Single Layer Color Cholesteric Liquid Crystal Display

Frank Shiu
jwshiu@itri.org.tw
Tel: 886-35915562
Display Technology Center
Industrial Technology Research Institute
Taiwan, R.O.C.
Outline

• Applications
• Color Technologies of Ch-LCD
• Development Results of ITRI
• Future Planning
• Conclusions
Flexible Display is selected to meet the needs.
How Flexible Display Meet the Needs?

Approaches
- Plastic Substrate
- Rollable
- R2R Process
- Paperless/Bi-stable

Needs
- Slim & Light
- Convenience
- Large area
- Ecology (Energy Saving)
Applications- Digital Signage

Restricted Color Signage

Printed Large Advertising Paper

Large Size Light Box

Curved Signage
“Display” Your Room ?? The Killer Application??
• Color Technologies of Ch-LCD
ChLCD Bistable Technique

Bi-stable:
- Low power consumption

Simple structure:
- w/o CF, optical film
- No backlight
- Light/Thin

Planar (stable)

Focal conic (stable)

Homeotropic
Stacked Layers Structure

Fujitsu, 2007

KDI, SID 2007

shared electrode design

2-layer

5 mil PET or rayon substrate

3-layer
Single-layer Structure

KSU, 2003 SID DIGEST

Photo-tuning+Encapsulation

Different UV doses

0J/cm²
130J/cm²
353J/cm²
684J/cm²

DTC/ITRI, 2006 IDW

Ink Jet Printing ChLC

- Surface treatment
- Printing: material, color
- Protection layer
- Suitable for R2R process

Copyright 2008 ITRI工業技術研究院
Comparison of ChLCD Technologies

<table>
<thead>
<tr>
<th>Company</th>
<th>Kent Displays</th>
<th>Fujitsu</th>
<th>Eastman Kodak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech.</td>
<td>Single Substrate Ch-LCD</td>
<td>Stacked color ChLCD</td>
<td>Single Substrate Ch-LCD</td>
</tr>
<tr>
<td></td>
<td>Encapsulated Ch-LCD by PIPS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spec.</td>
<td>CR:45:1, R:37%</td>
<td>CR:40:1, R>40%</td>
<td>CR:27:1</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>8 or 4096 colors</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>768x1024(XGA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4/105ppi, A5/162ppi</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>20x24pixels, 8dpi</td>
<td></td>
<td>R:27%</td>
</tr>
<tr>
<td>Description</td>
<td>Coatable multicolor stacks, single sub.</td>
<td>Encapsulated ChLC phase separation</td>
<td>Single-substrate self-assembled CH-PDLC via emulsion method</td>
</tr>
<tr>
<td></td>
<td>screen-printing(E1)</td>
<td>full color stacked ChLCD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Three layers ChLCD</td>
<td>FLEPIa A4 size 184.3x245.7mm2</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>[Image]</td>
<td></td>
<td>[Image]</td>
</tr>
<tr>
<td>Reference</td>
<td>07 SID</td>
<td>2007</td>
<td>06 USDC</td>
</tr>
</tbody>
</table>
Development Results of ITRI

<table>
<thead>
<tr>
<th>Company</th>
<th>ITRI</th>
<th>ITRI</th>
<th>ITRI</th>
<th>ITRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech.</td>
<td>10.4” QVGA Monochrome PM Ch-LCD</td>
<td>4.1" Color PM Ch-LCD</td>
<td>10.4" Color Ch-LCD</td>
<td>Flexible 10.4” Ch-LCD</td>
</tr>
<tr>
<td>Spec.</td>
<td>CR>10:1</td>
<td>QVGA CR>10:1</td>
<td>QVGA (320xRGBx240)</td>
<td>QVGA (320xRGBx240)</td>
</tr>
<tr>
<td></td>
<td>R>30%</td>
<td>R>30%</td>
<td>512 color</td>
<td>512 color</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>10.4” (320*240) monochrome Ch-LCD on PC substrates</td>
<td>Ink Jet Printing LC for single layer color Ch-LCD</td>
<td>Pixelized vacuum filling of the ChLC</td>
<td>Pixelized vacuum filling Flexible technology</td>
</tr>
<tr>
<td>Product</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>2006</td>
<td>06 IDW</td>
<td>07 ASID</td>
<td>07IDW</td>
</tr>
</tbody>
</table>
Specifications:
• Panel Size: 10.4”
• Substrate: glass (0.7mm)
• Display medium: Red/Green/Blue Cholesteric LC
• Resolution: QVGA (320×RGB×240)
• Bank: 10um (H), 20um (W), 190um (Pitch)

Features:
• Single Layer color Ch-LCD
• Cost effective process: Ink Jet Printing
• Material saving process
• Low power consumption
• Reflective type display (without backlight)
• Simple structure (without polarizer)
• Passive Matrix Driving display

Applications:
E-Book, E-Paper, Signage…
Pixelized Vacuum Filling Tech. (PVF)

