Finding heap-bounds for hardware synthesis

B. Cook A. Gupta S. Madgill A. Rybalchenko J. Simsa S. Singh V. Vafeiadis
MSR MPI-SWS CMU MPI-SWS CMU MSR MSR

Abstract—Dynamically allocated and manipulated data struc- Related work. C-to-gates synthesis is a maturing field with
tures cannot be translated into hardware unless there is anpper notable systems—see [6], [7], [13], [18], [21], [26], [3233].
bound on the amount of memory the program uses during all gyme existing C-to-gates synthesis systems already suppor

executions. This bound can depend on thgeneric parameters
to the program, i.e, program inputs that are instantiated at pointers and pointer aliasing, seeg. [31], but they do not

synthesis time. We propose a constraint based method for the deal with dynamically allocated data structures.
discovery of memory usage bounds, which leads to the first- gSynthesis tools for other general purpose programming
known C-to-gates hardware synthesis supporting programs ith languages also exise(@. tools supporting Scheme [29], or

non-trivial use of dynamically allocated memory,e.g., linked lists .
maintained with mal | oc and f r ee. We illustrate the practicality ~ 1@skell [3]). In a few rare instances.g. [5]) tools have

of our tool on a range of examples. been used not only to generate hardware but also the cgcuit’
correctness proof as well. These tools usually require e u
|. INTRODUCTION to estimate the maximal amount of memory allocated by the

C-to-gates synthesis promises to bring the power of hafogram and take this quantity as an input parameter to the
ware based acceleration to mainstream programmers and¥pthesis routine. Thus, the results of our work can perhaps
radically increase the productivity of digital designetg], be used with these existing tools.

However, today’s C-to-gates synthesis tools do not suppmwt In the domain of pure functional programming languages,
of the most powerful and widely used features of high-levéhe topic of heap-bounds analysis has been extensivelg-inve
programming in C—dynamically allocated data structuregated, seee.g.[19]. For imperative programs, [20] develops
Thus, with today’s tools we usually cannot synthesize gatastype system which tracks memory consumption. The Java
from off-the-shelf C-based software. The support for dyitammemory-bounds tool described in [1] uses a heap abstraction
memory abstraction remains an on-going research problemd applies heuristics based on arithmetic simplification t
because of the need to efficiently and accurately determified a memory bound. In contrast, our method uses a more
a bound on heap consumption. precise numerical abstraction for dealing with heap, as we

This paper advances the state-of-the-art in hardware syeep track of the size of intermediate list segments ideutifi
thesis by providing support for programs that dynamicallgy the shape analysis when dissecting the heap, which was
allocate, deallocate, and manipulate heap-based date- stasucial for dealing with our examples. Furthermore, indtefy
tures. Our technical contribution is a constraint-basethote using heuristics for finding the bound expression, we apply a
for finding a symbolic bound on the maximum heap size abnstraint based boundedness analysis which is complete fo
compile time. This symbolic bound is expressed as a functitinear bound expressions provable using linear invariants

on the generic parametersgo the circuit descriptiod. With The semi-manual technique proposed in [4] uses the
our method for computing symbolic bounds we can then apaikon [11] to collect likely program invariants—inclugjn
tomatically translate C programs with dynamic memory usaggcts about memory consumption—and uses them to derive
into equivalent programs that operate over staticallycalted an initial set of bound candidates.

arrays. That is, when circuit descriptions are instandiate In principle, the existing techniques for proving computa-

their surrounding designs, the symbolic bounds can be usggha| complexitye.g.[14], can be used as a basis to design an

to compute concrete bounds for use during synthesis. 5igqrithm for discovery of memory usage bounds. However,
Our method significantly increases the expressive POWG[ce we are only interested in bounds expressed over generi

available to the users of synthesis systems. For example, Wi rameters, a major challenge is to bias the bound discovery

our new C-to-gates synthesis flow, a designer can think ifthog towards such well-formed bounds. Our constraint
terms of a tree-based data structizeg(as used in a Huffman 55ag procedure solves this challenge.

encoder), yet generate hardware that operates on a flat fixe
sized array. Furthermore, off-the-shelf libraries can nosv
used as subroutines by digital designers. This leads terlrett
use, as well as new avenues of adapting software verificat
techniques for use in hardware systems.

ur approach for finding symbolic bounds uses several

known methods and tools as sub-procedures, such as shape

%rp]alysis €.9.[10], [23], [25]) and abstraction methods based

on the introduction of new variable®.§. [22], [24]). Our

new constraint-based method draws influence from prewousl
IThe term generic parameter is used in hardware design lgeguw d€veloped methods for invariant generation and rank fancti

describe variables whose values will be known at compiteti synthesis €.9.[9], [30]).

