modified to pull comments from the model.
• Post view view need to be modified to display comments well.
• Access checks should be made for post and comment edit and delete
actions.

The code for each of these changes will be highlighted. Full details can be found in
the source code.

Setting date values

Setting the value of the date fields in the posts or comments controller isn't difficult.
Before the data is saved, you would need to set the date manually, for example, in
the comments controller.

$this->data['Comment']['date'] = date('Y-m-d H:i:s');
if($this->Comment->save($this->data)) {
...

developerWorks® ibm.com/developerWorks

The open blog
Page 12 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

While you're already working with the fields, you may as well restrict the once that
can be edited.

Restricting editable fields

Restricting the fields which the user can edit means more than just removing the
fields from the related views -- though that's an excellent place to start. Actually,
when you look at a post, the only fields a user should be able to edit are title and
content. For a comment, a user should only be able to edit the content field.
Everything else will be set by the controllers.

Go through the add and edit views for posts and comments, and remove all but the
fields mentioned above. You can also take the opportunity to remove the links to
controllers or actions you don't need, such as the add user link in the comments edit
view.

But, as pointed out in the Criki so far section of this tutorial, removing the fields from
the views is not enough to ensure that the user cannot modify the data. You should
build a new array to hold the data to be saved and explicitly set the values for your
fields. Building such an array for the posts controller will look like Listing 11.

Listing 11. Building the data array for posts

$savedata = array(
'Post' => array (
'title' => $this->data['Post']['title'],
'content' => $this->data['Post']['content'],
'user_id' => $user['id'],
'access' => $user['access'],
'date' => date('Y-m-d H:i:s'),
'ip' => $_SERVER['REMOTE_ADDR'],

)
);

Then, rather than saving $this>data, you would instead save $savedata. By
following this method, you reduce the potential for a malicious user to force field
editing you had not permitted.

Redirecting to the parent post
Within the comments controller, anytime a comment is added, edited or deleted,
redirection should send the user back to the view action for the parent post. (You
can delete the comments index and view actions, as the will not be used.)

The actual process of redirecting the user to the parent post is simple, once you
have the data you need (namely, the post_id for the comment). You already have
to modify the comment add action, as you will be passing it the ID of the parent post,
which means for Add, you will have the data you need. For the edit and delete
actions, while you could pass the post_id in as a hidden form variable; it will be
more secure to query for the comment by ID and read the post_id from the
database. The user cannot edit post_id, so it will never change. For example, the

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 13 of 25

http://www.ibm.com/legal/copytrade.shtml

code to do this in the comment delete action looks like Listing 12.

Listing 12. Comment delete action code snippet

...
$comment = $this->Comment->findById($this->data['Comment']['id']);
if ($comment) {
if($this->Comment->del($id)) {
$this->Session->setFlash('The Comment deleted: id '.$id.);
$this->redirect('/posts/view/' . $comment['Comment']['post_id']);

}
} else {
$this->Session->setFlash('Invalid id for Comment');
$this->redirect('/posts/index');

}
...

Take a look at all the redirect statements in the comments controller found in the
source code for more changes of this nature.

Retrieving comments from within the posts controller
For the posts view action, retrieving the post and the related comments will be two
separate model requests. The first will retrieve the post and the user information.

$post = $this->Post->read(null, $id);

This request, if the model associations are set up properly, will actually get the post
data, the user data for the post author, and the comments for the post. But the
comments will not include the user data for each comment. Rather than open up a
recursive can of worms, it's much simpler to just make an additional request.

The second model request will retrieve the comments and comment user data for
the post.

Listing 13. Post view action code to retrieve comments data

$post['Comment'] = $this->Post->Comment->findAll(
'Comment.post_id = ' . $id . ' AND User.id = Comment.user_id',
array('Comment.*', 'User.*'),
'Comment.date DESC'

);

This findAll request is a little more complicated than findByFIELDNAME, but you
are also exercising a bit more control over things like sort order. Sorting the
comments in descending order by date will mean less scrolling for the end user. If
you prefer to have the comments displayed in ascending order by date, you could
use findByPostIt and save users a little typing.