Structure design

Process flow

1. Substrate
2. ITO deposition
3. Adhesive coating
4. Rolling assembly
5. Cutting
6. ChLC filling End seal
7. Bonding Driving

PVF:
- Batch Type Process
- Traditional Cell Process Flow
- Novel End Seal Method
Bank Structure and Fabrication

Photolithography process

Molding process

Plastic substrate

Sample size 10.4”

PMMA Bank

Ni Roller

Bank Structure

Design
Plane molding
Rolling molding
Color Performance

<table>
<thead>
<tr>
<th></th>
<th>455 nm (B) $\Delta\lambda$= 49 nm</th>
<th>528 nm (G) $\Delta\lambda$= 53 nm</th>
<th>666 nm (R) $\Delta\lambda$= 61 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host (5016+110)</td>
<td>2.13464</td>
<td>2.38304</td>
<td>1.99535</td>
</tr>
<tr>
<td>Dopant</td>
<td>0.12820</td>
<td>0.12214</td>
<td>0.08229</td>
</tr>
<tr>
<td>*(D/H+D)100 (%)</td>
<td>5.6454</td>
<td>4.8755</td>
<td>3.9993</td>
</tr>
<tr>
<td>CIE (x,y)</td>
<td>(0.15964,0.11388)</td>
<td>(0.24898,0.63)</td>
<td>(0.62071,0.35705)</td>
</tr>
</tbody>
</table>

--- Merck

--- ITRI-ChLC

NTSC % of ITRI (MCL)

ChLC : 69.18%
Optical & Electrical Property of ChLCD

Driving voltage

Contrast:
- Red: 12
- Green: 16
- Blue: 13

Reflection:
- Red: 18%
- Green: 23%
- Blue: 8%

(EZ contrast)

Reflective Spectrum

(460, 544, 664 nm)
Process Issues & Solutions

Substrate (PC) deformation:

- Process modify
 - Deformation history
 - Structure design
 - ITO gap

Light leakage

No light leakage

Copyright 2008 ITRI
ChLCD Driving Voltage and Frequency

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Frequency (Hz)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 50V</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>50V</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

- Bipolar driving voltage better than uni-polar voltage
- Driving frequency ≥100 Hz can get better driving result
10.4” Single-layer Color ChLCD

Display on glass

Flexible display

- Size: 10.4”
- Driving: PM
- Reflection >8%
- Resolution: QVGA 320xRGBx240
- Gray scale: 8 gray levels
- Color: 3 bits color
- CR >10
- Bending< 30mm
10.4” Single-layer Color ChLCD
Future Planning
R2R Ch-LC Process Pilot Line

Monochrome

- Plastic Substrate
- ITO Laser Patterning
- Slot Die Coating LC
- Forming Protecting & Absorption Layer
- Forming Conducting Layer
- Cutting
- Product

Color R2R

- Plastic Substrate
- ITO Laser Patterning
- Coating & Molding (Bank Forming)
- Plasma Surface Treatment
- Ink Jet Printing LC(RGB)
- Forming Protecting & Absorption Layer
- Forming Conducting Layer
- Cutting
- Product
Product Concept Roadmap

<table>
<thead>
<tr>
<th>Year</th>
<th>Small size Prototype</th>
<th>Digital Signage</th>
<th>Large size E-Banner</th>
<th>Advanced E-Banner</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>-3 bits colors</td>
<td></td>
<td>[High Brightness/color Tech.]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Size: 10.4”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-QVGA: 40ppi*RGB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Single Layer Color Tech.]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **R2R Process Tech.**
- **Color R2R Pilot Line**
- **High Brightness/color Tech.**
- **Single Layer Color Tech.**
Integration in ITRI

DTC:
• Panel design/integration
• Large size driving system
• R2R Ink Jet Printing

MCL/EOL:
• LC material tech.
• IJP color display material
• High reflective LC
• Flexible bonding tech.

MSL/CMS/ITRI south:
• Defect inspection tech.
• R2R embossing tech.
• R2R process
Industrial Cooperation

Panel/System Makers:
1. Mass production analysis
2. Driving System
3. Product spec. / design

Material Suppliers:
1. Conducting materials
2. Dark layer/ Protection layer
3. Bank material
4. LC material

Equipment Suppliers:
1. Ink Jet Printing
2. Roll Coater

Integrated color R2R cooperation project:
1. Panel /System Makers
2. Material Suppliers
3. Equipment Suppliers

2008 2009 2010
Conclusions

- The single layer design simplifies the fabrication process.

- The 10.4” flexible, color, bi-stable display is realized by the PVF technique.
 - Resolution QVGA, CR>10, 3 bit color, voltage<60V, bending<30mm more than 10000 times

- Other topics on flexible bi-stable Ch-LC display
 - Brighter, Better Color, Lower driving voltage, Larger size, Higher resolution, R2R process.
Thank you for your attention!