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Abstract
We introduce two new functionals, the constrained covariance and the kernel mutual information, to measure
the degree of independence of random variables. These quantities are both based on the covariance between
functions of the random variables in reproducing kernel Hilbert spaces (RKHSs). We prove that when the
RKHSs are universal, both functionals are zero if and only if the random variables are pairwise independent.
We also show that the kernel mutual information is an upper bound near independence on the Parzen window
estimate of the mutual information. Analogous results apply for two correlation-based dependence functionals
introduced earlier: we show the kernel canonical correlation and the kernel generalised variance to be indepen-
dence measures for universal kernels, and prove the latter to be an upper bound on the mutual information near
independence. The performance of the kernel dependence functionals in measuring independence is verified
in the context of independent component analysis.
Keywords: independence, covariance operator, mutual information, kernel, parzen window estimate, inde-
pendent component analysis

1. Introduction
Measures to determine the dependence or independence of random variables are well established in statistical
analysis. For instance, one well known measure of statistical dependence between two random variables is
the mutual information (Cover and Thomas, 1991), which for random vectors x,y is zero if and only if
the random vectors are independent. This may also be interpreted as the KL divergence D KL

(
px,y||pxpy

)

between the joint density and the product of the marginal densities; the latter quantity generalises readily to
distributions of more than two random variables (there exist other methods for independence measurement:
see for instance Ingster, 1989).

There has recently been considerable interest in using criteria based on functions in reproducing kernel
Hilbert spaces to measure dependence, notably in the context of independent component analysis. 1 This was
first accomplished by Bach and Jordan (2002a), who introduced kernel dependence functionals that signifi-

1. The problem of instantaneous independent component analysis involves the recovery of linearly mixed, i.i.d. sources, in the absence
of information about the source distributions beyond their mutual independence (Hyvärinen et al., 2001).
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Table 1: Table of kernel dependence functionals. Columns show whether the functional is covariance or
correlation based, and rows indicate whether the dependence measure is the maximum singular
value of the covariance/correlation operator, or a bound on the mutual information.

Covariance Correlation
Max.
singular
value

COCO (Gretton
et al., 2005b) KCC (Bach and

Jordan, 2002a)

MI bound
KMI

KGV (Bach and
Jordan, 2002a)

cantly outperformed alternative approaches, including for source distributions that are difficult for standard
ICA methods to deal with. In the present study, we build on this work with the introduction of two novel
kernel-based independence measures. The first, which we call the constrained covariance (COCO), is simply
the spectral norm of the covariance operator between reproducing kernel Hilbert spaces. We prove COCO
to be zero if and only if the random variables being tested are independent, as long as the RKHSs used
to compute it are universal. The second functional, called the kernel mutual information (KMI), is a more
sophisticated measure of dependence, being a function of the entire spectrum of the covariance operator.
We show that the KMI is an upper bound near independence on a Parzen window estimate of the mutual
information, which becomes tight (i.e., zero) when the random variables are independent, again assuming
universal RKHSs. Note that Gretton et al. (2003a,b) attempted to show a link with the Parzen window esti-
mate, although this earlier proof is wrong - the reader may compare Section 3 in the present document with
the corresponding section of the original technical report, since the differences are fairly obvious. 2

The constrained covariance has substantial precedent in the dependence testing literature. Indeed, Rényi
(1959) suggested using the functional covariance or correlation to measure the dependence of random vari-
ables (implementation details depend on the nature of the function spaces chosen: the use of RKHSs is a
more recent innovation). Thus, rather than using the covariance, we may consider a kernelised canonical
correlation (KCC) (Bach and Jordan, 2002a; Leurgans et al., 1993), which is a regularised estimate of the
spectral norm of the correlation operator between reproducing kernel Hilbert spaces. It follows from the
properties of COCO that the KCC is zero at independence for universal kernels, since the correlation differs
from the covariance only in its normalisation: at independence, where both the KCC and COCO are zero, this
normalisation is immaterial. The introduction of a regulariser requires a new parameter that must be tuned,
however, which was not needed for COCO or the KMI.

Another kernel method for dependence measurement, the kernel generalised variance (KGV) (Bach and
Jordan, 2002a), extends the KCC by incorporating the entire spectrum of its associated correlation operator:
in this respect, the KGV and KMI are analogous (see Table 1). Indeed, we prove here that under certain
reasonable and easily enforced conditions, the KGV is an upper bound on the KMI (and hence on the mutual
information near independence), which also becomes tight at independence. A relation between the KGV
and the mutual information is also proposed by Bach and Jordan (2002a), who rely on a limiting argument in
which the RKHS kernel size approaches zero (no Parzen window estimate is invoked): our discussion of this
proof is given in Appendix B.2.

We should warn the reader that results presented in this study have a conceptual emphasis: we attempt
to build on the work of Bach and Jordan (2002a) by on one hand exploring the mechanism by which kernel
covariance operator-based functionals measure independence (including a characterisation of all kernels that
induce independence measures), and on the other hand demonstrating the link between kernel dependence

2. Briefly, we now use Lemma 27 as a basis for our proof, which applies to every singular value of a matrix product; our earlier
proof relied on Theorem 4.2.2 of Gretton et al. (2003a), which implies a result only for the largest singular value, and is therefore
insufficient. On the other hand, we believe that the proof given by Gretton (2003) in Chapter 9 is correct, but the approach is a bit
clumsy, and much longer than it needs to be.
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Table 2: Table of acronyms
Acronym Description
COCO Constrained covariance
ICA Independent component analysis
KCC Kernel canonical correlation
KGV Kernel generalised variance
KMI Kernel mutual information
RKHS Reproducing kernel Hilbert space

functionals and the mutual information. That said, we observe differences in practice when the various kernel
methods are applied in ICA: the KMI generally outperforms the KGV for many sources/large sample sizes,
whereas the KGV gives best performance for small sample sizes. The choice of regulariser for the KGV (and
KCC) is also crucial, since a badly chosen regularisation is severely detrimental to performance when outlier
noise is present. The KMI and COCO are robust to outliers, and yield experimental performance equivalent
to the KGV and KCC with optimal regulariser choice, but without any tuning required.

The COCO and KCC dependence functionals for the 2-variable case are described in Section 2, and it
is shown that these measure independence when the associated kernels are universal. The main results in
this section are Definition 2, which presents both the population COCO and its empirical counterpart, and
Theorem 6, which shows that COCO is an independence measure. Section 3 contains derivations of the
kernel-based upper bounds on the mutual information, and proofs that these latter quantities likewise mea-
sure independence. In particular, the kernel mutual information is introduced in Definition 14, its use as
an independence measure is justified by Theorem 15, and its relation to the mutual information is provided
in Theorem 16. A generalisation to more than two variables, which permits the measurement of pairwise
independence, is also presented. Section 4 addresses the application of kernel dependence measures to in-
dependent component analysis, including a method for reducing computational cost and a gradient descent
technique (these being adapted straightforwardly from Bach and Jordan, 2002a). Finally, Section 5 describes
our experiments: these demonstrate that the performance of the KMI and COCO, when used in ICA, is
competitive with the KGV and KCC, respectively. The kernel methods also compare favourably with both
standard and recent specialised ICA algorithms (RADICAL, CFICA, Fast ICA, Jade, and Infomax), and out-
perform these methods when demixing music sources (where the sample size is large). Most interestingly,
when the KGV is made to approach the KMI by an appropriate choice of regularisation, its resistance to
outlier noise is improved— moreover, kernel methods perform substantially better than the other algorithms
tested when outliers are present.3 We list our most commonly used acronyms in Table 2.

2. Constrained covariance, kernel canonical correlation
In this section, we focus on the formulation of measures of independence for two random variables. This
reasoning uses well established principles, going back to Rényi (1959), who gave a list of desirable properties
for a measure of statistical dependence Q(Px,y) between random variables x,y with distribution Px,y. These
include

1. Q(Px,y) is well defined,

2. 0≤ Q(Px,y) ≤ 1,

3. Q(Px,y) = 0 if and only if x,y independent,

4. Q(Px,y) = 1 if and only if y = f (x) or x = g(y), where f and g are Borel measurable functions.

3. The performance reported here improves on that obtained by Bach and Jordan (2002a); Miller and Fisher III (2003) due to better
tuning of the KGV and KCC regularisation.

3



Rényi (1959) shows that one measure satisfying these constraints is

Q(Px,y) = sup
f ,g
corr( f (x),g(y)) ,

where f (x),g(y)must have finite positive variance, and f ,g are Borel measurable. This is similar to the kernel
canonical correlation (KCC) introduced by Bach and Jordan (2002a), although we shall see that the latter is
more restrictive in its choice of f ,g. We propose a different measure, the constrained covariance (COCO),
which omits the fourth property and the upper bound in the second property; in the context of independence
measurement, however, the first and third properties are adequate. 4

We begin in Section 2.1 by defining RKHSs and covariance operators between them. In Section 2.2, we
introduce the constrained covariance, and we demonstrate in Section 2.3 that this quantity is a measure of
independence when computed in universal RKHSs (it follows that the KCC also requires a universal RKHS,
as do all independence criteria that are based on the covariance in RKHSs). Finally, we describe the canonical
correlation in Section 2.4, and its RKHS-based variant.

2.1 Covariance in function spaces

In this section, we provide the functional analytic background necessary in describing covariance operators
between RKHSs. Our presentation follows and extends the work of Zwald et al. (2004); Hein and Bousquet
(2004), who deal with covariance operators from a space to itself rather than from one space to another, and
Fukumizu et al. (2004), who use covariance operators as a means of defining conditional covariance operators.
Functional covariance operators were investigated earlier by Baker (1973), who characterises these operators
for general Hilbert spaces.

Consider a Hilbert space F of functions from X to R, where X is a separable metric space. The Hilbert
space F is an RKHS if at each x ∈ X , the point evaluation operator ! x : F → R, which maps f ∈ F to
f (x) ∈ R, is a bounded linear functional. To each point x ∈ X , there corresponds an element x := "(x) ∈ F
(we call " the feature map) such that 〈"(x),"(x′)〉F = k(x,x′), where k : X ×X → R is a unique positive
definite kernel. We also define a second RKHS G with respect to the separable metric space Y , with feature
map # and kernel 〈#(y),#(y′)〉G = l(y,y′).

Let Px,y(x,y) be a joint measure5 on (X ×Y ,$×%) (here $ and % are the Borel &-algebras on X and
Y , respectively, as required in Theorem 4 below), with associated marginal measures P x and Py and random
variables x and y. Then following Baker (1973); Fukumizu et al. (2004), the covariance operatorC xy : G →F
is defined6 such that for all f ∈ F and g ∈ G ,

〈 f ,Cxyg〉F = Ex,y ([ f (x)−Ex( f (x))] [g(y)−Ey(g(y))]) .

In practice, we do not deal with the measure Px,y itself, but instead observe samples drawn independently
according to it. We write an i.i.d. sample of size m from Px,y as zzz = {(x1,y1), . . . ,(xm,ym)}, and likewise
xxx := {x1, . . . ,xm} and yyy := {y1, . . .ym}. Finally, we define the Gram matrices K and L of inner products in
F and G , respectively, between the mapped observations above: here K has (i. j)th entry k(x i,x j) and L
has (i, j)th entry l(yi,y j). The Gram matrices for the variables centred in their respective feature spaces are
shown by Schölkopf et al. (1998) to be

K̃ :=HKH, L̃ :=HLH,

where
H= I− 1

m
111m111*m , (1)

and 111m is an m×1 vector of ones.
4. The fourth property is required forQ to identify deterministic dependence, which an independence measure should not be concerned
with.

5. We do not require this to have a density with respect to a reference measure dx×dy in this section. Note that we will need a density
in Section 3, however.

6. Our operator (and that of Fukumizu et al., 2004) differs from Baker’s in that Baker defines all measures directly on the function
spaces.
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2.2 The constrained covariance

In this section, we define the constrained covariance (COCO), and describe the properties of the kernelised
version. The covariance between x and y is defined as follows.

Definition 1 (Covariance) The covariance of two random variables x,y is given as

cov(x,y) := Ex,y[xy]−Ex[x]Ey[y].

We next define the constrained covariance.

Definition 2 (Constrained Covariance (COCO)) Given function classes F ,G and a probability measure
Px,y, we define the constrained covariance as

COCO(Px,y;F ,G) := sup
f∈F ,g∈G

[cov( f (x),g(y))] . (2)

If F and G are unit balls in their respective vector spaces, then this is just the norm of the covariance
operator: see Mourier (1953). Given m independent observations zzz := ((x1,y1), . . . ,(xm,ym)) ⊂ (X ×Y )m,
the empirical estimate of COCO is defined as

COCO(zzz;F ,G) := sup
f∈F ,g∈G

[
1
m

m

'
i=1

f (xi)g(yi)−
1
m2

m

'
i=1

f (xi)
m

'
j=1

g(y j)

]
.

When F and G are RKHSs, with F and G their respective unit balls, then COCO(P x,y;F,G) is guaranteed
to exist as long as the kernels k and l are bounded, since the covariance operator is then Hilbert-Schmidt
(as shown by Gretton et al., 2005a). The empirical estimate COCO(zzz;F,G) is also simplified when F and G
are unit balls in RKHSs, since the representer theorem (Schölkopf and Smola, 2002) holds: this states that
a solution of an optimisation problem, dependent only on the function evaluations on a set of observations
and on RKHS norms, lies in the span of the kernel functions evaluated on the observations. This leads to the
following lemma:

Lemma 3 (Value of COCO(zzz;F,G)) Denote by F ,G RKHSs on the domains X and Y respectively, and let
F,G be the unit balls in the corresponding RKHSs. Then

COCO(zzz;F,G) =
1
m

√
‖K̃L̃‖2, (3)

where the matrix norm ‖ · ‖2 denotes the largest singular value. An equivalent unnormalised form (which
we will refer back to in Section 3) is COCO(zzz;F,G) = maxi (i, where (i are the solutions to the generalised
eigenvalue problem [

000 K̃L̃
L̃K̃ 000

][
)))i
***i

]
= (i

[
K̃ 000
000 L̃

][
)))i
***i

]
. (4)

Proof By the representer theorem, the solution of the maximisation problem arising from
COCO(zzz;F,G) is given by f (x) = 'm

i=1)ik(xi,x) and g(y) = 'mj=1* jl(y j,y). Hence

COCO(zzz;F,G) = sup
)))*K)))≤1,****L***≤1

1
m
)))*KL***− 1

m2
)))*K111m111*mL***

= sup
‖)))‖,‖***‖≤1

1
m
)))*K1/2HL1/2***

=
1
m
‖K1/2HL1/2‖2.
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Squaring the argument in the norm, rearranging, and using the fact that H=HH proves the lemma.