void prio(int n,in_signal i,out _signal o) {
LINK xtmp,*c,xbuffer;
assert(n>0);
while (1) {
buffer = NULL,;
// Build up an n—sized sorted buffer
for (int k=0;k<n;k++) {

buffer = sorted _insert(input(i),buffer);

// Send the sorted list to the output and
// deallocate the buffer as we walk it

LINK « sorted _insert(int data, LINK) {
LINK x elem = |;
LINE % prev = NULL;
LINK % x = (LINKx)malloc(sizeof(LINK));
assert(x!=NULL);
x—>data = data;
while (elem != NULL) {
if (elem—>data >= x—>data) {
x—>next = elem;
if (prev == NULL) { | = x; return |; }
prev—>next = Xx;

c=buffer; return |;
while(c!=NULL) { }
output(o,c—>data); prev = elem;
tmp = c; elem = elem—>next;
c = c—>next; }
free(tmp); Xx—>next = elem;
if (prev == NULL) { | = x; return |; }
} prev—>next = Xx;
} return [;

}

Fig. 1. Priority queue circuit specification in C, using dfe-shelf imple-
mentation ofsor t ed_i nser t . The genericparametem is assumed to be Fig. 2. Off-the-shelf implementation of incremental irtasr sort procedure.
specified at compile-time.

allocate a shared array when creating instances of theitcircu
Il. EXAMPLE prio.

|magine that we would like to build am-size priority queue The procedure giVen |atel’ in Section I iS designed to f|nd
circuit that reads integers from an input signal and retur@sfunction f such that it is a program invariant thétn) is
everyn input integers on an output signal in sorted order-larger than the number of heap cells allocated at any given
such a circuit is key to the development of a Huffman encodéifne during its execution. In this case the procedure desdri
See the functiorpri o in Fig. 1 for an example of how we later will find the function f(n) = n * 8, assuming that
might wish to write a specification of the desired hardwa@ zeof (LI NK) = 8 in the encoding.
in C. Our intention is that the variable in Fig. 1 is a With f we can now re-encode the program using a pre-
generic parameter, whereasando should be thought of as allocated array. In essence, when we know the valuations to
signal names. Our synthesis tool treats these in a specjal Wae input parameters we can then pre-allocate an array ysing
as standard C, of course, does not make this distinction. ¢ then convert dereferences like into a[c] . Field offsets
this example we assume that the circuit useput () and are explicitly encodecc- >dat a is encoded aa[¢+0] , and
out put () as primitives for I/0 on the signal variablesand C- >next is encoded as[c+4] .
0. LI NKis a C struct used to represent singly-linked lists (with From this program (and via a translation into VHDL) we
fields dat a andnext). We make use of an existing off-the-then used the Altera Quartus Il 9.0 tools to construct an
shelf insertion-sort implementatiosort ed i nsert. See implementation for the Stratix Il FPGA architecture. Ugin
Fig. 2 for the source code fort ed_i nsert. default synthesis and implementation options and with 10,

Note that in order to convert this program into hardward&e generated circuit uses 5859 adaptive look-up table38 45
we must first find ara priori bound on the amount of heaplogdic registers and 8192 block memory.
during the execution opri o, for any input or parameter.
The problem is thasorted_i nsert does not guarantee
a concrete bound on the amount of heap allocated while itsIn this section we describe an analysis that automatically
executing, instead it preserves a bound-it takes a stateewhdiscovers symbolic bounds on the heap usage. We will assume
k heap cells have been allocated and returns a state in whilht the size parameters passedub | oc are fixed constants.
k+1 have been allocated. Thus we must hope to find a boulitirough the use of static analysis, we annotate each call to
on the amount of heap used bypr t ed_i nsert from states free with the amount of memory the call is freeing. For
limited to those reachable fropri o. example, we would transform the cdilree(tnp) from

If we can find this bound, then we can convert the progran®g. 1 tofree(t np, si zeof (LI NK)) . For simplicity of
operations on the heap into operations on statically-atkst presentation we will assume that programs allocate and free
arrays, thus facilitating synthesis. We aim to find a bourad thheap cells of a single fixed size. We can support multiple size
holds across the entire program, but is expressed symbyplicallocations through the use of compile-time partial evétug
using only the generic parameters to the top-level fundiien but at the cost of complexity in the notation in this section.
the parameten of the circuitpri o). This allows us to pre- We currently do not support arbitrary DAGs or hash-tables,

IIl. FROM HEAPS TO ARRAYS

due to the limitations of existing separation logic baseapgh
analysis tools [8], [10], [23], [25] of which we are depenten
Our procedure is divided into the following steps.

a) Numerical heap abstractionFirst, we augment the
program with a new variablé, which is used to track the
amount of heap that is currently allocated. The varidblis
incremented whemalloc is called, and decremented when
free is called. For memory-safe programs such behaviarisf
correct. We use the shape analysis toabR [25] to determine
the shape of the data structures used during the program’s
execution, and to prove memory safety. Using techniques fro
[24], THOR can be used to produce a new program without
heap that is a sound abstraction of the original program—
additional integer variables are added bydR to summarize _ _ _ _ _

