
Dottie
Text Box

SAMPLE CHAPTER

Grails in Action
by Glen Smith

and Peter Ledbrook

Chapter 1

Copyright 2009 Manning Publications

vii

brief contents
PART 1 INTRODUCING GRAILS.. 1

1 ■ Grails in a hurry... 3

2 ■ The Groovy essentials 31

PART 2 CORE GRAILS... 63

3 ■ Modeling the domain 65

4 ■ Putting the model to work 92

5 ■ Controlling application flow 121

6 ■ Developing tasty views, forms, and layouts 155

7 ■ Building reliable applications 188

PART 3 EVERYDAY GRAILS .. 219

8 ■ Using plugins: adding Web 2.0 in 60 minutes 221

9 ■ Wizards and workflow with webflows 255

10 ■ Don’t let strangers in—security 280

11 ■ Remote access 310

12 ■ Understanding messaging and scheduling 340

BRIEF CONTENTSviii

PART 4 ADVANCED GRAILS ... 363

13 ■ Advanced GORM kung fu 365

14 ■ Spring and transactions 395

15 ■ Beyond compile, test, and run 415

16 ■ Plugin development 442

Part 1

Introducing Grails

Great strides have been made in the field of Java-based web application
frameworks, but creating a new application with them still seems like a lot of
work. Grails’ core strength is developing web applications quickly, so we’ll jump
into writing our first application right away.

 In chapter 1, we’ll expose you to the core parts of Grails by developing a sim-
ple Quote of the Day application from scratch. You’ll store and query the data-
base, develop business logic, write tests, and even add some AJAX functionality.
By the end of it, you’ll have a good feel for all the basic parts of Grails.

 In order to develop serious Grails applications, you’ll need a firm grasp of
Groovy—the underlying dynamic language that makes Grails tick. In chapter 2,
we’ll take you on a whirlwind tour of core Groovy concepts and introduce you to
all the basic syntax.

 By the end of part 1, you’ll have a real feel for the power of Groovy and Grails
and be ready to take on the world. Feel free to do so—Grails encourages experi-
mentation. But you might want to stick around for part 2, where we take you
deeper into the core parts of Grails.

3

Grails in a hurry...

 “Help, I’ve lost my Mojo!” That statement is probably the most concise summary of
what developers feel when working with one of the plethora of Java web frame-
works. So much time editing configuration files, customizing web.xml files, writing
injection definitions, tweaking build scripts, modifying page layouts, restarting apps
on each change, aaaahhhh! “Where has all the fun gone? Why has everything
become so tedious? I just wanted to whip up a quick app to track our customer sign-
ups! There’s got to be a better way...” We hear you.

 Grails is a “next-generation” Java web development framework that draws on
best-of-breed web development tooling, techniques, and technologies from exist-
ing Java frameworks, and combines them with the power and innovation of
dynamic language development. The result is a framework that offers the stability

This chapter covers
■ What is Grails?
■ Core Grails philosophy
■ Installing Grails
■ The key components of a Grails application
■ Developing and deploying your first Grails application

4 CHAPTER 1 Grails in a hurry...

of technologies you know and love, but shields you from the noisy configuration,
design complexity, and boilerplate code that make existing Java web development so
tedious. Grails allows you to spend your time implementing features, not editing XML.

 But Grails isn’t the first player to make such claims. You’re probably thinking,
“please don’t let this be YAJWF (Yet Another Java Web Framework)!” Because if there’s
one thing that the Java development world is famous for, it’s for having an unbeliev-
ably large number of web frameworks available. Struts, WebWork, JSF, Spring MVC,
Seam, Wicket, Tapestry, Stripes, GWT, and the list goes on and on—all with their own
config files, idioms, templating languages, and gotchas. And now we’re introducing a
new one?

 The good news is that this ain’t your Grandma’s web framework—we’re about to
take you on a journey to a whole new level of getting stuff done—and getting it done
painlessly. We’re so excited about Grails because we think it’s time that Java web app
development was fun again! It’s time you were able to sit down for an afternoon and
crank out something you’d be happy demoing to your boss, client, or the rest of the
internet. Grails is that good.

 In this chapter, we’re going to take you through developing your first Grails app.
Not a toy, either. Something you could deploy and show your friends. An app that’s
data-driven and Ajax-powered, and that has full CRUD (create, read, update, delete)
implementation, a template-driven layout, and even unit tests. In half an hour, with
less than 100 lines of code. Seriously.

 But before we get our hands dirty writing code, you may need a little more con-
vincing as to why Grails should be on your radar. Before you fire up your IDE, let’s
quickly review the history to learn why Grails is such a game-changer.

1.1 Why Grails?
Grails is a next-generation Java web development framework that generates great
developer productivity gains through the confluence of a dynamic language, a Con-
vention over Configuration philosophy, powerfully pragmatic supporting tools, and
an agile perspective drawn from the best emerging web development paradigms.

1.1.1 First there was Rails...

Some have incorrectly labeled Grails a port of Ruby on Rails to the Java platform, but
this fails to recognize several points about Grails:

■ The amazing innovations that Grails, itself, has brought to the enterprise devel-
opment sector with its own secret sauces

■ The broad range of platforms that have influenced Grails (which include Ruby,
Python, PHP, and Java frameworks)

■ The many features that Grails brings to the table that aren’t presently available
in Rails—features drawn from the JVMs long history of use in enterprise settings

5Why Grails?

Nevertheless, Grails does embrace many of the innovative philosophies that Rails
brought to web development. When Ruby on Rails hit the web development land-
scape (in 2004), and started gaining real industry traction and critical acclaim (during
2006), a whole new set of ideas about web development started to germinate.

 None of the ideas were particularly new, but the execution was truly stunning.
Things like Convention over Configuration, scaffolding, code templates, and easy
database integration made bootstrapping an application lightning fast. The killer
demo was when David Heinemeier Hansson (the Rails founder) developed a
database-driven blog application from scratch in 15 minutes. Everyone’s jaw dropped.

 The real power of these ideas was brought to the fore in Rails by using a dynamic
language (Ruby) to perform amazing metaclass magic. For those of us in enterprise
Java-land, there wasn’t a compelling Java equivalent. We were stuck with a statically
typed language that didn’t give us the same agility to do the metaclass work that made
it all work so elegantly.