The constrained covariance turns out to be similar in certain respects to a number of kernel algorithms, for
an appropriate choice of F ,G . By contrast with independence measurement, however, these methods seek
to maximise the constrained covariance through the correct choice of feature space elements. First, and most
obvious, is kernel partial least squares (kPLS) (Rosipal and Trejo, 2001), which at each stage maximises the
constrained covariance directly (see Bakır et al., 2004). COCO is also optimised when obtaining the first
principal component in kernel principal component analysis (kPCA), as described by Schölkopf et al. (1998),
and is the criterion optimised in the spectral clustering/kernel target alignment framework of Cristianini et al.
(2002). Details may be found in Appendix A.1.

Finally, we remark that alternative norms of the covariance operator should also be suited to measuring
independence. Indeed, the Hilbert-Schmidt (HS) norm is proposed in this context by Gretton et al. (2005a):
like the KMI, it exploits the entire spectrum of the empirical covariance operator, and gives experimental
performance superior to COCO in ICA. The HS norm has the additional advantage of a well-defined popu-
lation counterpart, and guarantees of O(1/

√
m) convergence of the empirical to the population quantity. The

connection between the HS norm and the mutual information remains unknown, however.

2.3 Independence measurement with the constrained covariance

We now describe how COCO is used as a measure of independence. For our purposes, the notion of indepen-
dence of random variables is best characterised by Jacod and Protter (2000, Theorem 10.1(e)):

Theorem 4 (Independence) Let x and y be random variables on (X ×Y ,$×%)with joint measurePx,y(x,y),
where $ and % are Borel &-algebras on X and Y , respectively. Then the random variables x and y are inde-
pendent if and only if cov( f (x),g(y)) = 0 for any pair ( f ,g) of bounded, continuous functions.

It follows from Theorem 4 that if F ,G are the sets of bounded continuous functions, then
COCO(Px,y;F ,G) = 0 if and only if x and y are independent. In other words, COCO(P x,y;F ,G) and
COCO(zzz;F ,G) are criteria which can be tested directly without the need for an intermediate density estima-
tor (in general, the distributions may not even have densities). It is also clear, however, that unless F ,G are
restricted in further ways, COCO(zzz;F ,G) will always be large, due to the rich choice of functions available.
A non-trivial dependence functional is thus obtained using function classes that do not give an everywhere-
zero empirical average, yet which still guarantee that COCO is zero if and only if its arguments are indepen-
dent. A tradeoff between the restrictiveness of the function classes and the convergence of COCO(zzz;F ,G) to
COCO(Px,y;F ,G) can be accomplished using standard tools from uniform convergence theory (see Gretton
et al., 2005b). It turns out that unit-radius balls in universal reproducing kernel Hilbert spaces constitute
function classes that yield non-trivial dependence estimates. Universality is defined by Steinwart (2001) as
follows:

Definition 5 (Universal kernel) A continuous kernel k(·, ·) on a compact metric space (X ,d) is called uni-
versal if and only if the RKHS F induced by the kernel is dense in C(X ), the space of continuous functions
on X , with respect to the infinity norm ‖ f −g‖+ .

Steinwart (2001) shows the following two kernels are universal on compact subsets of R d :

k(x,x′) = exp
(
−,‖x− x′‖2

)
and

k(x,x′) = exp
(
−,‖x− x′‖

)
for ,> 0.

We now state our main result for this section.

Theorem 6 (COCO(Px,y;F,G) is only zero at independence for universal kernels) Denote byF ,G RKHSs
with universal kernels on the compact metric spaces X and Y , respectively, and let F,G be the unit balls in
F and G . Then COCO(Px,y;F,G) = 0 if and only if x,y are independent.
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Proof It is clear that COCO(Px,y;F,G) is zero if x and y are independent. We prove the converse by showing
that7 COCO(Px,y;B(X ),B(Y )) = c for some c> 0 implies COCO(Px,y;F,G) = d for d> 0: this is equivalent
to COCO(Px,y;F,G) = 0 implying COCO(Px,y;B(X ),B(Y ))= 0 (where this last result implies independence
by Theorem 4). There exist two sequences of functions f n ∈ C(X ) and gn ∈ C(Y ), satisfying ‖ fn‖+ ≤
1,‖gn‖+ ≤ 1, for which

lim
n→+

cov( fn(x),gn(y)) = c.

More to the point, there exists an n∗ for which cov( fn∗(x),gn∗(y)) ≥ c/2. We know that F and G are
respectively dense inC(X ) andC(Y ) with respect to the L+ norm: this means that for all c

24 > -> 0, we can
find some f ∗ ∈ F (and an analogous g∗ ∈ G) satisfying ‖ f ∗ − fn∗‖+ < -. Thus, we obtain

cov( f ∗(x),g∗(y)) = cov( f ∗(x)− fn∗(x)+ fn∗(x),g∗(x)−gn∗(x)+gn∗(x))
= Ex,y [( f ∗(x)− fn∗(x)+ fn∗(x)) (g∗(y)−gn∗(y)+gn∗(y))]

−Ex ( f ∗(x)− fn∗(x)+ fn∗(x))Ey (g∗(y)−gn∗(y)+gn∗(y))
≥ cov( fn∗(x),gn∗(y))−2- |Ex ( fn∗(x))|−2- |Ey (gn∗(y))|−2-2

≥ c
2
−6 c

24
=
c
4

> 0.

Finally, bearing in mind that ‖ f ∗(x)‖F < + and ‖g∗(x)‖G < +, we have

cov

(
f ∗(x)

‖ f ∗(x)‖F
,

g∗(y)
‖g∗(x)‖G

)
≥ c
4‖ f ∗(x)‖F ‖g∗(x)‖G

> 0,

and hence COCO(Px,y;F,G) > 0.

The constrained covariance is further explored by Gretton et al. (2005b, 2004). We prove two main results in
these studies, which are not covered in the present work:

• Theorems 10 and 11 of Gretton et al. (2005b) give upper bounds on the probability of large deviations
of the empirical COCO from the population COCO: Theorem 10 covers negative deviations of the
empirical COCO from the population COCO, and Theorem 11 describes positive deviations. For a
fixed probability of deviation, the amount by which the empirical COCO differs from the population
COCO decreases at rate 1/

√
m (for shifts in either direction). These bounds are necessary if we are to

formulate statistical tests of independence based on themeasure of independence that COCO provides.
In particular, Gretton et al. (2005b, Section 5) give one such test .

• Theorem 8 of Gretton et al. (2005b) describes the behaviour of the population COCO when the random
variables are not independent, for a simple family of probability densities represented as orthogonal
series expansions. This is used to illustrate two concepts: first, that dependence can sometimes be hard
to detect without a large number of samples (since the deviation of the population COCO from zero
can be very small, even for dependent random variables); and second, that one type of hard-to-detect
dependence is encoded in high frequencies of the probability density function.

We also apply COCO in these studies to detecting dependence in fMRI scans of the Macaque visual cortex.
We refer the reader to these references for further detail on COCO.

2.4 The canonical correlation

The kernelised canonical correlation (KCC) — i.e., the norm of the correlation operator between RKHSs
— was proposed as a measure of independence by Bach and Jordan (2002a). Consistency of the KCC was

7. Here B(X ) denotes the subset of C(X ) of continuous functions bounded by 1 in L+(X ), and B(Y ) is defined in an analogous
manner.
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shown by Leurgans et al. (1993) for the operator norm, and by Fukumizu et al. (2005) for the functions in
F and G that define it (in accordance with Definition 7 below). Further discussion and applications of the
kernel canonical correlation include Akaho (2001); Bach and Jordan (2002a); Hardoon et al. (2004); Kuss
(2001); Lai and Fyfe (2000); Melzer et al. (2001); Shawe-Taylor and Cristianini (2004); van Gestel et al.
(2001). In particular, a much more extensive discussion of the properties of canonical correlation analysis
and its kernelisation may be found in these studies, and this section simply summarises the properties and
derivations relevant to our requirements for independence measurement.

The idea underlying the KCC is to find the functions f ∈F and g∈G with largest correlation (as opposed
to covariance, which we covered in the previous section). This leads to the following definition.

Definition 7 (Kernel canonical correlation (KCC)) The kernel canonical correlation is defined as

KCC (Px,y;F ,G) = sup
f∈F ,g∈G

corr( f (x),g(y))

= sup
f∈F ,g∈G

E( f (x)g(y))−Ex ( f (x))Ey (g(y))√
Ex ( f 2(x))−E2x ( f (x))

√
Ey (g2(y))−E2y (g(y))

.

As in the case of the constrained covariance, we may specify an empirical estimate similar to that in Lemma
3:

Lemma 8 (Empirical KCC) The empirical kernel canonical correlation is given by
KCC (zzz;F ,G) :=maxi (.i), where .i are the solutions to the generalised eigenvalue problem

[
000 K̃L̃
L̃K̃ 000

][
ci
di

]
= .i

[
K̃2 000
000 L̃2

][
ci
di

]
. (5)

Bach and Jordan (2002a) point out that the first canonical correlation is very similar to the functionmaximised
by the alternating conditional expectation algorithm of Breiman and Friedman (1985), although in the latter
case f (x) may be replaced with a linear combination of several functions of x.

We note that the numerator of the functional in Definition 7 is just the functional covariance, which
suggests that the kernel canonical correlation might also be a useful measure of independence: this was
proposed by Bach and Jordan (2002a) (the functional correlation was also analysed as an independence
measure by Dauxois and Nkiet (1998), although this approach did not make use of RKHSs). A problem
with using the kernel canonical correlation to measure independence is discussed in various forms by Bach
and Jordan (2002a); Fukumizu et al. (2005); Greenacre (1984); Kuss (2001); Leurgans et al. (1993); we now
describe one formulation of problem, and the two main ways in which it has been solved.

Lemma 9 (Without regularisation, the empirical KCC is independent of the data) Suppose that the Gram
matrices K and L have full rank. The 2(m−1) non-zero solutions to (5) are then . i = ±1, regardless of zzz.

The proof is in Appendix B.1. This argument is used by Bach and Jordan (2002a); Fukumizu et al. (2005);
Leurgans et al. (1993) to justify a regularised canonical correlation,

KCC (Px,y;F ,G ,/) := sup
f∈F ,g∈G

cov( f (x),g(y))
(
var( f (x))+/‖ f‖2F

)1/2(
var(g(y))+/‖g‖2G

)1/2 , (6)

although this requires an additional parameter /, which complicates the model selection problem. As the
number of observations increases, / must approach zero to ensure consistency of the estimated KCC, and
of the associated functions f and g that achieve the supremum. The rate of decrease of / for consistency
of KCC is derived by Leurgans et al. (1993) (for RKHSs based on spline kernels), and the rate required for
consistency in the L2 norm of f and g is obtained by Fukumizu et al. (2005) (for all RKHSs).

8



An alternative solution to the problem described in Lemma 9 is given by Kuss (2001), in which the
projection directions used to compute the canonical correlations are expressed in terms of a more restricted
set of basis functions, rather than the respective subspaces of F and G spanned by the entire set of mapped
observations. These basis functions can be chosen using kernel PCA, for instance.

Finally, we show that the regularised kernel canonical correlation is a measure of independence, as long
as the functions attaining the supremum have bounded variance.

Theorem 10 (KCC(Px,y;F ,G ,/) = 0 only at independence for universal kernels) Denote byF ,G RKHSs
with universal kernels on the compact metric spaces X and Y , respectively, and assume that var( f (x)) < +
and var(g(y)) < +. Then KCC (Px,y;F ,G ,/) = 0 if and only if x,y are independent.

Proof The proof is almost identical to the proof of Theorem 6. First, it is clear that x and y being independent
implies KCC (Px,y;F ,G ,/) = 0. Next, assume COCO(Px,y;B(X ),B(Y )) = c for c> 0. We can then define
f ∗ ∈ F and g∗ ∈ G as before, such that

cov( f ∗(x),g∗(y)) ≥ c
4
.

Finally, assuming var( f (x)) and var(g(y)) to be bounded, we get

cov




f ∗(x)

(
var( f ∗ (x))+/‖ f ∗‖2F

)1/2 ,
g∗(y)

(
var(g∗ (y))+/‖g∗‖2G

)1/2





≥ c

4
(
var( f ∗ (x))+/‖ f ∗‖2F

)1/2(
var(g∗ (y))+/‖g∗‖2G

)1/2

> 0.

The requirement of bounded variance is not onerous: indeed, as in the case of the covariance operator, we are
guaranteed that var( f (x)) and var(g(y)) are bounded when k and l are bounded.

3. Kernel approximations to the mutual information
In this section, we investigate approximations to the mutual information which can be used for measuring
independence, in that they are still zero only when the random variables being tested are independent. We
begin in Section 3.1 by introducing the mutual information between two multivariate Gaussian random vari-
ables, for which a closed form solution exists. We then describe a discrete approximation to the mutual
information between two continuous, univariate random variables with an arbitrary joint density function,
which is defined via a partitioning of the continuous space into a uniform grid of bins; it is well established
that this approximation approaches the continuous mutual information as the grid becomes infinitely fine
(Cover and Thomas, 1991). Next, we show that the discrete mutual information may be approximated by the
Gaussian mutual information (GMI), by doing a Taylor expansion of both quantities to second order around
independence.

We next address how to go about estimating this Gaussian approximation of the discrete mutual informa-
tion, given observations drawn according to some probability density. In Section 3.1.4, we derive a Parzen
window estimate of the GMI. Next, in Section 3.1.5, we give an upper bound on the empirical GMI, which
we call the kernel mutual information (KMI) (Definition 14 presents the KMI, and Theorem 16 contains the
bound: these are the main results of this section). We show in Theorem 15 that the KMI is zero if and only
if the empirical COCO is zero, which justifies using the KMI as a measure of independence. An important
property of this bound is that it does not require numerical integration, or indeed any space partitioning or
grid-based approximations (see e.g. Paninski (2003) and references therein). Rather, we are able to obtain a
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closed form expression when the grid8 becomes infinitely fine. Finally, we demonstrate in Section 3.1.6 that
the regularised kernel generalised variance (KGV) proposed by Bach and Jordan (2002a) is an upper bound
on the KMI, and hence on the Gaussian mutual information, under certain circumstances. A comparison with
the link originally proposed between the KGV and the mutual information is given in Appendix B.2.

We should emphasise at this point an important distinction between the KMI and KGV on one hand, and
COCO and the KCC on the other. We recall that the empirical COCO in Lemma 3 is a finite sample estimate
of the population quantity in Definition 2, and the empirical KCC in Lemma 8 has a population equivalent in
Definition 7 (convergence of the empirical estimates to the population quantities is guaranteed in both cases,
as described in the discussion of Section 2). The KMI and KGV, on the other hand, are bounds on particular
sample-based quantities, and are not defined here with respect to corresponding population expressions. That
said, the KGV appears to be a regularised empirical estimate of themutual information for Gaussian processes
of Baker (1970), although to our knowledge the convergence of the KGV to this population quantity is not
yet established.

In Section 3.2, we derive generalisations of the COCO and KMI to more than two univariate random
variables. We prove the high dimensional COCO and KMI are zero if and only if the associated pairwise
empirical constrained covariances are zero, which makes them suited for application in ICA (see Theorem
24).