. . Fig. 3. Numerical abstraction of procedupgi o shown from Fig. 1.
the sizes of data-structures. Thus, bounds foundion the -5 ands of the fornje] ; denote assume statements.
abstraction imply bounds in the original program. Note that
the new program variables range over integers of arbitiagy s

(i.e. they cannot be represented in 32 or 64 bits). within sorted_i nsert, the length of that linked list is

b) Numerical bounds analysisNext, we apply our increased; therefore the abstraction will increment Sim-
constraint-based boundedness analysis to the numericgmnogilarly, THor will introduce another variable. recording
to find a symbolic boundf on the maximum value of.. the length of the linked list fromc. Corresponding to the
For improved scalability we combine our constraint-bas%signmenc:buf f er , the abstraction will set.=k;, and at
synthesis approach with a counterexample-guided methodtieé assignment=c- >next , the abstraction decremerits.
checking and refining candidate bounds. Also, when we exit theahi | e(c! =NULL) loop, we know

c) Array-based heap management and synthe€iace thatc==0, and hence als&.=0.
we have computed a symbolic bound (assuming that a boundrig. 3 shows the control-flow graph (CFG) of the resulting
can be found) we throw away the abstraction and then convgBstraction ofpri 0. The CFG contains three nodes corre-
the original program into an array-based program operatiggonding to the three loops in theri o function. These
over a pre-allocated shared array and then apply off-teé-shodes are connected by the edges which are annotated with
synthesis tools to produce a gate-level design. Note thede code occurring between the locations. The transitions
although we may sometimes compute a conservative ovBktween locations come in two forms: assignments; and
approximation for a bound on memory usage, it is often thgssumption checkpe] ; . The assumptions prune executions
case that a downstream synthesis tool can perform furthgrvhich the conditiore does not hold.
pruning to yield a gate level implementation that does iddee For brevity, calls to the functiorsorted_i nsert in
have a better (or even ideal) bound. A simple case of thigy. 3 have been summarized as the transifiegt+; h++; }

scenario is when a list is used to represent a bit-vectortwhigom location 7 to 7, but our technique is designed to work
is used in arithmetic expressions with known range at syihefor a fully expanded CFG of the code.

time allowing some of the upper bits to be pruned.

V. NUMERICAL BOUNDS ANALYSIS
The following sections discuss the above procedures in mas

e
detail reliminaries. Our shape analysis procedure produces a pro-

gram P = (V,h,P,L,¢;n;:,T) that consists of a set of
IV. NUMERICAL HEAP ABSTRACTION variablesV, a heap consumption variable € P, a set of
aﬂaneric parameter® C V \ {h}, a set of locationsC, an
initial location Z;,,;; € £ and a set of abstract transitiods
ach transitionr € 7 is given by a tuple(?, p,¢’) where
" € L andp is a constraint oveV UV’, where the variables
n V' represent the values of variabl&safter the transition
Is executed. Each transition relation preserves the vatfies
§isneric parameterse., for each(?, p, ') € T we have

A shape analysis tool is designed to take a program
compute an invariant for each program location descrikiimg t
shape of the heap. The invariant describes the data stesct
stored in the heap during the program’s execution. Sh
analysis tools are based on symbolic simulation togethtr wi
abstraction techniques.

Using techniques described in [24], the shape analysis t
THOR can be used to introduce new variables which soundly YWYV i p P =P.
track the sizes of data structure shapes inferred by theeshap
analysis. In the example of the functipmi o, THOR would A states is a valuation ofl’. A computations a sequence of
introduce a variablé&, recording the length of the linked listlocation and state paird;, s1), (¢2, s2), ... such that/;,;; is
starting frombuf f er . At the commanduffer = NULL, the initial location,i.e,, ¢; = ¢;,;;, and for each consecutive
we initialize k, to zero. At the linesprev->next = x pair(¢;,s;) and({; 11, si+1) there is a transitio;, p, £;11) €

7 such thaf(s;, s;+1) = p. A states is reachable at a location procedure BOuND

¢ if the pair (¢, s) appears in some computation. input

An invariant at a location/ € L is a superset of all P=(V,h,P,L,Lin;, T): program
reachable states &tWe represent invariants by formulas over Inv”: invariant template map
the variablesV. An invariant map Inv assigns an invariant Bnd™: bound template map
to each location. In particular, we havev(l;,;.) = true, var
i.e. every state is reachable at the initial location. We will ~ Q: template parameters imv? and Bnd”
use primed notatiodnv(¢)" for Inv(¢)[V'/V]. An invariant U: auxiliary constraint ovet)

map Inv is parametricif it does not restrict the values of begin
program variables besides the generic parameters anddpe he U := true
consumption variablg,e., for each? € £ we have 2 foreach? e L do . .
= .) —
WV Ino(€) < (3V\ (PU{RY) : Ino(0)) . for‘léach‘l@:‘;) o 8~ Bnd ()

