
Dieses Jahr war sehr schwierig aufgrund persönlicher Umstände. Trotzdem konnten einige Fortschritte erzielt werden.

Eine Untermenge von Engelbarts NLS/Augment-ViewSpec-Kommandos wurde in Form eines weiteren Betrachter-Programms implementiert. Die Komponente ist außerdem mit dem Ressourcen-Abrufer ausgerüstet, um lokale oder entfernte Daten zuzuführen. Solche werden vom stream-basierten Tero-Parser verarbeitet, der anhand einer minimalen HTML-Grammatik auf die Eingabe reagiert, um den Rohtext aus Absätzen zu extrahieren. Der Text kann dann neu dargestellt werden (ähnlich einem „Layout-Generator“) gemäß der aktuellen ViewSpec-Einstellungen, welche der Nutzer einfach und schnell hin- und her schalten kann durch Drücken von nebeneinander liegenden Buchstaben auf der Tastatur.

Ein struktur-orientierter XML-Editor wurde entwickelt, aber zunächst wird nur eine Lösch-Operation samt dazugehöriger Rückgängigmachung angeboten. Dieses Werkzeug wurde in erster Linie hergestellt, um XML-Dateien säubern zu können – besonders, um nicht-signifikante Leerraum-Zeichen zu entfernen, die bloß der Einrückung dienen, um einen menschlichen Leser zu unterstützen. Der Editor baut auf Java Swing’s Baum-Bedienelement auf.

Konverter wurden erstellt, um XML nach “SOF”, dem „Struktur-/Semantik-/Standoff-Overlay-/Outline-Format“, zu transformieren, und zurück von SOF nach XML. Gleicherweise wurde ein Text-„Kondensierer“ und „-De-Kondensierer“ für SOF hinzugefügt, um Zugriff auf den Rohtext zu gewähren und diesen getrennt von den sonst inline eingebetteten Auszeichnungs-Markierern vorzuhalten, oder umgekehrt die Markierer zurück über die Text-Abschnitte zu verteilen. Eine Variante des Werkzeugs führt beide Schritte, die Konvertierung von XML nach SOF und die Text-Kondensierung, als Komfort-Funktion auf einmal aus.

Ein neues Repository wurde angelegt, um darin Parser-Regel-Grammatiken für Tero zu sammeln. Mehrere vorher schon existierenden Regel-Definitionen wurden dorthin verschoben.

Eine Speicher-Vorrichtung wurde endlich eingeführt, welche lokale Kopien von Materialien bereitstellt, wenn diese angefragt werden. Sie wird versuchen, Daten herunterzuladen, wenn sie nur an einer entfernten Quelle verfügbar sind und nicht lokal vorliegen. Wenn eine Kopie vorhanden ist, wird die Referenz einfach nur zu den Daten im lokalen Speicher aufgelöst. Intern wird bisher keine Datenbank oder eine der anderen Optimisierungs-Techniken eingesetzt. Das Werkzeug verblieb vorerst ziemlich primitiv im Sinne der beteiligten Mechanismen und relativ komplex in Bezug auf die Implementierung, da keine Abfragen oder ein schneller Nachschlage-Index verwendet werden, und stattdessen die ganze Materialien-Liste jedes Mal sequenziell neu ausgelesen wird. Es werden Hashes berechnet, während jedoch andererseits Zeitstempel nicht erfasst werden und auch eine spätere Aktualisierung der Daten noch nicht vorgesehen ist.
Dank des Speicher-Moduls wurde eine neue Version des früheren Betrachters programmiert, der auf diese Weise einige Persistenz gewinnt.

Ein einfacher Visualisierer für generische Graphen wurde fertiggestellt, zusammen mit Bearbeitungs-Operationen zum Hinzufügen, Entfernen, Verschieben, Verbinden und Entbinden von Knoten. Äquivalenter Code ist für JavaFX und HTML5’s Canvas angelegt worden.

Früherer Code zu diversen Eintrags-Listen-/Baum-Prototypen wurde weitergeführt, um drei neue Varianten zu produzieren. Die erste Variante erweitert einen unendlichen hierarchischen Eintrags-Baum, der auch eine Bearbeitungs-Historie beinhaltet, um den öffentlichen Lese-Zugriff auf die Einträge. Die zweite Variante erweitert diese, indem die Umsortierbarkeit von Einträgen gewährleistet sowie der Name des Benutzers, welcher eine Revision eingesendet hat, angezeigt wird. Die dritte Variante erweitert die vorhergehende durch die Zustimmung zu freier Inhalts-/Beitrags-Lizenzierung (um das kollaborative Ergebnis als ein gemeinsames digitales Gemeingut aufzubauen) und befähigt den Nutzer, den Eltern-Eintrag zu verändern, womit der Eintrag effektiv über die Ebenen des Baums hinweg verschoben werden kann.

Im Augmented-Reality-Bereich wurde eine weitere Variante der Geolokations-Progressive-Web-App abgezweigt, welche keinen Abruf von Daten vom Server mehr aufweist, was vorher dazu verwendet wurde, um die an eine Position im physischen Raum geankerten Daten anzuzeigen, wenn der Nutzer per Geräte-Ausrichtung („Kompass“) in deren Richtung schaut. Weiterhin wurde die Möglichkeit entfernt, den aktuellen Standort des Nutzers auf der Server-Seite zu protokollieren.

Das Muster-Katalog-Verwaltungs-Server-Paket für das WWW wurde um ein Listen-Bedien-Element ergänzt, mit dem Einträge hinzugefügt, entfernt und umsortiert werden können (inklusive Bearbeitungs-Historie für diese Operationen basierend auf Komplett-Momentaufnahmen). Ferner kann nun ein statischer Text-Abschnitt als ein Bestandteil auf der Muster-Vorlage beziehungsweise auf dem Eingabe-Formular konfiguriert werden. Eine zusätzliche Variante des Software-Pakets wurde mit einer Benutzer-Verwaltung ausgestattet: diese beschränkt die Erzeugung von Vorlagen ausschließlich auf Benutzer mit Administrator-Rolle.

Das Audio-Nachrichtensystem erhielt eine Funktion, mit der Chat-Räume erstellt werden können, damit später andere Benutzer dort eingeladen werden können, sodass die Aufnahmen in solche Räume gruppiert werden und darin in flacher, fortlaufender, chronologischer Anordnung erscheinen. Die ursprüngliche Baum-Struktur der Bedienung wie von einem früheren Experiment übernommen wurde aufgegeben, nachdem sich herausgestellt hatte, dass es sehr müßig ist, wiederholt die vielen Baumzweige nach neuen Nachrichten zu durchsuchen, während diese wenig zur Audio-Kuration beigetragen haben.

Im Kontext eines Projekts zur Schaffung eines Fortschritts-Tracker-Server + -Client-Softwarepakets für das WWW wurde die CRUD-API-Methodik verbessert. Der Client setzt Twitter Bootstrap ein und legt eine objektorientierte Repräsentation der Daten-Ressourcen zugrunde. Über die Anlage und Anzeige von Einträgen zu Projekten hinaus ist ein separater API-Endpunkt verfügbar, um Profile zu Personen zu sammeln.

Der frühere Navigator für Änderungs-Anweisungen war unzureichend auf dem Gebiet der Ausführungsgeschwindigkeit der Darstellungs-Generierung. Dieses Jahr wurde eine neue Strategie angewendet, welches die Anzeige-Aktualisierung signifikant beschleunigt, außer in einem seltenen Grenzfall. Voher musste der Nutzer nach einem Klick mitunter Wartezeiten und Verzögerungen hinnehmen, welche durch die Last für den DOM des Browsers verursacht wurde. Naiverweise wurden alle alten Elemente verworfen und der gesamte Text anschließend als DOM-Elemente wieder neu angelegt. Jetzt wird nur noch der betroffene Textabschnitt aktualisiert.

Ein verschachtelbarer/stufbarer (multi-level-fähiger) stream-basierter Tero-Parser konnte verwirklicht werden.

Mehrere Komponenten wurden in eine Workflow-Konfiguration kombiniert, welche eine Kern-Schleife eines ersten, einfachen „Systems“ realisiert. Der Daten-Abrufer greift auf lokale oder entfernte Materialien zu, wodurch letztere zuerst automatisch in den Speicher persistiert werden. Typischerweise erlaubt eine Liste dem Nutzer, ein gewünschtes Dokument auszuwählen, damit es in einem Betrachter-Programm geöffnet wird, um nach der Lese-Phase wieder zum Index zurückzukehren.

Ein Versuch wurde unternommen mit dem Ziel, langsam ein Verzeichnis mit Profilen über Personen als ein Daten-Projekt aufzubauen. Es musste aber angehalten werden, um konkurrierende Doppelarbeit zu vermeiden.

Eine Korrekturlesung für “Xanadu Hypertext Documents” von Chip Morningstar wurde auf Basis des Textes von Alberto González Palomos durchgeführt und viele Fehler verbessert, die von der OCR-Extrahierung des Original-Scans übrig geblieben waren.

Für die PlanetMath-Repositorys wurde eine Parser-Grammatik für deren LaTeX-Dokument-Metadaten-Beschreibungs-Kommandos definiert. Dann werden die eindeutigen Feld-Namen wie in den extrahierten Daten vorgefunden aufgelistet, um auf eine potentielle Veränderung hinzuweisen. Aus einigen dieser Attribute wird automatisch ein multidimensionaler Index zusammengestellt.

Copyright (C) 2023 Stephan Kreutzer. Dieser Text ist lizenziert unter der GNU Affero General Public License 3 + jeder späteren Version und/oder unter der Creative Commons Attribution-ShareAlike 4.0 International.

This year was very difficult for reason of personal circumstances. However, some progress was made nonetheless.

A subset of Engelbart’s NLS/Augment ViewSpec commands was implemented in the form of another viewer. The program is also equipped with the resource retriever for obtaining a local or remote resource. Input is processed by the stream-based Tero parser that acts on a minimal HTML grammar, to extract the text from paragraphs only. Such plain-text can then be re-rendered (like a “layout engine”) according to the current ViewSpec settings, which the user can easily and quickly toggle via adjacent hotkey presses.

A structure-oriented XML editor was developed, but limited to a delete and corresponding undo operation so far. This tool was primarily made to clean up XML files – in particular for removing non-significant white-space that’s used solely for indentation to aid a human reader. The basis of this editor is Java Swing’s tree control.