3.1 The KMI, the KGV, and the mutual information

3.1.1 MUTUAL INFORMATION BETWEEN TWO MULTIVARIATE GAUSSIAN RANDOM VARIABLES

We begin by introducing the Gaussian mutual information and its relation with the canonical correlation.
Thus, the present section should be taken as background material which we will refer back to in the dis-
cussion that follows. Cover and Thomas (1991) provide a more detailed and general discussion of these
principles. If xG,yG are Gaussian random vectors9 in Rlx ,Rly respectively, with joint covariance matrix

C :=
[
Cxx Cxy
C*
xy Cyy

]
, then the mutual information between them can be written

I (xG;yG) = −1
2
log
(

|C|
|Cxx| |Cyy|

)
, (7)

where | · | is the determinant. We note that the Gaussian mutual information takes the distinctive form of a
log ratio of determinants: we will encounter this expression repeatedly in the subsequent reasoning, under
various guises. For this reason, we now present a theorem which describes several alternative expressions for
this ratio.

Theorem 11 (Ratio of determinants) Given a partitioned matrix10

[
A B
B* C

]
0 000, (8)

8. Introduced in the discrete approximation to the mutual information
9. The subscripts G are used to emphasise that xG,yG are Gaussian; this notation is introduced here to make the reasoning clearer in
subsequent sections.

10. We use X0 000 to indicate that X is positive definite.

10



we can write
∣∣∣∣

[
A B
B* C

]∣∣∣∣
|A| |C| =

∣∣∣∣

[
I A−1/2BC−1/2

C−1/2B*A−1/2 I

]∣∣∣∣

=
∣∣∣I−A−1/2BC−1B*A−1/2

∣∣∣

= 0
i

(1−.2i )

> 0

where .i are the singular values of A−1/2BC−1/2 (i.e. the positive square root of the eigenvalues of
A−1/2BC−1B*A−1/2). Alternatively, we can write .i as the positive solutions to the generalised eigenvalue
problem [

000 B
B* 000

]
ai = .i

[
A 000
000 C

]
ai.

The proof is in Appendix A.2. Using this result, we may rewrite (7) as

I (xG;yG) = −1
2
log

(

0
i

(1−.2i )

)
, (9)

where .i are the singular values of C−1/2
xx CxyC−1/2

yy ; or alternatively, the positive solutions to the generalised
eigenvalue problem [

000 Cxy
C*
xy 000

]
ai = .i

[
Cxx 000
000 Cyy

]
ai. (10)

In this final configuration, it is apparent that . i are the canonical correlates of the Gaussian random variables
xG and yG. We note that the definition of the Gaussian mutual information provided by (9) and (10) holds
even when C does not have full rank (which indicates that

[
x*G y*G

]* spans a subspace of Rlx+ly), since
for C 1 000 we require Cxy to have the same nullspace as Cyy, and C*

xy to have the same nullspace as Cxx.
Alternatively, we could make a change of variables to a lower dimensional space in which the resulting
covariance has full rank, and then use the ratio of determinants (7) with this new covariance.

3.1.2 MUTUAL INFORMATION BETWEEN DISCRETISED UNIVARIATE RANDOM VARIABLES

In this section, and in the sections that follow, we consider only the case where X and Y are closed, bounded
subsets of R, and require (x,y) ∈ X ×Y to have the joint density px,y (this is by contrast with the discussion
in Section 2, in which X and Y were defined simply as separable metric spaces, and the measure P x,y did
not necessarily admit a density). We will also assume X ×Y represents the support of p x,y. The present
section introduces a discrete approximation to the mutual information between x and y, as described by
Cover and Thomas (1991). Consider a grid of size l x× ly over X ×Y . Let the indices i, j denote the point
(qi,r j) ∈ X ×Y on this grid, and let qqq = (q1, . . . ,qlx) ,rrr =

(
r1, . . . ,rly

)
be the complete sequences of grid

coordinates. Assume, further, that the spacing between points along the x and y axes is respectively 1 x and 1y
(the bins being evenly spaced). We define two multinomial random variables x̂, ŷ with a distributionP x̂,ŷ (i, j)
over the grid (the complete lx× ly matrix of such probabilities is Pxy); this corresponds to the probability that
x,y is within a small interval surrounding the grid position q i,r j , so

Px̂ (i) =
Z qi+1x

qi
px(x)dx, Pŷ ( j) =

Z r j+1y

r j
py(y)dy,

Px̂,ŷ (i, j) =
Z qi+1x

qi

Z r j+1y

r j
px,y(x,y)dxdy.

11



Thus Px̂,ŷ (i, j) is a discretisation of px,y. Finally, we denote as px the vector for which (px)i = Px̂(i), with a
similar py definition. The mutual information between x̂ and ŷ is defined as

I (x̂; ŷ) =
lx
'
i=1

ly

'
j=1

Px̂,ŷ (i, j) log
(

Px̂,ŷ (i, j)
Px̂ (i)Pŷ ( j)

)
. (11)

It is well known that I(x,y) is the limit of I (x̂; ŷ) as the discretisation becomes infinitely fine (Cover and
Thomas, 1991, Section 9.5).

3.1.3 MULTIVARIATE GAUSSIAN APPROXIMATION TO THE DISCRETISED MUTUAL INFORMATION

In this section, we draw together results from the two previous sections, showing it is possible to approximate
the discrete mutual information in Section 3.1.2 with a Gaussian mutual information between vectors of
sufficiently high dimension, as long as we are close to independence. The results in this section are due to
Bach and Jordan (2002a), although the proof of (18) below is novel. We begin by defining an equivalent
multidimensional representation x̌, y̌ of x̂, ŷ in the previous section, where x̌ ∈ Rlx and y̌ ∈ Rly , such that x̂ = i
is equivalent to (x̌)i = 1 and (x̌) j : j 2=i = 0. To be precise, we define the functions11

Ki(x) =
{
1 x ∈ [qi,qi+1x)
0 otherwise , K j(y) =

{
1 x ∈ [r j,r j +1y)
0 otherwise ,

such that
Ex (Ki(x)) = Ex ((x̌)i) =

Z +

−+
Ki(x)px(x)dx= Px̂ (i)

and
Ex,y (Ki(x)K j(y)) = Ex,y

(
(x̌)i (y̌) j

)
=

Z +

−+

Z +

−+
Ki(x)K j(y)px,y(x,y)dxdy= Px̂,ŷ (i, j) .

A specific instance of the second formula is when y = x, K i(x) = Ki(y), and px,y(x,y) = !x(y)px(x), where
!x(y) is a delta function centred at x. Then

Ex (Ki(x)K j(x)) = Ex

((
x̌x̌*
)

i, j

)
=

Z +

−+

Z +

−+
Ki(x)K j(y)px(x)!x(y)dxdy

=
{

Px̂ (i) i= j
0 otherwise .

In summary,

Ex,y

(
x̌ y̌*
)

= Pxy (12)

Ex (x̌) = px (13)

Ex

(
x̌ x̌*
)

= Dx (14)

where Dx = diag(px). Using these results, it is possible to define the covariances

Cxy = Ex,y
(
x̌ y̌*
)
−Ex (x̌)Ey (y̌)* = Pxy−pxp*y , (15)

Cxx = Ex

(
x̌ x̌*
)
−Ex (x̌)Ex (x̌)* = Dx−pxp*x , (16)

Cyy = Ey

(
y̌ y̌*
)
−Ey (y̌)Ey (y̌)* = Dy−pyp*y . (17)

11. Note that we do not require 1x = 1y: thus the functions Ki(x) and Kj(y) below may not be identical (the argument of the function
specifies whether 1x or 1y is used, to simplify notation).
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We may therefore define Gaussian random variables xG,yG with the same covariance structure as x̌, y̌, and
with mutual information given by (7). We prove in Appendix A.3 that the mutual information for this Gaus-
sian case is

I (xG;yG) = −1
2
log
(∣∣∣∣Ily −

(
Pxy−pxp*y

)*
D−1
x

(
Pxy−pxp*y

)
D−1
y

∣∣∣∣

)
, (18)

which can also be expressed in the singular value form (9). The relation between (18) and (11) is given in the
following lemma, which is proved by Bach and Jordan (2002a, Appendix. B.1).

Lemma 12 (The discrete MI approximates the Gaussian MI near independence)
Let Px̂,ŷ (i, j) = Px̂ (i)Pŷ ( j) (1+ -i, j) for an appropriate choice of -i, j , where -i, j is small near independence.
Then the second order Taylor expansion of the discrete mutual information in (11) is

I (x̂; ŷ) ≈ 1
2

lx
'
i=1

ly

'
j=1

Px̂ (i)Pŷ ( j)-2i, j,

which is equal to the second order Taylor expansion of the Gaussian mutual information in (18), namely

I (xG;yG) ≈ 1
2

lx
'
i=1

ly

'
j=1

Px̂ (i)Pŷ ( j)-2i, j.

3.1.4 KERNEL DENSITY ESTIMATES OF THE GAUSSIAN MUTUAL INFORMATION

In this section, we describe a kernel density estimate of the approximate mutual information in (18): this is
the point at which our reasoning diverges from the approach of Bach and Jordan (2002a). Before proceeding,
we motivate this discussion with a short overview of the Parzen window estimate and its properties, as drawn
from Silverman (1986); Duda et al. (2001) (this discussion pertains to the general case of multivariate x,
although our application requires only univariate random variables). Given a sample xxx of size m, each point
xl of which is assumed generated i.i.d. according to some unknowndistributionwith density p x, the associated
Parzen window estimate of this density is written

p̂x(x) =
1
m

m

'
l=1

/(xl− x) .

The kernel function12 /(xl− x)must be a legitimate probability density function, in that it should be correctly
normalised, Z

X
/(x)dx= 1, (19)

and /(x) ≥ 0. We may rescale the kernel according to 1
Vx /
(

x
&x

)
, where the term Vx is needed to preserve

(19). Denoting as Vx,m the normalisation for a sample size m, then we are guaranteed that the Parzen window
estimate converges to the true probability density as long as

lim
m→+

Vx,m = 0,

lim
m→+

mVx,m = +.

This method requires an initial choice of &x for the sample size we start with, which can be obtained by cross
validation.

We return now to the problem of empirically estimating the mutual information described in Sections
3.1.2 and 3.1.3. Our estimate is described in the following definition.

12. The reader should not confuse the present kernel with the RKHS kernels introduced earlier. That said, we shall see later that the
two kernels are linked.
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Definition 13 (Parzen window estimate of the Gaussian mutual information) A Parzen window estimate
of the Gaussian mutual information in (18) is defined as

Î (x̂; ŷ) = −1
2
log

(min(lx,ly)
0
i=1

(1+ .̂i)(1− .̂i)

)
, (20)

where .̂i are the singular values of
(
D(x)
l

)−1/2(
KlH(Ll)*

)(
D(y)
l

)−1/2
. (21)

Of the four matrices in this definition,D(x)
l is a diagonal matrix of unnormalised Parzen window estimates of

px at the grid points,

D(x)
l =

1
1x




'ml=1/(q1− xl) . . . 0

...
. . .

...
0 . . . 'ml=1/(qlx − xl)



 , (22)

D(y)
l is the equivalent diagonal matrix for py,13 and

Kl :=





/(q1− x1) . . . /(q1− xm)
...

. . .
...

...
. . .

...
/(qlx − x1) . . . /(qlx − xm)




, Ll :=





/(r1− y1) . . . /(r1− ym)
...

. . .
...

...
. . .

...
/
(
rly − y1

)
. . . /

(
rly − ym

)




, (23)

where we write the above in such a manner as to indicate lx 4 m and ly 4m.

Details of how we obtained this definition are given in Appendix A.4. The main disadvantage in using
this approximation to the mutual information is that it is exceedingly computationally inefficient, in that it
requires a kernel density estimate at each point in a fine grid. In the next section, we show that it is possible
to eliminate this grid altogether when we take an upper bound.

3.1.5 THE KMI: AN UPPER BOUND ON THE MUTUAL INFORMATION

We now define the kernel mutual information, and show is both a valid dependence criterion (Theorem 15),
and an upper bound on the Parzen GMI in Lemma 13 (Theorem 16).

Definition 14 (The kernel mutual information) The kernel mutual information is defined as

KMI(zzz;F ,G) := −1
2
log
(∣∣∣I−2−2zzz K̃L̃

∣∣∣
)

= −1
2
log

(

0
i

(
1− (2i

22zzz

))
,

where (i are the non-zero solutions14 to
[

000 K̃L̃
L̃K̃ 000

][
ci
di

]
= (i

[
000 K̃
L̃ 000

][
ci
di

]
, (24)

13. As in our Section 3.1.3 definition of Ki(x) and Kj(y), we use the notation /(x) and /(y) to denote the Parzen windows for the
estimates p̂x(x) and p̂y(y), respectively, even though these may not be identical kernel functions. The argument again indicates
which kernel is used.

14. Compare with (4).
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the centred Gram matrices K̃ and L̃ are defined using RKHS kernels obtained via convolution of the associ-
ated Parzen windows,15

k(xi,x j) =
Z

X
/(xi−q)/(x j−q)dq and l(yi,y j) =

Z

Y
/(yi− r)/(y j− r)dr,

and

2zzz =min




 min
j ∈ {1 . . .m}

m

'
i=1

/(xi− x j) , min
j ∈ {1 . . .m}

m

'
i=1

/(yi− y j)




 .

We note that the above definition bears some similarity to the estimate of Pham (2002). That said, we
approximate the mutual information, rather than the entropy; in addition, the KMI is computed in the limit
of infinitely small grid size, which removes the need for binning. Thus, we retain our original kernel, rather
than using a spline kernel in all cases. This allows us greater freedom to choose a kernel density appropriate
to the characteristics of the sources.

The KMI inherits the following important property from the constrained covariance.

Theorem 15 (The KMI is zero if and only if the empirical COCO is zero) The KMI is zero,
KMI(zzz;F ,G) = 0, if and only if the empirical constrained covariance is zero,
COCO (zzz;F,G) = 0.

Proof This theorem follows from the constrained covariance being the largest eigenvalue ( i of (24).

The relation of the KMI to the mutual information is given by the following theorem, which is the main result
of Section 3.

Theorem 16 (The KMI upper bounds the GMI) Assume that X ×Y is chosen to be the support of px,y,
that px,y is bounded away from zero, and that

min
x∈X

m

'
i=1

/(x− xi) ≈ min
j ∈ {1 . . .m}

m

'
i=1

/(xi− x j) and

min
y∈Y

m

'
i=1

/(y− yi) ≈ min
j ∈ {1 . . .m}

m

'
i=1

/(yi− y j)

(the expressions above are alternative, unnormalised estimates of minx∈X px(x) and miny∈Y py(y), respec-
tively; the right hand expressions are used so as to obtain the KMI entirely in terms of the sample zzz). Then

KMI(zzz;F ,G) ! Î (x̂; ŷ) . (25)

This theorem is proved in Appendix A.5. In particular, the approximate nature of the inequality (25) arises
from our use of empirical estimates for lower bounds on p x(x) and py(y) (see the proof for details).