If you look at the posts index action, you will see it also is passing additional data to
findAll to sort the posts in descending order by date.

developerWorks® ibm.com/developerWorks

The open blog
Page 14 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Displaying comments
Last, but not least, you will need to modify theposts view view. Not only do you need
to account for the new data structure but the comments should be reformatted into
something more readable. Fully reproducing the code here is impractical, but look at
Listing 14 to see how the comment iteration code looks.

Listing 14. Posts view view amendment

<?php if(!empty($post['Comment'])):?>
<div class="related">
<h2>Comments</h2>
<?php foreach($post['Comment'] as $comment):?>
<hr />
<h4>
By <?php echo $html->link($comment['User']['username'], '/users/view/'
.$comment['User']['id'])?>
on <?php echo $comment['Comment']['date']?>
[
<? php echo $html->link('Edit Comment', '/comments/edit/' . $comment['Comment']['id']) ?>
|
<?php echo $html->link('Delete Comment', '/comments/delete/' . $comment['Comment']['id'],
null, 'Are you sure you want to delete this comment?')
?>
]
</h4>

<p>
<?php echo $wiki->render($comment['Comment']['content']) ?>
</p>
<?php endforeach; ?>
<hr />
</div>
<?php endif; ?>

Check the posts index view in the source code for more.

Access checks
As you have done with the tasks and entries parts of Criki, you will need to
implement some access control within blog. Specifically, the following principles will
apply:

• A user must be logged in to post.
• A user need not be logged in to comment.
• A user may always edit or delete his own posts or comments.
• Any user with an access level the access level of the post or comment
may perform delete actions.

An example will be provided below and in the code of applying these principles to
the post edit action. From there, you should be able to apply access checks to the
comment edit action, as well as the post and comment delete actions.

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 15 of 25

http://www.ibm.com/legal/copytrade.shtml

The process is should be a familiar one. You have already amended the edit views
to only show the fields that can be edited. You will need to amend the posts edit
action to perform the access check. You will need to amend the posts index and
view actions to set variables used by the views to show/hide links. You will need to
amend the posts index and view views to take advantage of these variables.

Amending the posts edit action
You will recall that the user data is already being pulled from session during the
posts edit action.

Listing 15. Posts edit action revisited

$user = $this->Session->read('User');
$savedata = array(
'Post' => array (
'id' => $this->data['Post']['id'],
'title' => $this->data['Post']['title'],
'content' => $this->data['Post']['content'],
'user_id' => $user['id'],
'access' => $user['access'],
'ip' => $_SERVER['REMOTE_ADDR'],

)
);

Performing the access check for the edit action will mean pulling the post information
from the database and checking for access. In this case, the user may only edit the
post if the user was the author. If you were checking a delete action, you would also
pull the user information from the database and check to make sure the user access
was greater than the post access.

Listing 16. Post edit action revised

$post = $this->Post->findById($this->data['Post']['id']);
if ($post['Post']['user_id'] == $user['id']) {
$savedata = array(
'Post' => array (
'id' => $this->data['Post']['id'],
'title' => $this->data['Post']['title'],
'content' => $this->data['Post']['content'],
'user_id' => $user['id'],
'access' => $user['access'],
'ip' => $_SERVER['REMOTE_ADDR'],

)
);
if($this->Post->save($savedata)) {
$this->Session->setFlash('The Post has been saved');
$this->redirect('/posts/index');

} else {
$this->Session->setFlash('Please correct errors below.');
$this->set('users', $this->Post->User->generateList());

}
} else {
$this->Session->setFlash('You cannot edit this post.');
$this->redirect('/posts/index');

}

This will protect the post from being edited by anyone but the author. Now you

developerWorks® ibm.com/developerWorks

The open blog
Page 16 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

should make sure you don't show edit links to anyone but the author.