1.1.2 Why Grails changed the game

Then, in 2006, along came Grails. Taking full advantage of Groovy as the underlying
dynamic language, Grails made it possible to create a Book object and query it with
dynamic methods like Book.findByTitle("Grails in Action") or Book.findAllBy-
DatePublishedGreaterThanAndTitleLike(myDate, "Grails"), even though none of
those methods really existed on the Book object.

 Even better, you could also access any Java code or libraries you were already
using, and the language syntax was similar enough to Java to make the learning curve
painless. But best of all, at the end of the day, you had a WAR file to deploy to your
existing Java app server—no special infrastructure required, and no management
awareness needed.

 The icing on the cake was that Grails was built on Spring, Hibernate, and other
libraries already popular in enterprise Java—the stuff developers were already build-
ing applications on. It was like turbo-charging existing development practices without
sacrificing reliability or proven technologies.

 Grails’ popularity exploded. Finally Java web developers had a way to take all the
cool ideas that Rails had brought to the table and apply them to robust enterprise-
strength web application development, without leaving any of their existing skills,
libraries, or infrastructure behind.

 That’s probably enough history about how Grails ended up being such a popular
Java web framework. But if you (or your manager) need further convincing about why
Grails is an outstanding option for your next big web app project, the following sub-
sections discuss seven of the big ideas (shown in figure 1.1) that have driven Grails to
such a dominant place in the emerging next-gen Java web frameworks market.

6 CHAPTER 1 Grails in a hurry...

1.1.3 Big idea #1: Convention over Configuration

One of the things you’ll notice about developing with Grails is how few configuration
files there are. Grails makes most of its decisions based on sensible defaults drawn
from your source code:

■ Add a controller class called Shop with an action called order, and Grails will
expose it as a URL of /yourapp/shop/order.

■ Place your view files in a directory called /views/shop/order, and Grails will
look after linking everything up for you without a single line of configuration.

■ Create a new domain class called Customer, and Grails will automatically create
a table called customer in your database.

■ Add some fields to your Customer object, and Grails will automatically create
the necessary fields in your customer table on the fly (including the right data
types based on the validation constraints you place on them). No SQL required.

But as Jason Rudolph is quick to point out, Grails is about Convention over Configura-
tion, not Convention instead of Configuration. If you need to tweak the defaults, all the
power is there for you to do so. Grails makes overriding the defaults easy, and you still
won’t need any XML. But if you want to use your existing Hibernate configuration
XML files in all their complex glory, Grails won’t stand in your way.

1.1.4 Big idea #2: agile philosophy

Grails makes a big deal about being an agile web framework, and by the time you fin-
ish this chapter, you’ll understand why. By making use of a dynamic language
(Groovy), Grails makes things that were once a real pain in Java a complete joy.
Whether it’s processing form posts, implementing tag libraries, or writing test cases,
there’s a conciseness and expressiveness to the framework that makes these opera-
tions both easier and more maintainable at the same time.

Figure 1.1 The Grails ecosystem
is a powerful confluence of people,
ideas, and technology.

7Why Grails?

 The Grails infrastructure adds to the pleasure by keeping you iterating without get-
ting in the way. Imagine starting up a local copy of your application and adding con-
trollers, views, and taglib features while it’s running—without having to restart it!
Then imagine testing those features, making tweaks, and clicking refresh in your
browser to view the updates. It’s a joy.

 Grails brings a whole new level of agility to Java web application development, and
once you’ve developed your first complete application, which you’ll do over the next
30 minutes or so, you’ll start to appreciate some of the unique power Grails provides.

1.1.5 Big idea #3: rock-solid foundations

Even though Grails itself is full of innovation and cutting-edge ideas, the core is built
on rock-solid proven technologies: Spring and Hibernate. These are the technologies
that many existing Java shops are using today, and for good reason: they’re reliable
and battle tested.

 Building on Spring and Hibernate also means that there’s very little magic going
on under the hood. If you need to tweak things in the configuration (by customizing
a Hibernate configuration class) or at runtime (by getting a handle to a Spring
ApplicationContext), there’s no new magic to learn. None of your learning time on
Spring and Hibernate has been wasted.

 If you’re new to Grails and don’t have a background in Spring and Hibernate, it
doesn’t matter. There are few Grails development cases where you need to fall back to
that level anyway, but you can feel good knowing it’s there if you need it.

 This same philosophy of using best-of-breed components has translated to other
areas of the Grails ecosystem—particularly third-party plugins. The scheduling plugin
is built on Quartz, the search plugin is built on Lucene and Compass, and the layout
engine is built on SiteMesh. Wherever you go in the ecosystem, you’ll see popular Java
libraries wrapped in an easy-to-use instantly productive plugin. Peace of mind plus
amazing productivity!

 Another important part of the foundation for enterprise developers is having the
formal backing of a professional services, training, and support organization. When
SpringSource acquired G2One in November 2008, Groovy and Grails inherited the
backing of a large company with deep expertise in the whole Groovy and Grails stack.
This also introduced a range of support options to the platform useful to those orga-
nizations looking for 24/7 Groovy and Grails support backup.

1.1.6 Big idea #4: scaffolding and templating

If you’ve ever tried bootstrapping a Spring MVC application by hand, you’ll know that
it isn’t pretty. You’ll need a directory of JAR files, a bunch of bean definition files, a set
of web.xml customizations, a bunch of annotated POJOs, a few Hibernate configura-
tion files, a database-creation script, and then a build system to turn it all into a run-
ning application. It’s hard work, and you’ll probably burn a day in the process.

8 CHAPTER 1 Grails in a hurry...

 By contrast, building a running Grails application is a one liner: grails create-
app myapp, and you can follow it up with grails run-app to see it running in your
browser. All of the same stuff is happening behind the scenes, but based on conven-
tions and sensible defaults rather than on hand-coding and configuration.

 If you need a new controller class, grails create-controller will generate a
shell for you (along with a shell test case). The same goes for views, services, domain
classes, and all of the other artifacts in your application. This template-driven
approach bootstraps you into a fantastic level of productivity, where you spend your
time solving problems, not writing boilerplate code.