3.1.6 THE KGV: AN ALTERNATIVE UPPER BOUND ON THE MUTUAL INFORMATION

Bach and Jordan (2002a) propose two related quantities as independence functionals: the kernel canonical
correlation (KCC), as discussed in Section 2.4, and the kernel generalised variance (KGV). In this section,
we demonstrate that the latter quantity is an upper bound on the KMI under certain conditions. This approach
is different to the proof of Bach and Jordan, who employ a limit as the RKHS kernels become infinitely
small, and do not make use of Parzen windows. In any event, there may be some problems with this limiting
argument: see Appendix B.2 for further discussion. We begin by recalling the definition of the KGV.

15. Recall that /(x−q) may be different from /(y− r), and that the identity of the Parzen window is specified by its argument.
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Definition 17 (The kernel generalised variance) The empirical KGV is defined as

KGV(zzz;F ,G ,3) = −1
2
log

(

0
i

(
1−.2i

)
)

, (26)

where .i are the solutions to the generalised eigenvalue problem16

[
000 K̃L̃
L̃K̃ 000

][
ci
di

]
= .i

[
3K̃2+2zzz(1−3)K̃ 000

000 3L̃2+2zzz(1−3)L̃

][
ci
di

]
, (27)

and 3 ∈ [0,1].

Next, we demonstrate the link between the KGV and the KMI.

Theorem 18 (The KGV upper bounds the KMI) For all 3 ∈ [0,1],

KGV(zzz;F ,G ,3) ≥ KMI(zzz;F ,G) ,

with equality only at 3= 0, subject to the conditions

2zzzI− K̃0 0 and 2zzzI− L̃0 0. (28)

This theorem is proved in Appendix A.6. The requirements (28) should be checked at the point of implemen-
tation to guarantee a bound, but we are assured of being able to enforce them: for example, when k is the
convolution of (properly normalised) Gaussian kernels / of size &, then

k(xi,x j) =
1√

24(2&2)
exp
(
− 1
2(2&2)

(x j− xi)2
)

,

which is a Gaussian with twice the variance and 1/
√
2 the peak amplitude of /. An upper bound on the

spectral norm of K̃ is max j'mi=1 k(xi,x j), which follows from Horn and Johnson (1985, Corollary 6.1.5). 17
In other words, even by this conservative estimate, we are assured there exists a &> 0 small enough for (28)
to hold (the requirements (28) are also sufficient to guarantee the existence of the KMI, since they cause the
argument of the logarithm in Definition 14 to be positive).

3.2 Multivariate COCO and KMI

We now describe how our dependence functionals may be generalised to more than two random variables. Let
us define the continuous univariate random variables x 1, . . . ,xn on X1, . . . ,Xn, with joint distribution Px1,...,xn .
We also define the associated feature spaces FX1 , . . . ,FXn , each with its corresponding kernel (as in the 2
variable case, the kernels may be different). We begin with a generalisation of the concept of constrained
covariance. Our expression takes a similar form to that of Bach and Jordan (2002a, Appendix A.3), although
they deal with canonical correlations rather than constrained covariances, which changes the discussion in
some respects.

Definition 19 (Empirical multivariate COCO) Let zzz := {xxx1, . . . ,xxxn} be an i.i.d. sample of size m from the
joint distribution Px1,...,xn . The multivariate COCO is defined as

COCO (zzz;FX1 , . . . ,FXn) := max
j

(∣∣, j
∣∣) ,

16. See (5). Note that Bach and Jordan (2002a) handle the scaling differently: they replace the right hand matrix in (27) with[
K̃2+ 5K̃ 000

000 L̃2+ 5L̃

]
for a regularisation scale 5. We shall see that the form in (27) guarantees the KGV to upper bound

the KMI (and hence Î(x̂, ŷ) in (20)).
17. Bearing in mind Lemma 27, and that H has singular values in {1,0}.
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where , j are the solutions to the generalised eigenvalue problem





000 K̃1K̃2 . . . K̃1K̃n
K̃2K̃1 000 . . . K̃2K̃n
...

...
. . .

...
K̃nK̃1 K̃nK̃2 . . . 000









c1, j
c2, j
...
cn, j




= , j





K̃1 000 . . . 000
000 K̃2 . . . 000
...

...
. . .

...
000 000 . . . K̃n









c1, j
c2, j
...
cn, j




, (29)

K̃i =HKiH, andKi is the uncentred Gram matrix of the observations xxxi drawn from Pxi .

This expression is obtained using reasoning analogous to the bivariate empirical COCO in Section 2. The
following result justifies using the multivariate COCO as an independence measure.

Lemma 20 (The multivariate COCOmeasures pairwise independence) Themultivariate constrained co-
variance is zero if and only if all the empirical pairwise constrained covariances are zero:
COCO (zzz;FX1 , . . . ,FXn) = 0 iff COCO

(
xxxi,xxx j;FXi ,FX j

)
= 0 for all i 2= j.

We note that although the multivariate COCO only verifies pairwise independence, this is nonetheless suffi-
cient to recover mutually independent sources in the context of linear ICA: see Theorem 24. It is instructive
to compare with the KCC-based dependence functional for more than two variables, which uses the small-
est eigenvalue of a matrix of correlations (with diagonal terms equal to one, rather than zero), where this
correlation matrix has only positive eigenvalues.

We next introduce a generalisation of the kernel mutual information to more than two variables. By
analogy with the 2-variable case in Definition 14, we propose the following definition.

Definition 21 (Multivariate KMI) The kernel mutual information for more than two random variables is
defined as

KMI(zzz;FX1 , . . . ,FXn) := −1
2
log

mn

0
j=1

(
1+ ,̆ j

)
, (30)

where 2zzz,̆ j = , j, and

2zzz := min
i∈{1,...,n}

2xxxi ,where (31)

2xxxi := min
j ∈ {1 . . .m}

m

'
l=1

/(xi,l− xi, j) .

For (30) to be defined, it is necessary that 1+ ,̆ j > 0 for all j, which is true near independence. The following
lemma describes the sense in which the multivariate KMI measures independence.

Lemma 22 (The multivariate KMI measures pairwise independence) Themultivariate KMI is zero if and
only if the empirical constrained covariance is zero for every pair of random variables: in other words,

KMI(zzz;FX1 , . . . ,FXn) = 0

if and only if
COCO

(
xxxi,xxx j;FXi ,FX j

)
= 0

for all i 2= j.

The proof is in Appendix A.7. We now briefly outline how the dependence functional in (30) relates
to the KL divergence. In the case of a Gaussian random vector xG, which can be segmented as x*G :=
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[
x*G,1 . . . x*G,n

]
, the KL divergence between the joint distribution of xG and the product of the marginal

distributions of the xG,i can be written in terms of the relevant covariance matrices as

DKL

(
pxG

∥∥∥∥∥

n

0
i=1

pxG,i

)
= −1

2
log
(

|C|
0n
i=1 |Cii|

)
,

where

C = ExG

(
xGx*G

)
−ExG (xG)ExG

(
x*G
)

,

Cii = ExG,i

(
xG,ix

*
G,i

)
−ExG,i (xG,i)ExG,i

(
x*G,i

)
.

These results should allow us to generalise the reasoning in Section 3.1, substituting the kernel density esti-
mates

P̂xi(xi) =
1
m

m

'
l=1

/(xi,l− xi) ,

P̂x1,...,xn(x1, . . . ,xn) =
1
m

m

'
l=1

n

0
i=1

/(xi,l− xi) ,

and applying the bounding technique of Section 3.1.5 to obtain the quantity in (30); this is a reason for our
choosing 2zzz to scale ,̆ j.18 The details of this generalisation are beyond the scope of the present work.

4. Implementation and application to ICA
Any practical validation of the independence measures described above is best conducted with respect to
some ground truth, in which genuinely independent random variables are tested using the proposed func-
tionals (COCO, KMI). Thus, one test of performance is independent component analysis (ICA): this entails
separating independent random variables that have been linearly mixed, using only their property of indepen-
dence (specifically, we recover the coefficients that describe the linear mixing).

An ICA algorithm using COCO and the KMI comprises two components: the efficient computation of
COCO and the KMI, using low rank approximations of the Gram matrices, and gradient descent on the
space of linear mixing matrices. These results are summarised from the more detailed discussion by Bach
and Jordan (2002a) (although the low rank decomposition is in our case made easier by the absence of the
variance term used in the KCC and KGV).

4.1 Efficient computation of kernel dependence functionals

We note that COCO requires us to determine the eigenvalue of maximum magnitude for an mn×mn matrix
(see (29)), and the KMI is a determinant of anmn×mnmatrix, as specified in (30). For any reasonable sample
size m, the cost of these computations is prohibitive. We now describe how the computational complexity
of this problem may be substantially reduced. First, we note that any positive (semi)definite matrix can
be written Ki = ZiZ*

i , where Zi is lower triangular: this is known as the Cholesky decomposition. If the
eigenvalues of the Gram matrix K i decay sufficiently rapidly, however, we may make the approximation

Ki ≈ ZiZ*
i (32)

to the Gram matrix Ki, where Zi is an m× di matrix; the error due to this approach may be measured
via the maximum eigenvalue µi of Ki−ZiZ*

i . The Zi are determined via an incomplete Cholesky decom-
position, in which the smaller pivots are skipped; symmetric permutation of the rows and columns of K i

18. On a more pragmatic note, the factor 2zzz generally causes
∣∣∣,̆ j
∣∣∣ <
∣∣, j
∣∣, which results in KMI

(
zzz;FX1 , . . . ,FXn

)
being defined further

from independence. This is not the only such scaling factor, however.
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is used in the course of this process to increase the accuracy and numerical stability of the approxima-
tion. This method is applied by Fine and Scheinberg (2001) to decrease the storage and computational
requirements of interior point methods in SVMs, and by Bach and Jordan (2002a) for faster computation
of the KGV and KCC (pseudocode algorithms may be found in both references). Once the incomplete
Cholesky decomposition is accomplished, we can compute the approximate centred Gram matrices accord-
ing to K̃i := HKiH= (HZi)

(
HZ*

i
)

= Z̃iZ̃*
i .

We now show how this low rank decomposition may be used to more efficiently compute the constrained
covariance in (29). Substituting

di, j = Z̃*
i ci, j,

we get




000 Z̃1Z̃*
1 Z̃2 . . . Z̃1Z̃*

1 Z̃n
Z̃2Z̃*

2 Z̃1 000 . . . Z̃2Z̃*
2 Z̃n

...
...

. . .
...

Z̃nZ̃*
n Z̃1 Z̃nZ̃*

n Z̃2 . . . 000









d1, j
d2, j
...
dn, j




= , j





Z̃1 000 . . . 000
000 Z̃2 . . . 000
...

...
. . .

...
000 000 . . . Z̃n









d1, j
d2, j
...
dn, j




.

We may premultiply both sides by19 diag
([
Z̃*
1 . . . Z̃*

n
])
without increasing the nullspace of this gen-

eralised eigenvalue problem, and we then eliminate diag
([
Z̃*
1 Z̃1 . . . Z̃*

n Z̃n
])
from both sides. Making

these changes, we are left with




000 Z̃*
1 Z̃2 . . . Z̃*

1 Z̃n
Z̃*
2 Z̃1 000 . . . Z̃*

2 Z̃n
...

...
. . .

...
Z̃*
n Z̃1 Z̃*

n Z̃2 . . . 000









d1, j
d2, j
...
dn, j




= , j





d1, j
d2, j
...
dn, j




, (33)

which is a much more tractable eigenvalue problem, having dimension 'n
i=1 di. The same procedure may

easily be used to recast (30) as the determinant of an ('ni=1 di)× ('ni=1 di) matrix. We now briefly consider
how to choose the rank di for a given precision µi: this depends on both the density pxi and the kernel k (xi,x).
For Gaussian kernels and densities with exponential decay rates, Bach and Jordan (2002a) show the required
precision relates to the rank according to di = O(log (m/µi)), which demonstrates the slow increase in rank
with sample size. In the case of the KGV and KCC, however, the form of the empirical estimate causes
eigenvalues less than approximately 10−3m//2 to be discarded, which thus serves as a target precision to
ensure the Zi retain constant rank regardless of m. We also adopt this threshold in our simulations with the
Gaussian kernel, although our motivation is purely a reduction of computational cost.

4.2 Independent component analysis

We describe the goal of instantaneous independent component analysis (ICA), drawing on the numerous
existing surveys of ICA and related methods, including those by Hyvärinen et al. (2001); Lee et al. (2000);
Cichocki and Amari (2002); Haykin (1998); as well as the review by Comon (1994) of older literature on
the topic. We are given m samples ttt := (t1, . . . , tm) of the n dimensional random vector t, which are drawn
independently and identically from the distribution Pt. The vector t is related to the random vector s (also of
dimension n) by the linear mixing process

t = Bs, (34)

whereB is a matrix with full rank. We refer to our ICA problem as being instantaneous as a way of describing
the dual assumptions that any observation t depends only on the sample s at that instant, and that the samples
s are drawn independently and identically.

19. The notation diag
([
Z̃*1 . . . Z̃*n

])
defines a matrix with blocks Z̃*i along the diagonal, and zeros elsewhere. The matrix need

not be square, however, and the diagonal is in this case defined in a manner consistent with the asymmetry of theZ̃*i .
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The components si of s are assumed to be mutually independent: this model codifies the assumption that
the sources are generated by unrelated phenomena (for instance, one component might be an EEG signal
from the brain, while another could be due to electrical noise from nearby equipment). Mutual independence
(in the case where the random variables admit probability densities) has the following definition (Papoulis,
1991):

Definition 23 (Mutual independence) Suppose we have a random vector s of dimension n. We say that the
components si are mutually independent if and only if

ps (s) =
n

0
i=1

psi (si) . (35)

It follows easily that the random variables are pairwise independent if they are mutually independent; i.e.
psi (si)ps j (s j) = psi,s j (si,s j) for all i 2= j. The reverse does not hold, however: pairwise independence does
not guarantee mutual independence.

Our goal is to recover s via an estimate W of the inverse of the matrix B, such that the recovered vector
x =WBs has mutually independent components.20 For the purpose of simplifying our discussion, we will
assume that B (and henceW) is an orthogonal matrix; in the case of arbitrary B, the observations must first
be decorrelated before an orthogonalW is applied (Hyvärinen et al., 2001). In our experiments, however, we
will deal with general mixing matrices.

Mutual independence is generally difficult to determine. In the case of linear mixing, however, we are
able to find a unique optimal unmixing matrixW using only the pairwise independence between elements
of x, which is equivalent to recovering the mutually independent terms of s (up to permutation and scaling).
This is due to the following theorem (Comon, 1994, Theorem 11).

