
Designing the Xerox “Star” User Interface

The Star user interface adheres rigorously to a small set of principles designed to make the 
system seem friendly by simplifying the human-machine interface.

Reprinted from Byte, issue 4/1982, pp. 242-282.

Photo 1: A Star work station showing the processor, display, keyboard and mouse.
In April 1981, Xerox announced the 8010 Star Information System, a new personal computer 
designed for offices. Consisting of a processor, a large display, a keyboard, and a cursor-control 
device (see photo 1), it is intended for business professionals who handle information.

Star is a multifunction system combining document creation, data processing, and electronic 
filing, mailing, and printing. Document creation includes text editing and formatting, graphics 
editing, mathematical formula editing, and page layout. Data processing deals with 
homogeneous, relational databases that can be sorted, filtered, and formatted under user control. 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p1 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/photo1
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/photo1


Filing is an example of a network service utilizing the Ethernet local-area network (see 
references 9 and 13). Files may be stored on a work station’s disk, on a file server on the work 
station’s network, or on a file server on a different network. Mailing permits users of work 
stations to communicate with one another. Printing utilizes laser-driven raster printers capable of 
printing both text and graphics.

As Jonathan Seybold has written, “This is a very different product: Different because it truly 
bridges word processing and typesetting functions; different because it has a broader range of 
capabilities than anything which has preceded it; and different because it introduces to the 
commercial market radically new concepts in human engineering.” (See reference 15.)

The Star user interface adheres rigorously to a small set of design principles. These principles 
make the system seem familiar and friendly, simplify the human-machine interaction, unify the 
nearly two dozen functional areas of Star, and allow user experience in one area to apply in 
others. In reference 17, we presented an overview of the features in Star. Here, we describe the 
principles behind those features and illustrate the principles with examples. This discussion is 
addressed to the designers of other computer programs and systems – large and small.

Star Architecture

Before describing Star’s user interface, several essential aspects of the Star architecture should 
be pointed out. Without these elements, it would have been impossible to design an interface 
anything like the present one.

The Star hardware was modeled after the experimental Xerox Alto computer (see reference 19). 
Like Alto, Star consists of a Xerox-developed, high-bandwidth, MSI (medium-scale integration) 
processor; local disk storage; a bit-mapped display screen having a 72-dots-per-inch resolution; a 
pointing device called the “mouse”; and a connection to the Ethernet network. Stars are higher-
performance machines than Altos, being about three times as fast, having 512K bytes of main 
memory (versus 256K bytes on most Altos), 10 or 29 megabytes of disk memory (versus 2.5 
megabytes), a 10½- by 13-inch display screen (versus 10½ by 8 inches), and a 10-megabits-per-
second Ethernet (versus 3 megabits). Typically, Stars, like Altos, are linked via Ethernets to each 
other and to shared file, mail, and print servers. Communication servers connect Ethernets to one 
another either directly or over telephone lines, enabling internetwork communication. (For a 
detailed description of the Xerox Alto computer, see the September 1981 BYTE article “The 
Xerox Alto Computer” by Thomas A. Wadlow on page 58.)

The most important ingredient of the user interface is the bit-mapped display screen. Both Star 
and Alto devote a portion of main memory to the screen: 100K bytes in Star, 50K bytes (usually) 
in Alto. Every screen dot can be individually turned on or off by setting or resetting the 
corresponding bit in memory. It should be obvious that this gives both computers an excellent 
ability to portray visual images. We believe that all impressive office systems of the future will 
have bit-mapped displays. Memory cost will soon be insignificant enough that they will be 
feasible even in home computers. Visual communication is effective, and it can’t be exploited 
without graphics flexibility.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p2 

http://www.guidebookgallery.org/articles/thexeroxaltocomputer
http://www.guidebookgallery.org/articles/thexeroxaltocomputer
http://www.guidebookgallery.org/articles/thexeroxaltocomputer
http://www.guidebookgallery.org/articles/thexeroxaltocomputer


There must be a way to change dots on the screen quickly. Star has a high memory bandwidth, 
about 90 megahertz (MHz). The entire Star screen is repainted from memory 39 times per 
second, about a 50-MHz data rate between memory and the screen. This would swamp most 
computer memories. However, since Star’s memory is double-ported, refreshing the display does 
not appreciably slow down processor memory access. Star also has separate logic devoted solely 
to refreshing the display. Finally, special microcode has been written to assist in changing the 
contents of memory quickly, permitting a variety of screen processing that would not otherwise 
be practical (see reference 8).

Photo 2: The Star keyboard and mouse. Note the two buttons on top of the mouse.
People need a way to quickly point to items on the screen. Cursor step keys are too slow; nor are 
they suitable for graphics. Both Star and Alto use a pointing device called the mouse (see photo 
2). First developed at Stanford Research Institute (see reference 6), Xerox’s version has a ball on 
the bottom that turns as the mouse slides over a flat surface such as a table. Electronics sense the 
ball rotation and guide a cursor on the screen in corresponding motions. The mouse possesses 
several important attributes:

It is a “Fitts’s law” device. That is, after some practice you can point with a mouse as quickly and 
easily as you can with the tip of your finger. The limitations on pointing speed are those inherent 
in the human nervous system (see references 3 and 7).

It stays where it was left when you are not touching it. It doesn’t have to be picked up like a light 
pen or stylus.

It has buttons on top that can be sensed under program control. The buttons let you point to and 
interact with objects on the screen in a variety of ways.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p3 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/photo2
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/photo2


Every Star and Alto has its own hard disk for local storage of programs and data. This enhances 
their personal nature, providing consistent access to information regardless of how many other 
machines are on the network or what anyone else is doing. Larger programs can be written, using 
the disk for swapping.

The Ethernet lets both Stars and Altos have a distributed architecture. Each machine is connected 
to an Ethernet. Other machines on the Ethernet are dedicated as “servers” – machines that are 
attached to a resource and provide access to that resource.