 Grails also offers an amazing feature called “scaffolding.” Based on the fields in
your database model classes, Grails can generate a set of views and controllers on the
fly to handle all your basic CRUD operations—creating, reading, updating, and delet-
ing—without a single line of code.

1.1.7 Big idea #5: Java integration

One of the unique aspects of the Groovy and Grails community is that, unlike some of
the other JVM languages, we love Java! We appreciate that there are problems and
design solutions that are much better implemented in a statically typed language, so
we have no problem writing our web form processing classes in Groovy, and our high-
performance payroll calculations in Java. It’s all about using the right tool for the job.

 We’re also in love with the Java ecosystem. That means we don’t want to leave
behind the amazing selection of Java libraries we know and love. Whether that’s in-
house DTO JARs for the payroll system, or a great new Java library for interfacing with
Facebook, moving to Grails means you don’t have to leave anything behind—except a
lot of verbose XML configuration files. But as we’ve already said, you can reuse your
Hibernate mappings and Spring resource files if you’re so inclined!

1.1.8 Big idea #6: incredible wetware

One of the most compelling parts of the Grails ecosystem is the fantastic and helpful
user community. The Groovy and Grails mailing list is a hive of activity where both die-
hard veterans and new users are equally welcome. The Grails.org site hosts a Grails-
powered wiki full of Grails-related information and documentation.

 A wealth of third-party community websites have also sprung up around Grails. For
example, groovyblogs.org aggregates what’s happening in the Groovy and Grails blog-
osphere and is full of interesting articles. And sites like grailscrowd.com, Facebook,
and LinkedIn host Grails social networking options. There’s even a Grails podcast
(grailspodcast.com) that runs every two weeks to keep you up to date with news, inter-
views, and discussions in the Grails world.

 But one of the coolest parts of the community is the amazing ever-growing list of
third-party plugins for Grails. Whether it’s a plugin to implement full-text search, Ajax
widgets, reporting, instant messaging, or RSS feeds, or to manage log files, profile per-
formance, or integrate with Twitter, there’s something for everyone. There are

9Getting set up

literally hundreds of time-saving plugins available (and in chapter 8, we’ll introduce
you to a bunch of the most popular ones).

1.1.9 Big idea #7: productivity ethos

Grails isn’t just about building web applications—it’s about executing your vision
quickly so you can get on with doing other “life stuff” that’s more important. For us,
productivity is the new black, and developing in Grails is about getting your life back,
one feature at a time. When you realize that you can deliver work in one day that used
to take you two weeks, you start to feel good about going home early. Working with
such a productive framework even makes your hobby time more fun. It means you can
complete all those Web 2.0 startup website ideas you’ve dreamed about, but which
ended up as half-written Struts or Spring MVC apps.

 Developing your applications quickly and robustly gives you more time to do other,
more important stuff: hanging out with your family, walking your dog, learning rock
guitar, or getting your veggie patch growing really big zucchinis. Web apps come and
go; zucchinis are forever. Grails productivity gives you that sort of sage-like perspec-
tive. Through the course of this chapter, we’ll give you a taste of the kind of productiv-
ity you can expect when moving to Grails.

 Most programmers we know are the impatient type, so in this chapter we’ll take 30
minutes to develop a data-driven, Ajax-powered, unit-tested, deployable Web 2.0 web-
site. Along the way, you’ll get a taste of the core parts of a Grails application: models,
views, controllers, taglibs, and services. Buckle up—it’s time to hack.

1.2 Getting set up
In order to get Grails up and running, you’ll need to walk through the installation
process shown in figure 1.2.

 First, you’ll need to have a JDK installed (version 1.5 or later—run javac-version
from your command prompt to check which version you have). Most PCs come with
Java preinstalled these days, so you may be able to skip
this step.

 Once you’re happy that your JDK is installed, download
the latest Grails distro from www.grails.org and unzip it to
your favorite installation area.

 You’ll then need to set the GRAILS_HOME environment
variable, which points to your Grails installation directory,
and add GRAILS_HOME/bin to your path. On Mac OS X
and Linux, this is normally done by editing the ~/.profile
script to contain lines like these:

export GRAILS_HOME=/opt/grails
export PATH=$PATH:$GRAILS_HOME/bin

On Windows, you’ll need to go into System Properties to
define GRAILS_HOME and update your PATH setting.

Figure 1.2 The Grails
installation process

10 CHAPTER 1 Grails in a hurry...

 You can verify that Grails is installed correctly by running grails help from the
command line. This will give you a handy list of Grails commands, and it’ll confirm
that everything is running as expected and that your GRAILS_HOME is set to a sensible
location:

grails help

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /opt/grails

Looks like everything is in good working order.
 When you develop more sophisticated Grails applications, you’ll probably want to

take advantage of some of the fantastic Grails IDE support out there. There’s now
Grails plugin support for IntelliJ, NetBeans, and Eclipse—whichever your preferred
IDE, there will be a plugin to get you going. We won’t be developing too much code in
this chapter, so a basic text editor will be all you need. Fire up your favorite editor, and
we’ll talk about our sample application.

1.3 Our sample program: a Web 2.0 QOTD
If we’re going to the trouble of writing a small application, we might as well have some
fun. Our example is a quote-of-the-day (QOTD) web application where we’ll capture
and display famous programming quotes from development rock stars throughout
time. We’ll let the user add, edit, and cycle through programming quotes, and we’ll
even add some Ajax sizzle to give it a Web 2.0 feel. We’ll want a nice short URL for our
application, so let’s make “qotd” our application’s working title.

NOTE You can download the sample apps for this book, including CSS and asso-
ciated graphics, from the book’s site at manning.com.

It’s time to get started world-changing Web 2.0 quotation app, and all Grails projects
begin the same way. First, find a directory to work in. Then create the application:

grails create-app qotd
cd qotd

Well done. You’ve created your first Grails application. You’ll see that Grails created a
qotd subdirectory to hold our application files. Change to that directory now, and
we’ll stay there for the rest of the chapter.

