

 CHAPTER VI

 Pig and Pepper

 For a minute or two she stood looking at the house, and wondering what to do next, when suddenly a footman in livery came running out of the wood – (she considered him to be a footman because he was in livery: otherwise, judging by his face only, she would have called him a fish) – and rapped loudly at the door with his knuckles. It was opened by another footman in livery, with a round face, and large eyes like a frog; and both footmen, Alice noticed, had powdered hair that curled all over their heads. She felt very curious to know what it was all about, and crept a little way out of the wood to listen.

 The Fish-Footman began by producing from under his arm a great letter, nearly as large as himself, and this he handed over to the other, saying, in a solemn tone, ‘For the Duchess. An invitation from the Queen to play croquet.’ The Frog-Footman repeated, in the same solemn tone, only changing the order of the words a little, ‘From the Queen. An invitation for the Duchess to play croquet.’

 [image: Illustration-20]

 Then they both bowed low, and their curls got entangled together.

 Alice laughed so much at this, that she had to run back into the wood for fear of their hearing her; and when she next peeped out the Fish-Footman was gone, and the other was sitting on the ground near the door, staring stupidly up into the sky.

 Alice went timidly up to the door, and knocked.

 ‘There’s no sort of use in knocking,’ said the Footman, ‘and that for two reasons. First, because I’m on the same side of the door as you are; secondly, because they’re making such a noise inside, no one could possibly hear you.’ And certainly there was a most extraordinary noise going on within – a constant howling and sneezing, and every now and then a great crash, as if a dish or kettle had been broken to pieces.

 ‘Please, then,’ said Alice, ‘how am I to get in?’

 ‘There might be some sense in your knocking,’ the Footman went on without attending to her, ‘if we had the door between us. For instance, if you were inside, you might knock, and I could let you out, you know.’ He was looking up into the sky all the time he was speaking, and this Alice thought decidedly uncivil. ‘But perhaps he ca’n’t help it,’ she said to herself; ‘his eyes are so very nearly at the top of his head. But at any rate he might answer questions. – How am I to get in?’ she repeated, aloud.

 ‘I shall sit here,’ the Footman remarked, ‘till tomorrow —’

 At this moment the door of the house opened, and a large plate came skimming out, straight at the Footman’s head: it just grazed his nose, and broke to pieces against one of the trees behind him.

 ‘—or next day, maybe,’ the Footman continued in the same tone, exactly as if nothing had happened.

 ‘How am I to get in?’ asked Alice again, in a louder tone.

 ‘Are you to get in at all?’ said the Footman. ‘That’s the first question, you know.’

 It was, no doubt: only Alice did not like to be told so. ‘It’s really dreadful,’ she muttered to herself, ‘the way all the creatures argue. It’s enough to drive one crazy!’

 The Footman seemed to think this a good opportunity for repeating his remark, with variations. ‘I shall sit here,’ he said, ‘on and off, for days and days.’

 ‘But what am I to do?’ said Alice.

 ‘Anything you like,’ said the Footman, and began whistling.

 ‘Oh, there’s no use in talking to him,’ said Alice desperately: ‘he’s perfectly idiotic!’ And she opened the door and went in.

 [image: Illustration-21]

 The door led right into a large kitchen, which was full of smoke from one end to the other: the Duchess was sitting on a three-legged stool in the middle, nursing a baby; the cook was leaning over the fire, stirring a large cauldron which seemed to be full of soup.

 ‘There’s certainly too much pepper in that soup!’ Alice said to herself, as well as she could for sneezing.

 There was certainly too much of it in the air. Even the Duchess sneezed occasionally; and as for the baby, it was sneezing and howling alternately without a moment’s pause. The only things in the kitchen that did not sneeze, were the cook, and a large cat which was sitting on the hearth and grinning from ear to ear.

 ‘Please would you tell me,’ said Alice, a little timidly, for she was not quite sure whether it was good manners for her to speak first, ‘why your cat grins like that?’

 ‘It’s a Cheshire cat,’ said the Duchess, ‘and that’s why. Pig!’

 She said the last word with such sudden violence that Alice quite jumped; but she saw in another moment that it was addressed to the baby, and not to her, so she took courage, and went on again: —

 ‘I didn’t know that Cheshire cats always grinned; in fact, I didn’t know that cats could grin.’

 ‘They all can,’ said the Duchess; ‘and most of ’em do.’

 ‘I don’t know of any that do,’ Alice said very politely, feeling quite pleased to have got into a conversation.

 ‘You don’t know much,’ said the Duchess; ‘and that’s a fact.’

 Alice did not at all like the tone of this remark, and thought it would be as well to introduce some other subject of conversation. While she was trying to fix on one, the cook took the cauldron of soup off the fire, and at once set to work throwing everything within her reach at the Duchess and the baby – the fire-irons came first; then followed a shower of saucepans, plates, and dishes. The Duchess took no notice of them even when they hit her; and the baby was howling so much already, that it was quite impossible to say whether the blows hurt it or not.

 ‘Oh, please mind what you’re doing!’ cried Alice, jumping up and down in an agony of terror. ‘Oh, there goes his precious nose’; as an unusually large saucepan flew close by it, and very nearly carried it off.

 ‘If everybody minded their own business,’ the Duchess said in a hoarse growl, ‘the world would go round a deal faster than it does.’

 ‘Which would not be an advantage,’ said Alice, who felt very glad to get an opportunity of showing off a little of her knowledge. ‘Just think of what work it would make with the day and night! You see the earth takes twenty-four hours to turn round on its axis —’

 ‘Talking of axes,’ said the Duchess, ‘chop off her head!’

 Alice glanced rather anxiously at the cook, to see if she meant to take the hint; but the cook was busily stirring the soup, and seemed not to be listening, so she went on again: ‘Twenty-four hours, I think; or is it twelve? I —’

 ‘Oh, don’t bother me,’ said the Duchess; ‘I never could abide figures!’ And with that she began nursing her child again, singing a sort of lullaby to it as she did so, and giving it a violent shake at the end of every line:

 ‘Speak roughly to your little boy,

 And beat him when he sneezes:

 He only does it to annoy,

 Because he knows it teases.’

 Chorus

 (In which the cook and the baby joined): —

 ‘Wow! wow! wow!’

 While the Duchess sang the second verse of the song, she kept tossing the baby violently up and down, and the poor little thing howled so, that Alice could hardly hear the words: —

 ‘I speak severely to my boy,

 I beat him when he sneezes;

 For he can thoroughly enjoy

 The pepper when he pleases!’

 Chorus

 ‘Wow! wow! wow!’

