

Java Generics and Collections
by Maurice Naftalin and Philip Wadler

Copyright © 2007 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Services: Windfall Software

Indexers: Maurice Naftalin and Philip Wadler
Cover Designer: Karen Montgomery

Printing History:

October 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Java Generics and Collections, the image of an alligator, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52775-6
ISBN-13: 978-0-596-52775-4

[M]

,copyright.10191 Page iv Wednesday, October 4, 2006 12:03 PM

This excerpt is protected by copyright law. It is your
responsibility to obtain permissions necessary for any

proposed use of this material. Please direct your
inquiries to permissions@oreilly.com.

mailto:permissions@oreilly.com

CHAPTER 5

Evolution, Not Revolution

One motto underpinning the design of generics for Java is evolution, not revolution. It must
be possible to migrate a large, existing body of code to use generics gradually (evolution)
without requiring a radical, all-at-once change (revolution). The generics design ensures
that old code compiles against the new Java libraries, avoiding the unfortunate situation in
which half of your code needs old libraries and half of your code needs new libraries.

The requirements for evolution are much stronger than the usual backward compatibility.
With simple backward compatibility, one would supply both legacy and generic versions
for each application; this is exactly what happens in C#, for example. If you are building on
top of code supplied by multiple suppliers, some of whom use legacy collections and some
of whom use generic collections, this might rapidly lead to a versioning nightmare.

What we require is that the same client code works with both the legacy and generic versions
of a library. This means that the supplier and clients of a library can make completely
independent choices about when to move from legacy to generic code. This is a much
stronger requirement than backward compatibility; it is called migration compatibility or
platform compatibility.

Java implements generics via erasure, which ensures that legacy and generic versions
usually generate identical class files, save for some auxiliary information about types. It
is possible to replace a legacy class file by a generic class file without changing, or even
recompiling, any client code; this is called binary compatibility.

We summarize this with the motto binary compatibility ensures migration compatibility—
or, more concisely, erasure eases evolution.

This section shows how to add generics to existing code; it considers a small example, a
library for stacks that extends the Collections Framework, together with an associated client.
We begin with the legacy stack library and client (written for Java before generics), and then
present the corresponding generic library and client (written for Java with generics). Our
example code is small, so it is easy to update to generics all in one go, but in practice the
library and client will be much larger, and we may want to evolve them separately. This is
aided by raw types, which are the legacy counterpart of parameterized types.

61

The parts of the program may evolve in either order. You may have a generic library with
a legacy client; this is the common case for anyone that uses the Collections Framework in
Java 5 with legacy code. Or you may have a legacy library with a generic client; this is the
case where you want to provide generic signatures for the library without the need to rewrite
the entire library. We consider three ways to do this: minimal changes to the source, stub
files, and wrappers. The first is useful when you have access to the source and the second
when you do not; we recommend against the third.

In practice, the library and client may involve many interfaces and classes, and there may
not even be a clear distinction between library and client. But the same principles discussed
here still apply, and may be used to evolve any part of a program independently of any other
part.

5.1 Legacy Library with Legacy Client
We begin with a simple library of stacks and an associated client, as presented in Exam-
ple 5.1. This is legacy code, written for Java 1.4 and its version of the Collections Frame-
work. Like the Collections Framework, we structure the library as an interface Stack (anal-
ogous to List), an implementation class ArrayStack (analogous to ArrayList), and a
utility class Stacks (analogous to Collections). The interface Stack provides just three
methods: empty, push, and pop. The implementation class ArrayStack provides a single
constructor with no arguments, and implements the methods empty, push, and pop using
methods size, add, and remove on lists. The body of pop could be shorter—instead of as-
signing the value to the variable, it could be returned directly—but it will be interesting to
see how the type of the variable changes as the code evolves. The utility class provides just
one method, reverse, which repeatedly pops from one stack and pushes onto another.

The client allocates a stack, pushes a few integers onto it, pops an integer off, and then
reverses the remainder into a fresh stack. Since this is Java 1.4, integers must be explicitly
boxed when passed to push, and explicitly unboxed when returned by pop.