U= UAVYV YV 2 (InvT (0) A p) — Inv™ (£)
Q := free variables in¥
if exists M such that¥ (M) then

return Bnd” [M/Q]

We are interested in a parametric invariant mapd that 9 elsel
bounds the heap consumption. Formally, we will search f8f raise “no bound found”

An invariant map/nv is inductiveif for each program transi-
tion (¢,p,¢') € T we have

YV YV (Inv(€) A p) — Inv({) .

o N O W

Bnd such that for eacti € £ we have end
Fig. 4. BounbD discovers bounds on the value of the varialb)evhich keeps
VP3ceNVYV\P:Bnd(l) - h<c. track of the amount of dynamically allocated memory.

Then, the maximal value of the constareamong all program
locations determines the maximal amount of memory that is
dynamically allocated during the program computation.

For proving thatBnd is valid we will need an inductive
invariant mapInv. Formally, we require that for eache £
holds

BOUND collects a conjunction of constrainfs over tem-
plate parameters for both template maps in lines 1-5. These
constraints encode the condition that the computed bounds
must be valid. Lines 2-3 state that the bounds hold for
all reachable states, which are represented by an invariant
map induced by the invariant template map?’. Lines 4-5
encode the condition thdiw” in fact represents all reachable
Bounds analysis algorithm.Fig. 4 presents our constraint-program states.
based procedure @ND for discovering heap consumption We collect all template parameters in line 6. If our consirai
bounds. The procedure takes as parameters a prdgramin- solving procedure can find a satisfying assignmen¥ fghen
variant template mapno”, and a bound template mapd?. this assignment defines a bound map in line 8. Otherwise,
It returns either a valid bound map or an exception if no sudOUND raises an exception.
map can be found. The transition relations in the prograf produced during
The template maps used byoBND are reminiscent of the shape analysis phase are conjunctions of linear ingigeal
those used in constraint-based invariant generation 8] [overV andV’. For our templates consisting of linear inequali-
and rank function synthesis [27]. A template map assigns #es, we eliminate the universally quantification oveand V"’
assertion over program variables atsinplateparameters to in lines 3 and 5 of BUND by applying a standard technique,
each program location. The template map” may use a seee.g. [9], based on Farkas' lemma [12]. The resulting
template of the form constraint¥ is a conjunction of non-linear inequalities and
can be efficiently solved using the existing tooésg. [15],
[16].
which is a conjunction of two linear inequalities with the The soundness and completeness ofuRD is formalized
template parameteras, ..., a,,a, (1, ..., 3,8 and program in the following theorem.

variablesV = {vy,...,v,}. .
The bound template mapnd” given to BOUND as input Theorem L. .Th?’ proceo_lureBO_UND 'S complgte f_or boun_d
. : expressions in linear arithmetic provable using linearthsi
assigns to each program location a bound template of the forft,. ™~ . . . X
metic invariants,i.e., in this case it computes a bound map.
h<ép1+-~+0mpm+9, The procedurd8OUND is also soundi.e., it computes a bound

map that represents an upper bound on the memory usage.

YV : Inv(£) — Bnd({) .

Q101 + ... + QU S a N ﬁlvl + ...+ ﬁnvn S ﬁ)

where 61,...,0,,0 are template parameters andP =
{p1,...,pm} aregenericparameters. SincBnd” only refers
to P andh, it guarantees to yield parametric bound invariant&xample. Consider the program in Fig. 3 over the variahles
only. h, k, ky, andk.. The only generic parameter is the variahle

We consider a template mapw” that assigns to each procedure INCBOUND
program location a conjunction of two linear inequalitiesr input
example, for the locatio; we have P=(V,h,P,L,Lin;, T): program
T Inv™: invariant template map
Inv™(b7) : on+ aph + ak + a ko + ke < @ A Bnd™: bound template map
Ban + Brh + Bk + B kb + B ke < B A var
Yol + Yrl 4 ek + Y Ko + Ve ke <y Bnd : bound map
L distinguished error location
T¢: transitions for bound assertion checking
Bnd® (07): h<dm+9. function PATHPROGRAM

: . _ input
Next, BOUND creates a conjunction of constrainksover « : sequence of transitions

the template parameters from all program locations. We only begin

present two constraints frodi that are created at lines 3and, o, (V,hy P, Ly Cinie
5 for the location/; and the loop transition at the locatidn R
respectively. The first constraint is the implication

The bound template at this location is

2 {r|7=(p,0) occurs int and?’ # lp})
end,;
Vn Vh Vk Vky Vi : Ino” (07) — Bnd™ (£7) . begin