Amending the posts index and view actions
To allow the index and view actions to make decisions about showing or not
showing the edit post link, you need to tell the posts controller to set a variable that
the index and view views can use. The easiest way to do this is to retrieve the user
data and set it as a variable. To do this in the index action, see Listing 17.

Listing 17. Index action setting user data

function index() {
$this->Post->recursive = 0;
$this->set('posts', $this->Post->findAll(
'Post.user_id = User.id AND Post.id',
array('Post.*', 'User.*'),
'Post.date DESC'

));
$this->set('user', $this->Session->read('User'));

}

The posts index view can access the variable $user and make decisions based on
the user data about showing or hiding the edit post links.

Amending the posts index and view views
You've got the user data into your view. Using it to show or hide the edit post link is
as easy as, well, Cake. See the posts index view below.

Listing 18. Conditionally showing the edit post link

<?php
if ($user['id'] == $post['User']['id']) {
echo $html->link('Edit','/posts/edit/' . $post['Post']['id']);

}
?>

The same code for the posts view view will look only marginally different from this,
as indicated by the code in the source code.

That's really all there is to it. Take it for a spin. Log in as different users and create
some posts, testing out the access controls you've put in place to protect the posts
from being edited. After you've done that, apply the same principles and add access
controls to the posts and comments controller for delete actions (users with higher
clearance or original author), comment edit actions (original author), post add
(registered and logged in user), etc. Keep in mind the lessons you've learned, and
you should be in good shape.

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 17 of 25

http://www.ibm.com/legal/copytrade.shtml

Section 5. Configuration options

In Part 1, you created a table called settings, which was designed as a sort of
Entity-Attribute-Value table to hold specific configuration settings, allowing the
administrator granular control over specifics like "Who can create a new Entry" and
"Valid file upload types." Now that you have your primary Criki features in place, you
can turn your attention to putting some of these settings into place.

Gathering all of these configuration settings into a list will give you an idea for what
is in play:

• Editor promotion/demotion rights
• Registration rights
• Invitation rights
• Page creation permissions (who can create a page?)
• Page edit permissions
• Valid file upload types

You will walk through implementing one of the configuration options: page creation
permissions. From there, you should be able to set up any individual settings and
add new ones.

Tweaking the settings controller
Depending on the version of Cake you used to bake your settings controller, you
may need to go through the controller and verify that all of the redirect statements
point to the settings controller (plural), not the setting controller. The redirect
statements should look like the code below.

$this->redirect('/settings/index');

You will want to come back to this controller later to add access controls, so only
administrators can change or add settings.

Adding a setting
Adding a new setting is fairly simple. You can later decide to change the views or
add data validation to facilitate or streamline the process, but the views as they were
baked are sufficient.

The add setting view contains four fields: Name, Value, Default, and Description.

developerWorks® ibm.com/developerWorks

The open blog
Page 18 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Name field will be used to reference the setting in the code. It should be a single
word with no spaces, such as entryCreatePermission.

The Value field holds the value for the setting. You determine what is and isn't a
valid value, but you will probably find it helpful in the long term to make the values
easy to comprehend. In this case, the entryCreatePermission setting will be
used to identify the minimum user type that can create an entry. Valid values for this
field might be anyone -- contributors, editors, administrators.

The Default field is used to maintain the original value for the setting, so an
administrator has the capacity to restore the defaults.

The Description field should be used to sum up the purpose of the field and list the
valid values for the setting.

Adding the entryCreatePermission setting might look like this:

Figure 1. Adding the entryCreatePermission setting

Retrieving and caching the settings
Retrieving the settings is easy. You can simply add the setting model to the $uses

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 19 of 25

http://www.ibm.com/legal/copytrade.shtml

class variable much like you did with the EntryRevisions and UploadRevisions
controllers. Add the setting model to the entries controller.

Listing 19. Adding the setting model to the entries controller

$settings = cache(FILENAME);
if (!$settings) {
$settings = $this->Entry->Setting->findAll();
cache(FILENAME, $settings);

}

It wouldn't be efficient to keep querying the database to get the settings every time
you want to access them. Instead, what you'll do is add a method to the setting
model to cache the settings data.