Theorem 24 (Mutual independence in linear ICA) Let s be a vector of dimension n with mutually inde-
pendent components, of which at most one is Gaussian, and for which the underlying densities do not contain
delta functions. Let x be a random vector related to s according to x = As, where A is an orthogonal n×n
matrix.21 Then the properties

• The components of x are pairwise independent

• The components of x are mutually independent

• A= PS, where P is a permutation matrix, and S a diagonal matrix

are equivalent.

We acknowledge that the application of a general dependence function to linear ICA is not guaranteed to be
an optimal non-parametric approach to the problem of estimating the entries in B—for instance, Samarov
and Tsybakov (2004) provide a method that guarantees

√
n-consistent estimates of the columns of B under

certain smoothness assumptions on the source densities, which is a more natural goal in view of the mixing
model (34). Indeed, most specialised ICA algorithms exploit the linear mixing structure of the problem to
avoid having to employ a general measure of independence, which makes the task of recovering B easier.
That said, ICA is in general a good benchmark for dependence measures, in that it applies to a problem
with a known “ground truth”, and tests that the dependence measures approach zero gracefully as dependent
random variables are made to approach independence (through optimisation of the unmixing matrix). In
addition, the kernel methods yield better experimental performance than other specialised ICA approaches

20. It turns out that the problem described above is indeterminate in certain respects. For instance, our measure of independence does
not change when the ordering of elements in x is swapped, or when components of x are scaled by different constant amounts. Thus,
source recovery takes place up to these invariances.

21. For the purposes of ICA, A combines both the mixing and unmixing processes, i.e., A=WB.
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(including recent state-of-the-art algorithms) in our tests of outlier resistance and musical source separation
(see Section 5).

We also note at this point that if elements ti, t j in the sample ttt are not drawn independently for i 2= j (for
instance, if they are generated by a random process with non-zero correlation between the outputs at different
times), then an entirely different set of approaches can be brought to bear (see for instance Belouchrani et al.,
1997; Pham and Garat, 1997).22 Although the present study concentrates entirely on the i.i.d. case, we will
briefly address random processes with time dependencies in Section 6, when describing possible extensions
to our work. Finally, we draw attention to an alternative ICA setting, as described by Cardoso (1998b);
Theis (2005), in which s is partitioned into mutually independent vectors (which might each have internal
dependence structure): we wish to recover these vectors following linear mixing. As pointed out by Bach
and Jordan (2002a), kernel dependence functionals are well suited to this problem, since they also apply
straightforwardly to multivariate random variables: it suffices to define appropriate Gram matrices.

4.3 Gradient descent on the Stiefel manifold

We now describe the method used to minimise our kernel dependence functionals over possible choices
of the orthogonal demixing matrix W. The manifold described by n× p matrices A for which A *A = I,
where n ≥ p, is known as the Stiefel manifold. Gradient descent for functions defined on this manifold is
described by Edelman et al. (1998), and Bach and Jordan (2002a) applied this technique to kernel ICA. A
clear and intuitive explanation of this procedure is also given by Hyvärinen and Plumbley (2002). Let f (W,ttt)
be the particular dependence functional (COCO or KMI) on which we wish to do gradient descent, where
ttt := (t1, . . . , tm) are the whitened, mixed observations. A naive gradient descent algorithm would involve
computing the derivative

G := 6 f (W,ttt)
6W

,

updatingW according to W→W+µG (where µ is chosen to minimise f (W+µG,ttt)), and projecting the
resulting matrix back onto the Stiefel manifold. This might not be particularly efficient, however, in that
the update can largely be cancelled by the subsequent projection operation. Instead, we attempt to find the
direction of steepest descent on the Stiefel manifold, and to perform our update with the constraint that we
remain on this manifold. To achieve this, we first describe the set of perturbations to W that retain the
orthogonality ofW, then choose the direction of steepest descent/ascent within this set, and finally give the
expression that parameterises the shifts along the geodesic23 in this direction.

Let 111 be a perturbation with small norm to the orthogonal matrix W, such that W+111 remains on the
Stiefel manifold. For this constraint to hold, we require

(W+111)* (W+111) = I, whichimplies (36)
W*111+111*W ≈ 000; (37)

in other words,W*111 is skew-symmetric. To find the particular 111 that gives the direction of steepest change
of f (W,ttt), we solve

111max := arg max
111

f (W+111,ttt),

subject to tr(111*111) = const and (37). This yields

111max =G−WG*W,

where the proof is provided by Edelman et al. (1998); Hyvärinen and Plumbley (2002). Finally, if we use
q to parameterise displacement along a geodesic in the direction 111max from an initial matrixW(0), then the
resultingW(q) is given by

W(q) =W(0)exp
(
qW(0)*111max

)
.

22. In particular, it becomes possible to separate Gaussian processes when they are correlated over time.
23. A geodesic represents the shortest path on a manifold between two points; equivalently, the acceleration involved in moving between

two points along a geodesic is perpendicular to the manifold when constant velocity is maintained.
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As in the implementation of Bach and Jordan (2002a), we determine an approximation of the gradient of
f (W,ttt) by making small perturbations to W about each possible Jacobi rotation, and recomputing f for
each such perturbation. Gradient descent is then accomplished using a Golden search along this direction of
steepest descent.

Finally, we note that procedures are given by Edelman et al. (1998) to compute the Hessian on the Stiefel
manifold, as are implementations of Newton’s method and conjugate gradient descent. In addition, an adap-
tive algorithm for gradient descent on the Stiefel manifold is proposed by Zhu and Zhang (2002). The
application of these methods to improve the performance of our algorithm is beyond the scope of the present
work.

4.4 Computational cost

We conclude this section with a summary of the overall computational cost of ICA based on COCO and the
KMI: this analysis draws directly from the assessment of Bach and Jordan (2002a, Section 6), since COCO
and the KMI cost effectively the same as the KCC and KGV, respectively. The first step in ICA, which is
not discussed here, is the decorrelation of the sources (as described for instance by Hyvärinen et al., 2001),
which has a cost O(mn2). We next consider the cost of computing the multivariate COCO and KMI. In both
approaches, each of the n sources requires an estimate of its m×m Gram matrix using incomplete Cholesky
decomposition, which costs O(md2), where d is the largest rank retained in the computation of the Z i in
(32): the net cost is O(mnd2). These Zi are then centred and assembled into the matrix in (33), which entails
n(n− 1)/2 operations each costing O(md 2), for an overall cost O(mn2d2). COCO is given by the largest
eigenvalue of this matrix, and costs O(n2d2); the KMI is a determinant, and costs O(n3d3).

We compute the gradient of the kernel dependence measures using the method of finite differences (as
described in the previous section), which necessitates n(n− 1)/2 evaluations of the measure used. In each
evaluation, we need only compute two incomplete Cholesky decompositions (we cache the remainder); the
assembly of the matrix in (33) then entails 2n− 3 matrix products, for an overall cost (Cholesky + matrix
assembly for all the Jacobi rotations) of O(mn3d2). The eigenvalue computations used to obtain the gradient
of COCO cost O(n4d2), and the determinants used in the KMI gradient cost O(n 5d3).

5. Experimental results on ICA
In this section, we examine the performance of our independence functionals (COCO, KMI) as it compares to
the KGV and KCC, when used to address the problem of linear instantaneous ICA. Since the objective is to
find an estimateW of the inverse of the mixing matrix B (the reader is referred to Section 4.2 for a description
of the ICA problem), we require a measure of distance between our approximation and the true inverse: this
is given by the Amari divergence, which is introduced in Section 5.1. Next, in Section 5.2, we present results
obtained when separating a range of artificial signals mixed using randomly generated matrices, including
cases in which the observations are corrupted by noise. Finally, we describe our attempts at separating
artificial mixtures of audio signals representing a number of musical genres. Results are compared with those
obtained using standard methods (FastICA, Jade, Infomax) and recent state-of-the-art methods (RADICAL,
CFICA), as well as the KCC and KGV.

5.1 Measurement of performance

We use the Amari divergence, defined by Amari et al. (1996), as an index of ICA algorithm performance: this
is an adaptation and simplification of a criterion proposed earlier by Comon (1994). Note that the properties
of this quantity in Lemma 26 were not described by Amari et al. (1996), but follow from the proof of Comon
(1994).

Definition 25 (Amari divergence) Let B and W be two n× n matrices, where B is the mixing matrix and
W the estimated unmixing matrix (these need not be orthogonal here), and let D =WB. Then the Amari
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divergence between B andW is

D (WB) =
100

2n(n−1)

n

'
i=1

(
'n
j=1 |di, j|

max j |di, j|
−1
)

+
1

2n(n−1)

n

'
j=1

(
'ni=1 |di, j|
maxi |di, j|

−1
)

.

Although this measure is not, strictly speaking, a distance metric for general matrices B,W, it nonetheless
possesses certain useful properties, as shown below.

Lemma 26 (Properties of the Amari divergence) The Amari divergenceD (WB) between the n×n matri-
ces B,W has the following properties:

• 0 ≤ D (WB) ≤ 100. The factor of 100 is not part of the original definition of Amari et al. (1996),
who defined the Amari divergence on [0,1]. In our experiments, however, the Amari divergence was
generally small, and we scaled it by 100 to make the results tables more readable.

• Let P be an arbitrary permutation matrix (a matrix with a single 1 in each row and column, and with
remaining entries 0), and S be a diagonal matrix of non-zero scaling factors. ThenW = B−1 if and
only if D (WB) = 0, or equivalentlyD (WBSP) = 0 or D (SPWB) = 0.

The final property in the above Lemma is particularly useful in the context of ICA, since it causes our per-
formance measure to be invariant to output ordering ambiguity once the sources have been demixed (see
Theorem 24).

5.2 Experiments and performance assessment

Since our main purpose is to compare the performance with that reported by Bach and Jordan (2002a), we
generated our test distributions independently following their descriptions. A list of the distributions used
in our experiments, and their respective kurtoses, is given in Table 3. While these distributions represent a
broad range of behaviours, we note that negative kurtoses predominate, which should be borne in mind when
evaluating performance. We used the KGV and KCC Matlab implementations downloadable from (Bach and
Jordan) (thus, we employ the KGV as originally defined by Bach and Jordan (2002a), and not the version
described in Section 3.1.6). The precision of the incomplete Cholesky decomposition, used to approximate
the Gram matrices for the kernel dependence functionals, was set at 7 := -n; our choice of - represents a
tradeoff between accuracy and computation speed. Unless otherwise specified, the kernel algorithm results
were refined in a “polishing step”, in which the kernel size was halved upon convergence, and the gradient
descent procedure recommenced with this smaller kernel. This polishing was carried out since the larger
kernel size results in the kernel dependence measures being a smoother function of the estimated unmixing
matrix, making it easier to find the global minimum; but making the location of this global minimum less
precise than obtained with a smaller kernel. The polishing step usually caused a measurable improvement in
our results.

As well as the kernel algorithms, we compare with three standard ICA methods: FastICA (Hyvärinen
et al., 2001), Jade (Cardoso, 1998a), and Infomax (Bell and Sejnowski, 1995); and two more sophisticated
methods, neither of them based on kernels: RADICAL (Miller and Fisher III, 2003), which uses order statis-
tics to obtain entropy estimates; and characteristic function based ICA (CFICA) (Chen and Bickel, 2004). 24
It was recommended to run the CFICA algorithm with a good initialising guess; we used RADICAL for this
purpose. All kernel algorithms were initialised using Jade (except for the 16 source case, where FastICA was
used due to its more stable output). RADICAL is based on an exhaustive grid search over all the Jacobi rota-
tions, and does not require an initial guess. In the case of FastICA, we used the nonlinearity most appropriate
to the signal characteristics: this was generally the kurtosis based contrast, since the predominantly negative
kurtoses in Table 3 made this a good choice (see Hyvärinen et al., 2001). In some experiments, however, the

24. We are aware that Chen and Bickel propose an alternative algorithm, “efficient ICA”. We did not include results from this algorithm
in our experiments, since it is unsuited to mixtures of Gaussians (which have fast decaying tails) and discontinuous densities (such
as the uniform density on a finite interval), which both occur in our benchmark set.
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Table 3: Labels of distributions used, and their respective kurtoses. All distributions have zero mean and unit
variance.

Label Definition Kurtosis
a Student’s t distribution, 3 DOF +
b Double exponential 3.00
c Uniform -1.20
d Students’s t distribution, 5 DOF 6.00
e Exponential 6.00
f Mixture, 2 double exponentials -1.70
g Symmetric mixture 2 Gauss., multimodal -1.85
h Symmetric mixture 2 Gauss., transitional -0.75
i Symmetric mixture 2 Gauss., unimodal -0.50
j Asymm. mixture 2 Gauss., multimodal -0.57
k Asymm. mixture 2 Gauss., transitional -0.29
l Asymm. mixture 2 Gauss., unimodal -0.20
m Symmetric mixture 4 Gauss., multimodal -0.91
n Symmetric mixture 4 Gauss., transitional -0.34
o Symmetric mixture 4 Gauss., unimodal -0.40
p Asymm. mixture 4 Gauss., multimodal -0.67
q Asymm. mixture 4 Gauss., transitional -0.59
r Asymm. mixture 4 Gauss., unimodal -0.82

kurtosis was unsuited to the source characteristics, in which case we signal our alternative choice of nonlin-
earity. The Infomax algorithm selects its contrast automatically based on the super- or sub-Gaussianity of the
signal, and does not require manual contrast choice. Likewise Jade uses only a kurtosis-based contrast, and
thus does not require the user to choose a demixing function.

We begin with a brief investigation into the form taken by the various kernel dependence functionals for
a selection of the data in Table 3. Contours of the KGV, COCO, KMI, and Amari divergence are plotted
in Figure 1, which describes the demixing of samples from three distributions, combined using a product of
known Jacobi rotations. All kernel functionals in this demonstration were computed with a Gaussian RBF
kernel,

kG(x,x′) =
1

&
√
24
exp
(
− 1
2&2

‖x− x′‖2
)

. (38)

We observe that each of the functionals exhibits local minima at locations distant from independence, but that
each possesses a “basin of attraction” in the vicinity of the correct answer. Moreover, we note that each of the
functionals is smooth (given the choice of kernel size), and that the global minima are fairly symmetric. For
these reasons, the gradient descent algorithm described in Section 4.3 should converge rapidly to the global
optimum, given a reasonable initialisation point. Our solution method differs from that of Bach and Jordan
(2002a), however, in that we generally use Jade (unless specified otherwise) to initialise the kernel functionals
(COCO, KCC, KGV, KMI), whereas Bach and Jordan only do this when separating large numbers of signals
(in most cases, they initialise using a one-unit kernel dependence functional with deflation, and with a less
costly polynomial kernel). For more than two signals, this process is repeated several times, starting from
different initialising matrices. While Jade is less computationally costly as an initialisation method, it might
be less reliable in certain cases (where the sources are near-Gaussian, or when a large number of outliers exist
due to noise, both of which can cause Jade to misconverge).
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Figure 1: Contour plots of kernel independence functionals. Top left: Amari divergence. Top right: ker-
nel mutual information. Bottom left: constrained covariance. Bottom right: kernel generalised
variance. Three signals of length 1000 and with respective distributions g, k, and q (this choice
was random) were combined using a 3× 3 orthogonal rotation matrix. This matrix was ex-
pressed as a product of Jacobi rotations B = Rz(3z)Ry(3y)Rx(3x), where 3x = −4/6, 3y = −4/4,
and 3z = −4/3; the subscript denotes the axis about which the rotation occurs. An estimate
W = Rx(−3x)Ry(3̂y)Rz(3̂z) of B−1 was made, in which 3̂y and 3̂z took values in the range [0,4].
The red “x” in each plot is located at the coordinates (−3 z,−3y) corresponding to the optimal
estimate of B. A Gaussian kernel of size &2 = 1 was used in all cases, and /= 10−3 for the KGV.
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5.3 General mixtures of artificial data

We now describe the ICA experiments performed with the distributions in Table 3, where the Amari diver-
gence is used to measure the closeness of the estimated mixingmatrix to the true matrix. Kernels used include
the Gaussian RBF kernel in (38), and the Laplace kernel,

kL(x,x′) =
,
2
exp(−,‖x− x′‖).