N .) 3 Bnd =MeLh<0
The second constraint involves the transition relationhef t , repeat

loop: 5 Te = {(,~Bnd({) N\V' =V, L) | L€ L}

Vn Vh Vk Vks Ve Vo' Vh' VK Vi, VK. : 6 if existsm € (T U7g)* from £, t0 £epr
T 7 such thatp, # () then
(Ino (€7) A 8 P, := PATHPROGRAM(T)
k<nAn' =nAR =h+1AK =k+1A 9 try
ki =k, + 1Ak, =k.) — 10 Bnd, := BOUND(P;, Ian, BndT)
InoT (0-) 11 catch _
nv” (t7) 12 return “unbounded consumption patt
We solve¥ and obtaind, = 1 and§ = 0 for the bound 13 Bnd := M € L.Bnd({) V Bnd({)
template parameters occurring in the locatieni.e., we have 14 else
BndT () = (h <n) . 15 return “bound assertion ma@nd”
16 done
The corresponding invariant map assigns k, Ak, < kAh < end

n to the location/;. In our example, the bound occurs irFig. 5. INCBoUND performs an incremental boundedness analysis using
the corresponding inductive invariant; in general, howgts ~ 9uidance from spurious counterexamples.
need not be the case.

. . In case a counterexamptes found, we identify a fragment
Incremental bounds analysis.The constraint-based proce- . . AN
. . .~ of P that is traversed by the transitions occurringainThis
dure BouND performs an expensive computatlon—non-lmeacrO e fragment is defined by a path progra for [2]
constraint solving—and does not scale beyond medium—sizeod 9 yap progra T el

programs. We improve the scalability ofoBND by per- see lines 1-2. In particular, the path progr@mtraverses the

: o . same loops ofP that are visited byr.
forming the boundedness analysis in an incremental fashlorwe compute an adjustmentnd, for the bound map by

using the idea of path invariants [2]. We _apply the expenswgpply the procedure @UND on the path program, see line 10.
constraint-based procedure only to certain program fragsne . : :

.) ; The adjustment is used to weaken the claimed bound, see
which are determined automatically. line 13

Fig. 5 presents our BuND-based procedureNCBOUND '

. . . This sequence of incremental adjustments continues until

for an incremental discovery of heap consumption bound e .
: " either the full progranf? satisfies the claimed bound map or

for the full program from its fragments. Initially, the badin

; . a %ath that for which no heap consumption bound can be found
map states that no heap consumption takes place, see “n|es Siscovered

Then, this claim is verified in lines 6—7 using a verification .
) . . The soundness and completeness propertieslOBOUND
tool for proving program safety. Such a tool is applied on

an augmented program that is obtained fréiby adding a are ir_lheri'ged from the procedureoBND and the notion of
distinguished error locatio#.,.. that is reachable if the heappath invariants.

bound claimed byBnd is not valid. In the case of a falseTheorem 2. The proceduréNCBOUND is complete for bound
bound, the algorithm will return a counterexample in thaxfor expressions in linear arithmetic provable using linearthsi
of a sequence of transitionsthat leads to heap consumptiommetic invariants,i.e., in this case it computes a bound map
beyond the claimed bound. and terminates. The procedur®CBOUND is also soundi.e.,

example, the statemeat = c- >next; from the program in
Fig. 1 becomes = a[c+4];.

We use a list of array indices that is embedded into the
arraya to keep track of free array cells. Each list element is
an index of a free cell. We introduce a global variabi¢hat
stores the head of the list, and hence the cell at indes
free. Then, the value cd[M is the next list element, which
is the index of the second free cell stored in the list. We iobta
the third element by accessirg a[] and so on. Initially
m = 0 and the arraya is initialized in the following way:

VO<i<N:afi]=i+1.

Fig. 6. Path program for the program from Fig. 3 and a pathisting of A call to mal | OC() _Consumes the head of the list. That
transitions between the locatioté;,i:, €4), (€4, €7), (b7,€7), and(¢7,£13). is, x = mal | oc() is implemented by the sequence of in-
structionsx = mp m = a[n];, where the first assignment

| m | m delivers the free cell and the second assignment ensures tha
N\ WA \ \ the subsequent call toal | oc will return the next free cell in
ato[3[1§ 0[..[..[9[.[.] ago[7s o..]..[123]] the list. We do not need to check whether the free list empty
1234567809 12345678 9 because the boundedness analysis guarantees that it vall ne
¢ happen, i.e., we haves < N.
prev elem X