 ‘Here! you may nurse it a bit, if you like!’ the Duchess said to Alice, flinging the baby at her as she spoke. ‘I must go and get ready to play croquet with the Queen,’ and she hurried out of the room. The cook threw a frying-pan after her as she went out, but it just missed her.

 Alice caught the baby with some difficulty, as it was a queer-shaped little creature, and held out its arms and legs in all directions, ‘just like a star-fish,’ thought Alice. The poor little thing was snorting like a steam-engine when she caught it, and kept doubling itself up and straightening itself out again, so that altogether, for the first minute or two, it was as much as she could do to hold it.

 As soon as she had made out the proper way of nursing it, (which was to twist it up into a sort of knot, and then keep tight hold of its right ear and left foot, so as to prevent its undoing itself), she carried it out into the open air. ‘If I don’t take this child away with me,’ thought Alice, ‘they’re sure to kill it in a day or two: wouldn’t it be murder to leave it behind?’ She said the last words out loud, and the little thing grunted in reply (it had left off sneezing by this time). ‘Don’t grunt,’ said Alice; ‘that’s not at all a proper way of expressing yourself.’

 The baby grunted again, and Alice looked very anxiously into its face to see what was the matter with it. There could be no doubt that it had a very turn-up nose, much more like a snout than a real nose; also its eyes were getting extremely small for a baby: altogether Alice did not like the look of the thing at all. ‘But perhaps it was only sobbing,’ she thought, and looked into its eyes again, to see if there were any tears.

 No, there were no tears. ‘If you’re going to turn into a pig, my dear,’ said Alice, seriously, ‘I’ll have nothing more to do with you. Mind now!’ The poor little thing sobbed again (or grunted, it was impossible to say which), and they went on for some while in silence.

 [image: Illustration-22]

 Alice was just beginning to think to herself, ‘Now, what am I to do with this cre­a­tu­re when I get it home?’ when it grun­ted a­gain, so violently, that she looked down into its face in some alarm. This time there could be no mistake about it: it was neither more nor less than a pig, and she felt that it would be quite absurd for her to carry it further.

 So she set the little creature down, and felt quite relieved to see it trot away quietly into the wood. ‘If it had grown up,’ she said to herself, ‘it would have made a dreadfully ugly child: but it makes rather a handsome pig, I think.’ And she began thinking over other children she knew, who might do very well as pigs, and was just saying to herself, ‘if one only knew the right way to change them—’ when she was a little startled by seeing the Cheshire Cat sitting on a bough of a tree a few yards off.

 The Cat only grinned when it saw Alice. It looked good-natured, she thought: still it had very long claws and a great many teeth, so she felt that it ought to be treated with respect.

 ‘Cheshire Puss,’ she began, rather timidly, as she did not at all know whether it would like the name: however, it only grinned a little wider. ‘Come, it’s pleased so far,’ thought Alice, and she went on. ‘Would you tell me, please, which way I ought to go from here?’

 ‘That depends a good deal on where you want to get to,’ said the Cat.

 ‘I don’t much care where—’ said Alice.

 ‘Then it doesn’t matter which way you go,’ said the Cat.

 ‘—so long as I get somewhere,’ Alice added as an explanation.

 ‘Oh, you’re sure to do that,’ said the Cat, ‘if you only walk long enough.’

 Alice felt that this could not be denied, so she tried another question. ‘What sort of people live about here?’

 ‘In that direction,’ the Cat said, waving its right paw round, ‘lives a Hatter: and in that direction,’ waving the other paw, ‘lives a March Hare. Visit either you like: they’re both mad.’

 ‘But I don’t want to go among mad people,’ Alice remarked.

 ‘Oh, you ca’n’t help that,’ said the Cat: ‘we’re all mad here. I’m mad. You’re mad.’

 ‘How do you know I’m mad?’ said Alice.

 ‘You must be,’ said the Cat, ‘or you wouldn’t have come here.’

 Alice didn’t think that proved it at all; however, she went on ‘And how do you know that you’re mad?’

 ‘To begin with,’ said the Cat, ‘a dog’s not mad. You grant that?’

 ‘I suppose so,’ said Alice.

 [image: She saw the Cheshire Cat sitting on a bough of a tree]

 [image: She saw the Cheshire Cat sitting on a bough of a tree]

 ‘Well, then,’ the Cat went on, ‘you see, a dog growls when it’s angry, and wags its tail when it’s pleased. Now I growl when I’m pleased, and wag my tail when I’m angry. Therefore I’m mad.’

 ‘I call it purring, not growling,’ said Alice.

 ‘Call it what you like,’ said the Cat. ‘Do you play croquet with the Queen to-day?’

 ‘I should like it very much,’ said Alice, ‘but I haven’t been invited yet.’

 ‘You’ll see me there,’ said the Cat, and vanished.

 Alice was not much surprised at this, she was getting so used to queer things happening. While she was looking at the place where it had been, it suddenly appeared again.

 ‘By-the-bye, what became of the baby?’ said the Cat. ‘I’d nearly forgotten to ask.’

 ‘It turned into a pig,’ Alice quietly said, just as if it had come back in a natural way.

 ‘I thought it would,’ said the Cat, and vanished again.

 [image: Illustration-24]

 Alice waited a little, half expecting to see it again, but it did not appear, and after a minute or two she walked on in the direction in which the March Hare was said to live. ‘I’ve seen hatters before,’ she said to herself; ‘the March Hare will be much the most interesting, and perhaps as this is May it wo’n’t be raving mad – at least not so mad as it was in March.’ As she said this, she looked up, and there was the Cat again, sitting on a branch of a tree.

 ‘Did you say pig, or fig?’ said the Cat.

 ‘I said pig,’ replied Alice; ‘and I wish you wouldn’t keep appearing and vanishing so suddenly: you make one quite giddy.’

 ‘All right,’ said the Cat; and this time it vanished quite slowly, beginning with the end of the tail, and ending with the grin, which remained some time after the rest of it had gone.

 ‘Well! I’ve often seen a cat without a grin,’ thought Alice; ‘but a grin without a cat! It’s the most curious thing I ever saw in my life!’

 She had not gone much farther before she came in sight of the house of the March Hare: she thought it must be the right house, because the chimneys were shaped like ears and the roof was thatched with fur. It was so large a house, that she did not like to go nearer till she had nibbled some more of the lefthand bit of mushroom, and raised herself to about two feet high: even then she walked up towards it rather timidly, saying to herself ‘Suppose it should be raving mad after all! I almost wish I’d gone to see the Hatter instead!’