We combined the independent sources using randommixing matrices, with condition numbers between 1 and
2, and then whitened the resulting observations before estimating the orthogonal de-mixing matrix. 25

Our first experiment consisted in de-mixing data drawn independently from 2-16 sources chosen at ran-
dom with replacement from Table 3. Results are given in Table 4. The KMI with Gaussian kernel matches or
exceeds KGV performance in the final four experiments; and, with the Laplace kernel, in five of the seven ex-
periments. Moreover, the KMI yields performance statistically indistinguishable from RADICAL in four of
the seven experiments.26 On the other hand, the KGV outperforms the KMI in the first and third case, where
the number m of samples is small (although in the n = 4,m = 1000 case, the difference is not statistically
significant). The superior performance of the Laplace kernel compared with the Gaussian may be due to its
slower decaying spectrum, which allows dependence encoded at higher frequencies in the source density to
induce a greater departure of COCO from zero (making this dependence easier to detect): see Gretton et al.
(2005b, Section 4.2). The Laplace kernel has a greater computational cost, however, since the eigenvalues
of the associated Gram matrices decay more slowly than for the Gaussian kernel, necessitating the use of a
higher rank in the incomplete Cholesky decomposition to maintain good performance. Finally, the extended
Infomax algorithm seems unable to separate the signals in 250 sample, 2 signal case: the Amari divergence
was spread almost uniformly over the range [0,100].

5.4 Performance on difficult artificial problems

In our next experiment, we investigated the effect of outlier noise added to the observations. We selected
two generating distributions from Table 3, randomly and with replacement. After combining these signals
with a randomly generated matrix with condition number between 1 and 2, we generated a varying number
of outliers by adding ±5 (with equal probability) to both signals at random locations. All kernels used were
Gaussian with size & = 1; Laplace kernels resulted in decreased performance for this noisy data. In the
case of COCO, this can be explained by functions in the Laplace RKHS having less penalisation at high
frequencies, causing the functions attaining the supremum in Definition 2 to adapt to (and be affected by)
outliers to a greater degree than functions in the Gaussian RKHS (the KMI is also subject to this effect).
Results are shown in the left hand plot in Figure 2. Note that we used / = 0.11 for the KGV and KCC in
this plot, which is an order of magnitude above the level recommended by Bach and Jordan (2002a): this
resulted in an improvement in performance (broadly speaking, an increase in / causes the KGV to approach
the KMI, and the KCC to approach COCO).27 It is clear that the kernel methods substantially outperform
both the standard and recent alternatives in outlier resistance (we omitted the remaining standard methods,
since their performance was worse than FastICA).

An additional experiment was also carried out on the same data, to test the sensitivity of the KCC and
KGV to the choice of the regularisation constant /. We observe in the right hand plot of Figure 2 that too
small a / can cause severe underperformance for the KCC and KGV. On the other hand, / is required to be

25. We did not use simple orthogonal matrices to mix our sources, since this would have lowered the variance in our estimate ofW,
making the problem (slightly) easier than that of estimating a truly random mixing matrix (Cardoso, 1998a).

26. The mean performance of the various methods, both kernel and otherwise, is affected in some experiments by a small number of
misconverged results with large Amari divergence (although misconvergence of the kernel methods does not always correspond to
misconvergence of the Jade initialisation). These results may arise from diversion to local minima, causing an increase in the overall
mean Amari divergence that does not reflect the typical behaviour of the kernel algorithms. Such outliers occur less often, or not at
all, at larger sample sizes, as can be seen by the decreased variance in these cases.

27. The results presented here for the KCC and KGV also improve on those of Miller and Fisher III (2003); Bach and Jordan (2002a)
since they include a polishing step for the KCC and KGV, which was not carried out in these earlier studies.
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small for good performance at large sample sizes in Table 4. A major advantage of COCO and the KMI is
that these do not require any additional tuning beyond the selection of a kernel.

Our third experiment addresses the effects of low kurtosis, since many ICA methods rely (sometimes
implicitly, through their choice of nonlinearity) on the kurtosis as an index of signal independence. Two
samples were drawn from a single distribution, consisting of a mixture of two Gaussians with means+5 and
−5 and unit variance, with a selection of mixture weights chosen such that, following normalisation of the
overall sample to zero mean and unit variance, the (empirical) kurtosis took on a range of positive, near-zero,
and negative values. Results are given in Figure 3. All kernel based methods were unaffected by near-zero
kurtosis, as were CFICA and RADICAL; the remaining ICA methods do less well (Infomax was omitted
since it performed worse than Jade).
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Figure 2: Left: Effect of outliers on the performance of the ICA algorithms, for two sources of length m=
1000, drawn independently with replacement from Table 3, and corrupted at random observations
with outliers at ±5 (where each sign has probability 0.5). Each point represents an average over
100 independent experiments. The number of corrupted observations in both signals is given on the
horizontal axis. The kernel methods used &= 1, -= 2×10−5, and /= 0.11 (KCC and KGV only).
The tanh nonlinearity was used for the FastICA algorithm, since this is more resistant to outliers
than the kurtosis (Hyvärinen, 1997). Right: Performance of the KCC and KGV as a function of
/ for two sources of size m = 1000, where 25 outliers were added to each source following the
mixing procedure.

5.5 Audio signal demixing

Our final experiment involved demixing brief extracts from various musical sources, which were combined
using a randomly generated matrix (in the same manner as the artificial signals described in the previous
section). A total of 17 different extracts were taken from the ICA benchmark set at (Pearlmutter). These
consist of 5 second segments sampled at 11 kHz with a precision of 8 bits, and represent a wide variety of
musical genres. While samples of a musical signal are certainly not generated independently and identically
in time, many ICA algorithms have nonetheless been applied successfully to this problem, which is why
we investigate this benchmark. Indeed, many practical applications of ICA are in a context where complete
independence of the unmixed signals is not a goal, in theory or in practice: rather, the objective of the linear
unmixing is to obtain signals that are relatively “more independent” than the original observations, in the
hope that these will be physically interpretable in the light of the system generating the data.

A summary of our results is given in Table 5: the KMI, KGV, and CFICA are statistically indistinguishable
for two extracts, and the KGV does best with four extracts, followed by the KMI. In the n = 2 case, every
possible combination of two different extracts was investigated (for a total of 136 experiments), and the
results averaged. We used / = 2× 10−3, & = 0.5, - = 1× 10−5, and a Gaussian kernel for the KGV; and
,= 3, - = 1×0.01, and a Laplace kernel for the KMI. In both cases, a polishing step was applied to refine
the result. For each experiment with n= 4, music segments were drawn randomly and without replacement
from the 17 available extracts, and the results averaged over 120 repetitions. All kernel algorithm parameters
were the same as in the n= 2 case besides the Laplace kernel size, which was increased to ,= 4. In addition,
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Figure 3: Effect of near-zero kurtosis on the performance of the algorithms, for two signals of length 1000
drawn from a range of mixtures of two Gaussians. Each point represents an average over 100
independent experiments. We used a Gaussian kernel with & = 1 and precision - = 2× 10−5 for
all kernel dependence functionals, and /= 2×10−2 for the KCC and KGV.

no polishing step was applied to the KGV or KMI, since it caused a drop in performance in both cases. 28
Our use of the Laplace kernel in the KMI was motivated by music generally being super-Gaussian (Bell
and Sejnowski, 1995). Random permutation of time indices was used to reduce the statistical dependence
of adjacent samples in the music, since this was found to improve performance (note that this permutation
was carried out on the mixed signals, and was the same for each of the observed mixtures). It is notable
that RADICAL, which performs best in the case of noise-free artificial data, does not improve on standard
methods in the case of musical sources.

Although the results in Table 5 are quite similar for the KGV and KMI, it is instructive to compare
the distribution of the outcomes obtained in each experiment. Generally, the KGV results are more tightly
grouped about their mean, whereas the KMI yields more results at smaller Amari divergences, but a larger
number of outliers with greater error.

6. Conclusions and outlook
6.1 Conclusions

We have introduced two novel functionals to measure independence: the constrained covariance (COCO),
which is the spectral norm of the covariance operator between reproducing kernel Hilbert spaces, and the
kernel mutual information (KMI), which is a function of the entire spectrum of the empirical estimate of
this covariance operator. The first quantity is analogous to the kernel canonical correlation (KCC), which
is the spectral norm of the correlation operator; the second is analogous to the kernel generalised variance
(KGV), which is a function of the empirical correlation operator spectrum (see Table 1 in the introduction).
We prove two main results. First, we describe the class of all reproducing kernel Hilbert spaces for which
these four functionals determine independence: the RKHSs must be universal. Second, we link the KMI and
the KGV with the mutual information, proving the KMI is an upper bound near independence on the Parzen
window estimate of the mutual information, and the KGV is a looser upper bound under certain conditions.

28. This is perhaps surprising, given that the polishing step caused a minor increase in performance in the n = 2 case. On the other
hand, the larger dimension of the n = 4 problem makes the global minimum harder to find, and diversion to local minima more
likely.
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We emphasise that the KMI and KGV do not require the space partitioning or binning approximations usually
associated with estimates of the mutual information (Paninski, 2003).

Our experiments demonstrate the effectiveness of kernel algorithms in ICA, as compared with both stan-
dard methods (Jade, Fast ICA, and Extended Infomax); and modern approaches (CFICA, RADICAL). We
emphasise that kernel methods (the KMI and KGV in particular) are clearly superior to the alternatives when
outlier noise is present in the observations, and are also best at unmixing real (musical) signals. In addition,
all modern methods are unaffected by the sources having zero kurtosis, which is not true of earlier algorithms.

Our experiments also point to the superiority of the KMI and KGV over the KCC and COCO in measuring
independence. Since independence of two random variables implies that the entire spectrum of the associated
covariance (or correlation) operator is zero, it comes as no surprise that measures using the whole spectrum
are more robust than those using only the largest singular value. This intuition remains to be formalised,
however.

The choice between the KGV and KMI (or, alternatively, COCO and the KCC) is more complicated. The
methods proposed by Bach and Jordan (2002a) appear to do well when there is little data available, as in the
n = 2, m = 250 and n = 4,m = 1000 cases in Table 4, although the mechanism by which this is achieved
remains unclear. On the other hand, the KCC and KGV do less well when the sample size/number of sources
are large. The KGV and KCC can also be more susceptible to noise in the observations, which is particularly
apparent when / becomes small29 (and the bound on mutual information provided by the KGV is looser).
Indeed, in our outlier resistance experiments, the KMI and COCO achieve by default the optimal performance
of the KCC and KGV with model selection over /. The absence of a separate regularisation parameter in our
kernel functionals therefore greatly simplifies model selection, especially if the observations are known to be
corrupted by outliers.

6.2 Directions for future study

A number of extensions to this work are readily apparent. For instance, the behaviour of the KMI has not
been studied in detail for more than two univariate random variables, besides the discussion in Section 3.2
which guarantees it to be zero when the empirical COCO is zero. In particular, it would be of interest to
prove that (30) in Section 3.2 is an upper bound on the Gaussian mutual information, in the manner described
in Section 3.1.5 for two random variables. This would incidentally require the link between the Gaussian
mutual information and the discrete mutual information, described in Section 3.1 for the two variable case, to
be extended to a greater number of random variables. The optimisation procedure we use for ICA might also
be made faster, for instance by implementing Newton’s method or conjugate gradient descent on the Stiefel
manifold (as described by Edelman et al. (1998)), rather than simple gradient descent.

We also need to ensure that both the KMI and COCO approach their population expressions as the sample
size increases. In the case of COCO, Gretton et al. (2005b, 2004) give probabilistic bounds for deviations
from the expected value using standard tools from uniform convergence theory. The application of these
results to the empirical KMI is less clear, however, since the KMI is a product of multiple COCO-type
quantities, and we do not know what expression it approaches in the population limit. More generally, it is
necessary to further investigate methods for model selection (i.e., for choosing the kernel size and type) in
COCO and the KMI. It is not presently knownwhether performance is most effectively tuned by simple cross-
validation, using bounds derived from concentration inequalities, or via the properties of Parzen window
estimates described by Silverman (1986).

Many real life problems do not fit neatly into the linear ICA framework: we now outline ways in which our
kernel dependence functionals might be used to improve performance in these more difficult signal separation
problems. First, let us consider the separation of random processes, as opposed to random variables. It is
rare in practice to encounter signals that do not depend on their previous outputs. Rather, most real signals
exhibit statistical dependencies between the observations at different times (this is obviously true of music, for
example). These random processes may be stationary, meaning that their statistical properties (for instance
the mean and correlation) do not change over time; or they may be nonstationary. In both cases, however, the

29. / is the regularisation scaling factor for these dependence functionals.
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time dependence greatly assists in separating signals into independent components, the idea being that the
independence of different random processes should hold not only between samples drawn at the same time,
but also between samples drawn at different times. Approaches to this problem include that of Belouchrani
et al. (1997), who separate the signals using decorrelation between the sources at any time shift, and the
more general approach of Belouchrani and Amin (1998), who use Cohen’s class time-frequency kernels to
transform the signal and facilitate source separation. The former approach is limited since it breaks down
when the sources have overlapping spectra, due to its using only a second order dependence measure. Thus,
it would be interesting to generalise the approach of Belouchrani et al. (1997) using kernel measures of
dependence, rather than correlation. This generalisation has been investigated, using the mutual information
as a dependence measure, by Stögbauer et al. (2004).

