
18 CHAPTER 1 What is Wicket?

As you can see, there are two places where we need to add dynamic behavior to this
page: the link and the number. This markup can serve us well. Let’s make this file a
Wicket markup file by adding the component identifiers:

<html>
<body>
This link has been clicked
123 times.
</body>
</html>

In this markup file (LinkCounter.html), we add a Wicket identifier (link) to the link
and surround the number with a span, using the Wicket identifier label. This enables
us to replace the contents of the span with the actual value of the counter at runtime.
Now that we have the markup prepared, we can focus on the Java class for this page.
CREATING THE LINKCOUNTER PAGE

We need a place to store our counter value, which is incremented every time the link
is clicked; and we need a label to display the value of the counter. Let’s see how this
looks in the next example:

public class LinkCounter extends WebPage {
 private int counter = 0;

 public LinkCounter() {
 add(new Link("link") {
 @Override
 public void onClick() {
 counter++;
 }
 });
 add(new Label("label",
 new PropertyModel(this, "counter"));
 }
}

First, we add a property to the page so we can count the number of clicks b. Next, we
add the Link component to the page c. We can’t simply instantiate this particular
Link component, because the Link class is abstract and requires us to implement the
behavior for clicking the link in the method onClick. Using an anonymous subclass of
the Link class, we provide the link with the desired behavior: we increase the value of the
counter in the onClick method.

 Finally, we add the label showing the value of the counter d. Instead of querying
the value of the counter ourselves, converting it to a String, and setting the value
on the label, we provide the label with a PropertyModel. We’ll explain how property
models work in more detail in chapter 4, where we discuss models. For now, it’s suffi-
cient to say that this enables the Label component to read the counter value (using
the expression "counter") from the page (the this parameter) every time the page is
refreshed. If you run the LinkCounter and click the link, you should see the counter’s
value increase with each click.

Link
component

Label
component

Count clicksb

Add link
to page

c

Show counter
value

d