Star Design Methodology

We have learned from Star the importance of formulating the fundamental concepts (the user’s 
conceptual model) before software is written, rather than tacking on a user interface afterward. 
Xerox devoted about thirty work-years to the design of the Star user interface. It was designed 
before the functionality of the system was fully decided. It was even designed before the 
computer hardware was built. We worked for two years before we wrote a single line of actual 
product software. Jonathan Seybold put it this way, “Most system design efforts start with 
hardware specifications, follow this with a set of functional specifications for the software, then 
try to figure out a logical user interface and command structure. The Star project started the other 
way around: the paramount concern was to define a conceptual model of how the user would 
relate to the system. Hardware and software followed from this.” (See reference 15.)

In fact, before we even began designing the model, we developed a methodology by which we 
would do the design. Our methodology report (see reference 10) stated:

One of the most troublesome and least understood aspects of interactive systems is the user 
interface. In the design of user interfaces, we are concerned with several issues: the provision of 
languages by which users can express their commands to the computer; the design of display 
representations that show the state of the system to the user; and other more abstract issues that 
affect the user’s understanding of the system’s behavior. Many of these issues are highly 
subjective and are therefore often addressed in an ad hoc fashion. We believe, however, that 
more rigorous approaches to user interface design can be developed...

These design methodologies are all unsatisfactory for the same basic reason: they all omit an 
essential step that must precede the design of any successful user interface, namely task analysis. 
By this we mean the analysis of the task performed by the user, or users, prior to introducing the 
proposed computer system. Task analysis involves establishing who the users are, what their 
goals are in performing the task, what information they use in performing it, what information 
they generate, and what methods they employ. The descriptions of input and output information 
should include an analysis of the various objects, or individual types of information entity, 
employed by the user...

The purpose of task analysis is to simplify the remaining stages in user interface design. The 
current task description, with its breakdown of the information objects and methods presently 
employed, offers a starting point for the definition of a corresponding set of objects and methods 
to be provided by the computer system. The idea behind this phase of design is to build up a new 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p4 



task environment for the user, in which he can work to accomplish the same goals as before, 
surrounded now by a different set of objects, and employing new methods.

Prototyping is another crucial element of the design process. System designers should be 
prepared to implement the new or difficult concepts and then to throw away that code when 
doing the actual implementation. As Frederick Brooks says, the question “is not whether to build 
a pilot system and throw it away. You will do that. The only question is whether to plan in 
advance to build a throwaway, or to promise to deliver the throwaway to customers... Hence plan 
to throw one away; you will, anyhow.” (See reference 2.) The Alto served as a valuable prototype 
for Star. Over a thousand Altos were eventually built. Alto users have had several thousand 
work-years of experience with them over a period of eight years, making Alto perhaps the largest 
prototyping effort ever. Dozens of experimental programs were written for the Alto by members 
of the Xerox Palo Alto Research Center. Without the creative ideas of the authors of those 
systems, Star in its present form would have been impossible. In addition, we ourselves 
programmed various aspects of the Star design on Alto, but all of it was “throwaway” code. Alto, 
with its bitmapped display screen, was powerful enough to implement and test our ideas on 
visual interaction.

Some types of concepts are inherently difficult for people to grasp. Without being too formal 
about it, our experience before and during the Star design led us to the following classification:

	

 Easy	

 Hard
	

 concrete	

 abstract
	

 visible	

 invisible
	

 copying	

 creating
	

 choosing	

 filling in
	

 recognizing	

 generating
	

 editing	

 programming
	

 interactive	

 batch

The characteristics on the left were incorporated into the Star user’s conceptual model. The 
characteristics on the right we attempted to avoid.

Principles Used

The following main goals were pursued in designing the Star user interface:

• familiar user’s conceptual model
• seeing and pointing versus remembering and typing
• what you see is what you get
• universal commands
• consistency
• simplicity
• modeless interaction
• user tailorability

We will discuss each of these in turn.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p5 



• Familiar User’s Conceptual Model

A user’s conceptual model is the set of concepts a person gradually acquires to explain the 
behavior of a system, whether it be a computer system, a physical system, or a hypothetical 
system. It is the model developed in the mind of the user that enables that person to understand 
and interact with the system. The first task for a system designer is to decide what model is 
preferable for users of the system. This extremely important step is often neglected or done 
poorly. The Star designers devoted several work-years at the outset of the project discussing and 
evolving what we considered an appropriate model for an office information system: the 
metaphor of a physical office.

The designer of a computer system can choose to pursue familiar analogies and metaphors or to 
introduce entirely new functions requiring new approaches. Each option has advantages and 
disadvantages. We decided to create electronic counterparts to the physical objects in an office: 
paper, folders, file cabinets, mail boxes, and so on – an electronic metaphor for the office. We 
hoped this would make the electronic “world” seem more familiar, less alien, and require less 
training. (Our initial experiences with users have confirmed this.) We further decided to make the 
electronic analogues be concrete objects. Documents would be more than file names on a disk; 
they would also be represented by pictures on the display screen. They would be selected by 
pointing to them with the mouse and clicking one of the buttons. Once selected, they would be 
moved, copied, or deleted by pushing the appropriate key. Moving a document became the 
electronic equivalent of picking up a piece of paper and walking somewhere with it. To file a 
document, you would move it to a picture of a file drawer, just as you take a physical piece of 
paper to a physical file cabinet.