 Because we’ve done all the hard work of building the application, it’d be a shame
not to enjoy the fruit of our labor. Let’s give it a run:

grails run-app

Grails ships with a copy of Jetty (an embeddable Java web server—there is talk that a
future version will switch to Tomcat), which Grails uses to host your application during
the development and testing lifecycle. When you run the grails run-app command,
Grails will compile and start your web application. When everything is ready to go,
you’ll see a message like this on the console:

11Our sample program: a Web 2.0 QOTD

Server running. Browse to http://localhost:8080/qotd

This means it’s time to fire up your favorite browser and take your application for a
spin: http://localhost:8080/qotd/. Figure 1.3 below shows our QOTD application up
and running in a browser.

Once you’ve taken in the home page, you can stop the application by pressing Ctrl-C.
Or you can leave it running and issue Grails commands from a separate console win-
dow in your operating system.

1.3.1 Writing your first controller

We have our application built and deployed, but we’re a little short on an engaging
user experience. Before we go too much further, now’s a good time to learn a little
about how Grails handles interaction with user—that’s via a controller.

 Controllers are at the heart of every Grails application. They take input from your
user’s web browser, interact with your business logic and data model, and route the

Figure 1.3 Our first app is up and running.

Running on a custom port (not 8080)
If port 8080 is just not for you (because perhaps you have another process running
there, like Tomcat), you can customize the port that the Grails embedded application
server runs on using the -Dserver.port command-line argument. If you want to run
Grails on port 9090, for instance, you could run your application like this:

grails -Dserver.port=9090 run-app

If you decide to always run a particular application on a custom port, you can create
a custom /grails-app/conf/BuildConfig.groovy file with an entry for grails.server.
port.http=9090 to make your custom port the default. Or make a system-wide
change by editing the global $HOME/.grails/settings.groovy file. You’ll find out more
about these files in chapter 15.

http://localhost:8080/qotd/

12 CHAPTER 1 Grails in a hurry...

user to the correct page to display. Without controllers, your web app would be a
bunch of static pages.

 Like most parts of a Grails application, you can let Grails generate a skeleton con-
troller by using the Grails command line. Let’s create a simple controller for handling
quotes:

grails create-controller quote

Grails will create this skeleton controller in /grails-app/controllers/QuoteControl-
ler.groovy. You’ll notice that Grails sorted out the capitalization for you. The basic
skeleton is shown in listing 1.1.

class QuoteController {

 def index = { }
}

Not so exciting, is it? The index entry in listing 1.1 is a Grails action, which we’ll return
to in a moment. For now, let’s add a home action that sends some text back to the
browser—it’s shown in listing 1.2.

class QuoteController {

 def index = { }

 def home = {
 render "<h1>Real Programmers do not eat Quiche</h1>"
 }
}

Grails provides the render() method to send content directly back to the browser.
This will become more important when we dip our toes into Ajax waters, but for now
let’s use it to deliver our “Real Programmers” heading.

 How do we invoke our action in a browser? If this were a Java web application, the
URL to get to it would be declared in a configuration file, but not in Grails. This is
where we need to introduce you to the Convention over Configuration pattern.

 Ruby on Rails introduced the idea that tons of XML configuration (or configura-
tion of any sort) can be avoided if the framework makes some opinionated choices for
you about how things will fit together. Grails embraces the same philosophy. Because
our controller is called QuoteController, Grails will expose its actions over the URL /
qotd/quote/youraction. The following gives a visual breakdown of how URLs translate
to Grails objects.

Listing 1.1 Our first quote controller

Listing 1.2 Adding some output

/qotd/quote/action

Application
name

Controller name Action
name

13Our sample program: a Web 2.0 QOTD

In the case of our hello action, we’ll need to navigate to this URL:

http://localhost:8080/qotd/quote/home

Figure 1.4 shows our brand new application up and running, without a single line of
XML.

 If you were wondering about that index() routine in listing 1.1, that’s the method
that’s called when the user omits the action name. If we decide that all references to
/qotd/quote/ should end up at /qotd/quote/home, we need to tell Grails about
that with an index action, like the one in listing 1.3.

class QuoteController {

 def index = {
 redirect(action: home)
 }

 def home = {
 render "<h1>Real Programmers do not each quiche!</h1>"
 }
}

It’s looking pretty good so far, but it’s pretty nasty to have that HTML embedded in our
source. Now that we’ve learned a little about controllers, it’s time to get acquainted
with views.

1.3.2 Writing stuff out: the view

Embedding HTML inside your code is always a bad idea. Not only is it difficult to read
and maintain, but your graphic designer will need access to your source code in order
to design the pages. The solution is to move your display logic out to a separate file,
which is known as the view, and Grails makes it simple.

Listing 1.3 Handling redirects

Figure 1.4 Adding our first bit of functionality

14 CHAPTER 1 Grails in a hurry...

 If you’ve done any work with Java web applications, you’ll be familiar with JavaServer
Pages (JSP). JSPs render HTML to the user of your web application. Grails applications,
conversely, make use of Groovy Server Pages (GSP). The concepts are quite similar.

 We’ve already discussed the Convention over Configuration pattern, and views
take advantage of the same stylistic mindset. If we create our view files in the right
place, everything will hook up without a single line of configuration.

 First, in listing 1.4, we implement our random action. Then we’ll worry about the
view.

def random = {
 def staticAuthor = "Anonymous"
 def staticContent = "Real Programmers don't eat much quiche"
 [author: staticAuthor, content: staticContent]
}

What’s all that square bracket-ness? That’s how the controller action passes informa-
tion to the view. If you’re an old-school servlet programmer, you might think of it as
request-scoped data. The [:] operator in Groovy creates a Map, so we’re passing a
series of key/value pairs through to our view.

 Where does our view fit into this, and where will we put our GSP file so that Grails
knows where to find it? We’ll use the naming conventions we used for the controller,
coupled with the name of our action, and we’ll place our GSP in /grails-app/views/
quote/random.gsp. If we follow that pattern, there’s no configuration required.

 Let’s create a GSP file and see how we can reference our Map data, as shown in list-
ing 1.5.

<html>
<head>
 <title>Random Quote</title>
</head>

<body>

 <q>${content}</q>
 <p>${author}</p>

</body>

</html>

The ${content} and ${author} format is known as the GSP Expression Language,
and if you’ve ever done any work with JSPs, it will probably be old news to you. If you
haven’t worked with JSPs before, you can think of those ${} tags as a way of displaying
the contents of a variable. Let’s fire up the browser and give it a whirl. Figure 1.5
shows our new markup in action.