Converters were built for transforming XML into “SOF”, the “structure/semantics/standoff overlay/outline format”, and back from SOF to XML. Similarly, a text “condenser” and “uncondenser” for SOF was added in order to provide access to the raw text and keep it separate from the inline markup, or vice versa re-distribute the markup throughout the text spans. One tool variant performs both at once, the conversion from XML to SOF and the text condensing, for convenience purposes.

A new repository was started for collecting Tero parse grammar definitions. Several already existing grammar definitions were moved into there.

A memory/storage capability was finally introduced. It holds local copies of resources and supplies these on retrieval requests. It may try to download data from a remote location if no local copy is present yet. If a copy is available, the program simply resolves the identifier to the data in the local storage. Internally, it does not use a database or other optimization techniques for now. The tool is still rather primitive in terms of operations and complex in terms of implementation for not using queries or a fast lookup index, reading the entire resource list anew every time. It calculates hashes, while on the other hand does not record timestamps nor supports refreshing.
With the storage function in place, a new version of the earlier viewer was developed, which gains some persistence this way.

A simple visualizer for generic graphs was made, together with graph editing operations for adding, removing, moving, linking and unlinking nodes. The equivalent code-bases are for JavaFX and HTML5’s canvas.

Continuing from pre-existing code-bases of various entry list/tree prototypes, three new variants were produced. The first variant enhanced an infinite hierarchical entry tree that comes with edit history by granting public read-access to the entries. The second variant enhanced this by allowing the entries to be re-ordered, and also displays the name of the user who submitted a revision. The third variant enhanced the former by consent to libre-free content/contributions licensing (to grow the collaborative result as a shared digital commons), and enabled the user to change the parent of an entry, effectively moving it across the levels of the tree.

In the augmented reality department, another variant of the geolocation Progressive Web App was spun off, which removed the retrieval of data anchored to positions in physical space from the server to be displayed if the user per device orientation (“compass”) looks towards it, and also removed the chance to record the user’s current location on the server-side.

Within the pattern catalog management server Web package, a list control was introduced, so items can be added, removed and re-ordered (including snapshot-based revision history for these operations). Similarly, a static text control can be configured as an element on a pattern template/form. A separate variant of the package comes with user management: it restricts template creation to only users who have the administrator role.

The audio messaging system received a function to create chat rooms, so other users could later be invited to these, so the recordings get grouped into such a room and appear there in a flat, consecutive, chronological list. The initial tree structure interface inherited from a different earlier experiment was removed, as it turned out to be very exhaustive to repeatedly check the many tree branches for new messages, while this arrangement did not help much with audio curation.

CRUD API methods were improved in the context of a project progress tracker server + client Web package. The client uses Twitter Bootstrap and an object-oriented representation of the data resources. In addition to the creation and display of project items, a separate API endpoint was made to collect profiles about people.

The previous navigator for change instructions was lacking in the area of rendering performance. This year, a new strategy was successfully adopted, which significantly speeds up the display update except in one rare corner case. Previously, there has been actual waiting time and delay for the user after clicking, caused by the load on the browser’s DOM, for naively discarding all old elements and recreating the entire text as DOM nodes. Now, only the affected text range gets updated.

A nesting/staging (multi-level) stream-based Tero parser was achieved.

Several tools were combined into a workflow configuration that constitutes a core loop of a first simple “system”. It uses the retriever to access local or remote resources, which automatically persists external documents to the storage. Typically, a list allows the user to open these in the viewer and after a phase of reading, returns back to the index.

An attempt was started to slowly grow a directory of profiles about people as a data project, but had to be put on hold to avoid competition and duplication.

A proofreading was conducted for “Xanadu Hypertext Documents” by Chip Morningstar, working from Alberto González Palomo’s text and correcting many issues that were left-overs from the OCR extraction of the original scan.

For the PlanetMath repositories, a parser grammar for their LaTeX document metadata description commands was defined. From the extracted data, the unique field names get reported (to notify about potential updates/extension), and using some of these attributes, a multi-dimensional index was automatically compiled.

Copyright (C) 2023 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

Der BAC-Interpreter, welcher letztes Jahr unvollständig geblieben war, hat Datei-Eingabe/-Ausgabe, Speicher-/Masken-Verwaltung, Zeichenketten-Operationen und Terminal-Interaktivität hinzugefügt bekommen. Letztere, um eine REPL “read-evaluate-print loop” oder „Lese-Evaluiere-Zeige-Schleife“ zu ermöglichen, was mittels der ncurses-Programmierbibliothek implementiert wurde.

Eine Reihe von XML-Werkzeugen wurde entwickelt: eins zum Extrahieren von Namensraum-URIs und ein anderes, um dann automatisch korrespondierende XSL-Stylesheets auf die Eingabedatei anzuwenden. Zudem wurde die C++-StAX-Programmierbibliotheks-Implementierung erweitert, um XML-Namensräume zu erkennen und an den Aufrufer zu berichten.

Einige einfache Dashboard-Generatoren wurden produziert. Diese können die “Peeragogical Action Reviews” des Peeragogie-Projekts aus dem GitHub-Repository sowie Video-Links einer YouTube-Abspielliste laden, um die abgerufenen Einträge in die verfügbaren Slots zu füllen.

Im Musterkatalogverwaltungs-Server-Web-Paket wurde ermöglicht, Schieberegler für die Dateneingabe-Formulare zu konfigurieren. Typische Nutzung könnten Abstimmungen/Umfragen sein, aber sonst erlauben diese generell die Selektion einer Option aus einem vorher festgelegten Wertebereich.

Ein Werkzeug zum Pivotieren einer XML-Elementhierarchie wurde entwickelt. Später wurde die gleiche Methode ausgeweitet, um einen ganzen XML-Baum in eine multidimensionale Graph-Struktur zu transformieren, damit diese mithilfe der existierenden Bedienoberflächen navigierbar gemacht werden kann. Ebenso kann alternativ auch ein neues Dashboard für die Darstellung eingesetzt werden.

Eine unabhängige, experimentelle Immitation einer NoFlo-Ausführungsumgebung in C++ wurde versucht. Damit können auch die Werkzeuge in Java aufgerufen werden, womit sich der Ansatz potentiell für die allgemeine Ablauf-Orchestration eignet. Wenig überraschend stellte sich jedoch heraus, dass die Umsetzung von Reaktionen auf die Resultate aus einem Einzelschritt-Aufruf (zwecks Steuerung des weiteren Verarbeitungsablaufs) nicht trivial ist.

Das alte XSL-Stylesheet zur Konvertierung des WordPress-RSS-Feeds nach HTML wurde ersetzt durch ein ordentliches dediziertes Werkzeug. Dadurch wird die automatische Erzeugung der üblichen Zielformate nach Abruf von einer WordPress-Instanz vereinfacht.

Im Bereich der Augmented Reality wurde der frühere Progressive-Web-App-Geolokations-Prototyp um die Berücksichtigung der Geräte-Ausrichtung („Kompass“) erweitert, um Daten abhängig von der Richtung, in die das Gerät gehalten wird, anzuzeigen oder zu verbergen – im Grunde wird ein “Viewport”-Ausschnitt aus all den Daten, die in der Nähe und in 360° um die aktuelle Position des Nutzers herum verankert sind, erreicht.

Der “Text Reckoner” (oder kurz „Tero“) wurde geschaffen, bei dem es sich um ein Werkzeug in C++ handelt, der, von formalen Sprachgrammatik-Regelwerken gesteuert, auf einen Eingabetext Mustererkennungs- und Filterungsoperationen durchführen kann. Weiterhin wurden Streaming-Programmierbibliotheks-Implementierungen für C++ und Java bereitgestellt. Darauf aufbauend, das heißt auf Tero basierend, wurde ein einfacher Web-“Browser”/-Viewer gestartet. Um die Fehlersuche in den formalen Grammatiken zu unterstützen, wurde “Interactive Tero” ins Leben gerufen, der als schrittweiser Debugger fungiert. In einen Editor wurde dieser aber bisher noch nicht ausgedehnt und bietet auch noch keine Haltepunkt-Mechanik an.

Ein Downloader zum Abruf der Profile, die im RSS-Feed von Derek Siver’s /now-Seiten-Liste verlinkt sind, wurde realisiert.

Ein Versuch wurde gestartet mit dem Ziel, Mark Carranza’s “mx” (“memory experiment” oder „Gedächnis-/Erinnerungs-Experiment“ seit 1984, in dessen Rahmen er Notizen erfasst und textuell ähnliche Einträge in ein Netz/Graph verknüpft) nachzubauen als eine Gelegenheit, um die Verwendung der ncurses-Programmierbibliothek zu verbessern, die Graph-Werkzeugsammlung weiter aufzufüllen und in die Programmierung von interaktiven TUIs einzusteigen. Die Initiative stieß auf eine Blockade und wurde erstmal angehalten.

Für Frode Hegland’s “Visual-Meta” (eine Konvention, nach welcher bibliographische Metadaten und solche zum strukturellen Aufbau in Form von BibTeX am Ende eines Dokuments gedruckt werden, was eine optische Zeichenerkennung später extrahieren können soll) wurde ein rudimentärer Verarbeitungsablauf eingerichtet, um das maskierte BibTeX zur LaTeX-Quelle hinzuzufügen, damit es letztendlich auch im PDF landet. Eine zweite Automatisierung kann derartig generierte Spezialseiten nachträglich an bereits existierende PDFs anhängen. Während die optische Zeichenerkennung oft zu ungenau blieb, war das BibTeX gut abrufbar aus dem Nurtext der PDF-Dateien, vorausgesetzt die originalen digitalen Dateien werden verfügbar gehalten. Herkömmliche BibTeX-Werkzeugte besorgten dann die Format-Konvertierung, was nachfolgend die Anhäufung, Darstellung und Navigation solcher Metadaten-Bestände erleichterte, und sei es nur für den erneuten Druck-/PDF-Export von dort, um den Rundlauf zu komplettieren.

Im weiteren Kontext von Jerry Michalski’s “Open-Global-Mind”-Gruppe wurden mehrere Versuche unternommen, einige “Emergent-Event-Sensemaking”-Praktiken zu entwickeln. Diese wurden aber letztendlich aufgegeben aus Mangel an Interesse, obwohl vielversprechende Ergebnisse erzielt wurden. Die behandelten Themen waren der GameStop-Aktienhandels-Leerverkäufe-Squeeze, die Ausbreitung der COVID-19-Delta-Variante und der Abzug der US-Truppen aus Afghanistan.