The reason that the user’s conceptual model should be decided first when designing a system is 
that the approach adopted changes the functionality of the system. An example is electronic mail. 
Most electronic-mail systems draw a distinction between messages and files to be sent to other 
people. Typically, one program sends messages and a different program handles file transfers, 
each with its own interface. But we observed that offices make no such distinction. Everything 
arrives through the mail, from one-page memos to books and reports, from intraoffice mail to 
international mail. Therefore, this became part of Star’s physical-office metaphor. Star users mail 
documents of any size, from one page to many pages. Messages are short documents, just as in 
the real world. User actions are the same whether the recipients are in the next office or in 
another country.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p6 



Figure 1: In-basket and out-basket icons. The in-basket contains an envelope indicating that mail 
has been received. (This figure was taken directly from the Star screen. Therefore, the text 
appears at screen resolution.)
A physical metaphor can simplify and clarify a system. In addition to eliminating the artificial 
distinctions of traditional computers, it can eliminate commands by taking advantage of more 
general concepts. For example, since moving a document on the screen is the equivalent of 
picking up a piece of paper and walking somewhere with it, there is no “send mail” command. 
You simply move it to a picture of an out-basket. Nor is there a “receive mail” command. New 
mail appears in the in-basket as it is received. When new mail is waiting, an envelope appears in 
the picture of the in-basket (see figure 1). This is a simple, familiar, nontechnical approach to 
computer mail. And it’s easy once the physical-office metaphor is adopted!

While we want an analogy with the physical world for familiarity, we don’t want to limit 
ourselves to its capabilities. One of the raisons d’être for Star is that physical objects do not 
provide people with enough power to manage the increasing complexity of the “information 
age.” For example, we can take advantage of the computer’s ability to search rapidly by 
providing a search function for its electronic file drawers, thus helping to solve the long-standing 
problem of lost files.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p7 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure1
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure1


• The “Desktop”

Figure 2: A Desktop as it appears on the Star screen. Several commonly used icons appear across 
the top of the screen, including documents to serve as “form-pad” sources for letters, memos, and 
blank paper. An open window displaying a document containing an illustration is also shown.

Every user’s initial view of Star is the “Desktop,” which resembles the top of an office desk, 
together with surrounding furniture and equipment. It represents your working environment – 
where your current projects and accessible resources reside. On the screen are displayed pictures 
of familiar office objects, such as documents, folders, file drawers, in-baskets, and out-baskets. 
These objects are displayed as small pictures or “icons,” as shown in figure 2.

You can “open” an icon to deal with what it represents. This enables you to read documents, 
inspect the contents of folders and file drawers, see what mail you have received, etc. When 
opened, an icon expands into a larger form called a “window,” which displays the icon’s 
contents. Windows are the principal mechanism for displaying and manipulating information.

The Desktop “surface” is displayed as a distinctive gray pattern. This restful design makes the 
icons and windows on it stand out crisply, minimizing eyestrain. The surface is organized as an 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p8 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure2
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure2


array of one-inch squares, 14 wide by 11 high. An icon can be placed in any square, giving a 
maximum of 154 icons. Star centers an icon in its square, making it easy to line up icons neatly. 
The Desktop always occupies the entire display screen; even when windows appear on the 
screen, the Desktop continues to exist “beneath” them.

The Desktop is the principal Star technique for realizing the physical-office metaphor. The icons 
on it are visible, concrete embodiments of the corresponding physical objects. Star users are 
encouraged to think of the objects on the Desktop in physical terms. Therefore, you can move the 
icons around to arrange your Desktop as you wish. (Messy Desktops are certainly possible, just 
as in real life.) Two icons cannot occupy the same space (a basic law of physics). Although 
moving a document to a Desktop resource such as a printer involves transferring the document 
icon to the same square as the printer icon, the printer immediately “absorbs” the document, 
queuing it for printing. You can leave documents on your Desktop indefinitely, just as on a real 
desk, or you can file them away in folders or file drawers. Our intention and hope is that users 
will intuit things to do with icons, and that those things will indeed be part of the system. This 
will happen if:

a. Star models the real world accurately enough. Its similarity with the office environment 
preserves your familiar way of working and your existing concepts and knowledge.

b. Sufficient uniformity is in the system. Star’s principles and “generic” commands 
(discussed below) are applied throughout the system, allowing lessons learned in one area 
to apply to others.

The model of a physical office provides a simple base from which learning can proceed in an 
incremental fashion. You are not exposed to entirely new concepts all at once. Much of your 
existing knowledge is embedded in the base.

In a functionally rich system, it is probably not possible to represent everything in terms of a 
single model. There may need to be more than one model. For example, Star’s records-
processing facility cannot use the physical-office model because physical offices have no 
“records processing” worthy of the name. Therefore, we invented a different model, a record file 
as a collection of fields. A record can be displayed as a row in a table or as filled-in fields in a 
form. Querying is accomplished by filling in a blank example of a record with predicates 
describing the desired values, which is philosophically similar to Zloof’s “Query-by-
Example” (see reference 21).

Of course, the number of different user models in a system must be kept to a minimum. And they 
should not overlap; a new model should be introduced only when an existing one does not cover 
the situation.

• Seeing and Pointing

A well-designed system makes everything relevant to a task visible on the screen. It doesn’t hide 
things under CODE+key combinations or force you to remember conventions. That burdens your 
memory. During conscious thought, the brain utilizes several levels of memory, the most 
important being the “short-term memory.” Many studies have analyzed the short-term memory 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p9 



and its role in thinking. Two conclusions stand out: (1) conscious thought deals with concepts in 
the short-term memory (see reference 1) and (2) the capacity of the short-term memory is limited 
(see reference 14). When everything being dealt with in a computer system is visible, the display 
screen relieves the load on the short-term memory by acting as a sort of “visual cache.” Thinking 
becomes easier and more productive. A well-designed computer system can actually improve the 
quality of your thinking (see reference 16). In addition, visual communication is often more 
efficient than linear communication; a picture is worth a thousand words.

A subtle thing happens when everything is visible: the display becomes reality. The user model 
becomes identical with what is on the screen. Objects can be understood purely in terms of their 
visible characteristics. Actions can be understood in terms of their effects on I the screen. This 
lets users conduct experiments to test, verify, and expand their understanding – the essence of 
experimental science.