5.2 Generic Library with Generic Client
Next, we update the library and client to use generics, as presented in Example 5.2. This is
generic code, written for Java 5 and its version of the Collections Framework. The interface
now takes a type parameter, becoming Stack<E> (analogous to List<E>), and so does the
implementing class, becoming ArrayStack<E> (analogous to ArrayList<E>), but no type
parameter is added to the utility class Stacks (analogous to Collections). The type Object
in the signatures and bodies of push and pop is replaced by the type parameter E. Note that
the constructor in ArrayStack does not require a type parameter. In the utility class, the
reverse method becomes a generic method with argument and result of type Stack<T>.
Appropriate type parameters are added to the client, and boxing and unboxing are now
implicit.

In short, the conversion process is straightforward: just add a few type parameters and
replace occurrences of Object by the appropriate type variable. All differences between

62 Chapter 5: Evolution, Not Revolution

Example 5.1. Legacy library with legacy client

l/Stack.java:
interface Stack {

public boolean empty();
public void push(Object elt);
public Object pop();

}

l/ArrayStack.java:
import java.util.*;
class ArrayStack implements Stack {

private List list;
public ArrayStack() { list = new ArrayList(); }
public boolean empty() { return list.size() == 0; }
public void push(Object elt) { list.add(elt); }
public Object pop() {

Object elt = list.remove(list.size()-1);
return elt;

}
public String toString() { return "stack"+list.toString(); }

}

l/Stacks.java:
class Stacks {

public static Stack reverse(Stack in) {
Stack out = new ArrayStack();
while (!in.empty()) {

Object elt = in.pop();
out.push(elt);

}
return out;

}
}

l/Client.java:
class Client {

public static void main(String[] args) {
Stack stack = new ArrayStack();
for (int i = 0; i<4; i++) stack.push(new Integer(i));
assert stack.toString().equals("stack[0, 1, 2, 3]");
int top = ((Integer)stack.pop()).intValue();
assert top == 3 && stack.toString().equals("stack[0, 1, 2]");
Stack reverse = Stacks.reverse(stack);
assert stack.empty();
assert reverse.toString().equals("stack[2, 1, 0]");

}
}

5.2 Generic Library with Generic Client 63

the legacy and generic versions can be spotted by comparing the highlighted portions of
the two examples. The implementation of generics is designed so that the two versions
generate essentially equivalent class files. Some auxiliary information about the types may
differ, but the actual bytecodes to be executed will be identical. Hence, executing the legacy
and generic versions yields the same results. The fact that legacy and generic sources yield
identical class files eases the process of evolution, as we discuss next.

5.3 Generic Library with Legacy Client
Now let’s consider the case where the library is updated to generics while the client remains
in its legacy version. This may occur because there is not enough time to convert everything
all at once, or because the library and client are controlled by different organizations.
This corresponds to the most important case of backward compatibility, where the generic
Collections Framework of Java 5 must still work with legacy clients written against the
Collections Framework in Java 1.4.

In order to support evolution, whenever a parameterized type is defined, Java also recognizes
the corresponding unparameterized version of the type, called a raw type. For instance, the
parameterized type Stack<E> corresponds to the raw type Stack, and the parameterized
type ArrayStack<E> corresponds to the raw type ArrayStack.

Every parameterized type is a subtype of the corresponding raw type, so a value of the
parameterized type can be passed where a raw type is expected. Usually, it is an error to
pass a value of a supertype where a value of its subtype is expected, but Java does permit a
value of a raw type to be passed where a parameterized type is expected—however, it flags
this circumstance by generating an unchecked conversion warning. For instance, you can
assign a value of type Stack<E> to a variable of type Stack, since the former is a subtype
of the latter. You can also assign a value of type Stack to a variable of type Stack<E>, but
this will generate an unchecked conversion warning.

To be specific, consider compiling the generic source for Stack<E>, ArrayStack<E>, and
Stacks from Example 5.2 (say, in directory g) with the legacy source for Client from
Example 5.1 (say, in directory l). Sun’s Java 5 compiler yields the following message:

% javac g/Stack.java g/ArrayStack.java g/Stacks.java l/Client.java
Note: Client.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

The unchecked warning indicates that the compiler cannot offer the same safety guarantees
that are possible when generics are used uniformly throughout. However, when the generic
code is generated by updating legacy code, we know that equivalent class files are produced
from both, and hence (despite the unchecked warning) running a legacy client with the
generic library will yield the same result as running the legacy client with the legacy library.
Here we assume that the only change in updating the library was to introduce generics, and
that no change to the behavior was introduced, either on purpose or by mistake.