Für das Produkt “TheBrain” wurde die Graph-Navigations-Bedienoberfläche generalisiert und angepasst, um unabhängig von der Software des Anbieters einen Online-Graphen unter Nutzung von deren Web-API traversieren zu können. Separat wurde ein nativer TheBrain-Downloader geschaffen, der den gesamten Graph einer TheBrain-Online-Instanz abruft und die Knoten in lokale, eigenständige HTML-Seiten konvertiert, die dann offline betrachtet werden können.

Copyright (C) 2022 Stephan Kreutzer. Dieser Text ist lizenziert unter der GNU Affero General Public License 3 + jeder späteren Version und/oder unter der Creative Commons Attribution-ShareAlike 4.0 International.

The BAC interpreter – which remained incomplete last year – received the introduction of file input/output, memory/forms management, string operations and terminal interactivity (the latter to enable a REPL “read-evaluate-print loop”, implemented using the ncurses programming library).

A range of XML tools were developed: one for extracting namespace URIs and another to then automatically apply corresponding XSL stylesheets to the input file. Also, the C++ StAX library was enhanced to recognize and report XML namespaces.

Some simple dashboard generators were produced. These can load the Peeragogy Project’s “Peeragogical Action Reviews” from the GitHub repository as well as video links from a YouTube playlist in order to fill obtained entries into the available slots.

Within the pattern catalog management server Web package, it’s now possible to configure slider controls for the data input forms. Typical use might be for polling/voting, but otherwise generally allows the selection of a value/option from a pre-defined range of choices.

A tool was developed to pivot a XML element hierarchy. Later, the method was expanded to transform an entire XML tree into a multidimensional graph structure, so it becomes navigatable by the existing user interfaces as well as with a new dashboard alternative, too.

An independent experimental immitation of a NoFlo runner/environment in C++ was attempted. It is also able to invoke the capabilities written in Java and could potentially be adopted for broader workflow orchestration. Unsurprisingly, reacting to results reported from the execution of a node for subsequent processing proved non-trivial.

The old XSL stylesheet for converting a WordPress RSS feed to HTML was replaced by a proper dedicated tool. This makes it easier to automatically generate the usual target formats from a WordPress instance.

In the field of augmented reality, the earlier Progressive Web App geolocation prototype was expanded by adding device orientation (“compass”) in order to show or hide data based on the direction the device is pointed towards – essentially clipping a limited viewport from the 360° of all the data that’s anchored near to and around the user’s current position.

The “Text Reckoner” (or “Tero” for short) was created, which is a tool written in C++ to perform pattern recognition and filtering operations on input text as controlled by formal language grammars. Additionally, streaming library interface implementations were produced for C++ and Java. Furthermore, using Tero, a simple Web “browser”/viewer was started. To help with grammar debugging, the step-through “Interactive Tero” was made, but was neither elevated into a full editor nor supports a break-point mechanism yet.

A downloader for retrieving the profiles referenced in the RSS feed of Derek Siver’s /now page list was realized.

An exploration was started with the goal to clone Mark Carranza’s “mx” (“memory experiment” conducted since 1984 of him taking notes and connecting textually similar entries into a web/graph, thus increasing re-discovery) as an opportunity to improve on the use of the ncurses library, to grow the graph tooling and to enter into interactive TUI programming. The initiative encountered a blockade and therefore was halted.

For Frode Hegland’s “Visual-Meta” (a scheme to print bibliographic metadata together with pointers about structural organization in the form of BibTeX at the end of a document for later OCR extraction), a rudimentary workflow was set up to add the escaped BibTeX to the LaTeX source so it ends up in the PDF, as well as another one for adding such generated special pages to already existing PDF documents retroactively. While OCR extraction remained inaccurate, the BibTeX was obtainable again from the plain text of PDF files, given the original digital files stay available. Common BibTeX tooling then did the format conversion to aid the collection, visualization and navigation of such metadata, and be it for print/PDF export from there once more to complete the full round-trip/cycle.

In the wider context of Jerry Michalski’s “Open Global Mind” group, several attempts were made to develop some “Emergent Event Sensemaking” practices, but ultimately were abandoned for lack of interest despite showing promising results. Topics covered include the GameStop stock trading short-positions squeeze, the COVID-19 Delta variant surge and the exit of US troops from Afghanistan.

For the TheBrain product, the graph navigation interface was generalized and adapted to independently browse an online graph using their Web API. Separately, a native TheBrain downloader was developed, which crawls the entire graph of a Web TheBrain online instance and converts the nodes to local standalone HTML pages for offline browsing.

Copyright (C) 2022 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

 	“Keynote - XR and Humanity”

 	“?” + “Maneuver Kill”

 	“DCS World: F-14, VR experience”

 	“Magic Leap One Review by hardcore dev”

 	“Terminator HUD visual”

 	“Alan Walker - Alone”

 	“The Target - La mosca's instruction video [ENGLISH]”

 	“HYPER-REALITY”

 	“Enemy of the State Intro/Opening Credits/Introduction”

 	“001: The Internet of Intelligence (IOI) with Dr. David L. Brock and Trevor Gormley”

 	“DHL "Lost" My AirTag Parcel (but I knew where it was)”

 	“Minority Report Computer Scene” + “Minority Report 's gesture-based user interface”; “Pointing to the future of UI | John Underkoffler”

 	“CRAZY Keyboard You WEAR! - TAP Wearable Keyboard & Mouse”

 	“Let's Robot - Now on letsrobot.tv”; “The Jennylyn Show - Jillian Ogle, CEO of Let's Robo” [2]

 	Cyberpunk 2077

 	Pokémon Go

 	“Josh Field” (Conjure)

 	“WalkTheWeb” on Twitch + “WalkTheWeb” on YouTube + walktheweb.com

 	plan-systems.org

 	Noomap (via Bret A. Warshawsky and S7 Foundation)

 	Nick Redmark geo-mapping (per country or river-basin) GameB members

 	“Collaboration approach with active citizens movement”; “AB Mapping Landingpage AR” (Wael al-Saad)

 	FOAM

 	Virtual Reality Modeling Language (VRML)

 	Mozilla Hub

 	Second Life

 Copyright (C) 2021 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

 	“Antikythera Mechanism The Two Thousand Year Old Ancient Computer”

 	“The Story of the Archimedes Palimpsest to 2000 (Part 1/3)” + “The Story of the Archimedes Palimpsest to 2000 (Part 2/3)” + “The Story of the Archimedes Palimpsest to 2000 (Part 3/3)”; “Deciphering the Archimeds Palimpsest and Creating Digital Manuscripts (2009) - William Noel”; “Public Lecture—Archimedes: Accelerator Reveals Ancient Text”; “The Archimedes Palimpsest” [2]

 	“The Voynich Manuscript”; “The Voynich Manuscript Owners - Deep Dive”

 	“The Love of Books: The Brave Librarians of Sarajevo | Al Jazeera World”

 	“Semantic Web: The Search for Intelligence on the Internet”

 	“A story about the Semantic Web” [2]

 	“NOTACON 3: The Great Failure of Wikipedia”; “NOTACON 4: Wikipedia, Brick by Brick”

 	“Typesetting: Linotype”

 	“LEADERSHIP LAB: The Craft of Writing Effectively”

 	
 Tools of Change for Publishing (O’Reilly)

 	“Tools of Change Podcasts” playlist

 	“TOC 2010” playlist

 	“TOC 2011” playlist

 	“TOC 2012” playlist

 	“Tools of Change for Publishing (TOC) 2013” playlist

 	
 Books in Browsers

 	“Books in Browsers 2010” playlist

 	“Books in Browsers 2011” playlist

 	“Books in Browsers 2012” playlist

 	“Books in Browsers IV: October 24-25, 2013” playlist

 	“Books in Browsers 2014” playlist

 	“Books in Browsers VII: Telling small stories” playlist

 	“No Time to Think”

 Copyright (C) 2021 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

 	“Biography of Paul Otlet”; “The Man Who Wanted To Classify The World” + “L'homme qui voulait classer le monde”

 	“MIT/Brown Vannevar Bush Symposium 1995 - 50 Years After 'As We May Think' - Part 1/5” + “MIT/Brown Vannevar Bush Symposium 1995 - 50 Years After 'As We May Think' - Part 2/5” + “MIT/Brown Vannevar Bush Symposium 1995 - 50 Years After 'As We May Think' - Part 3/5” [2]

 	“Some Reflections on Early History by J.C.R. Licklider (VPRI 0093)”

 	“Transistor Full Documentary”; “Podfather”; “Richard Feynman Computer Heuristics Lecture”; “Indistinguishable From Magic: Manufacturing Modern Computer Chips”

 	“1968 "Mother of All Demos" (Complete Footage)” playlist

 	“The Augmentation of Douglas Engelbart | Full Documentary”

 	“Presentation, Bootstrap Seminar, Engelbart” (1992) playlist

 	“Engelbart Colloquium” (2000) playlist

 	“2008 Bootstrap Dialogs - Boosting Collective IQ - Timecoded Day #1” [2] + “2008 Bootstrap Dialogs - Boosting Collective IQ - Timecoded Day #2” [2] + “2008 Bootstrap Dialogs - Boosting Collective IQ - Timecoded Day #3” [2] + “2008 Bootstrap Dialogs - Boosting Collective IQ - Timecoded Day #4” [2]

 	“1998 Engelbart's Unfinished Revolution - 30th Anniversary [HI RES Session-1]” + “1998 Engelbart's Unfinished Revolution - 30th Anniversary [HI RES Session-2]” + “1998 Engelbart's Unfinished Revolution - 30th Anniversary [HI RES Session-3A]” + “1998 Engelbart's Unfinished Revolution - 30th Anniversary [HI RES Session-3B]” + “1998 Engelbart's Unfinished Revolution - 30th Anniversary [HI RES Session-4]”; Invisible Revolution

 	“Computer Networks - The Heralds Of Resource Sharing (Arpanet, 1972)”

 	“BBS the Documentary [Full HD]” [2] + full footage

 	“CHM Live | Technically Speaking | Minitel: The Web before the Web”

 	“FIXING ELECTRONIC LITERATURE - Ted at the Googleplex, 2007”

 	“Interview with Ted Nelson, 1990”

 	“Ted Nelson -- Computers for Cynics [full version]” [2]

 	“Xanadu Basics” playlist

 	“Hypertext: An Educational Experiment in English and Computer Science at Brown University”

 	“A Half-Century of Hypertext at Brown: Session 1” + “A Half-Century of Hypertext at Brown: Session 2” + “A Half-Century of Hypertext at Brown: Session 3”

 	“Christopher Alexander - Patterns in Architecture”; “Christopher Alexander Lecture at Berkeley, California”; “Message from Prof. Christopher Alexander”

 	“sigint10 3902 en get lamp” + footage

 	“Grail Demo from CHM tape”

 	“Internet and Web Pioneers: Robert Cailliau”

 	“ARCHIVE TEAM: A Distributed Preservation of Service Attack”

 	“Alan Kay - Normal Considered Harmful”; “Part 1 - NATF 2013 - Alan Kay Keynote” + “Part 2 - NATF 2013 - Alan Kay Keynote”

 	“Tim Pozar and Brewster Kahle CHM Interview by Marc Weber October 29 1996”

 	“David Gelernter: Schlechte Software und digitale Aktenknechte” playlist

 	“Ward Cunningham, Inventor of the Wiki”; “Wiki Inventor Ward Cunningham with John Gage”

 	“Code Rush: Full Film” + footage

 	“Bret Victor - Inventing on a Principle (with subtitles !)”