Fig. 7 illustrates the array-based treatmentnafl | oc.
We assume that the heap stores data strudtuid<, whose
Fig. 7.. Creation of a nevitl NK structure in the array-based heap imple-size is two integerS, and that each array cell is of size one
mentation.) . . .
integer. The array on the left is free starting at the index 7,
as represented by the valuatian= 7, a[9] = 9, etc. After
it computes a bound map that represents an upper bound @ffcutingx = mal 1 oc(2);, assigningx- >data = 12;,
the memory usage. the cell at index 7 is no longer free._ It stores the_data vgme 1
The next free cell becomes the first one available, i.e., we
. o . havem = 9. After identifying the predecessor and successor
Example. Consider finding a bound fdr in the program from of , i.e., inserting x into the sorted heap, we obtain the array
Fig. 3. In the algorithm from Fig. 5 we start with a candidatgnhow on the right in Fig. 7.
boundh < 0 at each location. We can then attempt to prove A call to f r ee(x) pushes onto the free list. That is, this
thath < 0 at every location using a symbolic model checkefa|| translates to a pair of statemeamfsx] = m m= Xx;.
(this corresponds to lines 5-7 of Fig. 5. In this cdsel 0 is The last freed cell will be the first free cell in the list of ée

not necessarily true at locatidhin Fig. 3, in which case the cg|ls, j.e., the subsequent call i@l | oc will return the last
symbolic model checker will return a witness counterexampfreed cell.

path. Imagine that we get the path= 4 — 7. In this case
PATHPROGRAM(7) will return a sub-program of Fig. 3, as VII. EXPERIMENTAL RESULTS
found in Fig. 6. We can then find a bound on this sub-program,In this section we discuss the results of our
resulting inh < n. Thus, we refine the candidate wholeexperiments with the proposed synthesis procedure on
program bound to béa < 0V h < n. Repeating the stepsa number of real-world examples. The original input
from lines 5-7 allows us to prove th&t < 0V h < nisa C programs and the resulting outputs are available at
valid bound for the whole program. After simplification, wehttp://www.cs.cmu.edufsimsa/c2vhdl.tar. Before discussing
returnh < n. the outputs of our tool, we first describe the problems solved
by the C-based software models.

VI. ARRAY-BASED HEAP MANAGEMENT

Numerical boundedness analysis computes a bound on Bréority queue — This is our running example from Figure 1.
maximal amount of memory that is dynamically allocate@he design has one input signal and one output signal. The
during program computation, and represents this bound agrglementation repeatedly inputselements, sorts them, and
function of generic parameters. When synthesizing a harelwautputs them in a sorted order. For the sake of experimental
implementation, the generic parameters are instantiededce evaluation we chose = 10.
we obtain a concrete bound, sa¥.

Next, we replace all heap operations in the progfarby Merge sort — This example implements a merger of two
operations on a statically allocated arrayof size N. Each sorted sequences. The design has two input signals and one
pointer to the heap becomes an array index. Field accessatput signal. The implementation repeatedly receiwgs
are converted into arithmetic operations over array irgliEer sorted elements through the first input signal andsorted

. . . Program Bound | C LOC | VHDL LOC
elem.ents th_rough the second |nput_5|gnal. Using the merge merge | S*nr T8 *na 50 1997
sort it combines the two sequences into one sorted sequence, | prio 8xm 56 1475
which is then output. For the sake of experimental evalaatio Eafoket 5212 *n +1§ 283 gggg
o _ uffman * My —
we chosen; = 10 andn, = 10. bst dict 24 % ny 142 2703
. . : . TABLE |
Packet sorting —This example implements a simple network BOUNDS AND LINES OF CODE

element. The design has two input signals and one output
signal. The implementation repeatedly inputs packet data

through the first input signal and packet identifier through Program | ALUTs | Registers| Block Mem | Blocks Speed
the second input signal. It inserts these packets into abuff| merge 5,157 4,694 8,192 2| 90MHz
while ignoring duplicate identifiers, until it fills a buffesith | P10 | 3993 | &3228 o0 | 2| Semin
n packets. It then sorts the received packets by their identifi| huffman | 20678 | 11,116 12,288 3| 76MHz
and outputs them. For the sake of experimental evaluation webst dict 5,786 5,660 8,192 2 | 125MHz
chosen = 10. TABLE |I

SYNTHESIS AND IMPLEMENTATION RESULTS

Binary search tree dictionary — This example implements
a data structure for storing a set of elements with a test for

membership. The design has two input signals and one output))
signal. The implementation repeatedly inputs elements well with FPGA synthesis tools. The generated VHDL files

through the first input signal and builds a binary search tré¢re synthesized using the Altera Quartus 11 9.0 tools ¢ouil
out of them. This is followed by receiving, queries through 184 04/29/2009 SP1 SJ Wep Edition) targeting Stratix Il
the second input signal and producing the correct resporll:é:éGAS- The results are shown in Table Il. The ALUT (Altera’s

through the output signal. For the sake of experiment%@aptive look-up tables) column gives an indication of the
evaluation we chose; = 10 andny = 10. size of the combinational elements in the generated design.

