
C H A P T E R 5 � C O N D I T I O N A LS , LO O P S , A N D S O M E O T H E R S T A T E M E N T S 105

>>> from math import sqrt

>>> exec "sqrt = 1"

>>> sqrt(4)

Traceback (most recent c a l l l a s t) :

 F ile "<pyshell#18>", l ine 1, in ?

 sqrt(4)

TypeError: object is not callable: 1

Well, why would you do something like that in the first place, you ask? The exec statement

is mainly useful when you bu ild the code string on the fly. And if the string is bu ilt from parts

that you get from other places, and possib ly from the user, you can rarely be certain of exactly

what it will contain. So to be safe, you give it a dictionary, which will work as a namespace for it.

�Note The concept of namespaces, or scopes, is a very important one. You will look at it in depth in the

next chapter, but for now you can think of a namespace as a place where you keep your variables, much like

an invisible dictionary. So when you execute an assignment like x = 1 , you store the key x with the value 1

in the current namespace, which will often be the global namespace (which we have been using, for the most

part, up until now), but doesn’t have to be.

You do this by adding in <scope>, where <scope> is some dictionary that will function as

the namespace for your code string:

>>> from math import sqrt

>>> scope = {}

>>> exec 'sqrt = 1 ' i n scope

>>> sqrt(4)

2.0

>>> scope['sqr t ']

1

As you can see, the potentially destructive code does not overwrite the sqrt function ; the

function works just like it should, and the sqrt variable resulting from the exec’ed assignment

is available from the scope.

N o te that if you try to print out scope, you see that it contains a lot of stuff because the

dictionary called _ _builtins_ _ is automatically added and contains all built-in functions and

values:

>>> len(scope)

2

>>> scope.keys ()

[' s q r t ' , ' _ _builtins__']

eval

A built-in function that is sim ilar to exec is eval (for “evaluate”). Just as exec executes a series

of Python statements, eval evaluates a Python expression (written in a string) and returns the

Hetland_519XC05.fm Page 105 Tuesday, July 12, 2005 12:24 PM