In Star, we have tried to make the objects and actions in the system visible. Everything to be 
dealt with and all commands and effects have a visible representation on the display screen or on 
the keyboard. You never have to remember that, for example, CODE+Q does something in one 
context and something different in another context. In fact, our desire to eliminate this possibility 
led us to abolish the CODE key. (We have yet to see a computer system with a CODE key that 
doesn’t violate the principle of visibility.) You never invoke a command or push a key and have 
nothing visible happen. At the very least, a message is posted explaining that the command 
doesn’t work in this context, or it is not implemented, or there is an error.. It is disastrous to the 
user’s model when you invoke an action and the system does nothing in response. We have seen 
people push a key several times in one system or another trying to get a response. They are not 
sure whether the system has “heard” them or not. Sometimes the system is simply throwing away 
their keystrokes. Sometimes it is just slow and is queuing the keystrokes; you can imagine the 
unpredictable behavior that is possible.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p10 



Figure 3: The property sheet for text characters.
We have already mentioned icons and windows as mechanisms for making the concepts in Star 
visible. Other such mechanisms are Star’s property and option sheets. Most objects in Star have 
properties. A property sheet is a two-dimensional, form-like environment that displays those 
properties. Figure 3 shows the character property sheet. It appears on the screen whenever you 
make a text selection and push the PROPERTIES key. It contains such properties as type font 
and size; bold, italic, underline, and strikeout face; and superscript/subscript positioning. Instead 
of having to remember the properties of characters, the current settings of those properties, and, 
worst of all, how to change those properties, property sheets simply show everything on the 
screen. All the options are presented. To change one, you point to it with the mouse and push a 
button. Properties in effect are displayed in reverse video.

This mechanism is used for all properties of all objects in the system. Star contains a couple of 
hundred properties. To keep you from being overwhelmed with information, property sheets 
display only the properties relevant to the type of object currently selected (e.g., character, 
paragraph, page, graphic line, formula element, frame, document, or folder). This is an example 
of “progressive disclosure”: hiding complexity until it is needed. It is also one of the clearest 
examples of how an emphasis on visibility can reduce the amount of remembering and typing 
required.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p11 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure3
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure3


Property sheets may be thought of as an alternate representation for objects. The screen shows 
you the visible characteristics of objects, such as the type font of text characters or the names of 
icons. Property sheets show you the underlying structure of objects as they make this structure 
visible and accessible.

Figure 4: The option sheet for the Find command showing both the Search and Substitute 
options. The last two lines of options appear only when CHANGE IT is turned on.

Invisibility also plagues the commands in some systems. Commands often have several 
arguments and options that you must remember with no assistance from the system. Star 
addresses this problem with option sheets (see figure 4), a two-dimensional, form-like 
environment that displays the arguments to commands. It serves the same function for command 
arguments that property sheets do for object properties.

• What You See Is What You Get

“What you see is what you get” (or WYSIWYG) refers to the situation in which the display 
screen portrays an accurate rendition of the printed page. In systems having such capabilities as 
multiple fonts and variable line spacing, WYSIWYG requires a bit-mapped display because only 
that has sufficient graphic power to render those characteristics accurately.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p12 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure4
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure4


Figure 5: A Star document showing multicolumn text, graphics, and formulas. This is the way the 
document appears on the screen. It is also the way it will print (at higher resolution, of course).

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p13 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure5
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure5


WYSIWYG is a simplifying technique for document-creation systems. All composition is done 
on the screen. It eliminates the iterations that plague users of document compilers. You can 
examine the appearance of a page on the screen and make changes until it looks right. The 
printed page will look the same (see figure 5). Anyone who has used a document compiler or 
post-processor knows how valuable WYSIWYG is. The first powerful WYSIWYG editor was 
Bravo, an experimental editor developed for Alto at the Xerox Palo Alto Research Center (see 
reference 12). The text-editor aspects of Star were derived from Bravo.

Trade-offs are involved in WYSIWYG editors, chiefly having to do with the lower resolution of 
display screens. It is never possible to get an exact representation of a printed page on the screen 
since most screens have only 50 to 100 dots per inch (72 in Star), while most printers have 
higher resolution. Completely accurate character positioning is not possible. Nor is it usually 
possible to represent shape differences for fonts smaller than eight points in size since there are 
too few dots per character to be recognizable. Even 10-point (“normal” size) fonts may be 
uncomfortably small on the screen, necessitating a magnified mode for viewing text. WYSIWYG 
requires very careful design of the screen fonts in order to keep text on the screen readable and 
attractive. Nevertheless, the increase in productivity made possible by WYSIWYG editors more 
than outweighs these difficulties.

• Universal Commands

Star has a few commands that can be used throughout the system: MOVE, COPY, DELETE, 
SHOW PROPERTIES, COPY PROPERTIES, AGAIN, UNDO, and HELP. Each performs the 
same way regardless of the type of object selected. Thus, we call them “universal” or “generic” 
commands. For example, you follow the same set of actions to move text in a document and to 
move a line in an illustration or a document in a folder: select the object, push the MOVE key, 
and indicate a destination. (HELP and UNDO don’t use a selection.) Each generic command has 
a key devoted to it on the keyboard.

These commands are far more basic than the commands in other computer systems. They strip 
away the extraneous application-specific semantics to get at the underlying principles. Star’s 
generic commands derive from fundamental computer-science concepts because they also 
underlie operations in programming languages. For example, much program manipulation of 
data structures involves moving or copying values from one data structure to another. Since 
Star’s generic commands embody fundamental underlying concepts, they are widely applicable. 
Each command fills a variety of needs, meaning fewer commands are required. This simplicity is 
desirable in itself, but it has another subtle advantage: it makes it easy for users to form a model 
of the system. People can use what they understand. Just as progress in science derives from 
simple, clear theories, progress in the usability of computers is coming to depend on simple, 
clear user interfaces.

