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Kirchhoff’s current law (KCL) states that the algebraic sum of currents entering
a node (or a closed boundary) is zero.

Mathematically, KCL implies that

N∑

n=1

in = 0 (2.13)

where N is the number of branches connected to the node and in is the

nth current entering (or leaving) the node. By this law, currents entering

a node may be regarded as positive, while currents leaving the node may

be taken as negative or vice versa.

To prove KCL, assume a set of currents ik(t), k = 1, 2, . . . , flow

into a node. The algebraic sum of currents at the node is

iT (t) = i1(t) + i2(t) + i3(t) + · · · (2.14)

Integrating both sides of Eq. (2.14) gives

qT (t) = q1(t) + q2(t) + q3(t) + · · · (2.15)

where qk(t) =
∫

ik(t) dt and qT (t) =
∫

iT (t) dt . But the law of conser-

vation of electric charge requires that the algebraic sumof electric charges

at the node must not change; that is, the node stores no net charge. Thus

qT (t) = 0 → iT (t) = 0, confirming the validity of KCL.
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Figure 2.16 Currents at
a node illustrating KCL. Consider the node in Fig. 2.16. Applying KCL gives

i1 + (−i2) + i3 + i4 + (−i5) = 0 (2.16)

since currents i1, i3, and i4 are entering the node, while currents i2 and

i5 are leaving it. By rearranging the terms, we get

i1 + i3 + i4 = i2 + i5 (2.17)

Equation (2.17) is an alternative form of KCL:

The sum of the currents entering a node is equal to the sum
of the currents leaving the node.

Note that KCL also applies to a closed boundary. This may be

regarded as a generalized case, because a node may be regarded as a

closed surface shrunk to a point. In two dimensions, a closed boundary

is the same as a closed path. As typically illustrated in the circuit of

Fig. 2.17, the total current entering the closed surface is equal to the total

current leaving the surface.

Closed boundary

Figure 2.17 Applying KCL to a closed
boundary.

Two sources (or circuits in general) are said to be
equivalent if they have the same i-v relationship
at a pair of terminals.

A simple application of KCL is combining current sources in par-

allel. The combined current is the algebraic sum of the current supplied

by the individual sources. For example, the current sources shown in Fig.

2.18(a) can be combined as in Fig. 2.18(b). The combined or equivalent

current source can be found by applying KCL to node a.

IT + I2 = I1 + I3
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CHAPTER 2 Basic Laws 37

or

IT = I1 − I2 + I3 (2.18)

A circuit cannot contain two different currents, I1 and I2, in series, unless

I1 = I2; otherwise KCL will be violated.

Kirchhoff’s second law is based on the principle of conservation of

energy:
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Figure 2.18 Current sources in parallel:
(a) original circuit, (b) equivalent circuit.

Kirchhoff’s voltage law (KVL) states that the algebraic sum of all voltages
around a closed path (or loop) is zero.

Expressed mathematically, KVL states that

M∑

m=1

vm = 0 (2.19)

whereM is the number of voltages in the loop (or the number of branches

in the loop) and vm is the mth voltage.

KVL can be applied in two ways: by taking either a
clockwise or a counterclockwise trip around the
loop. Either way, the algebraic sum of voltages
around the loop is zero.

To illustrate KVL, consider the circuit in Fig. 2.19. The sign on

each voltage is the polarity of the terminal encountered first as we travel

around the loop. We can start with any branch and go around the loop

either clockwise or counterclockwise. Suppose we start with the voltage

source and go clockwise around the loop as shown; then voltages would

be−v1, +v2, +v3, −v4, and+v5, in that order. For example, as we reach

branch 3, the positive terminal is met first; hencewe have+v3. For branch

4, we reach the negative terminal first; hence, −v4. Thus, KVL yields

−v1 + v2 + v3 − v4 + v5 = 0 (2.20)

Rearranging terms gives

v2 + v3 + v5 = v1 + v4 (2.21)

which may be interpreted as

Sum of voltage drops = Sum of voltage rises (2.22)

This is an alternative form of KVL. Notice that if we had traveled coun-

terclockwise, the result would have been +v1, −v5, +v4, −v3, and −v2,

which is the same as before except that the signs are reversed. Hence,

Eqs. (2.20) and (2.21) remain the same.
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Figure 2.19 A single-loop circuit
illustrating KVL.

When voltage sources are connected in series, KVL can be applied

to obtain the total voltage. The combined voltage is the algebraic sum

of the voltages of the individual sources. For example, for the voltage

sources shown in Fig. 2.20(a), the combined or equivalent voltage source

in Fig. 2.20(b) is obtained by applying KVL.

−Vab + V1 + V2 − V3 = 0
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38 PART 1 DC Circuits

or

Vab = V1 + V2 − V3 (2.23)

To avoid violating KVL, a circuit cannot contain two different voltages

V1 and V2 in parallel unless V1 = V2.

V1

V2

V3

a

b

(a)

VS = V1 + V2 − V3

a

b

(b)

+
−

+
−

+
−

Vab

+

−

Vab

+

−

+
−

Figure 2.20 Voltage sources in series:
(a) original circuit, (b) equivalent circuit.
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For the circuit in Fig. 2.21(a), find voltages v1 and v2.

(a)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

(b)

20 V +
− 3 Ωv2

2 Ω

v1+ −

+

−

i

Figure 2.21 For Example 2.5.

Solution:

To find v1 and v2, we apply Ohm’s law and Kirchhoff’s voltage law.

Assume that current i flows through the loop as shown in Fig. 2.21(b).

From Ohm’s law,

v1 = 2i, v2 = −3i (2.5.1)

Applying KVL around the loop gives

−20+ v1 − v2 = 0 (2.5.2)

Substituting Eq. (2.5.1) into Eq. (2.5.2), we obtain

−20+ 2i + 3i = 0 or 5i = 20 H⇒ i = 4 A

Substituting i in Eq. (2.5.1) finally gives

v1 = 8 V, v2 = −12 V
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