The registers column indicates how many flip-flops in the
Huffman encoder — This example implements a datd0dic fabric were used for registers. The block mem column

structure for encoding symbols. The design has three ingigicates how many memory bits in the generated design
signals and one output signal. The implementation repsate/€"€ implemented using embedded memory blocks and the
inputs 7, symbols through the first input signal, thejfollowing column shows how many independent memories

frequencies through the second input signal, and buildsWgr® synthesized. The last column shows the maximum
Huffman encoder using this data. This is then followed eed. In all cases the tools automatically plcked. the sistall
receiving n, symbols through the third input signal an P3SL50F484C2 FPGA and package and the timing results

producing their binary encoding through the output signdi'® 9given for this part. o _
For the sake of experimental evaluation we chase= 10 Most of the synthesized circuits occupy only a small portion
andns, = 10. of the smallest Stratix-11l FPGA. The largest design is msh

which utilizes 55% of the combinational ALUTs but less than

Each of these models was succesfully run through t#&® of the available block memory and only 29% of the

sequence of procedures described in this paper: Sh(,lee;ma@lvailable logic registers. The smallest design is prio Wwhic
bounds analysis, and array transformation. occupies 15% of the available combinational ALUTSs, 12% of

Table | lists the symbolic bounds for our examples ithe available logic registers and less than 1% of the availab

byte€. These symbolic bounds were then concretized usifiif ¢k memory. The operating frequency of these circuita & i
the aforementioned values and run through our translation t "a"g€ which is typical for FPGA circuits used as co-processi
which inputs a C program and a concrete bound and genera&@%u'ts- We have tested several of our examples running on
a functionally equivalent VHDL program. The Table | alsadis @ Cyclone Il FPGA on the Altera DE2 board. For example,
lines of code (LOC) for both the hand-written C models anf€ Priority encoder circuit was synthesized, implemented
their automatically generated VHDL counterparts. Note,the2nd run on the Altera Cyclone Il EP2C35F672C6 FPGA
due to last minute changes to the bounds search algorithm, (FPPOrting 33,216 logic elements) and we have observed the
were unable to produce a consistent set of run-times forfall GPrrect behavior on actual hardware using the SignalTaie log

the examples in time for this submission: the circuits wef1alyzer. Our conclusion from these preliminary resulthas
computed on various machines with different architecturdfé have identified a viable approach for translating heagda

specifications. The run-times range from minutes to houfrs Programs into VHDL designs which have acceptable area
depending on the example. utilization and performance.

Our VHDL generation step is carefully crafted to work))
Examples of failure. Our approach for symbolic bounds

2Data types size and structure alignment of a 32-bit ardhiteqe.g. 4-byte SynthESis ?an fail in various ways. For example, the inpUt
pointers) is assumed. program might operate over DAGs.().BDDs) or hash tables;

in which case, we would currently fail to produce an arithimet [4] V. Braberman, D. Garbervetsky, and S. Yovine. A stati@lpsis for

abstraction. Note that—even in the case of programs with Synthesizing parametric specifications of dynamic memonsamption.
Journal of Object Technology2006.

simple linked data structures—improving the scalabilibda |5, g . Brock, W. A. Hunt, and M. Kaufmann. The FM9001 microp
accuracy of shape analysis is an area of active research. cessor proofTechnical Report 86ht t p: / / www. ¢l i . com 1994.

When we successfully generate arithmetic abstractions, olf] F. Bruschiand F. Ferrandi. Synthesis of complex corgtaictures from
. . . . behavioral SystemC model®ATE, 2003.
constraint-based synthesis algorithm can also fail. Tistrat- [7] B. A. Buyukkurt, Z. Guo, and W. Najjar. Impact of loop utiing on

tion may be too coarse, or the problem may be too complex throughput, area and clock frequency in ROCCC: C to VHDL citenp

: BT ; « ioan for FPGAs.Int. Workshop On Applied Reconfigurable Computi2@06.
(e'g' hlghly non “near)' Consider the case of a “watcher list 8] B. E. Chang and X. Rival. Relational inductive shape gsial InPOPL,

for a literal £ in a SAT solver, which tracks the clauses in the ™ 200s.
clause database in whichappears. A bound on the size of [9] M. A. Colon, S. Sankaranarayanan, and H. B. Sipma. Linezriant

e I ; ; eneration using non-linear constraint solving.dAV, 2003.
this list certainly exists, but our tool cannot work out wha, Ey Distefano, P'go,Heam and H. Yang, A o shape ysial based

this bound is. on separation logicTACAS 2006.
[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. PechM. S.
VIII. CONCLUSION Tschantz, and C. Xiao. The Daikon system for dynamic detectif
. . . e likely invariants. Science of Computer Programmin§9:35-45, 2007.
C-to-gates syntheS|s a|_ms to b”ng tOgether the ag”'ty ﬂfZ] J. Farkas. Uber die theorie der einfachen ungleichang®urnal fur
software development with the speed of raw gates. Until die Reine und Angewandte Mathemati4:1-27, 1902.
now, C-to-gates synthesis systems were lacking support f61l M. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowskirettm-oriented