 Table of Contents

 	
 Start

 Landmarks

 	
 Table of Contents

OEBPS/Images/Illustration-21.jpg

OEBPS/Misc/Hyphenopoly.js
/**
 * @license MIT
 * Hyphenopoly 6.0.0 - client side hyphenation for webbrowsers
 * ©2024 Mathias Nater, Güttingen (mathiasnater at gmail dot com)
 * https://github.com/mnater/Hyphenopoly
 *
 * http://mnater.github.io/Hyphenopoly/LICENSE
 */

/* globals Hyphenopoly:readonly */
((w, o) => {
 "use strict";
 const SOFTHYPHEN = "\u00AD";

 /**
 * Event
 */
 const event = ((H) => {
 const knownEvents = new Map([
 ["afterElementHyphenation", []],
 ["beforeElementHyphenation", []],
 ["engineReady", []],
 [
 "error", [
 (e) => {
 if (e.runDefault) {
 w.console.warn(e);
 }
 }
]
],
 ["hyphenopolyEnd", []],
 ["hyphenopolyStart", []]
]);
 if (H.hev) {
 const userEvents = new Map(o.entries(H.hev));
 knownEvents.forEach((eventFuncs, eventName) => {
 if (userEvents.has(eventName)) {
 eventFuncs.unshift(userEvents.get(eventName));
 }
 });
 }
 return {

 /**
 * Fires the event
 * @param {string} eventName - id of the event
 * @param {object} eventData - data that comes with the event
 */
 "fire": ((eventName, eventData = {}) => {
 eventData.runDefault = true;
 // eslint-disable-next-line jsdoc/require-jsdoc
 eventData.preventDefault = () => {
 eventData.runDefault = false;
 };
 knownEvents.get(eventName).forEach((eventFn) => {
 eventFn(eventData);
 });
 })
 };
 })(Hyphenopoly);

 /**
 * Register copy event on element
 * @param {object} el The element
 * @returns {undefined}
 */
 function registerOnCopy(el) {
 el.addEventListener(
 "copy",
 (e) => {
 e.preventDefault();
 const sel = w.getSelection();
 const div = document.createElement("div");
 div.appendChild(sel.getRangeAt(0).cloneContents());
 e.clipboardData.setData("text/plain", sel.toString().replace(RegExp(SOFTHYPHEN, "g"), ""));
 e.clipboardData.setData("text/html", div.innerHTML.replace(RegExp(SOFTHYPHEN, "g"), ""));
 },
 true
);
 }

 /**
 * Convert settings from H.setup-Object to Map
 * This is a IIFE to keep complexity low.
 * @param {object} H Hyphenopoly shortcut
 */
 ((H) => {
 /**
 * Create a Map with a default Map behind the scenes. This mimics
 * kind of a prototype chain of an object, but without the object-
 * injection security risk.
 * @param {Map} defaultsMap - A Map with default values
 * @returns {Proxy} - A Proxy for the Map (dot-notation or get/set)
 */
 function createMapWithDefaults(defaultsMap) {
 const userMap = new Map();

 /**
 * The get-trap: get the value from userMap or else from defaults
 * @param {string} key - The key to retrieve the value for
 * @returns {*} - value
 */
 function get(key) {
 return (userMap.has(key))
 ? userMap.get(key)
 : defaultsMap.get(key);
 }

 /**
 * The set-trap: set the value to userMap and don't touch defaults
 * @param {string} key - The key for the value
 * @param {*} value - The value
 */
 function set(key, value) {
 userMap.set(key, value);
 }
 return new Proxy(defaultsMap, {
 // eslint-disable-next-line jsdoc/require-jsdoc
 "get": (_target, prop) => {
 if (prop === "set") {
 return set;
 }
 if (prop === "get") {
 return get;
 }
 return get(prop);
 },
 // eslint-disable-next-line jsdoc/require-jsdoc
 "ownKeys": () => {
 return [
 ...new Set(
 [...defaultsMap.keys(), ...userMap.keys()]
)
];
 }
 });
 }

 const settings = createMapWithDefaults(new Map([
 ["defaultLanguage", "en-us"],
 [
 "dontHyphenate", (() => {
 const list = "abbr,acronym,audio,br,button,code,img,input,kbd,label,math,option,pre,samp,script,style,sub,sup,svg,textarea,var,video";
 return createMapWithDefaults(
 new Map(list.split(",").map((val) => {
 return [val, true];
 }))
);
 })()
],
 ["dontHyphenateClass", "donthyphenate"],
 ["exceptions", new Map()],
 ["keepAlive", true],
 ["normalize", false],
 ["processShadows", false],
 ["safeCopy", true],
 ["substitute", new Map()],
 ["timeout", 1000]
]));
 o.entries(H.s).forEach(([key, value]) => {
 switch (key) {
 case "selectors":
 // Set settings.selectors to array of selectors
 settings.set("selectors", o.keys(value));

 /*
 * For each selector add a property to settings with
 * selector specific settings
 */
 o.entries(value).forEach(([sel, selSettings]) => {
 const selectorSettings = createMapWithDefaults(new Map([
 ["compound", "hyphen"],
 ["hyphen", SOFTHYPHEN],
 ["leftmin", 0],
 ["leftminPerLang", 0],
 ["minWordLength", 6],
 ["mixedCase", true],
 ["orphanControl", 1],
 ["rightmin", 0],
 ["rightminPerLang", 0]
]));
 o.entries(selSettings).forEach(
 ([selSetting, setVal]) => {
 if (typeof setVal === "object") {
 selectorSettings.set(
 selSetting,
 new Map(o.entries(setVal))
);
 } else {
 selectorSettings.set(selSetting, setVal);
 }
 }
);
 settings.set(sel, selectorSettings);
 });
 break;
 case "dontHyphenate":
 case "exceptions":
 o.entries(value).forEach(([k, v]) => {
 settings.get(key).set(k, v);
 });
 break;
 case "substitute":
 o.entries(value).forEach(([lang, subst]) => {
 settings.substitute.set(
 lang,
 new Map(o.entries(subst))
);
 });
 break;
 default:
 settings.set(key, value);
 }
 });
 H.c = settings;
 })(Hyphenopoly);

 ((H) => {
 const C = H.c;
 let mainLanguage = null;

 event.fire("hyphenopolyStart");

 /**
 * Factory for elements
 * @returns {object} elements-object
 */
 function makeElementCollection() {
 const list = new Map();

 /*
 * Counter counts the elements to be hyphenated.
 * Needs to be an object (Pass by reference)
 */
 const counter = [0];

 /**
 * Add element to elements
 * @param {object} el The element
 * @param {string} lang The language of the element
 * @param {string} sel The selector of the element
 * @returns {object} An element-object
 */
 function add(el, lang, sel) {
 const elo = {
 "element": el,
 "selector": sel
 };
 if (!list.has(lang)) {
 list.set(lang, []);
 }
 list.get(lang).push(elo);
 counter[0] += 1;
 return elo;
 }

