The Road to Ruby

A Java Developer’s Guide to Ruby

By Mark Watson

s a Java developer, why should you learn Ruby?

Because Ruby's versatility and flexibility complement

Java well, and you will be a more effective and effi-
cient developer if you use both languages. In fact, | use
Java, Ruby, and Common Lisp
for all my development and
Ruby has become a core part
of my work life. Specifically, the
following reasons make Ruby
compelling for Java develop-
ers:

* As a scripting language,
Ruby is an effective tool
for small projects. When |
need to write utilities for
data conversion and text
processing quickly, |
almost always use Ruby.

* Ruby is a dynamic and
terse language.

* Using Ruby will often offer a different perspective
on problem solving.

* JRuby is still a work-in-progress but | believe it
eventually will provide an excellent Ruby deployment

platform using the Java VM. Currently, IntelliJ,
NetBeans, and Eclipse all provide excellent Ruby

support.

* As the cost of software maintenance is roughly pro-

Jupiterimages

portional to the number of
lines of code, and Ruby pro-
grams are short and concise,
they tend to be easier to
read, understand, and main-
tain.

® The Ruby on Rails Web
development framework is
great for small and medium-
sized database-backed web
applications. You need to
know Ruby if you want to
use Ruby on Rails.

To demonstrate why Ruby is
a good fit for Java develop-

ers, this article introduces the language features that
will make you more efficient (see Table 1. Ruby and
Java Feature Comparison) and then shows short pro-
gram examples in both languages.

2 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

[The Road to Ruby]

Table 1. Ruby and Java Feature Comparison

Language Features Ruby Java

Extending All Classes Yes Non Final Classes Only

Duck Typing Yes No

Code Blocks Yes No

Regular Expressions Native Standard Library Support
Supports Using External Programs Yes Yes, but not as easily as Ruby
Network Programming Standard Library Support Standard Library Support
Typing Dynamic Static

Class Inheritance Support mix-ins from multiple classes Single

String Handling Yes Yes

What You Need

To follow along with the rest of the article, you need to install external Ruby libraries. The RubyGems library system
makes this easy. Download it from RubyForge and follow the installation instructions for your operating system. (If
you already have Ruby set up, you can verify that your setup includes RubyGems—many Ruby install packages
do—by typing gem in a command shell to check for installation.) Having a central repository for libraries and a
standard tool like RubyGems will save you a lot of time: no searching for the libraries you need, installing them,
and using them in multiple projects.

Use the following commands to install the required gems:

gem query —--remote # if you want to see all available remotely installable gems
sudo gem install activerecord

sudo gem install mysgl # if you want to use MySQL

sudo gem install postgres-pr # optional: install "pure ruby" PostgreSQL interface
sudo gem install postgres # optional: install native PostgreSQL interface

sudo gem install ferret # a search library like Lucene (same API)

sudo gem install stemmer # a word stemming library for demonstrating extending a
class

gem query # to show gems locally installed

gem specification activerecord # info on gem (ActiveRecord in this example)

Under Mac OS X and Linux, you will need to run the gem installs using sudo; if you are a Windows user, remove
"sudo" from the previous commands.

This article also assumes that you will open a Ruby irb shell as follows and keep it open while you're reading:

markw$ irb

>> s = "a b c"
= "a b c"
>>

The example programs and code snippets are short enough to copy and paste into an irb interactive session.

3 The Road to Ruby, an Internet.com Developer eBook. Copyright 2008, Jupitermedia Corp.