64 Chapter 5: Evolution, Not Revolution

Example 5.2. Generic library with generic client

g/Stack.java:
interface Stack<E> {

public boolean empty();
public void push(E elt);
public E pop();

}

g/ArrayStack.java:
import java.util.*;
class ArrayStack<E> implements Stack<E> {

private List<E> list;
public ArrayStack() { list = new ArrayList<E>(); }
public boolean empty() { return list.size() == 0; }
public void push(E elt) { list.add(elt); }
public E pop() {

E elt = list.remove(list.size()-1);
return elt;

}
public String toString() { return "stack"+list.toString(); }

}

g/Stacks.java:
class Stacks {

public static <T> Stack<T> reverse(Stack<T> in) {
Stack<T> out = new ArrayStack<T>();
while (!in.empty()) {

T elt = in.pop();
out.push(elt);

}
return out;

}
}

g/Client.java:
class Client {

public static void main(String[] args) {
Stack<Integer> stack = new ArrayStack<Integer>();
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[0, 1, 2, 3]");
int top = stack.pop();
assert top == 3 && stack.toString().equals("stack[0, 1, 2]");
Stack<Integer> reverse = Stacks.reverse(stack);
assert stack.empty();
assert reverse.toString().equals("stack[2, 1, 0]");

}
}

5.3 Generic Library with Legacy Client 65

If we follow the suggestion above and rerun the compiler with the appropriate switch
enabled, we get more details:

% javac -Xlint:unchecked g/Stack.java g/ArrayStack.java \
% g/Stacks.java l/Client.java
l/Client.java:4: warning: [unchecked] unchecked call
to push(E) as a member of the raw type Stack

for (int i = 0; i<4; i++) stack.push(new Integer(i));
^

l/Client.java:8: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<E>

Stack reverse = Stacks.reverse(stack);
^

l/Client.java:8: warning: [unchecked] unchecked method invocation:
<E>reverse(Stack<E>) in Stacks is applied to (Stack)

Stack reverse = Stacks.reverse(stack);
^

3 warnings

Not every use of a raw type gives rise to a warning. Because every parameterized type is
a subtype of the corresponding raw type, but not conversely, passing a parameterized type
where a raw type is expected is safe (hence, no warning for getting the result from reverse),
but passing a raw type where a parameterized type is expected issues a warning (hence, the
warning when passing an argument to reverse); this is an instance of the Substitution
Principle. When we invoke a method on a receiver of a raw type, the method is treated as if
the type parameter is a wildcard, so getting a value from a raw type is safe (hence, no warning
for the invocation of pop), but putting a value into a raw type issues a warning (hence, the
warning for the invocation of push); this is an instance of the Get and Put Principle.

Even if you have not written any generic code, you may still have an evolution problem
because others have generified their code. This will affect everyone with legacy code that
uses the Collections Framework, which has been generified by Sun. So the most important
case of using generic libraries with legacy clients is that of using the Java 5 Collections
Framework with legacy code written for the Java 1.4 Collections Framework.

In particular, applying the Java 5 compiler to the legacy code in Example 5.1 also issues
unchecked warnings, because of the uses of the generified class ArrayList from the legacy
class ArrayStack. Here is what happens when we compile legacy versions of all the files
with the Java 5 compiler and libraries:

% javac -Xlint:unchecked l/Stack.java l/ArrayStack.java \
% l/Stacks.java l/Client.java
l/ArrayStack.java:6: warning: [unchecked] unchecked call to add(E)
as a member of the raw type java.util.List

public void push(Object elt) list.add(elt);
^

1 warning

66 Chapter 5: Evolution, Not Revolution

Here the warning for the use of the generic method add in the legacy method push is issued
for reasons similar to those for issuing the previous warning for use of the generic method
push from the legacy client.

It is poor practice to configure the compiler to repeatedly issue warnings that you intend
to ignore. It is distracting and, worse, it may lead you to ignore warnings that require
attention—just as in the fable of the little boy who cried wolf. In the case of pure legacy
code, such warnings can be turned off by using the -source 1.4 switch:

% javac -source 1.4 l/Stack.java l/ArrayStack.java \
% l/Stacks.java l/Client.java

This compiles the legacy code and issues no warnings or errors. This method of turning
off warnings is only applicable to true legacy code, with none of the features introduced in
Java 5, generic or otherwise. One can also turn off unchecked warnings by using annotations,
as described in the next section, and this works even with features introduced in Java 5.