 /**
 * Removes elements from the list and updates the counter
 * @param {string} lang - The lang of the elements to remove
 */
 function rem(lang) {
 let langCount = 0;
 if (list.has(lang)) {
 langCount = list.get(lang).length;
 list.delete(lang);
 counter[0] -= langCount;
 if (counter[0] === 0) {
 event.fire("hyphenopolyEnd");
 if (!C.keepAlive) {
 w.Hyphenopoly = null;
 }
 }
 }
 }

 return {
 add,
 counter,
 list,
 rem
 };
 }

 /**
 * Get language of element by searching its parents or fallback
 * @param {object} el The element
 * @param {string} parentLang Lang of parent if available
 * @param {boolean} fallback Will falback to mainlanguage
 * @returns {string|null} The language or null
 */
 function getLang(el, parentLang = "", fallback = true) {
 // Find closest el with lang attr not empty
 el = el.closest("[lang]:not([lang=''])");
 if (el && el.lang) {
 return el.lang.toLowerCase();
 }
 if (parentLang) {
 return parentLang;
 }
 return (fallback)
 ? mainLanguage
 : null;
 }

 /**
 * Collect elements that have a selector defined in C.selectors
 * and add them to elements.
 * @param {object} parent The start point element
 * @param {string} selector The selector matching the parent
 * @returns {object} elements-object
 */
 function collectElements(parent = null, selector = null) {
 const elements = makeElementCollection();

 const dontHyphenateSelector = (() => {
 let s = "." + C.dontHyphenateClass;
 o.getOwnPropertyNames(C.dontHyphenate).forEach((tag) => {
 if (C.dontHyphenate.get(tag)) {
 s += "," + tag;
 }
 });
 return s;
 })();
 const matchingSelectors = C.selectors.join(",") + "," + dontHyphenateSelector;

 /**
 * Recursively walk all elements in el, lending lang and selName
 * add them to elements if necessary.
 * @param {object} el The element to scan
 * @param {string} pLang The language of the parent element
 * @param {string} sel The selector of the parent element
 * @param {boolean} isChild If el is a child element
 * @returns {undefined}
 */
 function processElements(el, pLang, sel, isChild = false) {
 const eLang = getLang(el, pLang);
 const langDef = H.cf.langs.get(eLang);
 if (langDef === "H9Y") {
 elements.add(el, eLang, sel);
 if (!isChild && C.safeCopy) {
 registerOnCopy(el);
 }
 } else if (!langDef && eLang !== "zxx") {
 event.fire(
 "error",
 Error(`Element with '${eLang}' found, but '${eLang}.wasm' not loaded. Check language tags!`)
);
 }
 el.childNodes.forEach((n) => {
 if (n.nodeType === 1 && !n.matches(matchingSelectors)) {
 processElements(n, eLang, sel, true);
 }
 });
 }

 /**
 * Searches the DOM for each sel
 * @param {object} root The DOM root
 * @returns {undefined}
 */
 function getElems(root) {
 C.selectors.forEach((sel) => {
 root.querySelectorAll(sel).forEach((n) => {
 processElements(n, getLang(n), sel, false);
 });
 });
 }

 if (parent === null) {
 if (C.processShadows) {
 w.document.querySelectorAll("*").forEach((m) => {
 if (m.shadowRoot) {
 getElems(m.shadowRoot);
 }
 });
 }
 getElems(w.document);
 } else {
 processElements(parent, getLang(parent), selector);
 }
 return elements;
 }

 const wordHyphenatorPool = new Map();

 /**
 * Factory for hyphenatorFunctions for a specific language and selector
 * @param {object} lo Language-Object
 * @param {string} lang The language
 * @param {string} sel The selector
 * @returns {Function} The hyphenate function
 */
 function createWordHyphenator(lo, lang, sel) {
 const poolKey = lang + "-" + sel;
 if (wordHyphenatorPool.has(poolKey)) {
 return wordHyphenatorPool.get(poolKey);
 }

 const selSettings = C.get(sel);
 lo.cache.set(sel, new Map());

 /**
 * HyphenateFunction for non-compound words
 * @param {string} word The word
 * @returns {string} The hyphenated word
 */
 function hyphenateNormal(word) {
 if (word.length > 61) {
 event.fire(
 "error",
 Error("Found word longer than 61 characters")
);
 } else if (!lo.reNotAlphabet.test(word)) {
 return lo.hyphenate(
 word,
 selSettings.hyphen.charCodeAt(0),
 selSettings.leftminPerLang.get(lang),
 selSettings.rightminPerLang.get(lang)
);
 }
 return word;
 }

 /**
 * HyphenateFunction for compound words
 * @param {string} word The word
 * @returns {string} The hyphenated compound word
 */
 function hyphenateCompound(word) {
 let joiner = "-";
 const parts = word.split(joiner).map((p) => {
 if (selSettings.compound !== "hyphen" &&
 p.length >= selSettings.minWordLength) {
 return createWordHyphenator(lo, lang, sel)(p);
 }
 return p;
 });
 if (selSettings.compound !== "auto") {
 // Add Zero Width Space
 joiner += "\u200B";
 }
 return parts.join(joiner);
 }

 /**
 * Checks if a string is mixed case
 * @param {string} s The string
 * @returns {boolean} true if s is mixed case
 */
 function isMixedCase(s) {
 return [...s].map((c) => {
 return (c === c.toLowerCase());
 }).some((v, i, a) => {
 return (v !== a[0]);
 });
 }

 /**
 * HyphenateFunction for words (compound or not)
 * @param {string} word The word
 * @returns {string} The hyphenated word
 */
 function hyphenator(word) {
 let hw = lo.cache.get(sel).get(word);
 if (!hw) {
 if (lo.exc.has(word)) {
 hw = lo.exc.get(word).replace(
 /-/g,
 selSettings.hyphen
);
 } else if (!selSettings.mixedCase && isMixedCase(word)) {
 hw = word;
 } else if (word.includes("-")) {
 hw = hyphenateCompound(word);
 } else {
 hw = hyphenateNormal(word);
 }
 lo.cache.get(sel).set(word, hw);
 }
 return hw;
 }
 wordHyphenatorPool.set(poolKey, hyphenator);
 return hyphenator;
 }

 const orphanControllerPool = new Map();

 /**
 * Factory for function that handles orphans
 * @param {string} sel The selector
 * @returns {Function} The function created
 */
 function createOrphanController(sel) {
 if (orphanControllerPool.has(sel)) {
 return orphanControllerPool.get(sel);
 }
 const selSettings = C.get(sel);