Another generalisation of ICA is the separation of sources when mixing is nonlinear. This is considerably
more difficult than linear ICA, due to the increased complexity of the mixing model. One simplification,
which makes the problem more tractable, is the post-nonlinear model: the ith component of the observation
vector t is

ti = fi(bis), (39)
where fi is the ith (unknown) nonlinearity, and b i is the ith row of the mixing matrix B. This situation
corresponds for instance to the observations being distorted by the sensors. Approaches to this problem
include the methods of Taleb and Jutten (1999); Achard et al. (2001, 2003)—a comparison of these techniques
with COCO and the KMI would therefore be of interest (this would require an efficient optimisation algorithm
for our dependence measures under the setting (39)).

Various efforts have also been made to solve the more general case

t= f (s).

This problem requires additional constraints on f , to avoid a trivial solution via the Darmois decomposition
(Hyvärinen and Pajunen, 1999) (even then, it is generally the case that each source s i can only be recovered
up to a nonlinear distortion; this is the analogue of the scaling indeterminacy (Theorem 24) in the linear
mixing case). It may also be necessary for the observations to arise from random processes, rather than being
i.i.d. For instance, according to Hosseni and Jutten (2003), enforcing temporal decorrelation over a single
time step is sufficient to test whether the recovered independent processes are simply the result of a Darmois
decomposition. While this does not rule out other transforms that return independent signals unrelated to
the sources, it suggests that time dependencies have a crucial role to play in general nonlinear mixing. In
the scheme suggested by Harmeling et al. (2003), demixing is achieved by mapping the observations to a
reproducing kernel Hilbert space, finding a low dimensional basis in the feature space which approximately
spans the subspace formed by the observations, and enforcing the second order temporal decorrelation of
projections onto this basis. The applicability of the KMI is less clear than in the case of post-nonlinear
mixtures, although this might follow from a better understanding of the technique of Harmeling et al. (2003)
and its relation to our work.

Finally, Bach and Jordan (2002b) propose using kernel dependence measures in representing probability
distributions as tree structured graphical models. Fitting these models requires in particular that the mutual
information between pairs of random variables be maximised: thus, Bach and Jordan compare the KGV to
a Parzen window estimate of the mutual information in this context. Although the Parzen window approach
generally performs better, the KGV is also very effective. We have shown, however, that the KGV is an upper
bound (near independence) on the mutual information: thus the KGV performance is a possible indication
of the tightness of this upper bound. Given that the KMI is in theory a tighter upper bound than the KGV, it
would be interesting to compare its performance with the KGV in this setting.
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Appendix A. Proofs
A.1 COCO, kernel PCA, and kernel target alignment

In this appendix, we show that COCO is the quantity optimised when obtaining the first principal component
in the kernel principal component analysis (kPCA) method of Schölkopf et al. (1998). This can be seen as
follows: kPCA satisfies the eigenvalue problem

max
‖y‖≤1

y*Ky= ,

(an inequality is used to keep the constraint set convex). This is rewritten

max
‖y‖≤1

y*Ky = max
‖y‖≤1

tr
(
Kyy*

)

= max
‖y‖≤1

∥∥∥Kyy*
∥∥∥
2
,

where the norm in the final line is the largest singular value. The final expression is just COCO2
emp, with

feature space G := R and inner product30 l(yi,y j) = yiy j. The difference with respect to the dependence
measurement framework described previously is that we now maximise over the members y i of G , rather
than being given them in advance. This last argument also shows that COCO is optimised in the spectral
clustering/kernel target alignment framework of Cristianini et al. (2002).

30. Note that the linear kernel used here is not universal, and thus COCO is not a general dependence functional in this context: see
Section 2.3.
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A.2 Ratio of determinants

In this appendix, we prove Theorem 11. First, we note that bothA and C must be positive definite, since they
are submatrices of the positive definite matrix (8). Then

∣∣∣∣

[
A B
B* C

]∣∣∣∣
|A| |C| =

∣∣∣∣

[
A B
B* C

]∣∣∣∣
∣∣∣∣

[
A 000
000 C

]∣∣∣∣

(a)
=

∣∣∣∣

[
A B
B* C

]∣∣∣∣
∣∣∣∣

[
A1/2 000
000 C1/2

][
A1/2 000
000 C1/2

]∣∣∣∣

=
∣∣∣∣

[
A−1/2 000
000 C−1/2

][
A B
B* C

][
A−1/2 000
000 C−1/2

]∣∣∣∣

=
∣∣∣∣

[
I A−1/2BC−1/2

C−1/2B*A−1/2 I

]∣∣∣∣ .

(b)
=

∣∣∣I−A−1/2BC−1B*A−1/2
∣∣∣

=
∣∣∣I−C−1/2B*A−1BC−1/2

∣∣∣
(c)
= 0

i
(1−.2i )

where (a) requires that A and C be positive definite,31 (b) uses the relation between the determinant of a
matrix and that of its Schur complement from Horn and Johnson (1985, p. 22), and (c) uses Theorem 7.3.7
of Horn and Johnson (1985) to determine that . i are the singular values of A−1/2BC−1/2. Note that since (8)
has only positive eigenvalues, and the determinant of a symmetric matrix is the product of the eigenvalues,
we are guaranteed

0
i

(1−.2i ) > 0.

From Horn and Johnson (1985, Theorem 7.3.7), we can write . i as the positive solutions of the eigenvalue
problem [

000 A−1/2BC−1/2

C−1/2B*A−1/2 000

]
bi = .ibi,

bearing in mind that these solutions come in pairs with equal magnitude and opposite sign. Rearranging and
making an appropriate change of variables yields the generalised eigenvalue problem

[
000 B
B* 000

]
ai = .i

[
A 0
0 C

]
ai.

A.3 Determinant form of the Gaussian mutual information

In this section, we give a derivation of (18) in Section 3.1.3, which states that

I (xG;yG) = −1
2
log
(∣∣∣∣Ily −

(
Pxy−pxp*y

)*
D−1
x

(
Pxy−pxp*y

)
D−1
y

∣∣∣∣

)
. (40)

31. A matrix has a square root if and only if it is positive definite.
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This result was given without proof by Bach and Jordan (2002a, Appendix B). We begin with the mutual
information between xG and yG, which is written

I (xG;yG) = −1
2
log

(

0
i

(1−.2i )

)
, (41)

where .i are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp*y(
Pxy−pxp*y

)* 000

][
ci
di

]
= .i

[
Dx−pxp*x 000

000 Dy−pyp*y

][
ci
di

]
(42)

(this can be found by substituting the covariances (15)-(17) into (10)). Note that both D x−pxp*x and Dy−
pyp*y have rank lx−1 and ly−1 respectively, and are not invertible.32 To see this, we make the expansions

Dx−pxp*x = Dx
(
Ilx −111lxp*x

)
= DxEx,

Dy−pyp*y = Dy
(
Ily −111lyp*y

)
= DyEy,

where Ex := Ilx −111lxp*x and Ey := Ily −111lyp*y have zero eigenvalues corresponding to the eigenvectors 1√
lx
111lx

and 1√
ly
111ly , respectively. In addition, we note that

(
Pxy−pxp*y

)
Ey =

(
Pxy−pxp*y

)(
Ily −111lyp*y

)

= Pxy−pxp*y −Pxy111lyp*y +pxp*y 111lyp*y
= Pxy−pxp*y −pxp*y +pxp*y
= Pxy−pxp*y ,

with an analogous result for
(
Pxy−pxp*y

)*Ex. We may therefore write (42) as
[

000
(
Pxy−pxp*y

)
Ey(

Pxy−pxp*y
)*Ex 000

][
ci
di

]
= .i

[
DxEx 000
000 DyEy

][
ci
di

]
,

from which we obtain a generalised eigenvalue problem with identical eigenvalues . i,
[

000 Pxy−pxp*y(
Pxy−pxp*y

)* 000

][
ei
fi

]
= .i

[
Dx 000
000 Dy

][
ei
fi

]
.

Since Dx and Dy have full rank, we may now apply Theorem 11 to obtain (40).

A.4 Details of Definition 13

In this section, we derive the Parzen window estimate of the Gaussian mutual information provided in Defi-
nition 13. The kernel density (Parzen window) estimates for p x,y and its marginals, on the basis of the sample
zzz, are

p̂x(x) =
1
m

m

'
l=1

/(xl− x) , p̂y(y) =
1
m

m

'
l=1

/(yl− y) ,

p̂x,y(x,y) =
1
m

m

'
l=1

/(xl− x)/(yl− y) ,

32. This is why we use (41) as our expression for the mutual information, rather than the ratio of determinants (7) (which would be
undefined here).
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where the kernel argument indicates which kernel is used, to simplify notation. We require approximations
to the terms in the Gaussian mutual information, as described in (18). We therefore define the vectors p̂x, p̂y,
and the matrix P̂xy, using the expectations in (12)-(14) computed with these kernel expressions;

Êx,y

(
x̌ y̌*
)

= P̂xy, (43)

Êx (x̌) = p̂x, (44)

Êx

(
x̌ x̌*
)

= D̂x. (45)

In the limit where 1x,1y are small (and thus, by implication, lx 4 m, ly 4 m, &x 4 1x, and &y 4 1y, where
&x and &y define the kernel sizes), we make the approximations

Êx ((x̌)i) = P̂x̂ (i) =
1
m

Z qi+1x

qi

m

'
l=1

/(xl− x)dx≈ 1x
m

m

'
l=1

/(xl−qi) ,

Êx

((
x̌ x̌*
)

i, j

)
≈
{

1x
m 'ml=1/(xl−qi) i= j

0 otherwise ,

and

Êx,y

((
x̌ y̌*
)

i, j

)
= P̂x̂,ŷ (i, j) =

1
m

Z qi+1x

qi

Z r j+1y

r j

m

'
l=1

/(xl− x)/(yl− y)dxdy

≈
1x1y
m

m

'
l=1

/(xl−qi)/(yl− r j) .

Before proceeding further, we define two matrices of kernel inner products to simplify our notation. Namely,

Kl :=





/(q1− x1) . . . /(q1− xm)
...

. . .
...

...
. . .

...
/(qlx − x1) . . . /(qlx − xm)




, Ll :=





/(r1− y1) . . . /(r1− ym)
...

. . .
...

...
. . .

...
/
(
rly − y1

)
. . . /

(
rly − ym

)




, (46)

where we write the above in such a manner as to indicate l x 4 m and ly 4 m. We now use the above results
to re-write (43)-(45) as respectively

P̂xy− p̂xp̂*y ≈
1x1y
m

(
KlL*

l − 1
m
Kl111m111*mL*

l

)
=

1x1y
m
KlHL*

l ,

D̂x ≈ 1x
m
diag(Kl111m) =:

12x
m
D(x)
l ,

and

D̂y ≈ 1y
m
diag(Ll111m) =:

12y
m
D(y)
l ,

where we introduce the terms

D(x)
l =

1
1x




'm
l=1/(q1− xl) . . . 0

...
. . .

...
0 . . . 'ml=1/(qlx − xl)



 (47)

and

D(y)
l =

1
1y




'm
l=1/(r1− yl) . . . 0

...
. . .

...
0 . . . 'm

l=1/(rly − yl)



 . (48)
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With these substitutions, we can rewrite
(
D̂x
)−1/2(

P̂xy− p̂xp̂*y
)(
D̂y
)−1/2

≈
(
D(x)
l

)−1/2(
KlH(Ll)*

)(
D(y)
l

)−1/2
,

which results in our definition.

A.5 Proof of Theorem 16

Our proof of Theorem 16 requires the following lemma.

Lemma 27 (Singular values of a matrix product) Let A, B be m×n matrices, q :=min(m,n), and A have
singular values &1(A), . . . ,&q(A) (ordered from largest to smallest). Then &1(AB*) ≤ &1 (A)&1 (B) and

&q(AB*) ≤ min
{
&q (A)&1 (B) ,&1 (A)&q (B)

}
.

.

This is a special case of a result of Horn and Johnson (1985, p. 423). We now proceed with the proof. The
principle we will follow is straightforward: we want to upper bound the Gaussian mutual information in (20)
by upper bounding each of the .̂i that define it. Indeed, if we can find a matrix to replace (21) with singular
values )i ≥ .̂i for all i, it follows that − 1

2 log
(
0i
(
1−)2i

))
≥ − 1

2 log
(
0i
(
1− .̂2i

))
. First, we note that ±.̂i

are the eigenvalues of the matrix




(
D(x)
l

)−1
000

000
(
D(y)
l

)−1





︸ ︷︷ ︸
D−1

[
000 KlH(Ll)*

LlH(Kl)* 000

]

︸ ︷︷ ︸
E

.

According to (22), D(x)
l is a diagonal matrix with jth entry 1

1x '
m
i=1/(xi− q j), which is an unnormalised

Parzen window estimate of px at grid point q j (an analogous result holds for D
(y)
l ). It follows that D is

diagonal, and we denote its ith largest value as di (i.e., d1 is the overall maximum); we also define & i to be the
ith singular value of E. We may obtain a new matrix with singular values ) i ≥ .̂i by replacing the diagonal
entries of D with their smallest value,33

D → min
i

(di)I

=
2zzz
1
I, (49)

where 2zzz =min{2xxx,2yyy} and

2xxx := min
j ∈ {1 . . . lx}

m

'
i=1

/(xi−q j) , 2yyy := min
j ∈ {1 . . . ly}

m

'
i=1

/(yi− r j) . (50)

The singular values )i of ( 21 I)
−1E satisfy34

.̂i ≤ min
{
d−1lx+ly&i, d

−1
lx+ly−i+1&1

}

≤ d−1lx+ly&i

=
1
2zzz
&i = )i

33. We assume without loss of generality that 1x = 1y = 1, since this simplifies notation.
34. Bear in mind that due to the ordering of the singular values, maxj d−1j = d−1lx+ly ; and the d

−1
j are sorted in reverse order to the dj .
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for all i, where the first inequality derives from Lemma 27. Rather than computing the minima in (50) over
the grid, however, we may simply use

2xxx := min
j ∈ {1 . . .m}

m

'
i=1

/(xi− x j) , 2yyy := min
j ∈ {1 . . .m}

m

'
i=1

/(yi− y j) ,

which are respectively the smallest (unnormalised) Parzen window estimates of p x and py at any sample
point: these approach the smallest values of px on X , and of py on Y , as the sample size increases (the
densities are bounded away from zero by assumption).

Having made the replacement in (49), it is straightforward to take a limit in which the grid becomes
infinitely fine. We begin by rearranging the Lemma 13 definition as

Î (x̂; ŷ) ≤ −1
2
log

∣∣∣∣∣I−
(
1
2zzz

)2(
KlH(Ll)*

)(
KlH(Ll)*

)*
∣∣∣∣∣

= −1
2
log

∣∣∣∣∣I−
(
1
2zzz

)2(
HK*

l KlH
)(
HL*

l LlH
)∣∣∣∣∣ .

We then have the limiting result

lim
lx→+

(
1x
2zzz
K*
l Kl

)

i. j
= 2−1zzz lim

lx→+
1x

lx
'
p=1

/(xi−qp)/(x j−qp)

= 2−1zzz

Z

X
/(xi−q)/(x j−q)dq

= 2−1zzz k(xi,x j),

where we recover our RKHS kernel as the convolution of the kernel density functions at each pair of data
points.