 	“Bret Victor The Future of Programming”

 	“Hyperland BBS Douglas Adams And Tom Baker (1990)”

 	“Yesterday's Computer of Tomorrow: The Xerox Alto │Bravo Demo”

 	“White Rabbit: interview with Bob Taylor”; “Bob Taylor (internet visionary) talks at UT Austin”; “Robert Taylor: Network Visionary”

 	“World Brain” (by arte, will get de-published on the 2022-04-01!)

 	“Cut-Ups William S. Burroughs”

 	“Tetris - From Russia with Love [subtitles]”

 	“Stallman Lecture in Lund, Sweden 2000-02-11” playlist

 	“Revolution OS - 2001 - Multilingual (16 languages)”

 	“Richard Stallman: Copyright vs. Community”

 	“STEAL THIS FILM”

 	“Steal This Film 2” + footage

 	“Google And The World Brain”

 	“TPB AFK: The Pirate Bay Away From Keyboard”

 	“The Internet's Own Boy: The Story of Aaron Swartz | full movie (2014)”

 	“28c3: The coming war on general computation”

 	“re:publica 2014 - Michał Woźniak: OER textbooks in Poli...”

 Copyright (C) 2021-2022 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

Zunächst wurde eine Initiative aus dem Vorjahr zu Ende geführt, die notwendig geworden war, weil die Konvertierung von CSV-Daten nach XML mithilfe von Drittanbieter-Komponenten in seltenen Fällen verursachte, dass im Ergebnis einzelne Buchstaben schlichtweg fehlten. Darum musste ein eigener, sauberer CSV-Parser gemäß RFC-4180 programmiert werden, der in Verpackung des Konvertierungsprogramms auch zur Filterung von CSV-Spalten genutzt werden kann. Später wurde diese Implementierung um eine StAX-ähnliche Programmierschnittstelle für Java und C++ ergänzt.

Im Hypermedia-Bereich wurde die Browser-Schnittstelle für den Mikrofon-Gerätezugriff sowohl für die eigenständige Aufnahme als auch für ein Audio-Nachrichtensystem eingesetzt. Für die Kommentierung von Abschnitten in YouTube-Videos wurde ein Workflow geschaffen, welcher die gewählten Ausschnitte in eine statische Webseite einbettet und um die zusätzlichen Inhalte anreichert. Automatischer Download, Schnitt und Indexierung sowie die naheliegenden Möglichkeiten im Zusammenspiel mit Transkription und Web Annotation wurden jedoch bisher nicht weiterverfolgt.

Um Daten zu einem geografischen Ort abrufen zu können, wurde ein Prototyp umgesetzt, der die Browser-Schnittstelle für Geolokation abfrägt. Diese technischen Grundlagen sollen später zu Augmented Reality als allgemeine, öffentliche Infrastruktur beitragen.

Im Umfeld des Peeragogie-Projekts wurden mehrere automatische Aufbereitungs-Workflows entwickelt, die ähnlich Engelbart’s “Journal” die Generierung von Zusammenfassungs-Berichten organisieren. Ein vollständiges Dokumentenmanagement-System wurde zwar noch nicht erreicht, aber die Einführung von NCX (“Navigation Control file for XML” des Open Packaging Formats wie in EPUB) erlaubte schließlich, dieselben Quellmaterialien in diverse Abfolge- und Auswahl-Sequenzen kombinieren zu können.

Von der Parser-Programmierung für Datenformate ist es ein kleiner Schritt zum Interpreterbau für interaktive, dynamische Script-Ausführungsumgebungen sowie domänenspezifische Kommando-Sprachen. Die Nachbildung einer längst vergessenen, listenverarbeitungs-orientierten, reintextbasierten Interpretersprache in Form der „BAC-Programmiersprache“ wartet noch auf die Vervollständigung einiger fehlender Instruktionen.

Ein weiteres Projekt hatte zum Ziel, für die Daten-Eingabe und den Aufbau von Muster-Katalogen beliebig konfigurierbare Formular-Bedienoberflächen anbieten zu können. Zu diesem Zweck wurde eine generische Webanwendungs-Server-Lösung realisiert, deren Vorlagen-Definitionen die Eingabefelder an die gewünschte semantische Datenrepräsentation bindet. Die erfassten Einträge können über HTTP-Header-Content-Type-Negotiation in mehreren Formaten abgerufen werden. Für die Bearbeitung von bereits bestehenden Einträgen wurde eine wiki-artige Versionierungs-Funktionalität hinzugefügt. Die so organisierten Datenquellen konnten versuchsweise eine Progressive Web App generieren; genauso wäre auch die automatische Befüllung eines Dashboards denkbar.

GraphML wurde um die Typisierbarkeit der Verbindungen/Kanten erweitert, um die vorher nicht streng zusammenhängenden Werte in Wertsequenzen anzuordnen. Die frühere Navigations-Bedienoberfläche für freie Graphen kann diese dimensionalen Sequenzen so auf durchwechselbare Achsen aufspannen, um die Navigation auf dieselben einzuschränken. Dadurch wird die einfachere Orientierung inmitten der mehrdimensionalen, möglicherweise irregulären Datenpunkte unterstützt. Anschließend wurde eine Variante in Java implementiert, die auch als Editor fungiert.

Die Zusammenfassungs-Berichte der Besprechungen der Doug@50-Gruppe konnten gerettet und wiederveröffentlicht werden, nachdem das dazugehörige “Journal” eingestellt worden war und das Internet Archive keine Kopie angelegt hatte. Dank des mehrdimensionalen Graph-Navigations-Werkzeugs und -Editors konnte die Hypertext-Buchliste jetzt deutlich besser aufgebaut werden. Aus der Beobachtung von Online-„Kollaborations“-/Gesprächs-Gruppen ergab sich leider nur wenig konstruktive, praktische Zusammenarbeit. Frode Hegland hat “The Future of Text – A 2020 Vision” herausgebracht, welches eine frühe, abgeänderte Version der Hypertextsystem-Beschreibung enthält.

Copyright (C) 2021 Stephan Kreutzer. Dieser Text ist lizenziert unter der GNU Affero General Public License 3 + jeder späteren Version und/oder unter der Creative Commons Attribution-ShareAlike 4.0 International.

First, an initiative from the previous year was completed, which became necessary because the conversion from CSV data to XML using third-party components happened to omit individual characters from the result in some rare cases. Therefore, a separate, clean CSV parser had to be developed according to RFC-4180. The bundling as the converter program also allows to filter out CSV columns. This parser implementation was later expanded into a StAX-like programming interface library for Java and C++.

In the hypermedia domain, the browser interface for microphone device access was used for a standalone recording component as well as for an audio messaging system. To support independent commenting on sections within YouTube videos, a workflow was created which would embed the selected clip into a static Web-page and enrich it with additional content. Automated download, cutting, indexing and the obvious possibilities related to transcription and Web Annotation weren’t pursued.

To query data attached to a geographical location, a prototype was built using the browser’s geolocation interface. This technical foundation might later help with advancing towards Augmented Reality as common, public infrastructure.

Related to the Peeragogy Project, several automated processing workflows were developed in order to generate summarizing “wrap” reports similar to Engelbart’s “Journal”. A complete document management system wasn’t achieved yet, but the introduction of NCX (“Navigation Control file for XML” of the Open Packaging Format as found in EPUB) finally allowed source material to flow into a range of different selection/order sequences.

From programming parsers for data formats, it’s a small step to enter into writing interpreters for interactive, dynamic script execution environments as well as domain-specific command languages. The reconstruction of a long-forgotten, list-processing-oriented, plain-text-based interpreter language in the form of the “BAC programming language” awaits the addition of a few instructions which still remain absent.

Another project had the goal to offer configurable forms of input controls for data entry and building pattern catalogs. For this purpose, a generic Web application server solution was realized. Template definitions bind the input fields to the desired semantic data representation. The submitted entries can be retrieved in multiple formats by using HTTP header Content-Type negotiation. To edit existing entries, a wiki-like versioning feature was added. A data source organized this way was used to generate a Progressive Web App; furthermore, automatically filling a dashboard is easily imaginable, too.

GraphML was extended by introducing the categorizability of connections/edges in order to arrange formerly unrelated values into dimensional sequences. The earlier navigation user interface for free-flowing graphs is then able to strap any dimension onto its interchangeable axes, deliberately restricting navigation to these “guide-rails”. Subsequently, orientation is improved while moving through a space of multi-dimensional and potentially irregular data points. Later, a variant was implemented in Java, which also functions as an editor.

The summaries/reports about the meeting-calls of the Doug@50 group were recovered and published again after the original “Journal” got shut down without the Internet Archive having a copy. Thanks to the multi-dimensional graph navigation tool and editor, the list of hypertext publications got recreated in a significantly better way. The observation of online “collaboration”/conversation groups unfortunately didn’t lead to constructive, practical project work. Frode Hegland published “The Future of Text – A 2020 Vision”, which also contains an early, changed version of the description of a decent hypertext system.

Copyright (C) 2021 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or under the Creative Commons Attribution-ShareAlike 4.0 International.