 /**
 * Function template
 * @param {string} ignore unused result of replace
 * @param {string} leadingWhiteSpace The leading whiteSpace
 * @param {string} lastWord The last word
 * @param {string} trailingWhiteSpace The trailing whiteSpace
 * @returns {string} Treated end of text
 */
 function controlOrphans(
 ignore,
 leadingWhiteSpace,
 lastWord,
 trailingWhiteSpace
) {
 if (selSettings.orphanControl === 3 && leadingWhiteSpace === " ") {
 // \u00A0 = no-break space (nbsp)
 leadingWhiteSpace = "\u00A0";
 }
 return leadingWhiteSpace + lastWord.replace(RegExp(selSettings.hyphen, "g"), "") + trailingWhiteSpace;
 }
 orphanControllerPool.set(sel, controlOrphans);
 return controlOrphans;
 }

 const wordRegExpPool = new Map();

 /**
 * Hyphenate an entitiy (text string or Element-Object)
 * @param {string} lang - the language of the string
 * @param {string} sel - the selectorName of settings
 * @param {string} entity - the entity to be hyphenated
 * @returns {string | null} hyphenated str according to setting of sel
 */
 function hyphenate(lang, sel, entity) {
 const lo = H.languages.get(lang);
 const selSettings = C.get(sel);
 const minWordLength = selSettings.minWordLength;

 const regExpWord = (() => {
 const key = lang + minWordLength;
 if (wordRegExpPool.has(key)) {
 return wordRegExpPool.get(key);
 }

 /*
 * Transpiled RegExp of
 * /[${alphabet}\p{Mn}Subset\p{Letter}\00AD-]
 * {${minwordlength},}/gui
 */
 const reWord = RegExp(
 `[${lo.alphabet}a-z\u0300-\u036F\u0483-\u0487\u00DF-\u00F6\u00F8-\u00FE\u0101\u0103\u0105\u0107\u0109\u010D\u010F\u0111\u0113\u0117\u0119\u011B\u011D\u011F\u0123\u0125\u012B\u012F\u0131\u0135\u0137\u013C\u013E\u0142\u0144\u0146\u0148\u014D\u0151\u0153\u0155\u0159\u015B\u015D\u015F\u0161\u0165\u016B\u016D\u016F\u0171\u0173\u017A\u017C\u017E\u017F\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u0219\u021B\u02BC\u0390\u03AC-\u03CE\u03D0\u03E3\u03E5\u03E7\u03E9\u03EB\u03ED\u03EF\u03F2\u0430-\u044F\u0451-\u045C\u045E\u045F\u0491\u04AF\u04E9\u0561-\u0585\u0587\u0905-\u090C\u090F\u0910\u0913-\u0928\u092A-\u0930\u0932\u0933\u0935-\u0939\u093D\u0960\u0961\u0985-\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6-\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u0A05-\u0A0A\u0A0F\u0A10\u0A13-\u0A28\u0A2A-\u0A30\u0A32\u0A33\u0A35\u0A36\u0A38\u0A39\u0A85-\u0A8B\u0A8F\u0A90\u0A93-\u0AA8\u0AAA-\u0AB0\u0AB2\u0AB3\u0AB5-\u0AB9\u0ABD\u0AE0\u0B05-\u0B0C\u0B0F\u0B10\u0B13-\u0B28\u0B2A-\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B60\u0B61\u0B83\u0B85-\u0B8A\u0B8E-\u0B90\u0B92-\u0B95\u0B99\u0B9A\u0B9C\u0B9E\u0B9F\u0BA3\u0BA4\u0BA8-\u0BAA\u0BAE-\u0BB5\u0BB7-\u0BB9\u0C05-\u0C0C\u0C0E-\u0C10\u0C12-\u0C28\u0C2A-\u0C33\u0C35-\u0C39\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\u0C92-\u0CA8\u0CAA-\u0CB3\u0CB5-\u0CB9\u0CBD\u0CDE\u0CE0\u0CE1\u0D05-\u0D0C\u0D0E-\u0D10\u0D12-\u0D28\u0D2A-\u0D39\u0D60\u0D61\u0D7A-\u0D7F\u0E01-\u0E2E\u0E30\u0E32\u0E33\u0E40-\u0E45\u10D0-\u10F0\u1200-\u1248\u124A-\u124D\u1250-\u1256\u1258\u125A-\u125D\u1260-\u1288\u128A-\u128D\u1290-\u12B0\u12B2-\u12B5\u12B8-\u12BE\u12C0\u12C2-\u12C5\u12C8-\u12D6\u12D8-\u1310\u1312-\u1315\u1318-\u135A\u1380-\u138F\u1E0D\u1E37\u1E41\u1E43\u1E45\u1E47\u1E6D\u1F00-\u1F07\u1F10-\u1F15\u1F20-\u1F27\u1F30-\u1F37\u1F40-\u1F45\u1F50-\u1F57\u1F60-\u1F67\u1F70-\u1F7D\u1F80-\u1F87\u1F90-\u1F97\u1FA0-\u1FA7\u1FB2-\u1FB4\u1FB6\u1FB7\u1FC2-\u1FC4\u1FC6\u1FC7\u1FD2\u1FD3\u1FD6\u1FD7\u1FE2-\u1FE7\u1FF2-\u1FF4\u1FF6\u1FF7\u2C81\u2C83\u2C85\u2C87\u2C89\u2C8D\u2C8F\u2C91\u2C93\u2C95\u2C97\u2C99\u2C9B\u2C9D\u2C9F\u2CA1\u2CA3\u2CA5\u2CA7\u2CA9\u2CAB\u2CAD\u2CAF\u2CB1\u2CC9\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-\u2DBE\u2DC0-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-\u2DDE\uAB01-\uAB06\uAB09-\uAB0E\uAB11-\uAB16\uAB20-\uAB26\uAB28-\uAB2E\u00AD\u200B-\u200D-]{${minWordLength},}`, "gui"
);
 wordRegExpPool.set(key, reWord);
 return reWord;
 })();

 /**
 * Hyphenate text according to setting in sel
 * @param {string} text - the strint to be hyphenated
 * @returns {string} hyphenated string according to setting of sel
 */
 function hyphenateText(text) {
 if (C.normalize) {
 text = text.normalize("NFC");
 }
 let tn = text.replace(
 regExpWord,
 createWordHyphenator(lo, lang, sel)
);
 if (selSettings.orphanControl !== 1) {
 tn = tn.replace(
 /(\u0020*)(\S+)(\s*)$/,
 createOrphanController(sel)
);
 }
 return tn;
 }