Listing 1.4 A random quote action

Listing 1.5 Implementing our first view

15Our sample program: a Web 2.0 QOTD

1.3.3 Adding some style with Grails layouts

We now have our first piece of backend functionality written. But the output isn’t
engaging—there are no gradients, no giant text, no rounded corners. Everything
looks pretty mid-90s.

 You’re probably thinking it’s time for some CSS action, but let’s plan ahead a little.
If we mark up random.gsp with CSS, we’re going to have to add those links to the
header of every page in the app. There’s a better way: Grails layouts.

 Layouts give you a way of specifying layout templates for certain parts of your appli-
cation. For example, we might want all of the quote pages (random, by author, by
date) to be styled with a common masthead and navigation links; only the body con-
tent should change. To do this, let’s first mark up our target page with some IDs that
we can use for our CSS. This is shown in listing 1.6.

<html>
<head>
 <title>Random Quote</title>
</head>

<body>

 <div id="quote">
 <q>${content}</q>
 <p>${author}</p>
 </div>

</body>

</html>

Now, how can we apply those layout templates (masthead and navigation) we were dis-
cussing earlier? Like everything else in Grails, layouts follow a Convention over Con-
figuration style. To have all our QuoteController actions share the same layout, we’ll
create a file called /grails-app/views/layouts/quote.gsp. There are no Grails shortcuts

Listing 1.6 Updating the view

Figure 1.5 Our first view in action

16 CHAPTER 1 Grails in a hurry...

for layout creation, so we’ve got to roll this one by hand. Listing 1.7 shows our first
attempt at writing a layout.

<html>
 <head>
 <title>QOTD » <g:layoutTitle/></title>
 <link rel="stylesheet" href="
 <g:createLinkTo dir='css' file='snazzy.css' />
 " />
 <g:layoutHead />
 </head>
 <body>
 <div id="header">
 <img src="
 <g:createLinkTo dir='images' file='logo.png'/>
 " alt="logo"/>
 </div>
 <g:layoutBody />
 </body>
</html>

That’s a lot of angle brackets—let’s break it down. The key thing to remember is that
this is a template page, so the contents of our target page (random.gsp) will be
merged with this template before we send any content back to the browser. Under the
hood, Grails is using SiteMesh, the popular Java layout engine, to do all of that merg-
ing for you. The general process for how SiteMesh does the merge is shown in
figure 1.6.

 In order for our layout template in listing 1.7 to work, it needs a way of accessing
elements of the target page (when we merge the title of the target page with the tem-
plate, for example). That access is achieved through Grails’ template taglibs, so it’s
probably time to introduce you to the notion of taglibs in general.

 If you’ve never seen a tag library (taglib) before, think of them as groups of custom
HTML tags that can execute code. In listing 1.7, we took advantage of the g:create-
LinkTo, g:layoutHead, and g:layoutBody tags. When the client’s browser requests
the page, Grails replaces all of those tag calls with real HTML, and the contents of the

Listing 1.7 Adding a layout

B Merges title from
our target page

Creates relative
link to CSS fileC

Merges head elements
from target pageD

Merges body elements
from target pageE

Figure 1.6 SiteMesh
decorates a raw GSP file with
a standard set of titles and
sidebars.

17Creating the domain model

HTML will depend on what the individual tag generates. For instance, that first
createLinkTo tag C will end up generating a link fragment like /qotd/css/snazzy.css.

 In the title block of the page, we include our QOTD title and then follow it with
some chevrons (>>) represented by the HTML character code », and then add
the title of the target page itself B.

 After the rest of the head tags, we use a layoutHead call to merge the contents of
the HEAD section of any target page D. This can be important for search engine opti-
mization (SEO) techniques, where individual target pages might contain their own
META tags to increase their Google-ability.

 Finally, we get to the body of the page. We output our common masthead div to get
our Web 2.0 gradient and cute icons, and then we call <g:layoutBody> to render the
BODY section of the target page E.

 Let’s refresh our browser to see how we’re doing. Figure 1.7 shows our styled page.

Our app is looking good. Notice how we’ve made no changes to our relatively bland
random.gsp file. Keeping view pages free of cosmetic markup reduces your mainte-
nance overhead significantly. And if you need to change your masthead, add some
more JavaScript includes, or incorporate a few additional CSS files. You do it all in one
place: the template.

 Fantastic. We’re up and running with a controller, view, and template. But things
are still pretty static in the data department. We’re probably a little overdue to learn
how Grails handles stuff in the database. Once we have that under our belt, we can cir-
cle back and implement a real random action.

1.4 Creating the domain model
We’ve begun our application, and we can deploy it to our testing web container. But
let’s not overstate our progress—Google isn’t about to buy us just yet. Our app lacks a
certain pizzazz. It’s time to add some interactivity so that our users can add new quota-
tions to the database. To store those quotations, we’re going to need to learn how
Grails handles the data model.

 Grails uses the term “domain class” to describe those objects that can be persisted
to the database. In our QOTD app, we’re going to need a few domain classes, but let’s
start with the absolute minimum: a domain class to hold our quotations.

Figure 1.7 QOTD with some
funky CSS skinning

18 CHAPTER 1 Grails in a hurry...

 Let’s create a Quote domain class:

grails create-domain-class quote

In your Grails application, domain classes always end up under /grails-app/domain.
Take a look at the skeleton class Grails has created in /grails-app/domain/Quote.
groovy:

class Quote {

 static constraints = {
 }

}

That’s pretty uninspiring. We’re going to need some fields in our data model to hold
the various elements for each quote. Let’s beef up our class to hold the content of the
quote, the name of the author, and the date the entry was added, as shown in
listing 1.8.

class Quote {

 String content
 String author
 Date created = new Date()

 static constraints = {
 }
}

Now that we’ve got our data model, we need to go off and create our database
schema, right? Wrong. Grails does all that hard work for you behind the scenes. Based
on the definitions of the types in listing 1.8, and by applying some simple conventions,
Grails creates a quote table, with varchar fields for the strings, and Date fields for the
date. The next time we run grails run-app, our data model will be created on the fly.

 But how will it know which database to create the tables in? It’s time to configure a
data source.

