
Extracted from:

Pragmatic Version Control
using Subversion, 2nd Edition

This PDF file contains pages extracted from Pragmatic Version Control, one

of the Pragmatic Starter Kit series of books for project teams. For more

information, visit http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing).

This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and printer

versions; the content is otherwise identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any

form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the

prior consent of the publisher.

Chapter 5

Accessing a Repository
In Chapter 3, Getting Started with Subversion, on page 28,

we created a repository and learned how to access it via a

file-based URL. This is great for a single user but doesn’t

really help a whole development team collaborate properly.

In this chapter we’ll discuss the three main ways you can

make an existing repository available over the network, what

they mean for a user accessing a repository, and the pros and

cons of the various access mechanisms.

Appendix A on page 151 includes a guide for administrators

who are installing, networking, and securing Subversion.

5.1 Network Protocols

After creating our sandbox repository, we used a repository

URL to tell Subversion what we wanted to check out. This repository URL

URL included both a definition of where the repository was

and also what path inside the repository we were interested

in. Once we had a working copy we didn’t need to keep using

the repository URL, since Subversion remembers where our

working copy came from.

Repository URLs are important whenever we want to directly

access a repository (when we’re creating branches and tags or

merging big sets of changes, for example). Figure 5.1 on the

following page shows how the URL for our sandbox repository

is composed.

The first part of this URL is file. This specifies the scheme scheme

we’re using to locate the repository, in this case the local

NETWORK PROTOCOLS 56

 � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � ! " # $ % & ' $ () * $ � + ' & $, - + ' � . & ' � & , (# $ % & ' $ ()

Figure 5.1: COMPONENTS OF A REPOSITORY URL

filesystem. The next part, c:/svn-repos, tells Subversion

the repository database files are in a particular directory on

the C: drive. Finally, /sesame/trunk/ specifies the path

within the repository that we’re interested in.

Subversion supports a number of different schemes in repos-

itory URLs and even allows you to define custom extensions

yourself. Each different scheme tells Subversion to access

the repository via a particular network protocol. We’ll start by

looking at the simple svn protocol.

svn

The easiest way to network a repository is to use the svn

scheme. Subversion comes with svnserve, a small server that

listens for network connections, allows repository access over

the network, and supports simple authentication of users.

svnserve is probably most suitable for teams on a private LAN

who want to get going quickly.

If an administrator (possibly you!) has used the instructions

in Section A.2, Networking with svnserve, on page 153 to put

the Sesame repository online, you can check it out by running

work> svn co svn://olio/sesame/trunk vizier

A vizier/Number.txt

A vizier/Day.txt

Checked out revision 7.

Success! We used the svn scheme to access a repository on a

machine called olio, and we checked out the Sesame project

to a new vizier working directory.

If you’ve tried playing with the working copy on your client

machine, you might find that Subversion doesn’t let you com-

NETWORK PROTOCOLS 57

mit any changes. For example, try adding a new data file,

Month.txt, to the project:

vizier> svn add Month.txt

A Month.txt
vizier> svn commit -m "Added month data"

svn: Commit failed (details follow):

svn: Connection is read-only

If this happens, your administrator has forgotten to enable

write access to the repository (it’s read-only by default). Get

them to look at Section A.5, svnserve, on page 163 and set up

some users. Once they’ve done this, you should be asked for

a username and password when you try to commit a change:

vizier> svn commit -m "Added month data"

Authentication realm: <svn://olio:3690> sesame/trunk

Password for 'mike':
Adding Month.txt

Transmitting file data .

Committed revision 8.

Subversion decided to try username mike because that’s my

username on the client machine. If this isn’t right, just hit

Enter at the password prompt, and Subversion will let you

specify a different username.

svn+ssh

svnserve does a great job of getting a repository up on the net-

work, but it has a couple of drawbacks. Firstly, although

passwords are never transmitted in clear text over the net-

work, the contents of your files travel unencrypted. Anyone

who can sniff your network traffic can see what your files con-

tain. This might be okay for a team all on the same LAN, but if

you want to use the public Internet for accessing your repos-

itory it simply isn’t secure. Secondly, passwords are stored

in plain text in the server’s conf directory and can only be

changed by an administrator with access to the password file.