 /**
 * Hyphenate element according to setting in sel
 * @param {object} el - the HTMLElement to be hyphenated
 * @returns {undefined}
 */
 function hyphenateElement(el) {
 event.fire(
 "beforeElementHyphenation",
 {
 el,
 lang
 }
);
 el.childNodes.forEach((n) => {
 if (
 n.nodeType === 3 &&
 (/\S/).test(n.data) &&
 n.data.length >= minWordLength
) {
 n.data = hyphenateText(n.data);
 }
 });
 H.res.els.counter[0] -= 1;
 event.fire(
 "afterElementHyphenation",
 {
 el,
 lang
 }
);
 }
 let r = null;
 if (typeof entity === "string") {
 r = hyphenateText(entity);
 } else if (entity instanceof HTMLElement) {
 hyphenateElement(entity);
 }
 return r;
 }

 /**
 * Creates a language-specific string hyphenator
 * @param {string} lang - The language this hyphenator hyphenates
 * @returns {Function} hyphenator for strings in the given language
 */
 function createStringHyphenator(lang) {
 return ((entity, sel = ".hyphenate") => {
 if (typeof entity !== "string") {
 event.fire(
 "error",
 Error("This use of hyphenators is deprecated. See https://mnater.github.io/Hyphenopoly/Hyphenators.html")
);
 }
 return hyphenate(lang, sel, entity);
 });
 }

 /**
 * Creates a polyglot HTML hyphenator
 * @returns {Function} hyphenator for DOM elements
 */
 function createDOMHyphenator() {
 return ((entity, sel = ".hyphenate") => {
 collectElements(entity, sel).list.forEach((els, l) => {
 els.forEach((elo) => {
 hyphenate(l, elo.selector, elo.element);
 });
 });
 return null;
 });
 }

 /**
 * Remove hyphenation
 * @returns {Promise} List of unhyphenated elements
 */
 H.unhyphenate = () => {
 H.res.els.list.forEach((els) => {
 els.forEach((elo) => {
 elo.element.childNodes.forEach((n) => {
 if (n.nodeType === 3) {
 n.data = n.data.replace(RegExp(C[elo.selector].hyphen, "g"), "");
 }
 });
 });
 });
 return Promise.resolve(H.res.els);
 };

 /**
 * Hyphenate all elements with a given language
 * @param {string} lang The language
 * @param {Array} elements Array of elements
 */
 function hyphenateLangElements(lang, elements) {
 const elArr = elements.list.get(lang);
 if (elArr) {
 elArr.forEach((elo) => {
 hyphenate(lang, elo.selector, elo.element);
 });
 } else {
 event.fire(
 "error",
 Error(`Engine for language '${lang}' loaded, but no elements found.`)
);
 }
 if (elements.counter[0] === 0) {
 w.clearTimeout(H.timeOutHandler);
 H.hide(0, null);
 event.fire("hyphenopolyEnd");
 if (!C.keepAlive) {
 w.Hyphenopoly = null;
 }
 }
 }

 /**
 * Convert the exceptions from user input to Map
 * @param {string} lang - The language for which the Map is created
 * @returns {Map} - Exceptions map for given language
 */
 function createExceptionMap(lang) {
 let exc = "";
 if (C.exceptions.has(lang)) {
 exc = C.exceptions.get(lang);
 }
 if (C.exceptions.has("global")) {
 if (exc === "") {
 exc = C.exceptions.get("global");
 } else {
 exc += ", " + C.exceptions.get("global");
 }
 }
 if (exc === "") {
 return new Map();
 }
 return new Map(exc.split(", ").map((e) => {
 return [e.replace(/-/g, ""), e];
 }));
 }

 /**
 * Setup lo
 * @param {string} lang The language
 * @param {Function} hyphenateFunction The hyphenateFunction
 * @param {string} alphabet List of used characters
 * @param {number} patternLeftmin leftmin
 * @param {number} patternRightmin rightmin
 * @returns {undefined}
 */
 function prepareLanguagesObj(
 lang,
 hyphenateFunction,
 alphabet,
 patternLeftmin,
 patternRightmin
) {
 C.selectors.forEach((sel) => {
 const selSettings = C.get(sel);
 if (selSettings.leftminPerLang === 0) {
 selSettings.set("leftminPerLang", new Map());
 }
 if (selSettings.rightminPerLang === 0) {
 selSettings.set("rightminPerLang", new Map());
 }
 selSettings.leftminPerLang.set(lang, Math.max(
 patternLeftmin,
 selSettings.leftmin,
 Number(selSettings.leftminPerLang.get(lang)) || 0
));

 selSettings.rightminPerLang.set(lang, Math.max(
 patternRightmin,
 selSettings.rightmin,
 Number(selSettings.rightminPerLang.get(lang)) || 0
));
 });
 H.languages ||= new Map();
 alphabet = alphabet.replace(/*-/g, "\\-");
 H.languages.set(lang, {
 alphabet,
 "cache": new Map(),
 "exc": createExceptionMap(lang),
 "hyphenate": hyphenateFunction,
 "ready": true,
 "reNotAlphabet": RegExp(`[^${alphabet}]`, "i")
 });
 H.hy6ors.get(lang).resolve(createStringHyphenator(lang));
 event.fire("engineReady", {lang});
 if (H.res.els) {
 hyphenateLangElements(lang, H.res.els);
 }
 }

 const decode = (() => {
 const utf16ledecoder = new TextDecoder("utf-16le");
 return ((ui16) => {
 return utf16ledecoder.decode(ui16);
 });
 })();

 /**
 * Setup env for hyphenateFunction
 * @param {ArrayBuffer} buf Memory buffer
 * @param {Function} hyphenateFunc hyphenateFunction
 * @returns {Function} hyphenateFunction with closured environment
 */
 function encloseHyphenateFunction(buf, hyphenateFunc) {
 const wordStore = new Uint16Array(buf, 0, 64);
 return ((word, hyphencc, leftmin, rightmin) => {
 wordStore.set([
 ...[...word].map((c) => {
 return c.charCodeAt(0);
 }),
 0
]);
 const len = hyphenateFunc(leftmin, rightmin, hyphencc);
 if (len > 0) {
 word = decode(
 new Uint16Array(buf, 0, len)
);
 }
 return word;
 });
 }

 /**
 * Instantiate Wasm Engine
 * @param {Promise} heProm Promised hyphenEngine
 * @param {string} lang The language
 * @returns {undefined}
 */
 function instantiateWasmEngine(heProm, lang) {
 const wa = w.WebAssembly;

 /**
 * Register character substitutions in the .wasm-hyphenEngine
 * @param {number} alphalen - The length of the alphabet
 * @param {object} exp - Export-object of the hyphenEngine
 * @returns {number} - The new length of the alphabet
 */
 function registerSubstitutions(alphalen, exp) {
 if (C.substitute.has(lang)) {
 const subst = C.substitute.get(lang);
 subst.forEach((substituer, substituted) => {
 const substitutedU = substituted.toUpperCase();
 const substitutedUcc = (substitutedU === substituted)
 ? 0
 : substitutedU.charCodeAt(0);
 alphalen = exp.subst(
 substituted.charCodeAt(0),
 substitutedUcc,
 substituer.charCodeAt(0)
);
 });
 }
 return alphalen;
 }