5.4 Legacy Library with Generic Client
It usually makes sense to update the library before the client, but there may be cases when
you wish to do it the other way around. For instance, you may be responsible for maintaining
the client but not the library; or the library may be large, so you may want to update it
gradually rather than all at once; or you may have class files for the library, but no source.

In such cases, it makes sense to update the library to use parameterized types in its method
signatures, but not to change the method bodies. There are three ways to do this: by making
minimal changes to the source, by creating stub files, or by use of wrappers. We recommend
use of minimal changes when you have access to source and use of stubs when you have
access only to class files, and we recommend against use of wrappers.

5.4.1 Evolving a Library using Minimal Changes
The minimal changes technique is shown in Example 5.3. Here the source of the library has
been edited, but only to change method signatures, not method bodies. The exact changes
required are highlighed in boldface. This is the recommended technique for evolving a
library to be generic when you have access to the source.

To be precise, the changes required are:

• Adding type parameters to interface or class declarations as appropriate (for interface
Stack<E> and class ArrayStack<E>)

• Adding type parameters to any newly parameterized interface or class in an extends or
implements clause (for Stack<E> in the implements clause of ArrayStack<E>),

• Adding type parameters to each method signature as appropriate (for push and pop in
Stack<E> and ArrayStack<E>, and for reverse in Stacks)

5.4 Legacy Library with Generic Client 67

• Adding an unchecked cast to each return where the return type contains a type parameter
(for pop in ArrayStack<E>, where the return type is E)—without this cast, you will get
an error rather than an unchecked warning

• Optionally adding annotations to suppress unchecked warnings (for ArrayStack<E> and
Stacks)

It is worth noting a few changes that we do not need to make. In method bodies, we can
leave occurrences of Object as they stand (see the first line of pop in ArrayStack), and
we do not need to add type parameters to any occurrences of raw types (see the first line
of reverse in Stacks). Also, we need to add a cast to a return clause only when the return
type is a type parameter (as in pop) but not when the return type is a parameterized type (as
in reverse).

With these changes, the library will compile successfully, although it will issue a number
of unchecked warnings. Following best practice, we have commented the code to indicate
which lines trigger such warnings:

% javac -Xlint:unchecked m/Stack.java m/ArrayStack.java m/Stacks.java
m/ArrayStack.java:7: warning: [unchecked] unchecked call to add(E)
as a member of the raw type java.util.List

public void push(E elt) list.add(elt); // unchecked call
^

m/ArrayStack.java:10: warning: [unchecked] unchecked cast
found : java.lang.Object
required: E

return (E)elt; // unchecked cast
^

m/Stacks.java:7: warning: [unchecked] unchecked call to push(T)
as a member of the raw type Stack

out.push(elt); // unchecked call
^

m/Stacks.java:9: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>

return out; // unchecked conversion
^

4 warnings

To indicate that we expect unchecked warnings when compiling the library classes, the
source has been annotated to suppress such warnings.

@SuppressWarnings("unchecked");

(The suppress warnings annotation does not work in early versions of Sun’s compiler for
Java 5.) This prevents the compiler from crying wolf—we’ve told it not to issue unchecked
warnings that we expect, so it will be easy to spot any that we don’t expect. In particular,

68 Chapter 5: Evolution, Not Revolution

Example 5.3. Evolving a library using minimal changes

m/Stack.java:
interface Stack<E> {

public boolean empty();
public void push(E elt);
public E pop();

}

m/ArrayStack.java:
@SuppressWarnings("unchecked")
class ArrayStack<E> implements Stack<E> {

private List list;
public ArrayStack() { list = new ArrayList(); }
public boolean empty() { return list.size() == 0; }
public void push(E elt) { list.add(elt); } // unchecked call
public E pop() {

Object elt = list.remove(list.size()-1);
return (E)elt; // unchecked cast

}
public String toString() { return "stack"+list.toString(); }

}

m/Stacks.java:
@SuppressWarnings("unchecked")
class Stacks {

public static <T> Stack<T> reverse(Stack<T> in) {
Stack out = new ArrayStack();
while (!in.empty()) {

Object elt = in.pop();
out.push(elt); // unchecked call

}
return out; // unchecked conversion

}
}

once we’ve updated the library, we should not see any unchecked warnings from the client.
Note as well that we’ve suppressed warnings on the library classes, but not on the client.