Future of Text
Let me try to briefly describe a certain future of text that has largely been abandoned since the advent of Word, the Web and DTP. In his book “Track Changes”, Matthew G. Kirschenbaum reconstructs the otherwise already forgotten history of word processing: in contrast to today’s use of the term, it initially referred to a model for organizing the office, then to electronic typewriter machines and later to a wide array of software packages reflecting every imaginable combination of generally useful features and affordances for manipulating text on a computer. From print-perfect corporate letters to authors changing their manuscripts over and over again instead of relying on the services of an editor, electronic writing had to develop around purely textual aspects because of the pressing hardware limitations at the time. Naturally, the early hypertext pioneers expected a new era of powerful tools/instruments to come about that would augment reading, writing and curation way beyond what humankind had built for itself for that purpose so far. Today we know that this future isn’t what happened.
Text by its very nature is a universal cultural technique – and so must be the tools and conventions involved in its production and consumption. Consider a whole infrastructure for text comprised of standards, capabilities, formats and implementations that follow a particular architecture analogous to POSIX, the OSI reference model and the DIKW pyramid. Such a system would need to be organized in separate layers specifically designed to bootstrap semantics from the byte order endian to character encoding, advancing towards syntactical format primitives up to the functional meaning of a portion of text. Similar to ReST and its HATEOAS or what XHTML introduced to Web browsers, overlays of semantic instructions would drive capabilities, converters, interface controls and dynamic rendering in an engine that orchestrates the synthesis of such interoperable components. Users could customize their installation quite flexibly or just import different preexisting settings from a repository maintained by the community – text processing a little bit like Blender with its flow-/node-based approach.
Is this the insanity of a mad man? Maybe, but we have seen variations of this working before with some bits and pieces still in operation here and there. This is not rocket science, this is not too hard, it’s just a lot to do and few are actively contributing because there’s no big money in foundational text technology anymore. By now, much better hypertext and hypermedia tools are urgently needed as an institutional and humanitarian cause. The future of text and its supporting infrastructure can’t be a single product, trapped in a specific execution environment, corrupted by economic interests or restricted by legal demands. Instead, imagine a future in which authors publish directly into the Great Library of everything that has ever been written, that’s constantly curated by crowds of knowledge workers for everybody to have a complete local copy, presented and augmented in any way any reader could ever wish for. If this is too big for now, a decent system to help with managing your own personal archive and the library of collected canonical works would be a good start as well.
After cheap paper became available and the printing press was invented, it still took many generations of intelligent minds to eventually figure out what the medium can and wants to be. Likewise, the industrial revolution called for a long and ongoing struggle to establish worker rights in order to counter boundless exploitation. With our antiquated mindsets and mentality, there’s a real risk that we simply won’t allow digital technology to realize its full potential in our service for another 100-300 years, and the future of text might be of no exception.
Copyright (C) 2019 Stephan Kreutzer. This text is licensed under the GNU Affero General Public License 3 + any later version and/or the Creative Commons Attribution-ShareAlike 4.0 International.

Glossary

Definitions
asdf	Microsoft Word
	Word
	A restrictively licensed software application in the tradition of earlier word processor packages. Its main purpose is to allow digital editing of short corporate or personal letters for print. The result looks “perfect” in the sense that no indications of error correction end up on the paper as if the typist wrote the entire text in one perfect go or the sender could afford the luxury to have pages re-typed until no errors remained, suggesting that the recipient was considered important enough to deserve keeping a typist busy (which isn’t the case of course if a computer is used). Microsoft Word isn’t a writing tool nor designed for writing books, it’s not for typesetting or Desktop Publishing.
	World Wide Web
	Web
	WWW
	A stack of protocols, standards and software which was initially designed as a system to access and navigate between separate, incompatible document repositories via a shared, common interface. Today, it’s mostly a programming framework for online applications like shops or games. The support for text and semantics is very poor. As restrictively licensed operating systems lack the ecosystem of trusted software repositories to install programs from, implementations + the standard continue to lack support for text capabilities as well as operators of Web sites refuse to standardize functionality + libre-freely license their client/server code in order to artificially create and maintain a Software-as-a-Service/“Cloud” lock-in dependency on their server instance; untrusted/unchecked software scripts are sent by the server to automatically run on the client, therefore Web browsers need to be sandboxed as such remote code execution could otherwise easily compromise the security of the client system. For that reason, the Web can’t make use of native capabilities available on the client and needs to be denied interoperability with system infrastructure outside of itself.
	Desktop Publishing
	DTP
	Layouting for print using a computer, but otherwise roughly the same approach Gutenberg used – setting type by hand. The main purpose for software applications in this category is to create flyers and magazines. It’s not for writing nor for typesetting regular long-form text.
	Portable Operating System Interface
	POSIX
	An interface standard for basic capabilities of a computer operating system. User-space third-party applications can be built on top of it and gain code portability in regard to all the other POSIX-compliant implementations.
	Open Systems Interconnection reference model
	Open Systems Interconnection model
	OSI reference model
	OSI model
	A conceptual framework that describes how the transmission of data between two endpoints in a network can be interpreted in terms of horizontal hierarchical layers which are isolated against each other, so a change of implementation/protocol on one of the layers doesn’t affect all the other parts, avoiding inter-dependencies and a vertical, monolithic architecture. The model reflects the observation that payload data gets encapsulated in a series of nested, cascading metadata containers before it is sent over the wire. At nodes along the way and on the receiving end, data of a lower level can be unpacked from its higher-level wrapper envelope – a little bit like Matryoshka dolls. Technically, this might simply mean that a component of a certain layer will handle the metadata which was addressed to its own particular function and then dispatch/pass-on what appears to be meaningless payload to the next component belonging to one level up or down, where the same procedure repeats all over again, but this time on the remaining, extracted data with the earlier packaging around it being already removed by then. Bootstrapping, standardization, separation of concerns, hiding implementation details behind abstract interfaces: these are typical strategies for designing complex adaptive systems, and the OSI reference model serves as a good example for a theory that expresses some of the underlying universal principles.
	Data, Information, Knowledge, Wisdom
	DIKW pyramid
	DIKW hierarchy
	DIKW model
	DIKW
	A conceptual framework that describes the hierarchy of the encoding of meaning in information systems. From the atomic data handling primitives of the physical carrier medium up to the complexity of good and wise use (or, say, meaningful interpretation), the theoretical model suggests that the implementation on each of the layers can be changed without affecting all the other parts because the internal matters of information handling of a stage are contained and isolated from the other stages. Michael Polanyi presents a similar notion in his book “Personal Knowledge”.
	bootstrapping
	bootstrap
	The method of launching higher stages of complexity from lower, more primitive stages. This is how a computer operating system boots itself up from a single electrical impulse caused by the push of a button to the master boot record, continuing with the BIOS firmware, starting the operating system and finally setting up user space applications. Douglas Engelbart proposed a similar concept for exponential improvement in which the lower stages are used to create a much better, new stage, on which the process is repeated all over again.
	Representational State Transfer
	ReST
	The rediscovery of the semantics in the Hypertext Transfer Protocol (HTTP). With the early Web mostly serving static pages and the later one targeting the development of custom server-centric online applications for the browser, the notion of small agents/clients for carrying out tasks, collecting information and interoperating with local + remote software wasn’t really supported, but with the Software-as-a-Service/“Cloud” lock-in dependency model (also fueled by the idea of custom, non-standardized, server-defined APIs – application programming interfaces) in contrast to simply publishing and retrieving semantic data, ReST principles recently gained more popularity again. With simple HTTP verbs (commands, actions), a client can instruct the server about what to do in a standardized way (a little bit like XML-RPC and SOAP). The hypermedia reply/response might inform the client about new request options that could be followed automatically or manually by the user. Furthermore, the semantics define URLs as arbitrary unique static IDs (not carrying any meaning nor reflecting/exposing the directory structure of the host operating system), so no custom client-side programming logic needs to know about how to construct URLs that correspond to the schema expected by a particular server. Instead, a client is enabled to easily request hypermedia representations of a remote resource, make sense of it and adjust its internal application state accordingly. Long ago, the Turing test demonstrated that a recipient can never know if the representation of a remote resource was generated by server-side code or a database or if a static page was sent, so why should a client base its operation on such assumptions and become dependent on a particular server implementation that may change at any time, where it would be much more reliable to exchange representations that contain standardized + semantic hypermedia instructions commonly understood by the receiving end regardless if the structure, surrounding data payload or implementation changes?
	Hypermedia as the Engine of Application State
	HATEOAS
	The concept recognized by ReST describing that capabilities of a system could be driven by data, not by the custom, non-standardized, incompatible programming of a particular application. “Hypermedia” refers to the notion that semantic instructions embedded in other payload data could operate corresponding controls and functions, maybe even as part of a larger infrastructure in which different components are plugged in to handle their specific tasks according to the standard they’re implementing. Software developers who write parsers for domain-specific languages – especially if these are interpreted ones designed to trigger actions in an application – are quite familiar with this type of mechanism. The Web too with the rendering engines in its browser applications makes use of this approach. Nonetheless, it could well be that still no hypermedia format exists to this day that would provide the semantics needed for ReST, and the Web with HTML doesn’t support ReST either. The general XML format convention doesn’t come with semantics of its own beyond primitives for introducing semantics and structure built on top of it, but with XHTML, at least different namespaces could be mixed for hypermedia-aware clients, of which probably none exist yet based on the architecture of a standardized capability infrastructure. Anyway, HATEOAS might have been formulated together with ReST and its semantics of HTTP (not necessarily related to the insufficient “hypermedia” semantics of the Web), but the universal principle behind it can be applied in other contexts just as well. There’s no reason why the concept should be limited to the model of a local client interacting with remote servers, why it couldn’t be applied to service-oriented architectures in general, even if all servers/services are local, or just some of them while others are not.
	eXtensible HyperText Markup Language
	XHTML
	XML is a very simple format convention of primitives for structuring text semantically. HTML is a more specific format for defining the structure of a Web page. Since XML and HTML share the same origin of SGML, it makes a lot of sense to formulate the specific HTML Web page format in the general XML format convention, resulting in XHTML. There are many tools and programming interfaces for XML available which therefore can also read XHTML, so the Web could have become semantic and programmable. With regular HTML, a huge parsing engine is needed, especially because most published HTML is ill-formed and broken, leaving only bloated, sandboxed Web browser applications as the target for HTML documents. HTML and subsequently its XML variant XHTML lack support for decent text capabilities, but the almost abandoned XHTML would at least offer programmable semantic access to Web pages, while HTML as the overwhelmingly popular publication format of the Web tends to be cluttered with visual elements for navigation and custom online application programming – these without being explicitly made recognizable as such for the computer. Under these circumstances, it’s very difficult and expensive to make any hypertext/hypermedia capabilities or small agents/clients work with HTML content published on and for the Web and its browsers.
	Web browsers
	Web browser
	browsers
	browser
	The generic term describes a category of software applications for navigating text/hypertext. Its main function is to request/retrieve resources (local or remote) and to parse/interpret them for subsequent augmentation. Semantics of standardized meaning allow the browser to recognize special instructions within the payload data of a resource, so it gets a chance to apply custom settings when preparing the presentation for the user. Another important component for variants with a graphical user interface is the rendering engine for drawing visual elements onto the screen, so the user is enabled to interact with them in various ways. A browser is not for writing. For navigating hypermedia, probably no real browser exists yet. In the future, standardized controls for the augmented reality of the Internet of Things might resemble some kind of “browser” as well. Typical browsers for the Web go much beyond core requirements and come with their own affordances for multimedia playback, scripting/programming and a whole bunch of other features for interacting with online applications. These aren’t available as local capabilities in the context of the client because Web browsers need to be sandboxed/isolated for security reasons.
	Blender
	A freely licensed software application for creating 3D models and animations.