1.4.1 Configuring the data source

Grails ships with an in-memory database out of the box, so if you do nothing, your data
will be safe and sound in volatile RAM. The idea of that makes most programmers a lit-
tle nervous, so let’s look at how we can set up a database that’s a little more persistent.

 In your /grails-app/conf/ directory, you’ll find a file named DataSource.groovy.
This is where you define the data source (database) that your application will use—
you can define different databases for your development, test, and production envi-
ronments. When you run grails run-app to start the local web server, it uses your
development data source. Listing 1.9 shows an extract from the standard DataSource
file, which shows the default data source.

Listing 1.8 Our first domain class with teeth

19Creating the domain model

development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:hsqldb:mem:devDB"
 }
}

We have two issues here. The first is that the dbCreate strategy tells Grails to drop and
re-create your database on each run. This is probably not what you want, so let’s
change that to update, so Grails knows to leave our database table contents alone
between runs (but we give it permission to add columns if it needs to).

 The second issue relates to the URL—it’s using an HSQLDB in-memory database.
That’s fine for test scripts, but not so good for product development. Let’s change it to
a file-based version of HSQLDB so we have some real persistence.

 Our updated file is shown in listing 1.10.

development {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:file:devDB;shutdown=true"
 }
}

Now we have a database that’s persisting our data, so let’s look at how we can populate
it with some sample data.

1.4.2 Exploring database operations

We haven’t done any work on our user interface yet, but it would be great to be able to
save and query entries in our quotes table. To do this for now, we’ll use the Grails con-
sole—a small GUI application that will start your application outside of a web server
and give you a console to issue Groovy commands.

 You can use the grails console command to tinker with your data model before
your app is ready to roll. When we issue this command, our QOTD Grails application is
bootstrapped, and the console GUI appears, waiting for us to enter some code.
Figure 1.8 shows saving a new quote to the database via the console.
For our first exploration of the data model, it would be nice to create and save some
of those Quote objects. Type the following into the console window, and then click the
Run button (at the far right of the toolbar):

new Quote(author: 'Larry Wall',
 content: 'There is more than one method to our madness.').save()

The bottom half of the console will let you know you’re on track:

Result: Quote : 1

Listing 1.9 Data source definition—in memory

Listing 1.10 Data source definition—persistent

Recreates database
on every run

Specifies an in-memory
database

Preserves tables
between runs

Specifies file-based
database

20 CHAPTER 1 Grails in a hurry...

Where did that save() routine come from? Grails automatically endows domains with
certain methods. Let’s add a few more entries, and we’ll get a taste of querying:

new Quote(author: 'Chuck Norris Facts', content: 'Chuck Norris always uses his
own design patterns, and his favorite is the Roundhouse Kick').save()

new Quote(author: 'Eric Raymond', content: 'Being a social outcast helps you
stay concentrated on the really important things, like thinking and
hacking.').save()

Let’s use another one of those dynamic methods (count()) to make sure that our
data is being saved to the database correctly:

println Quote.count()
3

Looks good so far. It’s time to roll up our sleeves and do some querying on our Quote
database. To simplify database searches, Grails introduces special query methods on
your domain class called dynamic finders. These special methods utilize the names of
fields in your domain model to make querying as simple as this:

def quote = Quote.findByAuthor("Larry Wall")
println quote.content
There is more than one method to our madness.

Now that we know how to save and query, it’s time to start getting our web application
up and running. Exit the Grails console, and we’ll learn a little about getting those
quotes onto the web.

1.5 Adding UI actions
Let’s get something on the web. First, we’ll need an action on our QuoteController to
return a random quote from our database. We’ll work out the random selection

Figure 1.8 The Grails console lets your run commands from a GUI.

21Adding UI actions

later—for now, let’s cut some corners and fudge our sample data, as shown in
listing 1.11.

def random = {
 def staticQuote = new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat quiche")
 [quote : staticQuote]
}

We’ll also need to update our /grails-app/views/quote/random.gsp file to use our
new Quote object:

<q>${quote.content}</q>
<p>${quote.author}</p>

There’s nothing new here, just a nicer data model. This would be a good time to
refresh your browser and see our static quote being passed through to the view. Give it
a try to convince yourself it’s all working.

 Now that you have a feel for passing model objects to the view, and now that we
know enough querying to be dangerous, let’s rework our action in listing 1.12 to
implement a real random database query.

def random = {

 def allQuotes = Quote.list()
 def randomQuote
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]
 } else {
 randomQuote = new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat Quiche")
 }
 [quote : randomQuote]

}

With our reworked random action, we’re starting to take advantage of some real data-
base data. The list() method B will return the complete set of Quote objects from
the quote table in the database and populate our allQuotes collection. If there are
any entries in the collection, we select a random one C based on an index into the
collection; otherwise, we use a static quote D. With all the heavy lifting done, we
return a randomQuote object to the view in a variable called quote E, which we can
access in the GSP file.

 Now that we’ve got our random feature implemented, let’s head back to http://
localhost:8080/qotd/quote/random to see it in action. Figure 1.9 shows our random
feature in action.

Listing 1.11 Random refactored

Listing 1.12 A database-driven random

Obtains list of
quotes

B

Selects
random
quote

C

Generates
default quote

D

Passes quote to
the viewE

http://localhost:8080/qotd/quote/random
http://localhost:8080/qotd/quote/random

22 CHAPTER 1 Grails in a hurry...

1.5.1 Scaffolding: just add rocket fuel

We’ve done all the hard work of creating our data model. Now we need to enhance
our controller to handle all the CRUD actions to let users put their own quotes in the
database.

 That’s if we want to do a slick job of it. But if we want to get up and running
quickly, Grails offers us a fantastic shortcut called scaffolding. Scaffolds dynamically
implement basic controller actions and views for the common things you’ll want to do
when CRUDing your data model.

 How do we scaffold our screens for adding and updating quote-related data? It’s a
one-liner for the QuoteController, as shown in listing 1.13.

class QuoteController {
 def scaffold = true
 // our other stuff here...
}

That’s it. When Grails sees a controller marked as scaffold = true, it goes off and
creates some basic controller actions and GSP views on the fly. If you’d like to see it in
action, head over to http://localhost:8080/qotd/quote/list and you’ll find something
like the edit page shown in figure 1.10.