A.6 Proof of Theorem 18

In this section, we prove that the KGV upper bounds the KMI when conditions (28) hold. We recall the
definition of the unregularised KGV,35 which occurs at 3= 1. It follows from Lemma 9 that

KGV(zzz;F,G,1) = +,

since the associated eigenvalues .i in (27) are all either 1, −1, or 0 (given we use universal kernels, there
will be at least one pair of non-zero eigenvalues). Conversely, when 3 = 0, we recover the KMI. It remains
to show that increasing 3 from 0 to 1 causes the KGV to increase monotonically.

We may rearrange the eigenvalue problem in (27) as



I

(
3K̃+(1−3)2I

)−1
L̃

(
3L̃+(1−3)2I

)−1
K̃ I




[
ci
di

]
= (1+.i)

[
ci
di

]
.

Then

KGV(zzz;F,G,3) = − log

∣∣∣∣∣∣∣




I

(
3K̃+(1−3)2zzzI

)−1
L̃

(
3L̃+(1−3)2zzzI

)−1
K̃ I





∣∣∣∣∣∣∣

= − log
∣∣∣∣I−

(
3K̃+(1−3)2zzzI

)−1
L̃
(
3L̃+(1−3)2zzzI

)−1
K̃
∣∣∣∣ .

35. We emphasise that only the regularised KGV is used in practice.
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We now use the result that if A′ 0A0 000 and B′ 0 B0 000, then A′B′ 0AB (this is a straightforward corollary
to Theorem 7.7.3 of Horn and Johnson, 1985). The desired result then holds as long as

3′K̃+(1−3′)2zzzI≺ 3K̃+(1−3)2zzzI

when 3′ > 3 (as well as the analogous result for 3L̃+(1−3)2zzzI), which means

(3−3′)K̃+(3′ −3)2zzzI0 0 and (3−3′)L̃+(3′ −3)2zzzI0 0,

or
2zzzI− K̃0 0 and 2zzzI− L̃0 0. (51)

A.7 Proof of Lemma 22

In this section, we show that the multivariate KMI is zero if and only if the empirical COCO between each
pair of random variables is zero. This may be shown via a minor adaptation of the corresponding proof of
Bach and Jordan (2002a, Appendix A.2). First, we may rewrite each factor ,̆ j +1 in (30) as the solution to





I 2−1zzz K̃
1/2
1 K̃1/22 . . . 2−1zzz K̃

1/2
1 K̃1/2n

2−1zzz K̃
1/2
2 K̃1/21 I . . . 2−1zzz K̃

1/2
2 K̃1/2n

...
...

. . .
...

2−1zzz K̃
1/2
n K̃1/21 2−1zzz K̃

1/2
n K̃1/22 . . . I









d1, j
d2, j
...
dn, j




=
(
,̆ j +1

)





d1, j
d2, j
...
dn, j




,

where K̃1/2i ci, j = di, j, bearing in mind that the determinant of the left hand matrix is the product of these
eigenvalues. Since the left hand matrix is symmetric, the trace is equal to the sum of the eigenvalues, and

mn

'
j=1

(
,̆ j +1

)
= mn. (52)

Assuming without loss of generality that the the mnth eigenvalue corresponds to ,̆max := ,max/2zzz, we rewrite
(30) as

−1
2
log

mn

0
j=1

(
1+ ,̆ j

)
= −1

2
log(1+ ,̆max)−

1
2
log

mn−1

0
j=1

(
1+ ,̆ j

)

= −1
2
log(1+ ,̆max)−

mn−1
2

mn−1

'
j=1

1
mn−1 log

(
1+ ,̆ j

)

≥ −1
2
log(1+ ,̆max)−

mn−1
2

log

(
1

mn−1

mn−1

'
j=1

(
1+ ,̆ j

))

= −1
2
log(1+ ,̆max)−

mn−1
2

log

(
mn− ,̆max−1

mn−1

)
,

where the penultimate line uses Jensen’s inequality, and we substitute (52) in the final line. The resulting
expression is strictly convex with respect to ,̆max (its second derivative is everywhere positive), and has a
global minimum at ,̆max = 0. It follows that (30) is likewise minimised at KMI(zzz;FX1 , . . . ,FXn) = 0 (at
which point ,̆ j = 0 for all j), and that this corresponds to the point at which all pairs of empirical constrained
covariances are zero, using Definition 19 and Lemma 20.
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Appendix B. Discussion of Bach and Jordan’s derivation of the KGV
B.1 Computation of the unregularised kernel canonical correlations

In this section, we prove Lemma 9, which is used to show a regularised empirical estimate for the kernel
canonical correlates is needed when the associated RKHSs have high dimension. We begin with (5), which
we restate below for reference;

[
000 K̃L̃
L̃K̃ 000

][
ci
di

]
= .i





(
K̃
)2

000

000
(
L̃
)2




[
ci
di

]
.

This is equivalent to 


000

(
K̃−
)2
K̃L̃

(
L̃−
)2
L̃K̃ 000




[
ci
di

]
= .i

[
ci
di

]
,

where we use the pseudoinverses since the Gram matrices do not have full rank. If we recall that H is the
centring matrix, then the solutions . i correspond to the solutions of

0 =

∣∣∣∣∣∣∣

−.I
(
K̃−
)2
K̃L̃

(
L̃−
)2
L̃K̃ −.I

∣∣∣∣∣∣∣

= |.I|
∣∣∣∣.I−

1
.

(
L̃−
)2
L̃K̃
(
K̃−
)2
K̃L̃
∣∣∣∣

= |.I|
∣∣∣∣.I−

1
.
H
∣∣∣∣

= .m
(
.2−1

)m−1

.m−2
,

which has m− 1 roots +1, m− 1 roots −1, and 2 roots 0. To avoid this problem, a regularised empirical
estimate is used, as shown by Bach and Jordan (2002a); Fukumizu et al. (2005); Leurgans et al. (1993).

B.2 Discussion of the KGV proof of Bach and Jordan (2002a)

In this section, we describe a possible problem in the derivation by Bach and Jordan (2002a, Appendix B) of
the kernel generalised variance (KGV).We begin with a quick summary of the steps from Section 3 needed to
get us to the point where the proof begins.36 Assume thatX andY are both bounded intervals onR. In Section
3.1.2, we recall the standard result fromCover and Thomas (1991) that the mutual information I(x,y) between
two real-valued, univariate random variables x ∈ X and y ∈ Y can be approximated by imposing a uniform
grid of size lx × ly over X ×Y , and defining a multinomial distribution over the discrete valued random
variables x̂ ∈ {1, . . . , lx} and ŷ ∈ {1, . . . , ly} using the probability mass in the resulting bins (this multinomial
distribution is described by the matrix Pxy of joint probabilities, with marginal distribution vectors p x and
py).37 We denote the resulting discrete mutual information as I (x̂; ŷ). In Section 3.1.3, we approximate
I (x̂; ŷ) using the Gaussian mutual information I (xG;yG) between vectors xG;yG, defined to have the same
covariance as x̌ and y̌, where x̂ = i is equivalent to (x̌)i = 1 and (x̌) j : j 2=i = 0 (likewise for ŷ). Bach and Jordan
(2002a, Appendix B.1) show this approximation holds when the random variables are close to independence,

36. The reader is strongly advised to consult Sections 3.1.1-3.1.3 before proceeding, since the following discussion might not otherwise
make much sense.

37. The approximation becomes exact in the limit of an infinitely fine grid.
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in which case

I (x̂; ŷ) ≈ I (xG;yG) = −1
2
log

(

0
i

(1−.2i )

)
,

where .i are the positive solutions to the generalised eigenvalue problem
[

000 Pxy−pxp*y(
Pxy−pxp*y

)* 000

][
ci
di

]
= .i

[
Dx−pxp*x 000

000 Dy−pyp*y

][
ci
di

]
,

and Dx = diag(px), Dy = diag(py) (see (41) in Appendix A.3).
We are now at the point where we can describe the reasoning of Bach and Jordan (2002a, Appendix B.3)

in establishing a link between I (x̂; ŷ) and the KGV. Rather than replacing x̂ and ŷ by x G and yG, we may
instead replace them with the smoothed approximations

kl = 1x
[
k(x,q1) · · · k(x,qlx)

]* and ll = 1y
[
l(y,r1) . . . l(y,rly )

]* (53)

to xG and yG, respectively, where k(·, ·) and l(·, ·) are the RKHS kernels for F andG , and the grid coordinates
qqq := (q1, . . . ,qlx) and rrr := (r1, . . . ,rly) are defined in Section 3.1.2.38 We can of course specify the Gaussian
mutual information I(kl ; ll) between these smoothed vectors, using the appropriate log ratio of determinants.
Two questions then arise. First, does this smoothed approximation I(k l; ll) approach the Gaussian mutual
information I (xG;yG) as the kernel size drops? Second, under what conditions does the empirical estimate
of I(kl; ll) correspond to the KGV? We now describe the approach of Bach and Jordan (2002a) to solving the
first question, and postpone discussion of the second question to the end of the section.

The link between the Gaussian approximation to the discrete mutual information and the KGV could be
shown by demonstrating

Pxy
?
≈ 1x1yEx,y

(
kl l

*
l

)
, Dx

?
≈ 12xEx

(
klk

*
l

)
, px

?
≈ 1xEx (kl) (54)

under appropriate conditions, with similar results for the terms in y. We consider the case where both kernels
are Gaussian; that is,

k(x−qi) =
1√
24&2x

exp

(
− (x−qi)2

2&2x

)
,

l(y− r j) =
1√
24&2y

exp

(
− (y− r j)2

2&2y

)
,

bearing in mind that the impulse function is a limiting case (Bracewell, 1986);

!qi(x) = lim
&x→0

1√
24&2x

exp

(
− (x−qi)2

2&2x

)
:= lim

&x→0
k (x−qi) . (55)

To compute the covariance structure of the vectors in (53), we require expressions for the expectations

Ex,y

(
kl l

*
l

)
, Ex (kl) , Ex

(
klk

*
l

)
,

Ey

(
ll l*l
)
, Ey (ll) .

The expectation of individual entries in the matrix k l l*l is

Ex,y [k(qi,x)l(r j,y)] =
Z

X

Z

Y
k(x−qi)l(y− r j)px,y(x,y)dxdy

=
[
k(x)l(y)!px,y(x,y)

]
(qi,r j),

38. We use a sans-serif font to define kl and ll , to indicate that these are random vectors. In addition, Bach and Jordan (2002a) define
these quantities without multiplying by 1x and 1y, but we believe these scalings to be necessary: see below.
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which is the convolution of the product of kernels with the underlying (unknown) density p x,y(x,y) of the
random variables x,y, evaluated at qi,r j. Since the kernels are normalised, the above expectation is also a
probability density, smoothed by k(x)l(y). Similarly,

Ex [k(qi,x)k(q j,x)] =
Z

X
k(x−qi)k(x−q j)px(x)dx

≈
{ [

k2(x)!px(x)
]
(qi) i= j

0 otherwise ,

where the above assumes &x 6 1x 6 1. Note, however, that

k2(x−qi) =
1

24&2x
exp

(
− (x−qi)2

&2x

)
(56)

=
1

2&x
√
4
× 1√

4&2x
exp

(
− (x−qi)2

&2x

)
, (57)

and thus k2(x) is not a probability density (the integral over R is equal to 1
2&x

√
4
). Finally,

Ex [k(qi,,x)] =
Z

R
k(x−qi)px(x)dx

= [k(x)!px(x)] (qi).

In the light of these observations, it might seem that the relations in (54) ought to hold in the limit as
1x,1y → 0 and &x,&y → 0, so long as &x 6 1x and &y 6 1y: the grid size must be small to allow us to make
the approximations

Px̂ (i) =
Z qi+1x

qi
px (x)dx≈ 1xpx (qi)

and
Px̂,ŷ (i, j) =

Z qi+1x

qi

Z r j+1y

r j
px,y(xy)dxdy≈ 1x1ypx,y(qi,r j),

and the kernel size is made small so that the kernel functions approach delta functions (although the squared
kernel functions do not do so). In other words, the limit in the kernel size is taken before the limit in the grid
size. We can then write population expression for the kernel generalised variance, in the limit of small kernel
size, as

lim
&x,&y→0

I(kl; ll)

= lim
&x,&y→0

−1
2
log
(∣∣∣∣I−

(
Ex,y

(
kl l

*
l

)
−Ex (kl)Ey

(
l*l

))*(
Ex

(
klk

*
l

)
−Ex (kl)Ex

(
k*l

))−1

×
(
Ex,y

(
kl l

*
l

)
−Ex (kl)Ey

(
l*l

))(
Ey

(
ll l

*
l

)
−Ey (ll)Ey

(
l*l

))−1∣∣∣∣

)

≈ lim
&x,&y→0

−1
2
log

(∣∣∣∣∣I−
(
Pxy−pxp*y

)*( 1x
2&x

√
4
Dx−pxp*x

)−1

×
(
Pxy−pxp*y

)( 1y
2&y

√
4
Dy−pyp*y

)−1
∣∣∣∣∣

)

= 0,
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where we use the expression for the squared kernel in (57). In other words, I(k l ; ll) does not approach I (x̂; ŷ)
as the kernel size decreases. This problem reveals the need to enforce the opposite assumption to that made
above, namely &x 4 1x and &y 4 1y (see Section 3.1.4).39

We conclude this section with a brief discussion of the link between the empirical estimate of I(k l ; ll) and
the KGV. As described by Bach and Jordan (2002a) and by Gretton (2003, Section 9.2.3, Appendix D.5.2),
an empirical estimate of I(kl ; ll) is obtained via the usual expression (9), where . i are the solutions to the
generalised eigenvalue problem

[
000 KlH(Ll)*

LlH(Kl)* 000

][
ci
di

]
= .i

[
KlH(Kl)* 000

000 LlH(Ll)*

][
ci
di

]
, (58)

andKl andLl are defined in Section 3.1.4 (replacing the Parzenwindowswith the appropriateRKHS kernels).
This is simply the kernel CCA problem, but with the solutions expressed in terms of linear combinations of
the grid points qqq and rrr mapped into F and G , respectively. As the grid becomes infinitely fine, and assuming
k(·, ·) and l(·, ·) to be continuous, we recover the standard kernel CCA formulation. 40

39. Also bear in mind that the expression for the KGV used in practice is defined in the limit of infinitely small grid size, but with finite
kernel size, rather than vice versa. That said, the ratios 1x&x and

1y
&y
suggest a possible resolution of this convergence problem might

be to decrease the kernel size and the grid spacing at the same time, as the number of samples rises.
40. This is not a proof - we would need to formally establish both convergence of the kernel CCA solutions in the limit of an infinitely

fine grid size, and to demonstrate that the converged solutions lie in the span of the mapped data. These details fall outside the scope
of the present study.
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