Summaries of Doug@50 Calls
Preface
After Douglas Carl Engelbart passed away in July 2013, a group of people got together to continue Engelbart’s invisible revolution (the historical retrospective settled on calling the revolution unfinished). With the 50th anniversary of the Great 1968 Demo coming up on the 2018-12-09, planning began to create a new, modern demo which would inspire and invite such work, research and bootstrapping to be picked up again for our time. After some years passed, from the 2017-11-08 on, a series of regular online calls were conducted. What follows are the summaries of a few of them.

Weekly Call 2018-01-31
In this call, we discussed how TopicQuest, IdeaLoom, Author and SymbolSpace could interoperate. At least the first three turned out to be similar in terms of the capability they provide, with other components missing like a visualization component and maybe translators/converters in between.

Weekly Call 2018-02-21
Frode Hegland informed the group that he was invited as a speaker to the 7th International Summit of the Book in Baku, Azerbaijan. We found it unrealistic to prepare a demo in the short amount of time that remains until then. Marc-Antoine Parent deepened our understanding of knowledge maps, and as Frode prepared a proposal for adding new terms to the HyperGlossary, we discussed how the controls for entering data might relate to knowledge maps and what the use of it could be. Loránd Kedves gave an overview about his work which led to questions how it might fit into the big picture of programming and linked data.

Weekly Call 2018-03-07
There’s a new Google Spreadsheet with our project list in it. The discussion went towards more basic system functionality/capabilities as some of the main scenarios, HyperGlossary, Socratic Authoring and ViewSpecs, would require them to be in place. Specifically URLs were of interest as they’re used by Christopher Gutteridge’s ultralink. Vint Cerf introduced the need for archiving as an intrinsic system capability. Andrew Pam shared some experience about working with e-mail, from which especially IdeaLoom could benefit. Memento and IPFS were mentioned, we need to look into both. We also realized that our onboarding needs improvement.

Weekly Call 2018-03-14
In preparation of the call, Frode Hegland provided the abstract for his presentation for the upcoming International Summit of the Book 2018. Even before the official start time, some members of the group discussed things like Slack features or separation of GUI and data, so a chat like IRC could still look good, which too would power ViewSpecs and key commands.
At the scheduled time, Marc-Antoine Parent explained the new interoperability format that’s designed to help our components with talking to each other in more detail, but then Frode pointed out that it seems to be geared towards knowledge graphs, not documents. Marc-Antoine suggested that WebAnnotation could link both together. Furthermore, a lot of structural requirements could be expressed in HTML, as far as documents are concerned. By gaining more understanding about the nature of both perspectives, “media fragments” came into focus. For structural/semantic references in non-HTML documents, the group wondered how to go about it, Utopia Documents were mentioned.
With this broad range of topics on the table, Houria Iderkou, from a project management standpoint, proposed to partition those discussions into subcommittees, as the weekly call tends to attract quite a lot of general, conceptual brainstorming and discussion, but we make little progress with the specific projects/components. There could also be two calls, one for the general discussion and one for working on and coordinating the actual components for the demo. Three months in, we didn’t make enough progress for what’s needed to end up with something presentable. We acknowledged that we still didn’t decide what the end result for the demo should be. There are the three areas of HyperGlossary, Socratic Authoring and ViewSpec as suggested by Frode, but as they require different Open Hyperdocument System (OHS) Core infrastructure to be in place, the group should pick one depending on the capabilities that we want to show off. On 2018-12-09, the presentation of our Doug@50 effort will only have limited time available anyway. Mark Anderson made us aware that we really should avoid to miss the human side, which needs to be a consideration for how we define the desired result for our demo. Houria also reminded us that one key aspect to demonstrate is that we as a group manage to collaborate.
The action item for builders/implementers who are somehow involved in the main direction of this group is to report to Houria if they’re blocked by something from making progress.

Weekly Call 2018-03-22
This call was shifted from the regularly scheduled Wednesday, 2018-03-21, to Thursday, 2018-03-22.
In response to Houria Iderkou’s request last week, the group tried to determine the topics our efforts could be split into in preparation of a switch to daily calls with a call every work-day in the week. The basis for the discussion was the project list, and after intense consideration of the potential scopes for every day, a weekly plan was completed.

Daily Call 2018-03-26
The topics of the calls on Friday and Wednesday were switched and the Friday call was canceled, so the group didn’t get a chance to discuss and then decide on the capabilities that should be demonstrated on the 50th anniversary.
In preparation of the calls on Monday and Tuesday, Stephan Kreutzer tried to sort out the actual aspects those topics are supposed to cover as they’re framed as the previous “OHS Core” conversation. In the call, it was found out that it doesn’t make a lot of sense to discuss system architecture/design/infrastructure as long as it is not clear what capabilities should be implemented for the demo day. It was decided that the Tuesday call tomorrow should focus on exactly this question. Also in response to this fundamental question, Gyuri Lajos put forward a draft on “Bootstrapping and co-evolving OHS” as a way to check for the level of interest within the Augmentation Research Community by considering the possibility of bootstrapping a new OHS kernel.

Daily Call 2018-03-27
The group ran into the difficulty to get consensus if the capabilities for the demo day should be more from the human system side or the tool system side. The argument for the former was that we might want to demonstrate the technological foundation that makes Doug’s concepts like ViewSpecs possible again. The argument for the latter was that it’s not particularly exciting to the potential audience to watch some boring text visualization techniques in 2018, especially as there is a huge potential in online collaboration groupware or in the field of solving urgent problems in the way public discourse is conducted. Also, another question was if we should target the individual/collaborative knowledge worker or the general population.

Daily Call 2018-03-28
Frode Hegland noticed that participants in the group could be categorized as either interested in making our existing components interoperable, or alternatively in favor of building from scratch in order to make an OHS and the needed capabilities real. Timur Shchukin presented the work of his group including Knowflow and Coflow.

Daily Call 2018-03-30
Today, we primarily discussed mechanisms/concepts for linking/referencing. Christopher Gutteridge is looking at a lot of linking standards. Marc-Antoine Parent re-encouraged us to look at WebAnnotation. In general, it looks like no single mechanism will satisfy all requirements, so we eventually have to support several of them in an OHS.

Daily Call 2018-04-02
At first, Frode Hegland shared his findings in the area of addressability. Marc-Antoine Parent pointed out that the WebAnnotation standard is extensible. Regarding the general notion of addressability, we were thinking about ways to augment conversation/dialogue, as one could ask questions to a virtual avatar and get them answered via voice from previous recordings, either by constructing language with the help of an artificial intelligence or by semantic annotation. YouTube and SoundCloud support a time stamp/code in the URL fragment to reference the start of playback in audio.
It looks like the group generally agrees that when it comes to data sources for the demo, we should work on and with what we ourselves produce during our effort (posts to the Journal, e-mails, call recordings, etc.) in order to bootstrap ourselves and our own communication. Hence, publishing, storing, retrieving and manipulation of those media fragments become relevant capabilities that must be provided by an OHS infrastructure and supporting document formats. Marc-Antoine encourages us to look at Apache Marmotta (a linked data platform), as it might already do most of the stuff we might want/need, plus it supports Memento.
The question is asked, how our calls are recorded. What about a TimeBrowser solution? It could record individual microphones and synchronize the audio tracks via an UTC time mark. Would be very useful for conferences, but we soon realize that we don’t have a lot of experience with audio, so we defer work on audio/video until a later stage, as text is easier to handle for now. Our material should always carry a timestamp, so it can be referenced in the future by the components we will build.
We also believe that there is no need to set up the human system versus the tool system and vice versa, as we’re clearly interested in the symbiosis of the two.
With interaction as the most basic element of the universe over symbols and their addressability, we recognize that the context of interactions, symbols and addressing are indeed very important, too, in regard of how we understand connections.
We discuss the question if it would be a reasonable use case for knowledge representation to map Doug’s terms to their most similar resemblances in today’s terminology, potentially federated by the help of a timeline? Does the knowledge representation work help with the shifting meaning of terms and concepts? Can one “import”/apply context?
Stephan Kreutzer gives an update on his progress over Easter: the work focused on writing a downloader for all posts as referenced by a WordPress blog URL, for such data to be converted to XML and JSON to make it available for the systems/components by Gyuri Lajos, Timur Shchukin and Marc-Antoine. Marc-Antoine reads the WordPress RSS feed already, but that might not contain all data. Within the next few weeks, something in that direction might help us to make our components more interoperable and force us towards practical bootstrapping.

Daily Call 2018-04-03
The scheduled topic was Socratic Authoring, and with the discussion about what to demo yesterday, we wondered about what such a scope would mean for writing/editing. Robert Cunningham reported that HyPerform offers such capabilities, we should look into it. Also, the HyperScope project has produced a converter from Augment files to XML. As writing editors is always more difficult, we pondered on ViewSpecs first. In Doug’s system, views seem to be specifiable dynamically with the help of several standardized statements (as encountered in links), that can be extended by macros and meta compilers, but still mostly text-oriented. Today, it could well be that we want to support a vast multitude of ways to render/visualize data, so we might need some mechanisms to apply layered rendering processors that act on the semantically annotated data. ViewSpecs themselves could be published as separate data points, with some federation going on, be it CSS font-family-style priorization or HTTP-style ViewSpec negotiation, local preferences or recommendations by the author or for a specific environment. We probably have to abandon WYSIWYG entirely, as there’s no way to anticipate in advance how all the ViewSpecs out there will react on semantic markup, we might want to deliberately break this expectation by separating viewing and editing, which then won’t be a very “integrated” experience in comparison to the less visual NLS/Augment.
Another theme was the question about non-retrievable things, which are of course addressable, and there needs to be support for that. At the same time, we can’t work with non-retrievable material, apply a ViewSpec on it or manipulate it directly, while on the other hand, clients/agents can provide quite some mechanisms to deal with such resources that aren’t accessible.