MOVE is the most powerful command in the system. It is used during text editing to rearrange 
letters in a word, words in a sentence, sentences in a paragraph, and paragraphs in a document. It 
is used during graphics editing to move picture elements, such as lines and rectangles, around in 
an illustration. It is used during formula editing to move mathematical structures, such as 
summations and integrals, around in an equation. It replaces the conventional “store file” and 
“retrieve file” commands; you simply move an icon into or out of a file drawer or folder. It 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p14 



eliminates the “send mail” and “receive mail” commands; you move an icon to an out-basket or 
from an in-basket. It replaces the “print” command; you move an icon to a printer. And so on. 
MOVE strips away much of the historical clutter of computer commands. It is more fundamental 
than the myriad of commands it replaces. It is simultaneously more powerful and simpler.

Much simplification comes from Star’s object-oriented interface. The action of setting properties 
also replaces a myriad of commands. For example, changing paragraph margins is a command in 
many systems. In Star, you do it by selecting a paragraph object and setting its MARGINS 
property. (For more information on object-oriented languages, see the August 1981 BYTE.)

• Consistency

Consistency asserts that mechanisms should be used in the same way wherever they occur. For 
example, if the left mouse button is used to select a character, the same button should be used to 
select a graphic line or an icon. Everyone agrees that consistency is an admirable goal. However, 
it is perhaps the single hardest characteristic of all to achieve in a computer system. In fact, in 
systems of even moderate complexity, consistency may not be well defined.

A question that has defied consensus in Star is what should happen to a document after it has 
been printed. Recall that a user prints a document by selecting its icon, invoking MOVE, and 
designating a printer icon. The printer absorbs the document, queuing it for printing. What 
happens to that document icon after printing is completed? The two plausible alternatives are:

1. The system deletes the icon.
2. The system does not delete the icon, which leads to several further alternatives:

a. The system puts the icon back where it came from (i.e., where it was before 
MOVE was invoked).

b. The system puts the icon at an arbitrary spot on the Desktop.
c. The system leaves the icon in the printer. You must move it out of the printer 

explicitly.

The consistency argument for the first alternative goes as follows: when you move an icon to an 
out-basket, the system mails it and then deletes it from your Desktop. When you move an icon to 
a file drawer, the system files it and then deletes it from your Desktop. Therefore, when you 
move an icon to a printer, the system should print it and then delete it from your Desktop. 
Function icons should behave consistently with one another.

The consistency argument for the second alternative is: the user’s conceptual model at the 
Desktop level is the physical-office metaphor. Icons are supposed to behave similarly to their 
physical counterparts. It makes sense that icons are deleted after they are mailed because after 
you put a piece of paper in a physical out-basket and the mailperson picks it up, it is gone. 
However, the physical analogue for printers is the office copier, and there is no notion of deleting 
a piece of paper when you make a copy of it. Function icons should behave consistently with 
their physical counterparts.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p15 



There is no one right answer here. Both arguments emphasize a dimension of consistency. In this 
case, the dimensions happen to overlap. We eventually chose alternative 2a for the following 
reasons:

1. Model dominance – The physical metaphor is the stronger model at the Desktop level. 
Analogy with physical counterparts does form the basis for people’s understanding of 
what icons are and how they behave. Argument 1 advocates an implicit model that must 
be learned; argument 2 advocates an explicit model that people already have when they 
are introduced to the system. Since people do use their existing knowledge when 
confronted with new situations, the design of the system should be based on that 
knowledge. This is especially important if people are to be able to intuit new uses for the 
features they have learned.

2. Pragmatics – It is dangerous to delete things when users don’t expect it. The first time a 
person labors over a document, gets it just right, prints it, and finds that it has 
disappeared, that person is going to become very nervous, not to mention angry. We also 
decided to put it back where it came from (2a instead of 2b or 2c) for the pragmatic 
reason that this involves slightly less work on the user’s part.

3. Seriousness – When you file or mail an icon, it is not deleted entirely from the system. It 
still exists in the file drawer or in the recipients’ in-baskets. If you want it back, you can 
move it back out of the file drawer or send a message to one of the recipients asking to 
have a copy sent back. Deleting after printing, however, is final; if you move a document 
to a printer and the printer deletes it, that document is gone for good.

One way to get consistency into a system is to adhere to paradigms for operations. By applying a 
successful way of working in one area to other areas, a system acquires a unity that is both 
apparent and real. Paradigms that Star uses are:

Editing – Much of what you do in Star can be thought of as editing. In addition to the 
conventional text, graphics, and formula editing, you manage your files by editing filing 
windows. You arrange your working environment by editing your Desktop. You alter properties 
by editing property sheets. Even programming can be thought of as editing data structures (see 
reference 16).

Information retrieval – A lot of power can be gained by applying information-retrieval 
techniques to information wherever it exists in a system. Star broadens the definition of 
“database.” In addition to the traditional notion as represented by its record files, Star views file 
drawers as databases of documents, in-baskets as databases of mail, etc. This teaches users to 
think of information retrieval as a general tool applicable throughout the system.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p16 



Copying – Star elevates the concept of “copying” to a high level: that of a paradigm for creating. 
In all the various domains of Star, you create by copying. Creating something out of nothing is a 
difficult task. Everyone has observed that it is easier to modify an existing document or program 
than to write it originally. Picasso once said, “The most awful thing for a painter is the white 
canvas... To copy others is necessary.” (See reference 20.) Star makes a serious attempt to 
alleviate the problem of the “white canvas” by making copying a practical aid to creation. For 
example, you create new icons by copying existing ones. Graphics are created by copying 
existing graphic images and modifying them. In a sense, you can even type characters in Star’s 
216-character set by “copying” them from keyboard windows (see figure 6).

Figure 6: The keyboard-interpretation window serves as the source of characters that may be 
entered from the keyboard. The character set shown here contains a variety of office symbols.