 /**
 * Instantiate the hyphenEngine
 * @param {object} res - The fetched ressource
 */
 function handleWasm(res) {
 const exp = res.instance.exports;
 let alphalen = (wa.Global) ? exp.lct.value : exp.lct;
 alphalen = registerSubstitutions(alphalen, exp);
 heProm.l.forEach((l) => {
 prepareLanguagesObj(
 l,
 encloseHyphenateFunction(
 exp.mem.buffer,
 exp.hyphenate
),
 decode(new Uint16Array(exp.mem.buffer, 1664, alphalen)),
 (wa.Global) ? exp.lmi.value : exp.lmi,
 (wa.Global) ? exp.rmi.value : exp.rmi
);
 });
 }
 heProm.w.then((response) => {
 if (response.ok) {
 if (
 wa.instantiateStreaming &&
 (response.headers.get("Content-Type") === "application/wasm")
) {
 return wa.instantiateStreaming(response);
 }
 return response.arrayBuffer().then((ab) => {
 return wa.instantiate(ab);
 });
 }
 return Promise.reject(Error(`File ${lang}.wasm can't be loaded from ${H.paths.patterndir}`));
 }).then(handleWasm, (e) => {
 event.fire("error", e);
 H.res.els.rem(lang);
 });
 }

 // eslint-disable-next-line jsdoc/require-jsdoc
 H.main = () => {
 H.res.DOM.then(() => {
 mainLanguage = getLang(w.document.documentElement, "", false);
 if (!mainLanguage && C.defaultLanguage !== "") {
 mainLanguage = C.defaultLanguage;
 }
 const elements = collectElements();
 H.res.els = elements;
 elements.list.forEach((ignore, lang) => {
 if (H.languages &&
 H.languages.has(lang) &&
 H.languages.get(lang).ready
) {
 hyphenateLangElements(lang, elements);
 }
 });
 });

 H.res.he.forEach(instantiateWasmEngine);

 Promise.all(
 // Make sure all lang specific hyphenators and DOM are ready
 [...H.hy6ors.entries()].
 reduce((accumulator, value) => {
 if (value[0] !== "HTML") {
 return accumulator.concat(value[1]);
 }
 return accumulator;
 }, []).
 concat(H.res.DOM)
).then(() => {
 H.hy6ors.get("HTML").resolve(createDOMHyphenator());
 }, (e) => {
 event.fire("error", e);
 });
 };
 H.main();
 })(Hyphenopoly);
})(window, Object);

OEBPS/Images/Illustration-23.jpg

OEBPS/Misc/Hyphenopoly_Loader.js
window.addEventListener('load', Starting);

/**
 * @license MIT
 * Hyphenopoly_Loader 6.0.0 - client side hyphenation
 * ©2024 Mathias Nater, Güttingen (mathiasnater at gmail dot com)
 * https://github.com/mnater/Hyphenopoly
 *
 * Released under the MIT license
 * http://mnater.github.io/Hyphenopoly/LICENSE
 */
/* globals Hyphenopoly:readonly */
window.Hyphenopoly = {};

((w, d, H, o) => {
 "use strict";

 /**
 * Shortcut for new Map
 * @param {any} init - initialiser for new Map
 * @returns {Map} - empty map
 */
 const mp = (init) => {
 return new Map(init);
 };

 const scriptName = "Hyphenopoly_Loader.js";
 const thisScript = d.currentScript.src;
 const store = sessionStorage;
 let mainScriptLoaded = false;

 /**
 * The main function runs the feature test and loads Hyphenopoly if
 * necessary.
 */
 const main = (() => {
 const shortcuts = {
 "ac": "appendChild",
 "ce": "createElement",
 "ct": "createTextNode"
 };

 /**
 * Create deferred Promise
 *
 * From http://lea.verou.me/2016/12/resolve-promises-externally-with-
 * this-one-weird-trick/
 * @returns {Promise} - deferred promise
 */
 const defProm = () => {
 let res = null;
 let rej = null;
 const promise = new Promise((resolve, reject) => {
 res = resolve;
 rej = reject;
 });
 promise.resolve = res;
 promise.reject = rej;
 return promise;
 };

 H.ac = new AbortController();
 const fetchOptions = {
 "credentials": H.s.CORScredentials,
 "signal": H.ac.signal
 };

 let stylesNode = null;

 /**
 * Define function H.hide.
 * This function hides (state = 1) or unhides (state = 0)
 * the whole document (mode == 0) or
 * each selected element (mode == 1) or
 * text of each selected element (mode == 2) or
 * nothing (mode == -1)
 * @param {number} state - State
 * @param {number} mode - Mode
 */
 H.hide = (state, mode) => {
 if (state) {
 const vis = (mode === 2)
 ? "{color:transparent!important}"
 : "{visibility:hidden!important}";
 const myStyle = (mode === 0)
 ? "html" + vis
 : (mode !== -1)
 ? o.keys(H.s.selectors).join(vis) + vis
 : "";
 stylesNode = d[shortcuts.ce]("style");
 stylesNode[shortcuts.ac](d[shortcuts.ct](myStyle));
 d.head[shortcuts.ac](stylesNode);
 } else if (stylesNode) {
 stylesNode.remove();
 }
 };

 const tester = (() => {
 let fakeBody = null;
 return {

 /**
 * Append fakeBody with tests to document
 * @returns {object|null} The body element or null, if no tests
 */
 "ap": () => {
 if (fakeBody) {
 d.documentElement[shortcuts.ac](fakeBody);
 return fakeBody;
 }
 return null;
 },

 /**
 * Remove fakeBody
 * @returns {undefined}
 */
 "cl": () => {
 if (fakeBody) {
 fakeBody.remove();
 }
 },

 /**
 * Create and append div with CSS-hyphenated word
 * @param {string} lang Language
 * @returns {undefined}
 */
 "cr": (lang) => {
 if (H.cf.langs.has(lang)) {
 return;
 }
 fakeBody ||= d[shortcuts.ce]("body");
 const testDiv = d[shortcuts.ce]("div");
 const ha = "hyphens:auto";
 testDiv.lang = lang;
 testDiv.style.cssText = `visibility:hidden;-webkit-${ha};-ms-${ha};${ha};width:48px;font-size:12px;line-height:12px;border:none;padding:0;word-wrap:normal`;
 testDiv[shortcuts.ac](
 d[shortcuts.ct](H.lrq.get(lang).wo.toLowerCase())
);
 fakeBody[shortcuts.ac](testDiv);
 }
 };
 })();