Daily Call 2018-04-04
Marc-Antoine Parent gave us an introduction to the WebAnnotation standard and its use cases. Robert Cunningham asked if WebAnnotation can be used to specify structure, and how we would publish and apply WebAnnotations, in an ecosystem, embedded or standalone? Stephan Kreutzer asked how we would handle special corner cases like annotations that lack any semantic meaning. It was generally recognized that WebAnnotation might be very useful for what we’re trying to do, be it for linking/referencing/addressing or for semantic annotation (adding meaning in terms of WYSIWYM).

Daily Call 2018-04-05
General knowledge representation matters were discussed. Marc-Antoine Parent updated us that work is going on in the area of layers on top of ReSTful knowledge data collections, to help with merging such collections for example. Marc-Antoine is making his knowledge-graph data more JSON-LD-ish, the list/graph already is. He also expands the linked data platform, so one can subscribe to such entries in order to get notified when new entries get added. Gyuri Lajos and Marc-Antoine acknowledge that displaying/rendering incoming and outgoing links is very important, maybe one of the most used features. We should make use of the Linked Data Platform, or GraphQL.
Gyuri points out the advantages of plain HTML as data format. Marc-Antoine adds that JSON-LD can be embedded, and Gyuri follows up with the notice that interpreting code can be delivered in CDATA together with the data.
Another realization by Gyuri as a result of the call on Wednesday is that WebAnnotation can be used to build a social platform, and Marc-Antoine again was able to reference the already existing Social Web Protocols and ActivityPub. The way to go is probably to embed WebAnnotations into ActivityPub data.
IdeaLoom can provide RDF in JSON form on request, with the concept ID as URL in there, and requesting that via HTTP content negotiation will provide the data associated with it, so context gets attached via a WebAnnotation that references data on IdeaLoom.
Gyuri describes the example of referencing something in Hypothesis that’s stored on IdeaLoom, how is Hypothesis going to embed IdeaLoom knowledge graph data on their service? Marc-Antoine responds that a highlight would be made on Hypothesis, and then be imported/referenced in IdeaLoom.

Daily Call 2018-04-10
The first 17 minutes are not included.
Marc-Antoine Parent: Glossary entries need a type or relation.
Gyuri Lajos: Knowledge enrichment is separate, a separate tool. On the other hand, while writing, auto-complete could be offered or a search for terms.
Marc-Antoine: Types could have attributes, but then everything becomes more complex. Topic maps with different roles even. Other term suggestions, should we only look at internal data, or also other, external data?
Gyuri: Suggestions could come first from WikiData and then federation servers.
Marc-Antoine: That would be overwhelming. When it comes to server vs. client, I don’t expect the client to have all the data, but instead query for auto-completion, so that should be server-side logic. Furthermore: what about merging suggestions? What if terms are equal from different sources?
Gyuri: That needs to be decided on preference, needs to be federated.
Frode Hegland: Let’s just build that system, practically.
Marc-Antoine: For the first bootstrapped version, auto-complete is not necessarily required. The server should do the merging already. The server needs to do the WikiData API call, which would make it a 2-hop call for the client.
Gyuri: I don’t want the federation server to be overwhelmed. If the system takes off, every query by everybody would go through the server.
Marc-Antoine: On the other hand, there’s the concern about client complexity. The quota on the federation server might get exceeded. Let’s write a client library that supports different sources, this embedded JavaScript client library would make the calls.
Gyuri: Want to provide my solution to the ecosystem. If a word is selected, its glossary data is either already in the local storage, and if not, a query should be send off, that would constitute an automatic concordance.
Marc-Antoine: If there are federation server(s), if an identifier is received, the servers would be asked if they have the data for it, and if not, it would be made available to the federation servers by importing. Ontology should be another library.
Gyuri: Have reservations, it’s hard to do for WikiData.
Marc-Antoine: Wrote down the fields that are needed.
Frode: Let’s try to get glossary into document. It would be interesting to learn from the knowledge guys which interactions glossary could offer at the point of authoring.
Gyuri: Suggest to not bring ontology into writing glossary entries at this early stage. That’s too confusing and a separate step for later, two different activities.
Marc-Antoine: The relation “related” is almost just noise, not usable, so there’s the need for better typed relations, and then that depends on concepts. Ontologies, multiple ones even, should provide their relation types. If the target term comes first, that would already lead to a good restriction for the available relations.
Gyuri: Biomedical semantics are very hard to understand, it’s a heavily cultivated domain.
Marc-Antoine: It’s the only place where RDF survived.
Gyuri: WikiData allows to come up with new entries.
Frode: Specific suggestions needed for a document-centric dialog to add a glossary entry.
Marc-Antoine: To add a related term, should that be just added normally or with a role?
Frode: The glossary relation, is that only for other terms in the same glossary?
Marc-Antoine: It’s interesting that Gyuri immediately jumped on external glossaries for auto-complete.
Frode: Let’s draw an empty box, so the knowledge representation guys can add in there what they want.
Gyuri: If the empty box is a Web control, then I can add a Web component in there, a JavaScript-based widget. Everything that’s developed for the Web can run in this box.
Marc-Antoine: There are probably standards for how to make JavaScript and the host application talk to each other.
Gyuri: And there can be cross-domain POST messages.
Marc-Antoine: We just need to standardize on the interpretation of the messages.
Gyuri: The interpreter code can come along with the data.
Marc-Antoine: Isn’t CORS a problem?
Gyuri: No, an iframe can load JavaScript from anywhere.
Frode: Let’s just write it down, hack it together, quick and dirty.
Gyuri: We don’t have a standard for glossary yet, but WebAnnotation can do that.
Marc-Antoine: That’s more for the indexation part, not for annotation, but it could work. WebAnnotation allows to tag existing entries, but isn’t adding to the definition of the term. What’s the format to publish the entries? It should be very minimalistic, I can provide a JSON-LD spec.
Gyuri: We can replace WebAnnotation with whatever we’ll use.
Marc-Antoine: I can make a draft by today, but using WebAnnotation for it would be dangerous because the server would get the burden to do the replacement. It would be the archetype of technical debt.
Gyuri: Still, federation servers should be able to do it.
Marc-Antoine: No, servers shouldn’t handle stuff that’s disguised as WebAnnotation.
Gyuri and Marc-Antoine agree that WebAnnotation should still be used to annotate existing entries.
Marc-Antoine: Will write a draft, and can Gyuri start to write a JavaScript library for it?
Frode: To clarify, is it for posting new entries to WordPress, to define the model?
Marc-Antoine: For the start, it’ll be for WordPress but soon change to federation server, and we’ll see how far we can get, and then do the next step.
Frode: With the end of the demo in mind, we would want to say: by the way, you can immediately use it, no need to set up your federated server.
Marc-Antoine: On IdeaLoom, there will be an interface to configure the data source for a given conversation, to say basically that this RSS feed is for glossary, and from the URL I generate a data feed. Then, Gyuri’s machinery can come in, and Marc-Antoine will provide API endpoints to do things on the existing conversation.
Frode: Where will it live?
Marc-Antoine: On IdeaLoom as federation server, TopicQuest might have their own. So we’ll standardize on an API? There’s still the requirement for a server agreement with a server.
Frode: Doug’s demo was very different from what we have today. It could either be as natively as possible, using an existing WordPress installation and off you go, plus for more advanced knowledge graph work, go talk to the knowledge people, or use Google drive.
Marc-Antoine: Will try to come up with a generic Linked Data Platform solution, Apache Marmotta eventually.
Frode: How is that going to work for a person who’s a blogger?
Marc-Antoine: That’s a constraint on the architecture. The notion that it’ll work without a server is wrong. Somebody has to get a server and pay it, there’s no data that’s in the network. What we can try is to use IPFS, and distributed storage is a different story again. I’m interested in solutions on the server because there I can do computation. With the so-called “server-less” architectures, one has to have an account to do lambda computation there. There is no free lunch.
Frode: There needs to be a conversation about caching when it comes to auto-complete. In case of a student as a user, she might use her own server on which most material will be static, frozen. Documents will stay there online. If they get connected in a knowledge graph, then it is another story.
Gyuri: The data could be on the local storage of the client, or on the Open Science Framework. One can get storage there and they guarantee that the data will be there for a number of years. The content there will be static, but locally it can become alive. It can be DropBox, as the Open Science Framework has connectors to different storage services. That would be part of OHS Core.
Frode: To wrap up, how to give people a few days to send in a list of things they want to see in the empty box? Also, how to make it work for a non-technical student?
Marc-Antoine: I wasn’t aware of this focus – of targeting these users primarily.
Whuffie (?): No, not everybody needs to be able to set it up himself/herself, a friend could do it for him/her.
Frode: It’s not so much about the technical difficulty to set it up, but the accessability/availability to get it started.
Marc-Antoine: That was a non-goal for me previously.
Frode: You’re a cloud guy, but your work should get a wide audience, so how to give people an easy click-click way to start it up?
Marc-Antoine: I see where you’re coming from, and by connecting things between different servers, it could become relatively “serverless”. There’s the Beaker browser, we might look into it as it’s like IPFS. One gets an URL for something that was created locally, and then it becomes accessible to other Beaker browsers, so there could be a Beaker proxy or something.