Adding the cacheSettings method to the model
The CakePHP cache function serves two purposes. If you pass in only a filename,
such as cache('settings'), Cake will check the Cake tmp directory for the file,
and, if found, the cache function will use file_get_contents to return the
contents of the file.

If you pass a filename and a second variable that holds data, such as
cache('settings', $anArray), Cake will use file_put_contents to write
the data to the filename specified within Cake's tmp directory. The default life of the
cache would be one day. You can pass in a third parameter, consisting of any date
representation that can be interpreted by strtotime.

The method you will add to the setting model will be called cacheSettings. Like
the cache function, this method will return the settings from the cache, or if a $data
parameter is set, this method will write the data to the cache. You can only pass a
string to put_file_contents, so you need to flatten or serialize the array first.

When you retrieve the data from the cache, it may be helpful to reformat the settings
array into something more shallow, as well.

The cacheSettings method might look something like Listing 20.

Listing 20. cacheSettings method in the settings model

function cacheSettings($data = null) {
if ($data != null) {
cache('settings', serialize($data));

} else {
$data = cache('settings');
if ($data == null) {
$data = $this->findAll();
cache('settings', serialize($data));

} else {
$data = unserialize($data);

}
}
foreach ($data as $key => $value) {
$return[$value['Setting']['name']] = $value['Setting']['value'];

developerWorks® ibm.com/developerWorks

The open blog
Page 20 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

}
return $return;

}

Using this method, you can save unnecessary database calls to get the value of an
individual setting. Now that you can get the settings, you can put them to work.

Using the page creation setting
Retrieving and using this setting involves calling the cacheSettings method and
applying some logic to the settings. For example, in the entries controller, if you
wanted to verify the entryCreatePermission value allowed for anyone to create
a new entry, you might do something like Listing 21.

Listing 21. Checking against the entryCreatePermission setting

$user_id = 0;
if ($this->Session->check('User')) {
$user = $this->Session->read('User');
$user_id = $user['id'];

}
$settings = $this->Setting->cacheSettings();
if ($settings['entryCreatePermission'] != 'anyone' && $user_id == 0) {
$this->Session->setFlash('You must be a Contributor to create a new entry.');
$this->redirect('/entries/index');
exit();

}

This is a fairly basic overview of how to get and use your settings. How you decide
to implement them is entirely up to you. You have a whole list of settings you can
use for practice.

Filling in the gaps
You've gotten a lot done. But there's still tons of room for improvement within the
Criki application. For example:

1. The access controls for the open blog in the code archive are incomplete.
You still need to add access controls that protect the delete actions on the
posts and comments controllers, and an access control is needed to
ensure that only logged-in users can post. Build out these access
controls.

2. There is a lot of settings and configuration work that you can put to use.
Try implementing a few and see how you do.

3. The settings controller is entirely unprotected. You should really do
something about that.

4. New settings won't make it into the cache until the existing cache expires.

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 21 of 25

http://www.ibm.com/legal/copytrade.shtml

You should have the settings controller recache the settings whenever
one is added, edited, or deleted.

Happy coding!

Section 6. Summary

You did it! You've completed this "Create an interactive production wiki using PHP"
tutorial series and built your own wiki engine from scratch. If it feels like you've just
scratched the surface, that's because you have loads of room to add new things to
Criki.

Or, you may feel like tearing it all back down and building a bigger and better wiki
engine than Criki could ever be. Go for it! Tear it all down and build it back up again
your own way. The experience will teach you much.

But maybe that's not the case. Maybe you'd rather build on the work you've already
done. That's great! Make Criki better. Build out the features of your dreams.

developerWorks® ibm.com/developerWorks

The open blog
Page 22 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=production+Wiki+PHP
http://www.ibm.com/legal/copytrade.shtml

Downloads
Description Name Size Download method
Part 5 source code os-php-wiki5.source.zip32KB HTTP

Information about download methods

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 23 of 25

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-php-wiki5.source.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources
Learn
• Read Part 1, Part 2, Part 3, and Part 4 of this "Create an interactive production
wiki using PHP" series.