Subversion solves both of these security problems by leverag-

ing the Secure Shell (SSH). If you’re a Unix user, you might Secure Shell

already have SSH infrastructure in place for connecting to

your server. SSH employs strong encryption to protect the

contents of a client-server session. It is widely used for admin-

istering servers over the Internet. Figure 5.2 on the next page

shows how Subversion secures an svn connection using SSH.

NETWORK PROTOCOLS 58

/ 0 1

/ / 2

/ 0 1 / 3 4 0 3

/ / 2 5

6 7 8 9 : ; < = 7 1 1 3 : > 9 7 1

? @ A B C D E F G H I @ @ F A E J I @

Figure 5.2: TUNNEL SUBVERSION OVER SSH

Subversion needs an SSH client installed on your machine

in order for you to access a repository using svn+ssh. Unix

users are likely to have SSH already installed, but if you’re on

Windows, you’ll need to do a bit of work. Putty is an excel-

lent SSH client and is available from http://www.chiark.

greenend.org.uk/˜sgtatham/putty/. Download plink.exe,

and save it somewhere in your path; C:\Windows\system32 usu-

ally works. If you’re using TortoiseSVN you don’t need to

worry about installing an SSH client since Tortoise comes with

TortoisePlink.

Next you need to edit your Subversion client configuration

settings. Windows applications store user-specific data inside

a special folder, which changes location depending upon how

your computer is set up and which version of Windows you’re

using. If you’re not sure where your application data directory

is, open a command prompt and run the following:

work> echo %APPDATA%

C:\Documents and Settings\mike\Application Data

Once you’ve found your application data directory, open the

Subversion subdirectory, and edit the config file that’s inside.

Edit the section on tunnels so it looks like this:

[tunnels]

ssh=plink

You need to specify a svn+ssh scheme if you’d like Subversion

to use SSH to protect your connections. If your server accepts

SSH connections, try running

NETWORK PROTOCOLS 59

work> svn checkout \

svn+ssh://olio/home/mike/svn-repos/sesame/trunk \
princess

mike@olio's password:

A princess/Month.txt

A princess/Number.txt

A princess/Day.txt

Checked out revision 8.

This looks just like the repository URL we used earlier with

svnserve, except we changed the scheme to svn+ssh. If you’re

having problems accessing your repository, Section A.3, Trou-

bleshooting an SSH Connection, on page 156 contains a guide

to diagnosing the problem.

Subversion is now using SSH to open a connection to the

server and authenticate you as a Unix user. Subversion uses

the standard Unix user and group permissions to determine

whether the user with which we connect has permission to

access the repository. If you’re using SSH public/private keys

or an SSH agent to manage your credentials, the Subver-

sion client automatically takes advantage of this, which might

mean you don’t get asked for a password at all.

Using svn+ssh is appealing if you already have SSH accounts

for your users, because you can leverage all your existing

infrastructure. The extra security lets you connect over the

Internet without fear that someone might steal your Sesame

project code and without all the hassle of setting up a full

VPN. svn+ssh is a straightforward solution that should have

you up and running pretty fast.

http

Subversion can also host a repository over the web by using

the Apache web server. A special Subversion module, called

mod dav svn, does the hard work and allows Subversion to

share the web server with traditional web sites. Apache is

highly configurable, and Subversion takes full advantage of

its built-in security and scalability. You can host a reposi-

tory using standard http and https and leverage any of the

authentication mechanisms already supported by Apache.

You may have heard that Subversion requires Apache—this

actually isn’t true; neither svn nor svn+ssh need anything

CHOOSING A NETWORKING OPTION 60

extra to network your repository. Most prebuilt Unix pack-

ages have a dependency on Apache because they install all

three networking options, which is where the misunderstand-

ing comes from. Using Subversion with Apache is probably

the most popular solution for sharing a repository over the

Internet.

Apache provides a wealth of authentication options for users.

From basic authentication using password files to integra-

tion with a Windows domain or an LDAP server, Apache is

supremely flexible. You can even set up directory-based secu-

rity, dividing your repository into read-only or even completely

private sections. You can take advantage of standard SSL

certificates for encrypting connections to the server and avoid

firewall hassles by using standard web server port numbers.

To access a repository hosted by Apache on server olio, use

the following command:

work> svn checkout \

http://olio.mynetwork.net/svn-repos/sesame/trunk \
sesame

Authentication realm: ... Subversion repository

Password for 'mike': ******
A sesame/Month.txt

A sesame/Number.txt

A sesame/Day.txt

Checked out revision 8.