Daily Call 2018-04-11
Robert Cunningham introduces us to HyPerform. It’s basically an Augment clone, but with an additional menu at the top. It provides a limited subset of Doug’s ViewSpecs. If the ViewSpec codes/characters are learned, text can be navigated very fast. In the design of the system, everything that’s supposed to be a noun is a noun for noun+verb commands, but as it is verb+noun in English (example: “Window move from here to here”), that’s reflected in the software. This convention works with everything, be it text or controls, like “transpose/move Window” + click which to which. Could we standardize on verbs, which would also be helpful for versioning?
Regarding structure, with knowledge representation and threaded conversation, we tend to get very visual, but can we do something with basic text, so people can work with and display their material in whatever way they prefer? The tool should be incredibly basic, so different people could make use of it in ways we probably don’t anticipate. Users would be able to run their text through a lot of processes.
Marc-Antoine Parent: The text capabilities are very good, but HTML is more comfortable because of links. It won’t be transformation, but view controls, adjusting the CSS. Which view controls are application-specific, which ones should be standardized?
Robert: In HyPerform, there’s no way to add ViewSpecs. There can be plugins, but it’s not clear how to add them. Still, commands would be limited to the alphabet of upper- and lower-case characters. What we need are branch, group, flex and statement.
Gyuri Lajos: But wasn’t it the case that there were no files in the original NLS?
Robert: In HyPerform, files are mapped to the local hard drive. If files are moved, links break.
Marc-Antoine: Have we looked at Scrivener? It has something similar to ViewSpecs in search. In HyPerform, everything is content, there is no semantic markup like titles etc., so we can’t easily parse that plain (structured) text and derive meaning from it.
Stephan Kreutzer: Can we cheat? By exporting the data via an output processor, by accessing the internal data format of HyPerform, by adding special characters to the output in order to help a parser?
Marc-Antoine: Are most view controls for hiding and showing material?
Gyuri: There is Org mode for Emacs, which is pretty much like HyPerform, it’s inspired by Doug’s demo by a great deal.
Stephan: But Org mode does it with a Markdown-style special character format.
Marc-Antoine: For structure, I would prefer HTML. I use Tinderbox for structure, and in there is Markdown. Look at the Leo editor, which is an outliner, mostly created for literate programming.
Robert: In HyPerform, there’s the ability to move material as a whole branch, so everything under it also gets moved.
Marc-Antoine: That’s also possible in the outline mode of Word. Sure, there’s more guarantee of correct operation by commands in comparison to visual manipulation.
Robert: Can I customize how level indentation looks like?
Houria Iderkou: What’s the status, what can we do in the remaining time?
Marc-Antoine: There has been significant progress recently.
Houria: Suggestion is that we shouldn’t argue about UI, because there are many options, but to actually build or show it.
Gyuri: Want to pitch to build an entire OHS.
Houria: Focus needs to be on the parts on which everybody can agree and work on.
Gyuri: But we’re not working together. I’m working on this system for more than 5 years, even before finding out about OHS, and now even the Augment Research Community is not looking at it, if not now/here, when, ever?
Stephan: The code that gets written lacks proper licensing and there are technical problems. Gyuri could provide a library for local file-I/O, otherwise I’ll be left/forced to reinvent this wheel. Where are contributions to GitHub? Marc-Antoine has everything on GitHub, that’s very positive.
Gyuri: This occasion now is the big and maybe last chance to get something going for humanity and the world.

Daily Call 2018-04-12
We acknowledge that our online materials are pretty scattered and poorly maintained. There isn’t enough progress to bootstrap ourselves, while on the other hand quite some improvements were made. Frode Hegland requests that we should make even the most basic writing, publication, retrieval and reading of a piece of text possible. Stephan Kreutzer mentions that there’s the Journal on WordPress with blog posts and glossary, and it’s also the only officially mandated material collection to work on.
Marc-Antoine Parent: There’s no point in glossary without getting glossary data from multiple sources. Furthermore, we should separate widget and underlying library. The library should merge duplicates. The draft isn’t done yet, as the issue of ontologies is complex. I added “association” to the data format. Do we really need peer-to-peer? Probably not?
Gyuri Lajos: I’m biased towards the peer-to-peer Web idea. That’ll be powerful for working on things in real-time.
Marc-Antoine: If hyperglossary-aware WordPress servers can talk to each other, there’s no need for peer-to-peer between clients.
Gyuri: Agree that merging and discovery should be on the server, on the concept level. Local client peer-to-peer is a matter of privacy. If there are such servers, they will blow up and get hacked.
Marc-Antoine: For me, that’s a separate issue. There’s HTTP authentication for data access. In IdeaLoom, there are permissions and restrictable read capability. External data operations will only provide data that doesn’t allow the identification of the user. Proper implementation of permissions is work, but not too difficult. At the same time, not a lot of software supports it. There’s the need for permissions per field in larger data, and anonymization. Knowledge patterns still needed to be discoverable, but for Catalyst being a project funded by the EU, privacy regulations needed to be observed as well. The system calculates dynamic permission-based views on the data on the fly. API tokens have certain capabilities/permissions attached to them.
Gyuri: The data is in a graph, so there can be simplified row+column level permissions, which I’m already doing too on the fly on my uniform model. But indeed, one can’t solely rely on client peer-to-peer, merging is a good example.
Marc-Antoine: There can be an easy HTTP model, with an URI to specify the author, so that’s not necessarily identifying the user, but could be.
Gyuri: Servers are important because they can provide information about interesting data that’s not available in the immediate neighborhood.
Marc-Antoine: How can a hyperglossary-enabled server consume incoming WebAnnotations? It should have an ActivityStream inbox, but that doesn’t necessarily need to be implemented, it can also just be read from a stream. There are Hypothesis client libraries to make highlights in WordPress. What about overlapping annotations? More common: a lot of servers annotate over the same word, all making claims about the same word. That would be, let’s say, 10 annotations over the same word on the server, so a mechanism is needed to indicate to the user that those different servers have something to say about the same word.
Gyuri: I found a tweet by a Hypothesis guy in which he showed overlapping annotations. There should be a convergence between WebAnnotation and knowledge graph.
Marc-Antoine: I expect the federation server to look at annotations for a document and handle it.
Gyuri: Glossary capability for WordPress is already solved, look at CM Tooltip Glossary. On Slack, we need to create a #federation-server channel.
Stephan: A federation server, would that be any or our WordPress instance, and/or is a federation server part of the OHS?
Marc-Antoine: No and no.

Daily Call 2018-04-16
Frode Hegland: Something happened to my thinking since the last call. In Author, one feature is supposed to be (not done yet) a mechanism to only show headings, not the body of some text, in order to draw lines between those headers, basically a concept map. By going through use cases, I realized that this feature is probably most useful in the context of collaboration, therefore on the Web. Copying such a node would include all subnodes, which would get deeply copied to the local computer.
Marc-Antoine Parent: It emerged from the discussion of graph + document – to look at headers as nodes is very natural to me, the attached body is just an attribute.
Frode: Moving around nodes is incredibly useful. What about extending Gyuri Lajos’ work into this Virtual Reality direction?
Gyuri: Well, if everything is nodes…
Marc-Antoine: To copy means to fork, with the same origin of course, but diverging.
Gyuri: Then that becomes a new version in the node.
Marc-Antoine + Gyuri: Agreement that there’s the need for both, origin ID and a local copy/fork version ID.
Marc-Antoine: I only want remote nodes, because there might be not enough storage space locally.
Gyuri: Similar to WikiData, it might be temporary, throw-away data.
Marc-Antoine: Then there’s the need for a distributed event bus. Propagation might be implemented via WebSockets to other clients. IdeaLoom has it, it’s a little bit slow, but works. I looked at collaborative editors some time ago and there’s many of them, so I made a list.
Gyuri: To make it collaborative, only a communication channel or database is needed. Only the node modifications need to be shared among peers, the editor itself doesn’t matter that much.
Frode: So what are we going to do, into which direction?
Marc-Antoine: My action plan was to add history to my nodes, as Marmotta is now implemented. I still need to specify the format for knowledge graph. But with this new idea, a format for both, graph and documents? Question to Frode: what is needed by documents? What format to use? There are many internal ones, HTML would be fine, but some editors have their own, so HTML would not necessarily be the best.
Gyuri: I support 70% of DocBook to import to graph.
Frode: Those are very good questions, but also very detailed. What I’m talking about is just writing down two names and connecting them with a line.
Marc-Antoine: First question – can such a node be translated to HTML, round trip?
Robert Cunningham: During the HyPerform presentation, outlines in the outline editor were seen as a problem to do by Marc-Antoine, where structure only implicitly conveys meaning, but introducing semantics will solve that?
Frode: Talked with Christopher Gutteridge briefly, and Christopher should talk to Gyuri. Marc-Antoine’s system should link into documents, I will design my component to make it fit.
Robert: How to make multiple uses of the same text? How to do that in HTML? To dynamically show and hide portions?
Gyuri: I looked at everything done and published by Frode, so what’s needed is that the editor must manipulate an underlying graph model.
Marc-Antoine: I said that with HyPerform, it’s hard to do it via transformation, but in HTML it becomes easy, semantics will do that. So here we come back to the document as a graph. Intelligent <div>s – one has to have very well designed HTML, which isn’t difficult, but needs to be implemented.
Stephan Kreutzer: So here we come back to xFiles, generic semantics, at which point we don’t care about HTML semantics any more.
Marc-Antoine: Another question towards Robert – where to draw the line between node and body, at the title level, at the section level?
Robert: Is that also relevant for ViewSpecs?
Marc-Antoine: It’s important that Gyuri makes the node model work.
Robert: And then I don’t need a separate reader or code, everything is self-contained, everything is there for it to start its stuff.
Frode: Gyuri, how much effort would it be to make a new view in your system for the graph?
Gyuri: In Robert’s presentation, the view was customizable.
Stephan: So do we want to do collaborative interactive navigating/editing in realtime? That’s another game – doable, but we don’t have a lot of experience nor time left. Co-browsing comes to mind.
Robert: Something like Apache Wave?
Marc-Antoine: There’s now new technology, for example Quill and slate.js.
Robert: It’s also a nice thing to do it with yourself, to synchronize text between devices.
Frode: Agreement reached that we also do interactive capabilities. Now, who does what?
Marc-Antoine: I know that Gyuri is already very advanced, so that can be used, I don’t need to redo it.

License
Copyright (C) 2018-2021 Stephan Kreutzer, Marc-Antoine Parent, Frode Hegland, Gyuri Lajos, Robert Cunningham. This text is licensed under the GNU Affero General Public License 3 + any later version and/or the Creative Commons Attribution-ShareAlike 4.0 International.

 OPS/navtoc.xhtml

 		Hyper-Augmentation: Jahresbericht 2022

 		Hyper-Augmentation: Annual Report 2022

 		Hyper-Augmentation: Jahresbericht 2021

 		Hyper-Augmentation: Annual Report 2021

 		Augmented Reality: Recommended Study Materials

 		Videos Recommended for Watching/Listening

 		Videos Required for Watching/Listening

 		Hyper-Augmentation: Jahresbericht 2020

 		Hyper-Augmentation: Annual Report 2020

 		Future of Text

 		Summaries of Doug@50 Calls