• Check out the Wikipedia entry for wiki.
• Check out WikiWikiWeb for a good discussion about wikis.
• Visit the official home of CakePHP.
• Check out the "Cook up Web sites fast with CakePHP" tutorial series for a good
place to get started.

• The CakePHP API has been thoroughly documented. This is the place to get
the most up-to-date documentation for CakePHP.

• There's a ton of information available at The Bakery, the CakePHP user
community.

• Find out more about how PHP handles sessions.
• Check out the official PHP documentation.
• Read the five-part "Mastering Ajax" series on developerWorks for a
comprehensive overview of Ajax.

• Check out the "Considering Ajax" series to learn what developers need to know
before using Ajax techniques when creating a Web site.

• CakePHP Data Validation uses PHP Perl-compatible regular expressions.
• See a tutorial on "How to use regular expressions in PHP."
• Want to learn more about design patterns? Check out Design Patterns:

Elements of Reusable Object-Oriented Software , also known as the "Gang Of
Four" book.

• Check out the Model-View-Controller on Wikipedia.
• Here is more useful background on the Model-View-Controller.
• Here's a whole list of different types of software design patterns.
• Read about Design patterns.
• PHP.net is the resource for PHP developers.
• Check out the "Recommended PHP reading list."
• Browse all the PHP content on developerWorks.
• Expand your PHP skills by checking out IBM developerWorks' PHP project
resources.

• To listen to interesting interviews and discussions for software developers,

developerWorks® ibm.com/developerWorks

The open blog
Page 24 of 25 © Copyright IBM Corporation 1994, 2007. All rights reserved.

http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki1.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki2.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki3.html
http://www.ibm.com/developerworks/opensource/edu/os-dw-os-php-wiki4.html
http://en.wikipedia.org/wiki/Wiki
http://c2.com/cgi/wiki
http://www.cakephp.org/
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=cook+web+sites+CakePHP
http://api.cakephp.org
http://bakery.cakephp.org
http://us3.php.net/manual/en/ref.session.php
http://us3.php.net/manual/en/function.session-set-save-handler.php
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=mastering+ajax
http://www.ibm.com/developerworks/views/web/libraryview.jsp?search_by=considering+ajax
http://us2.php.net/manual/en/ref.pcre.php
http://www.ibm.com/developerworks/edu/os-dw-os-phpexpr-i.html
http://hillside.net/patterns/DPBook/GOF.html
http://hillside.net/patterns/DPBook/GOF.html
http://en.wikipedia.org/wiki/Model-view-controller
http://www.phpwact.org/pattern/model_view_controller
http://en.wikipedia.org/wiki/Category:Software_design_patterns
http://en.wikipedia.org/wiki/Design_Patterns
http://www.php.net
http://www.ibm.com/developerworks/library/os-php-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=php
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/developerworks/opensource/top-projects/php.html
http://www.ibm.com/legal/copytrade.shtml

check out developerWorks podcasts.
• Stay current with developerWorks' Technical events and webcasts.
• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies
• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss
• Participate in developerWorks blogs and get involved in the developerWorks
community.

• Participate in the developerWorks PHP Developer Forum.

About the author
Duane O'Brien
Duane O'Brien has been a technological Swiss Army knife since the Oregon Trail
was text only. His favorite color is sushi. He has never been to the moon.

ibm.com/developerWorks developerWorks®

The open blog
© Copyright IBM Corporation 1994, 2007. All rights reserved. Page 25 of 25

http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/offers/techbriefings/?S_TACT=105AGX03&S_CMP=art
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/developerworks/downloads/?S_TACT=105AGX44
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/developerworks/forums/dw_forum.jsp?forum=992&cat=51
http://www.ibm.com/legal/copytrade.shtml