These paradigms change the very way you think. They lead to new habits and models of behavior 
that are more powerful and productive. They can lead to a human-machine synergism.
Star obtains additional consistency by using the class and subclass notions of Simula (see 
reference 4) and Smalltalk (see reference 11). The clearest example of this is classifying icons at 
a higher level into data icons and function icons. Data icons represent objects on which actions 
are performed. Currently, the three types (i.e., subclasses) of data icons are documents, folders, 
and record files. Function icons represent objects that perform actions. Function icons are of 
many types, with more being added as the system evolves: file drawers, in- and out-baskets, 
printers, floppy-disk drives, calculators, terminal emulators, etc.

In general, anything that can be done to one data icon can be done to all, regardless of its type, 
size, or location. All data icons can be moved, copied, deleted, filed, mailed, printed, opened, 
closed, and a variety of other operations applied. Most function icons will accept any data icon; 
for example, you can move any data icon to an out-basket. This use of the class concept in the 
user-interface design reduces the artificial distinctions that occur in some systems.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p17 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure6
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure6


• Simplicity

Simplicity is another principle with which no one can disagree. Obviously, a simple system is 
better than a complicated one if they have the same capabilities. Unfortunately, the world is 
never as simple as that. Typically, a trade-off exists between easy novice use and efficient expert 
use. The two goals are not always compatible. In Star, we have tried to follow Alan Kay’s 
maxim: “simple things should be simple; complex things should be possible.” To do this, it was 
sometimes necessary to make common things simple at the expense of uncommon things being 
harder. Simplicity, like consistency, is not a clear-cut principle.

One way to make a system appear simple is to make it uniform and consistent, as we discussed 
earlier. Adhering to those principles leads to a simple user’s model. Simple models are easier to 
understand and work with than intricate ones.

Another way to achieve simplicity is to minimize the redundancy in a system. Having two or 
more ways to do something increases the complexity without increasing the capabilities. The 
ideal system would have a minimum of powerful commands that obtained all the desired 
functionality and that did not overlap. That was the motivation for Star’s “generic” commands. 
But again the world is not so simple. General mechanisms are often inconvenient for high-
frequency actions. For example, the SHOW PROPERTIES command is Star’s general 
mechanism for changing properties, but if is too much of an interruption during typing. 
Therefore, we added keys to optimize the changing of certain character properties: BOLD, 
ITALICS, UNDERLINE, SUPERSCRIPT, SUBSCRIPT, LARGER/SMALLER (font), 
CENTER (paragraph). These significantly speed up typing, but they don’t add any new 
functionality. In this case, we felt the trade-off was worth it because typing is a frequent activity. 
“Minimum redundancy” is a good but not absolute guideline.

In general, it is better to introduce new general mechanisms by which “experts” can obtain 
accelerators rather than add a lot of special one-purpose-only features. Star’s mechanisms are 
discussed below under “User Tailorability.”

Another way to have the system as a whole appear simple is to make each of its parts simple. In 
particular, the system should avoid overloading the semantics of the parts. Each part should be 
kept conceptually clean. Sometimes, this may involve a major redesign of the user interface. An 
example from Star is the mouse, which has been used on the Alto for eight years. Before that, it 
was used on the NLS system at Stanford Research Institute (see reference 5). All of those mice 
have three buttons on top. Star has only two. Why did we depart from “tradition”? We observed 
that the dozens of Alto programs all had different semantics for the mouse buttons. Some used 
them one way, some another. There was no consistency between systems. Sometimes, there was 
not even consistency within a system. For example, Bravo uses the mouse buttons for selecting 
text, scrolling windows, and creating and deleting windows, depending on where the cursor is 
when you push a mouse button. Each of the three buttons has its own meaning in each of the 
different regions. It is difficult to remember which button does what where.

Thus, we decided to simplify the mouse for Star. Since it is apparently quite a temptation to 
overload the semantics of the buttons, we eliminated temptation by eliminating buttons. Well 
then, why didn’t we use a one-button mouse? Here the plot thickens. We did consider and 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p18 



prototype a one-button mouse interface. One button is sufficient (with a little cleverness) to 
provide all the functionality needed in a mouse. But when we tested the interface on naive users, 
as we did with a variety of features, we found that they had a lot of trouble making selections 
with it.

In fact, we prototyped and tested six different semantics for the mouse buttons: one one-button, 
four two-button, and a three-button design. We were chagrined to find that while some were 
better than others, none of them was completely easy to use, even though, a priori, it seemed like 
all of them would work! We then took the most successful features of two of the two-button 
designs and prototyped and tested them as a seventh design. To our relief, it not only tested better 
than any of the other six, everyone found it simple and trouble-free to use.

This story has a couple of morals:

The intuition of designers is error-prone, no matter how good or bad they are.

The critical parts of a system should be tested on representative users, preferably of the 
“lowest common denominator” type.

What is simplest along any one dimension (e.g., number of buttons) is not necessarily 
conceptually simplest for users; in particular, minimizing the number of keystrokes may not 
make a system easier to use.

• Modeless Interaction

Larry Tesler defines a mode as follows:

A mode of an interactive computer system is a state of the user interface that lasts for a period of 
time, is not associated with any particular object, and has no role other than to place an 
interpretation on operator input. (See reference 18.)

Many computer systems use modes because there are too few keys on the keyboard to represent 
all the available commands. Therefore, the interpretation of the keys depends on the mode or 
state the system is in. Modes can and do cause trouble by making habitual actions cause 
unexpected results. If you do not notice what mode the system is in, you may find yourself 
invoking a sequence of commands quite different from what you had intended.