Listing 1.13 Enabling scaffolding

Figure 1.9 Our random quote
feature in action

Figure 1.10 The list() scaffold in action

http://localhost:8080/qotd/quote/list

23Adding UI actions

Click on the New Quote button, and you’ll be up and running. You can add your new
quote as shown in figure 1.11.

 That’s a lot of power to get for free. The generated scaffolds are probably not tidy
enough for your public-facing sites, but they’re absolutely fantastic for your admin
screens and perfect for tinkering with your database during development (where you
don’t want the overhead of mocking together a bunch of CRUD screens).

1.5.2 Surviving the worst case scenario

Our model is looking good and our scaffolds are great, but we’re still missing some
pieces to make things a little more robust. We don’t want users putting dodgy stuff in
our database, so let’s explore some validation.

 Validation is declared in our Quote object, so we just need to populate the con-
straints closure with all the rules we’d like to apply. For starters, let’s make sure that
users always provide a value for the author and content fields, as shown in listing 1.14.

class Quote {

 String content
 String author
 Date created = new Date()

 static constraints = {
 author(blank:false)
 content(maxSize:1000, blank:false)
 }

}

These constraints tell Grails that neither author nor content can be blank (neither
null nor 0 length). If we don’t specify a size for String fields, they’ll end up being
defined VARCHAR(255) in our database. That’s probably fine for author fields, but our
content may expand on that a little. That’s why we’ve added a maxSize constraint.

Listing 1.14 Adding basic validation

Figure 1.11 Adding a quote has never been easier.

Enforces data
validation

24 CHAPTER 1 Grails in a hurry...

 Entries in the constraints closure also affect the generated scaffolds. For exam-
ple, the ordering of entries in the constraints closure also affects the order of the
fields in generated pages. Fields with constraint sizes greater than 255 characters are
rendered as HTML TEXTAREAs rather than TEXT fields. Figure 1.12 shows how error mes-
sages display when constraints are violated.

1.6 Improving the architecture
Spreading logic across our controller actions is all well and good. It’s pretty easy to
track down what goes where in our small app, and maintenance isn’t a concern right
now. But as our quotation app grows, we’ll find that things get a little more com-
plex. We’ll want to reuse logic in different controller actions, and even across con-
trollers. It’s time to tidy up our business logic, and the best way to do that in Grails is
via a service.

 Let’s create our service and learn by doing:

grails create-service quote

This command creates a skeleton quote service in /grails-app/services/Quote-
Service.groovy:

class QuoteService {

 boolean transactional = true

 def serviceMethod() {

 }
}

Figure 1.12 When constraints are violated, error messages appear in red.

25Improving the architecture

You’ll notice that services can be marked transactional—more on that later. For now,
let’s move our random quote business logic into its own method in the service, as
shown in listing 1.15.

class QuoteService {

 boolean transactional = false

 def getStaticQuote() {
 return new Quote(author: "Anonymous",
 content: "Real Programmers Don't eat quiche")
 }

 def getRandomQuote() {

 def allQuotes = Quote.list()
 def randomQuote = null
 if (allQuotes.size() > 0) {
 def randomIdx = new Random().nextInt(allQuotes.size())
 randomQuote = allQuotes[randomIdx]
 } else {
 randomQuote = getStaticQuote()
 }
 return randomQuote

 }
}

Now our service is implemented. How do we use it in our controller? Again, con-
ventions come into play. We just add a new field to our controller called quote-
Service, and Grails will inject the service into the controller. Listing 1.16 shows the
updated code.

class QuoteController {

 def scaffold = true

 def quoteService

 def random = {
 def randomQuote = quoteService.getRandomQuote()
 [quote : randomQuote]
 }

}

Doesn’t that feel much tidier? Our QuoteService looks after all the business logic
related to quotes, and our QuoteController helps itself to the methods it needs. If
you have experience with Inversion of Control (IoC) containers, such as Spring or
Google Guice, you will recognize this pattern of application design as Dependency
Injection (DI). Grails takes DI to a whole new level by using the convention of variable
names to determine what gets injected. But we have yet to write a test for our business
logic, so now’s the time to explore Grails’ support for testing.

Listing 1.15 Beefing up our service

Listing 1.16 Invoking our service

26 CHAPTER 1 Grails in a hurry...

1.6.1 Your first Grails test case

Testing is a core part of today’s agile approach to development, and Grails’ support
for testing is wired right into the framework. Grails is so insistent about testing that
when we created our QuoteService, Grails automatically created a shell unit-test case
in /grails-app/test/unit/QuoteServiceTests.groovy to encourage us to do the right
thing. But unit tests (which we’ll explore in chapter 7) require a bit of mock trickery
to simulate database calls. For now, we want an integration test (which gives us a “real”
in-memory database to test against). We create one of those with this command:

grails create-integration-test QuoteServiceIntegration

This will tell Grails to create a shell /grails-app/test/integration/QuoteService-
IntegrationTests.groovy file. We’ve given the test an “IntegrationTests” suffix to make
sure its class name doesn’t clash with our existing unit test in /test/unit/Quote-
ServiceTests.groovy. Listing 1.17 shows what the initial integration test looks like.

import grails.test.*

class QuoteServiceTests extends GrailsUnitTestCase {

 protected void setUp() {
 super.setUp()
 }

 protected void tearDown() {
 super.tearDown()
 }

 void testSomething() {

 }
}

It’s not much, but it’s enough to get us started. The same Convention over Configura-
tion rules apply to tests, so let’s beef up our QuoteServiceIntegrationTests case to
inject the service that’s under test, as shown in listing 1.18.

class QuoteServiceTests extends GrailsUnitTestCase {

 def quoteService

 void testStaticQuote() {
 def staticQuote = quoteService.getStaticQuote()
 assertEquals("Anonymous", staticQuote.author)
 assertEquals("Real Programmers Don't eat Quiche", staticQuote.content)
 }
}

There’s not too much that can go wrong with the getStaticQuote() routine, but let’s
give it a workout for completeness. To run your tests, execute grails test-app. You
should see something like the results in listing 1.19.