 /**
 * Checks if hyphens (ev.prefixed) is set to auto for the element.
 * @param {object} elmStyle - the element
 * @returns {boolean} result of the check
 */
 const checkCSSHyphensSupport = (elmStyle) => {
 const h = elmStyle.hyphens ||
 elmStyle.webkitHyphens ||
 elmStyle.msHyphens;
 return (h === "auto");
 };

 H.res = {
 "he": mp()
 };

 /**
 * Load hyphenEngines to H.res.he
 *
 * Make sure each .wasm is loaded exactly once, even for fallbacks
 * Store a list of languages to by hyphenated with each .wasm
 * @param {string} lang The language
 * @returns {undefined}
 */
 const loadhyphenEngine = (lang) => {
 const fn = H.lrq.get(lang).fn;
 H.cf.pf = true;
 H.cf.langs.set(lang, "H9Y");
 if (H.res.he.has(fn)) {
 H.res.he.get(fn).l.push(lang);
 } else {
 H.res.he.set(
 fn,
 {
 "l": [lang],
 "w": w.fetch(H.paths.patterndir + fn + ".wasm", fetchOptions)
 }
);
 }
 };
 H.lrq.forEach((value, lang) => {
 if (value.wo === "FORCEHYPHENOPOLY" || H.cf.langs.get(lang) === "H9Y") {
 loadhyphenEngine(lang);
 } else {
 tester.cr(lang);
 }
 });
 const testContainer = tester.ap();
 if (testContainer) {
 testContainer.childNodes.forEach((n) => {
 if (checkCSSHyphensSupport(n.style) && n.offsetHeight > 12) {
 H.cf.langs.set(n.lang, "CSS");
 } else {
 loadhyphenEngine(n.lang);
 }
 });
 tester.cl();
 }
 const hev = H.hev;
 if (H.cf.pf) {
 H.res.DOM = new Promise((res) => {
 if (d.readyState === "loading") {
 d.addEventListener(
 "DOMContentLoaded",
 res,
 {
 "once": true,
 "passive": true
 }
);
 } else {
 res();
 }
 });
 H.hide(1, H.s.hide);
 H.timeOutHandler = w.setTimeout(() => {
 H.hide(0, null);
 // eslint-disable-next-line no-bitwise
 if (H.s.timeout & 1) {
 H.ac.abort();
 }
 // eslint-disable-next-line no-console
 console.info(scriptName + " timed out.");
 }, H.s.timeout);
 if (mainScriptLoaded) {
 H.main();
 } else {
 // Load main script
 fetch(H.paths.maindir + "Hyphenopoly.js", fetchOptions).
 then((response) => {
 if (response.ok) {
 response.blob().then((blb) => {
 const script = d[shortcuts.ce]("script");
 script.src = URL.createObjectURL(blb);
 d.head[shortcuts.ac](script);
 mainScriptLoaded = true;
 URL.revokeObjectURL(script.src);
 });
 }
 });
 }
 H.hy6ors = mp();
 H.cf.langs.forEach((langDef, lang) => {
 if (langDef === "H9Y") {
 H.hy6ors.set(lang, defProm());
 }
 });
 H.hy6ors.set("HTML", defProm());
 H.hyphenators = new Proxy(H.hy6ors, {

 /**
 * Proxy getter
 * @param {Map} target - the hy6ors map
 * @param {string} key - the language
 * @returns {Promise} - Promise for a hyphenator
 */
 "get": (target, key) => {
 return target.get(key);
 },

 /**
 * Proxy setter, inhibits setting of hyphenators
 * @returns {boolean} - allways true
 */
 "set": () => {
 // Inhibit setting of hyphenators
 return true;
 }
 });
 (() => {
 if (hev && hev.polyfill) {
 hev.polyfill();
 }
 })();
 } else {
 (() => {
 if (hev && hev.tearDown) {
 hev.tearDown();
 }
 w.Hyphenopoly = null;
 })();
 }
 (() => {
 if (H.cft) {
 store.setItem(scriptName, JSON.stringify(
 {
 "langs": [...H.cf.langs.entries()],
 "pf": H.cf.pf
 }
));
 }
 })();
 });

 /**
 * API exposed config
 * @param {object} c - the user supplied configuration
 */
 H.config = (c) => {
 /**
 * Sets default properties for an Object
 * @param {object} obj - The object to set defaults to
 * @param {object} defaults - The defaults to set
 * @returns {object} the settings in obj complemented with defaults
 */
 const setDefaults = (obj, defaults) => {
 if (obj) {
 o.entries(defaults).forEach(([k, v]) => {
 // eslint-disable-next-line security/detect-object-injection
 obj[k] ||= v;
 });
 return obj;
 }
 return defaults;
 };

 H.cft = Boolean(c.cacheFeatureTests);
 if (H.cft && store.getItem(scriptName)) {
 H.cf = JSON.parse(store.getItem(scriptName));
 H.cf.langs = mp(H.cf.langs);
 } else {
 H.cf = {
 "langs": mp(),
 "pf": false
 };
 }

 const maindir = thisScript.slice(0, (thisScript.lastIndexOf("/") + 1));
 const patterndir = maindir + "patterns/";
// const patterndir = maindir;
 H.paths = setDefaults(c.paths, {
 maindir,
 patterndir
 });
 H.s = setDefaults(c.setup, {
 "CORScredentials": "include",
 "hide": "all",
 "selectors": {".hyphenate": {}},
 "timeout": 1000
 });
 // Change mode string to mode int
 H.s.hide = ["all", "element", "text"].indexOf(H.s.hide);
 if (c.handleEvent) {
 H.hev = c.handleEvent;
 }

 const fallbacks = mp(o.entries(c.fallbacks || {}));
 H.lrq = mp();
 o.entries(c.require).forEach(([lang, wo]) => {
 H.lrq.set(lang.toLowerCase(), {
 "fn": fallbacks.get(lang) || lang,
 wo
 });
 });
 main();
 };
})(window, document, Hyphenopoly, Object);

function Starting() {
 Hyphenopoly.config({
 require: {
 "en-us": "FORCEHYPHENOPOLY",
 },
 paths: {
 patterndir: "../../META-INF/"
 },
 setup: {
 selectors: {
 "body": {
 compound: "all",
 leftmin: 1,
 rightmin: 2
 }
 }
 }
 });
 window.removeEventListener("load", Starting);
}

OEBPS/Images/Illustration-24.jpg

OEBPS/Images/Illustration-22.jpg

OEBPS/Images/Illustration-20.jpg