The only way to eliminate (as opposed to suppress) the unchecked warnings generated by
compiling the library is to update the entire library source to use generics. This is entirely
reasonable, as unless the entire source is updated there is no way the compiler can check that
the declared generic types are correct. Indeed, unchecked warnings are warnings—rather
than errors—largely because they support the use of this technique. Use this technique only
if you are sure that the generic signatures are in fact correct. The best practice is to use this
technique only as an intermediate step in evolving code to use generics throughout.

5.4 Legacy Library with Generic Client 69

Example 5.4. Evolving a library using stubs

s/Stack.java:
interface Stack<E> {

public boolean empty();
public void push(E elt);
public E pop();

}

s/StubException.java:
class StubException extends UnsupportedOperationException {}

s/ArrayStack.java:
class ArrayStack<E> implements Stack<E> {

public boolean empty() { throw new StubException(); }
public void push(E elt) { throw new StubException(); }
public E pop() { throw new StubException(); }
public String toString() { throw new StubException(); }

}

s/Stacks.java:
class Stacks {

public static <T> Stack<T> reverse(Stack<T> in) {
throw new StubException();

}
}

5.4.2 Evolving a Library using Stubs
The stubs technique is shown in Example 5.4. Here we write stubs with generic signatures
but no bodies. We compile the generic client against the generic signatures, but run the code
against the legacy class files. This technique is appropriate when the source is not released,
or when others are responsible for maintaining the source.

To be precise, we introduce the same modifications to interface and class declarations and
method signatures as with the minimal changes technique, except we completely delete all
executable code, replacing each method body with code that throws a StubException (a
new exception that extends UnsupportedOperationException).

When we compile the generic client, we do so against the class files generated from the stub
code, which contain appropriate generic signatures (say, in directory s). When we run the
client, we do so against the original legacy class files (say, in directory l).

% javac -classpath s g/Client.java
% java -ea -classpath l g/Client

Again, this works because the class files generated for legacy and generic files are essentially
identical, save for auxiliary information about the types. In particular, the generic signatures

70 Chapter 5: Evolution, Not Revolution

that the client is compiled against match the legacy signatures (apart from auxiliary infor-
mation about type parameters), so the code runs successfully and gives the same answer as
previously.

5.4.3 Evolving a Library using Wrappers
The wrappers technique is shown in Example 5.5. Here we leave the legacy source and
class files unchanged, and provide a generic wrapper class that accesses the legacy class
via delegation. We present this technique mainly in order to warn you against its use—it is
usually better to use minimal changes or stubs.

This techique creates a parallel hierarchy of generic interfaces and wrapper classes. To be
precise, we create a new interface GenericStack corresponding to the legacy interface
Stack, we create a new class GenericWrapperClass to access the legacy implementation
ArrayStack, and we create a new class GenericStacks corresponding to the legacy
convenience class Stacks.

The generic interface GenericStack is derived from the legacy interface Stack by the same
method used in the previous sections to update the signatures to use generics. In addition,
a new method unwrap is added, that extracts the legacy implementation from a wrapper.

The wrapper class GenericStackWrapper<E> implements GenericStack<E> by delega-
tion to a Stack. The constructor takes an instance that implements the legacy interface
Stack, which is stored in a private field, and the unwrap method returns this instance. Be-
cause delegation is used, any updates made to the underlying legacy stack will be seen
through the generic stack view offered by the wrapper.

The wrapper implements each method in the interface (empty, push, pop) by a call to the
corresponding legacy method; and it implements each method in Object that is overridden
in the legacy class (toString) similarly. As with minimal changes, we add an unchecked
cast to the return statement when the return type contains a type parameter (as in pop);
without this cast you will get an error rather than an unchecked warning.

A single wrapper will suffice for multiple implementations of the same interface. For
instance, if we had both ArrayStack and LinkedStack implementations of Stack, we
could use GenericStackWrapper<E> for both.

The new convenience class GenericStacks is implemented by delegation to the legacy
class Stacks. The generic reverse method unwraps its argument, calls the legacy reverse
method, and wraps its result.