Listing 1.17 Our first test case

Listing 1.18 Adding real tests

27Improving the architecture

Running 1 Integration Tests...
Running test QuoteServiceIntegrationTests...
 testStaticQuote...SUCCESS
Integration Tests Completed in 284ms

Listing 1.19 shows us that our tests are running fine. Grails also generates an HTML
version of our test results, which you can view by opening /grails-app/test/reports/
html/index.html in a web browser. From there you can browse the whole project’s test
results visually and drill down into individual tests to see what failed and why, as shown
in figure 1.13.

We’ll learn how to amp up our test-coverage in chapter 7, but for now we have a test
up and running, and we know how to view the output.

1.6.2 Going Web 2.0: Ajax-ing the view

Our sample application wouldn’t be complete without adding a little Ajax (Asynchro-
nous JavaScript and XML) secret sauce to spice things up. If you haven’t heard much
about Ajax, it’s a way of updating portions of a web page using JavaScript. By using a
little Ajax, we can make our web application a lot more responsive by updating the
quote without having to reload the masthead banners and all our other page content.
It also gives us a chance to look at Grails tag libraries.

 Let’s Ajax-ify our random.gsp view. First, we have to add the Ajax library to our
<head> element (we’ll use Prototype, but Grails also lets you use YUI, Dojo, or others).
An updated portion of random.gsp is shown in listing 1.20.

Listing 1.19 Test output

Figure 1.13 HTML reports from the integration test run

28 CHAPTER 1 Grails in a hurry...

<head>
 <title>Random Quote</title>
 <g:javascript library="prototype" />
</head>

Then, in the page body of random.gsp, we’ll add a menu section that allows the user
to display a new quote or head off to the admin screens. We’ll use Grails’ taglibs to cre-
ate both our Ajax link for refreshing quotes and our standard link for the admin inter-
face. Listing 1.21 shows our new menu HTML. We’ll add this snippet before the <div>
tag that hosts the body of the page.

<ul id="menu">

 <g:remoteLink action="ajaxRandom" update="quote">
 Next Quote
 </g:remoteLink>

 <g:link action="list">
 Admin
 </g:link>

You’ve seen these sorts of tag library calls earlier in the chapter (in section 1.3.3),
where we used them to generate a standardized layout for our application. In this
example, we introduce a g:remoteLink, Grails’ name for an Ajax hyperlink, and
g:link, which is the tag for generating a standard hyperlink.

 When you click on this link, Grails will call the ajaxRandom action on the control-
ler that sent it here—in our case, the QuoteController—and will place the returned
HTML inside the div that has an ID of quote. But we haven’t written our ajaxRandom
action, so let’s get to work. Listing 1.22 shows the updated fragment of Quote-
Controller.groovy with the new action.

def ajaxRandom = {
 def randomQuote = quoteService.getRandomQuote()
 render "<q>${randomQuote.content}</q>" +
 "<p>${randomQuote.author}</p>"
}

We’d already done the heavy lifting in our quote service, so we can reuse that here.
Because we don’t want our Grails template to decorate our output, we’re going to
write our response directly to the browser (we’ll talk about more elegant ways of doing
this in later chapters). Let’s take our new Ajax app for a spin, as shown in figure 1.14.

Listing 1.20 Adding a JavaScript library for Ajax

Listing 1.21 Invoking Ajax functionality

Listing 1.22 The server side of Ajax

29Improving the architecture

To convince yourself that all the Ajax snazziness is in play, click on the Next Quote
menu item a few times. Notice how there’s no annoying repaint of the page? You’re
living the Web 2.0 dream.

1.6.3 Bundling the final product: creating a WAR file

Look how much we’ve achieved in half an hour! But it’s no good running the app on
your laptop—you need to set it free and deploy it to a real server out there in the
cloud. For that, you’ll need a WAR file, and Grails makes creating one a one-liner:

grails war

Watch the output, and you’ll see Grails bundling up all the JARs it needs, along with
your Grails application files, and creating the WAR file in your project’s root directory:

Done creating WAR /Users/glen/qotd/qotd-0.1.war

Now you’re ready to deploy.

1.6.4 And 55 lines of code later

We’ve learned a lot. And we’ve coded a fair bit too. But don’t take my word for it; let’s
let Grails crunch the numbers for us with a grails stats command. Listing 1.23
shows the grails stats command in action.

grails stats

 +----------------------+-------+-------+
 | Name | Files | LOC |
 +----------------------+-------+-------+
 | Controllers | 1 | 13 |
 | Domain Classes | 1 | 9 |
 | Services | 1 | 17 |
 | Integration Tests | 3 | 16 |
 +----------------------+-------+-------+
 | Totals | 6 | 55 |
 +----------------------+-------+-------+

Listing 1.23 Crunching numbers: the grails stats command in action

Figure 1.14 Our Ajax view in action

30 CHAPTER 1 Grails in a hurry...

Only 55 lines of code (LOC)! Maybe we haven’t coded as much as we thought. Still,
you’d have to say that 55 lines isn’t too shabby for an Ajax-powered, user-editable, ran-
dom quote web application.

 That was quite an introduction to Grails. We’ve had a taste of models, views, con-
trollers, services, taglibs, layouts, and unit tests. And there’s much more to explore.
But before we go any further, it might be good to explore a little Groovy.

1.7 Summary and best practices
Congratulations, you’ve written and deployed your first Grails app, and now you have
a feel for working from scratch to completed project. The productivity rush can be
quite addictive.

 Here are a few key tips you should take away from this chapter:

■ Rapid iterations are key. The most important take-away for this chapter is that
Grails fosters rapid iterations to get your application up and running in record
time, and you’ll have a lot of fun along the way.

■ Noise reduction fosters maintenance and increases velocity. By embracing Conven-
tion over Configuration, Grails gets rid of tons of XML configuration that used
to kill Java web frameworks.

■ Bootstrapping saves time. For the few cases where you do need scaffolding code
(for example, in UI design), Grails generates all the shell boilerplate code to get
you up and running. This is another way Grails saves you time.

■ Testing is inherent. Grails makes writing test cases easy. It even creates shell arti-
facts for your test cases. Take the time to learn Grails’ testing philosophy (which
we’ll look at in depth in chapter 7) and practice it in your daily development.

There’s certainly a lot more to learn. We’ll spend the rest of the book taking you
through all the nuts and bolts of developing full-featured, robust, and maintainable
web apps using Grails, and we’ll point out the tips, tricks, and pitfalls along the way.