Our favorite story about modes, probably apocryphal, involves Bravo. In Bravo, the main typing 
keys are normally interpreted as commands. The “i” key invokes the Insert command, which puts 
the system in “insert mode.” In insert mode, Bravo interprets keystrokes as letters. The story 
goes that a person intended to type the word “edit” into his document, but he forgot to enter 
insert mode first. Bravo interpreted “edit” as the following commands:

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p19 



E(verything)	

 select everything in the document
D(elete)	

 delete it
I(nsert)	

 enter insert mode
t	

 type a “t”

The entire contents of the document were replaced by the letter “t.” This makes the point, 
perhaps too strongly, that modes should be introduced into a user interface with caution, if at all.

Commands in Star take the form of noun-verb. You specify the object of interest (the noun) and 
then invoke a command to manipulate it (the verb). Specifying an object is called “making a 
selection.” Star provides powerful selection mechanisms that reduce the number and complexity 
of commands in the system. Typically, you will exercise more dexterity and judgment in making 
a selection than in invoking a command. The object (noun) is almost always specified before the 
action (verb) to be performed. This helps make the command interface modeless; you can change 
your mind as to which object to affect simply by making a new selection before invoking the 
command. No “accept” function is needed to terminate or confirm commands since invoking the 
command is the last step. Inserting text does not even require a command; you simply make a 
selection and begin typing. The text is placed after the end of the selection.

The noun-verb command form does not by itself imply that a command interface is modeless. 
Bravo also uses the noun-verb form; yet, it is a highly modal editor (although the latest version 
of Bravo has drastically reduced its modalness). The difference is that Bravo tries to make one 
mechanism (the main typing keys) serve more than one function (entering letters and invoking 
commands). This inevitably leads to confusion. Star avoids the problem by having special keys 
on the keyboard devoted solely to invoking functions. The main typing keys only enter 
characters. (This is another example of the simplicity principle: avoid overloading mechanisms 
with meanings.)

Figure 7: Some of the cursor shapes used by the Star to indicate the state of the system. The 
cursor is a 16- by 16-bit map that can be changed under program control.

Modes are not necessarily bad. Some modes can be helpful by simplifying the specification of 
extended commands. For example, Star uses a “field fill-in order specification mode.” In this 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p20 

http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure7
http://www.guidebookgallery.org/articles/designingthestaruserinterface/pics/figure7


mode, you can specify the order in which the NEXT key will step through the fields in the 
document. Invoking the SET FILL-IN ORDER command puts the system in the mode. Each 
field you now select is added to the fill-in order. You terminate the mode by pushing the STOP 
key. Star also utilizes temporary modes as part of the MOVE, COPY, and COPY PROPERTIES 
commands. For example, to move an object, you select it, push the MOVE key that puts the 
system in “move mode,” and then select the destination. These modes work for two reasons. 
First, they are visible. Star posts a message in the Message Area at the top of the screen 
indicating that a mode is in effect. The message remains there for the duration of the mode. Star 
also changes the shape of the cursor as an additional indication. You can always tell the state of 
the system by inspection (see figure 7). Second, the allowable actions are constrained during 
modes. The only action that is allowed – except for actions directly related to the mode – is 
scrolling to another part of the document. This constraint makes it even more apparent that the 
system is in an unusual state.

• User Tailorability

No matter how general or powerful a system is, it will never satisfy all its potential users. People 
always want ways to speed up often-performed operations. Yet, everyone is different. The only 
solution is to design the system with provisions for user extensibility built in. The following 
mechanisms are provided by Star:

You can tailor the appearance of your system in a variety of ways. The simplest is to choose the 
icons you want on your Desktop, thus tailoring your working environment. At a more 
sophisticated level, a work station can be purchased with or without certain functions. For 
example, not everyone may want the equation facility. Xerox calls this “product factoring.”

You can set up blank documents with text, paragraph, and page layout defaults. For example, you 
might set up one document with the normal text font being 10-point Classic and another with it 
being 12-point Modern italic. The documents need not be blank; they may contain fixed text and 
graphics, and fields for variable fill-in. A typical form might be a business-letter form with 
address, addressee, salutation, and body fields, each field with its own default text style. Or it 
might be an accounting form with lines and tables. Or it might be a mail form with To, From, and 
Subject fields, and a heading tailored to each individual. Whatever the form or document, you 
can put it on your Desktop and make new instances of it by selecting it and invoking COPY. 
Thus, each form can act like a “pad of paper” from which new sheets can be “torn off.” 

Interesting documents to set up are “transfer sheets,” documents containing a variety of graphics 
symbols tailored to different applications. For example, you might have a transfer sheet 
containing buildings in different sizes and shapes, or one devoted to furniture, animals, 
geometric shapes, flowchart symbols, circuit components, logos, or a hundred other possibilities. 
Each sheet would make it easier to create a certain type of illustration. Graphics experts could 
even construct the symbols on the sheets, so that users could create high-quality illustrations 
without needing as much skill.

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p21 



You can tailor your filing system by changing the sort order in file drawers and folders. You can 
also control the filing hierarchy by putting folders inside folders inside folders, to any desired 
level.

You can tailor your record files by defining any number of “views” or them. Each view consists 
of a filter, a sort order, and a formatting document. A filter is a set of predicates that produces a 
subset of the record file. A formatting document is any document that contains fields whose 
names correspond to those in the record file. Records are always displayed through some 
formatting document; they have no inherent external representation. Thus, you can set up your 
own individual subset(s) and appearance(s) for a record file, even if the record file is shared by 
several users.

You can define “meta operations” by writing programs in the CUStomer Programming language 
CUSP. For example, you can further tailor your forms by assigning computation rules expressed 
in CUSP to fields. Eventually, you will be able to define your own commands by placing CUSP 
“buttons” into documents.

You can define abbreviations for commonly used terms by means of the abbreviation definition/
expansion facility. For example, you might define “sdd” as an abbreviation for “Xerox Systems 
Development Department.” The expansion can be an entire paragraph, or even multiple 
paragraphs. This is handy if you create documents out of predefined “boilerplate” paragraphs, as 
the legal profession does. The expansion can even be an illustration or mathematical formula.