This particular repository requires an authenticated user even

for read-only access. Subversion automatically tries user-

name mike; if that’s wrong, just hit Enter instead of typing a

password, and Subversion will let you specify the username.

5.2 Choosing a Networking Option

All three network protocols for Subversion (svn, svn+ssh and

http) offer different trade-offs in terms of ease of setup, secu-

rity, and administration overhead. Which you choose will

depend on what kind of infrastructure you already have, your

security needs, and your familiarity with Apache.

It’s important to note that the networking option you choose

today doesn’t have to be the one you stick with tomorrow. Net-

working a repository simply puts it on the network—you can

change between svnserve and Apache (for example) as often as

CHOOSING A NETWORKING OPTION 61

you like. It’s also possible to support multiple different access

mechanisms at the same time, although you have to be careful

with permissions.

If your team is on a reasonably secure LAN, or even a larger

network connected by a VPN, using the simple svnserve server

and svn protocol is a quick way to get up and running with

Subversion. You’ll have some administrative overhead when

adding new users or changing passwords, but this should be

offset by the easy startup. Subversion 1.3 added directory-

based authorization to svnserve making it almost as flexible as

Apache for teams on the same LAN.

If you already have existing SSH infrastructure in place, using

svn+ssh makes a lot of sense. You get strong crypto protect-

ing your connections and can take advantage of all of the key-

management and authentication options that SSH provides.

Make sure your Unix administrator understands how groups,

umasks, and sticky bits need to be set up before proceeding,

though.

If you want to host a repository over the Internet, leverage

Apache’s wide range of authentication mechanisms, or simply

play with the big boys and run a “real” server, using Apache

to host your Subversion repository is the way to go. You’ll be

able to use SSL and client-server certificates for encryption

and verifying you’re really talking to whom you think you’re

talking to, and you’ll be able to authorize users using a Win-

dows domain, LDAP, or any other authentication mechanism

that Apache supports. You’ll also be able to be much more

precise about which parts of a repository users have access

to, by leveraging the mod authz svn Apache module. Using

Apache on standard HTTP ports also means fewer holes need

to be opened on your firewalls. Your network administrator

will thank you for that.

Pragmatic Starter Kit
Version Control. Unit Testing. Project Automation. Three great titles, one

objective. To get you up to speed with the essentials for successful project

development. Keep your source under control, your bugs in check, and your

process repeatable with these three concise, readable books from The Prag-

matic Bookshelf.

The CVS companion to this book • Keep your

project assets safe—never lose a great idea

• Know how to UNDO bad decisions—no mat-

ter when they were made • Learn how to

share code safely, and work in parallel • See

how to avoid costly code freezes • Manage 3
rd

party code • Understand how to go back in

time, and work on previous versions.

Pragmatic Version Control using CVS

Dave Thomas and Andy Hunt

(176 pages) ISBN: 0-9745140-0-4. $29.95

• Write better code, faster • Discover the hid-

ing places where bugs breed • Learn how to

think of all the things that could go wrong

• Test pieces of code without using the whole

project • Use JUnit to simplify your test code

• Test effectively with the whole team.

Pragmatic Unit Testing

Andy Hunt and Dave Thomas

(176 pages) ISBN: 0-9745140-1-2. $29.95

(Also available for C#, ISBN: 0-9745140-2-0)

• Common, freely available tools which auto-

mate build, test, and release procedures

• Effective ways to keep on top of problems

• Automate to create better code, and save

time and money • Create and deploy releases

easily and automatically • Have programs to

monitor themselves and report problems.

Pragmatic Project Automation

Mike Clark

(176 pages) ISBN: 0-9745140-3-9. $29.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog

Pragmatic Starter Kit
Version Control. Unit Testing. Project Automation. Three great titles, one

objective. To get you up to speed with the essentials for successful project

development. Keep your source under control, your bugs in check, and your

process repeatable with these three concise, readable books from The Prag-

matic Bookshelf.

Visit Us Online
Pragmatic Version Control using Subversion

pragmaticprogrammer.com/titles/svn

Source code from this book, errata, and other resources. Come give us feed-

back, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list,

interact with our wiki, and benefit from the experience of other Pragmatic

Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s

available for purchase at our store: pragmaticprogrammer.com/\HomePageUrl.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