. . . . FPGA computing in the Streams-C high level languag€CM, 2000.
non-trivial dynamic allocation and deallocation on the mea[14] S. Gulwani, K. Mehra, and T. Chilimbi. SPEED: Precisel afficient

thus limiting the wider applicability of these tools. This static estimation of program computational complexityP@PL, 2009.
paper has introduced a new method that synthesizes symb@fi¢ A. Gupta, R. Majumdar, and A. Rybalchenko. From teststoofs.

heap bounds expressed on generic parameters. The me dTACAS 2009.
p p g p . ttﬂ& A. Gupta and A. Rybalchenko. InvGen: An efficient ineari generator.

uses computed shape invariants and abstractions togetherin cav, 2009.
with a constraint solving based approach to find a symbolfe’] R. K. Gupta and S. Y. Liao. Using a programming languagedigital

. . e system designlEEE Design and Test of Computetst, Apr. 1997.
expression representing the bound. Our system faciliths |15 5 Gupta, N. D. Dutt, R. K. Gupta, and A. Nicolau. SPARKhigh-level

use of common software abstractions and libraries (patinti synthesis framework for applying parallelizing compilertsformations.
with no memory bounds) within C-to-gates synthesis systems_ VLS| Conference2003.

. : . . [19] M. Hof d S. Jost. Static prediction of h asape f
Thus, designers can potentially use high-level abstrastio”! ﬁrst_o?dn;ra ?Sng?onal prgzramséfgopgi ;:0'8;0 eap spasme for

(e.g. dynamically allocated trees and lists) when designirgo] M. Hofmann and S. Jost. Type-based amortised heapesmaalysis. In
circuits. ESOR 2006.
[21] IMEC. CleanC analysis toolshtt p: // www. i nec. be/ C eand
2008.
Future work. Using techniques described in [28], and22] R. losif, M. Bozga, A. Bouajjani, P. Habermehl, P. Moemd T. Vojnar.
with some modification to our shape analysis tool, we cap Programs with lists are counter automata.GAY, 2006.

.[23] T. Lev-Ami and M. Sagiv. TVLA: A system for implementingtatic
determine the symbolic footprint of each command with analyses SAS 2000.

respect to the global heap—allowing us to break a monolithis] s. Magill, J. Berdine, E. Clarke, and B. Cook. Arithneesitrengthening

computation over a single memory into several smaller for shape analysisSAS 2006. .
tations that work on independent memories. We Cgl’sl] S. Magill, M. Tsai, P. Lee, and Y. Tsay. THOR: A tool forasoning
computat p ' about shape and arithmeti€AV, 2008.

perhaps exploit this independence to build more parallgb] w. A. Najjar, A. P. W. Bohm, B. A. Draper, J. Hammes, R. Rin J. R.
circuits, as well as to find potential energy savings. Beveridge, M. Chawathe, and C. Ross. High-level languagératdtion

In thi h f d th licati f for reconfigurable computingEEE Computer 36(8), 2003.
n this paper we have focused on the application o O'fH?] A. Podelski and A. Rybalchenko. A complete method fa fynthesis

heap-bounds procedure to the problem of hardware synthesis of linear ranking functions. IWVMCAI, 2004.

though it may also have application in other areas. As futul@sl M. Raztf’"v CI Qa'Cf‘g]S% lj“;‘(‘) oPé Gardner. Automatic paizelion with
. L separation logic. > .
work it might be fruitful to investigate its application to[29]I X. Saint-Mleux, M. Feeley, and J.-P. David. SHard: a&ub to hard-

problems such as compilation for embedded systems, or model ware compiler. InWorkshop on Scheme and Functional Programming

checking for infinite-state systems. 2006. , o
[30] S. Sankaranarayanan, H. Sipma, and Z. Manna. Consbased linear-
relations analysisSAS 2004.
REFERENCES [31] L. Semeria and G. D. Micheli. SpC: synthesis of pointer€. ICCAD,
[1] E. Albert, S. Genaim, and M. Gomez-Zamalloa. Heap spawdyais 1998.
for Java bytecode. I'SMM, 2007. [32] A. Takach, B. Bower, and T. Bollaert. C based hardwarsigte for
[2] D. Beyer, T. A. Henzinger, R. Majumdar, and A. RybalchenkPath wireless applicationsDATE, 2005.
invariants. InProc. PLDI, pages 300-309. ACM Press, 2007. [33] Y. D. Yankova, G. Kuzmanov, K. Bertels, G. N. Gaydadjie& Lu,
[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lavedwdae and S. Vassiliadis. DWARV: Delftworkbench automated rédigpmable
design in Haskell. INCFP, 1998. VHDL generator. FPL, 2007.