Every user has a unique name used for identification to the system, usually the user’s full name. 
However, you can define one or more aliases by which you are willing to be known, such as 
your last name only, a shortened form of your name, or a nickname. This lets you personalize 
your identification to the rest of the network.

Summary

In the 1980s, the most important factors affecting how prevalent computer usage becomes will be 
reduced cost, increased functionality, improved availability and servicing, and, perhaps most 
important of all, progress in user-interface design. The first three alone are necessary, but not 
sufficient for widespread use. Reduced cost will allow people to buy computers, but improved 
user interfaces will allow people to use computers. In this article, we have presented some 
principles and techniques that we hope will lead to better user interfaces.

User-interface design is still an art, not a science. Many times during the Star design we were 
amazed at the depth and subtlety of user-interface issues, even such supposedly straightforward 
issues as consistency and simplicity. Often there is no one “right” answer. Much of the time there 
is no scientific evidence to support one alternative over another, just intuition. Almost always 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p22 



there are trade-offs. Perhaps by the end of the decade, user-interface design will be a more 
rigorous process. We hope that we have contributed to that progress.

by Dr. David Canfield Smith, Charles Irby, Ralph Kimball, and Bill Verplank; Xerox 
Corporation, 3333 Coyote Hill Rd., Palo Alto, CA 94304
and Eric Harslem; Xerox Corporation, El Segundo, CA 90245

About the Authors

These five Xerox employees have worked on the Star user interface project for the past five 
years. Their academic backgrounds are in computer science and psychology.

References

1. Arnheim, Rudolf. Visual Thinking. Berkeley: University of California Press, 1971.
2. Brooks, Frederick. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1975.
3. Card, Stuart, William English, and Betty Burr. “Evaluation of Mouse, Rate-Controlled 

Isometric Joystick, Step Keys, and Text Keys for Text Selection on a CRT.” Ergonomics, 
vol. 21, no. 8, 1978, pp. 601-613.

4. Dahl, Ole-Johan and Kristen Nygaard. “SIMULA – An Algol-Based Simulation 
Language.” Communications of the ACM, vol. 9, no. 9, 1966, pp. 671-678.

5. Engelbart, Douglas and William English. “A Research Center for Augmenting Human 
Intellect.” Proceedings of the AFIPS 1968 Fall Joint Computer Conference, vol. 33, 
1968, pp. 395-410.

6. English, William, Douglas Engelbart, and M. L. Berman. “Display-Selection Techniques 
for Text Manipulation.” IEEE Transactions on Human Factors in Electronics, vol. 
HFE-8, no. 1, 1967, pp. 21-31.

7. Fitts, P. M. “The Information Capacity of the Human Motor System in Controlling 
Amplitude of Movement.” Journal of Experimental Psychology, vol. 47, 1954, pp. 
381-391.

8. Ingalls, Daniel. “The Smalltalk Graphics Kernel.” BYTE, August 1981, pp. 168-194.
9. Intel, Digital Equipment, and Xerox Corporations. The Ethernet, A Local Area Network: 

Data Link Layer and Physical Layer Specifications. Version 1.0, 1980.
10. Irby, Charles, Linda Bergsteinsson, Thomas Moran, William Newman, and Larry Tesler. 

A Methodology for User Interface Design. Systems Development Division, Xerox 
Corporation, January 1977.

11. Kay, Alan and the Learning Research Group. Personal Dynamic Media. Xerox Palo Alto 
Research Center Technical Report SSL-76-1, 1976. (A condensed version is in IEEE 
Computer, March 1977, pp. 31-41.)

12. Lampson, Butler. “Bravo Manual.” Alto User’s Handbook, Xerox Palo Alto Research 
Center, 1976 and 1978. (Much of the design of all the implementation of Bravo was done 
by Charles Simonyi and the skilled programmers in his “software factory.”)

13. Metcalfe, Robert and David Boggs. “Ethernet: Distributed Packet Switching for Local 
Computer Networks.” Communications of the ACM, vol. 19, no. 7, 1976, pp. 395-404.

14. Miller, George. “The Magical Number Seven, Plus or Minus Two: Some Limits on Our 
Capacity for Processing Information.” In The Psychology of Communication, by G. 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p23 



Miller, New York: Basic Books, 1967. (An earlier version appeared in Psychology 
Review, vol. 63, no. 2, 1956, pp. 81-97.

15. Seybold, Jonathan. “Xerox’s ‘Star’.” In The Seybold Report, Media, PA: Seybold 
Publications, vol. 10, no. 16, 1981.

16. Smith, David Canfield. Pygmalion, A Computer Program to Model and Stimulate 
Creative Thought. Basel, Switzerland: Birkhauser Verlag, 1977.

17. Smith, David Canfield, Charles Irby, Ralph Kimball, and Eric Harslem. The Star User 
Interface: An Overview. Submitted to the AFIPS 1982 National Computer Conference.

18. Tesler, Larry. Private communication; but also see his excellent discussion of modes in 
“The Smalltalk Environment.” BYTE, August 1981, pp. 90-147.

19. Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs, “Alto: 
A Personal Computer.” In Computer Structures: Principles and Examples, edited by D. 
Siewiorek, C. G. Bell, and A. Newell, New York: McGraw-Hill, 1982.

20. Wertenbaker, Lael. The World of Picasso. New York: Time-Life Books, 1967.
21. Zloof, M. M. “Query-by-Example.” Proceedings of the AFIPS 1975 National Computer 

Conference, vol. 44, 1975, pp. 431-438. 

Designing the Xerox “Star” User Interface, Byte, issue 4, 1982	

 p24 

http://www.guidebookgallery.org/articles/thestaruserinterfaceanoverview
http://www.guidebookgallery.org/articles/thestaruserinterfaceanoverview
http://www.guidebookgallery.org/articles/thestaruserinterfaceanoverview
http://www.guidebookgallery.org/articles/thestaruserinterfaceanoverview