Required changes to the client in Example 5.5 are shown in boldface.

Wrappers have a number of disadvantages compared to minimal changes or stubs. Wrappers
require maintaining two parallel hierarchies, one of legacy interfaces and classes and one
of generic interfaces and classes. Conversion by wrapping and unwrapping between these
can become tedious. If and when the legacy classes are generified properly, further work
will be required to remove the redundant wrappers.

5.4 Legacy Library with Generic Client 71

Example 5.5. Evolving a library using wrappers

// Don’t do this---use of wrappers is not recommended!

l/Stack.java, l/Stacks.java, l/ArrayStack.java:
// As in Example 5.1

w/GenericStack.java:
interface GenericStack<E> {

public Stack unwrap();
public boolean empty();
public void push(E elt);
public E pop();

}

w/GenericStackWrapper.java:
@SuppressWarnings("unchecked")
class GenericStackWrapper<E> implements GenericStack<E> {

private Stack stack;
public GenericStackWrapper(Stack stack) { this.stack = stack; }
public Stack unwrap() { return stack; }
public boolean empty() { return stack.empty(); }
public void push(E elt) { stack.push(elt); }
public E pop() { return (E)stack.pop(); } // unchecked cast
public String toString() { return stack.toString(); }

}

w/GenericStacks.java:
class GenericStacks {

public static <T> GenericStack<T> reverse(GenericStack<T> in) {
Stack rawIn = in.unwrap();
Stack rawOut = Stacks.reverse(rawIn);
return new GenericStackWrapper<T>(rawOut);

}
}

w/Client.java:
class Client {

public static void main(String[] args) {
GenericStack<Integer> stack

= new GenericStackWrapper<Integer>(new ArrayStack());
for (int i = 0; i<4; i++) stack.push(i);
assert stack.toString().equals("stack[0, 1, 2, 3]");
int top = stack.pop();
assert top == 3 && stack.toString().equals("stack[0, 1, 2]");
GenericStack<Integer> reverse = GenericStacks.reverse(stack);
assert stack.empty();
assert reverse.toString().equals("stack[2, 1, 0]");

}
}

72 Chapter 5: Evolution, Not Revolution

Wrappers also present deeper and subtler problems. If the code uses object identity, prob-
lems may appear because the legacy object and the wrapped object are distinct. Further,
complex structures will require multiple layers of wrappers. Imagine applying this tech-
nique to a stack of stacks! You would need to define a two-level wrapper, that wraps or
unwraps each second-level stack as it is pushed onto or popped from the top-level stack.
Because wrapped and legacy objects are distinct, it may be hard or even impossible to always
ensure that the wrapped objects view all changes to the legacy objects.

The design of Java generics, by ensuring that legacy objects and generic objects are the same,
avoids all of these problems with wrappers. The design of generics for C# is very different:
legacy classes and generic classes are completely distinct, and any attempt to combine legacy
collections and generic collections will bump into the difficulties with wrappers discussed
here.

5.5 Conclusions
To review, we have seen both generic and legacy versions of a library and client. These
generate equivalent class files, which greatly eases evolution. You can use a generic library
with a legacy client, or a legacy library with a generic client. In the latter case, you can
update the legacy library with generic method signatures, either by minimal changes to the
source or by use of stub files.

The foundation stone that supports all this is the decision to implement generics by erasure,
so that generic code generates essentially the same class files as legacy code—a property
referred to as binary compatibility. Usually, adding generics in a natural way causes the
legacy and generic versions to be binary compatible. However, there are some corner cases
where caution is required; these are discussed in Section 8.4.

It is interesting to compare the design of generics in Java and in C#. In Java, generic types
do not carry information about type parameters at run time, whereas arrays do contain
information about the array element type at run time. In C#, both generic types and arrays
contain information about parameter and element types at run time. Each approach has
advantages and disadvantages. In the next chapter, we will discuss problems with casting
and arrays that arise because Java does not reify information about type parameters, and
these problems do not arise in C#. On the other hand, evolution in C# is much more
difficult. Legacy and generic collection classes are completely distinct, and any attempt
to combine legacy collections and generic collections will encounter the difficulties with
wrappers discussed earlier. In contrast, as we’ve seen, evolution in Java is straightforward.

5.5 Conclusions 73

