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The 2023 Open Source Program Office (OSPO)
Survey is live!

The past few years have seen an increase in the number of open source
program offices (OSPOs) operating in enterprises, academia, and
government—notably, the Octoverse 2022 report found that over 30% of
Fortune 100 companies have implemented an OSPO. These programs aim
to become a center of excellence for an organization’s open source activity,
whether that’s publicly releasing its own code, participating in upstream
communities, managing its dependencies on external projects, or a
combination of all of these.

Along with working on our own open source initiatives (including releasing
our OSPO’s policies and tools!) GitHub is partnering with the TODO
Group and Linux Foundation to gather research data about OSPOs and
similar open source initiatives. The project aims to provide research-backed
insights into the adoption, implementation, and impact of OSPOs across
different sectors and industries.

A key part of this project is a public survey that will help quantify how
different organizations are addressing issues in open source, like balancing
openness and control, managing external dependencies and upstream
contributions, and sustaining internal and external communities. If you’re
involved with your organization’s efforts around the use of open source
software and are interested in providing your perspective, please complete
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the survey! It should take less than 15 minutes and the data will be
incredibly valuable to advancing our understanding of open source at scale.

Take the survey
 

As a thank you, upon completion of the survey, you will receive a code for
a 25% discount on any Linux Foundation e-learning training course or
certification exam, as long as you register before August 30, 2023.

This article was downloaded by calibre from https://github.blog/2023-05-
25-the-2023-open-source-program-office-ospo-survey-is-live/
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Rooting with root cause: finding a variant of a
Project Zero bug

In this blog, I’ll look at CVE-2022-46395, a variant of Project Zero issue
2327 (CVE-2022-36449) and show how it can be used to gain arbitrary
kernel code execution and root privileges from the untrusted app domain on
an Android phone that uses the Arm Mali GPU. I used a Pixel 6 device for
testing and reported the vulnerability to Arm on November 17, 2022. It was
fixed in the Arm Mali driver version r42p0, which was released publicly on
January 27, 2023, and fixed in Android in the May security update. I’ll go
through imported memory in the Arm Mali driver, the root cause of Project
Zero issue 2327, as well as exploiting a very tight race condition in CVE-
2022-46395. A detailed timeline of this issue can be found here.

Imported memory in the Arm Mali driver

The Arm Mali GPU can be integrated in various devices (for example, see
“Implementations” in Mali (GPU) Wikipedia entry). It has been an attractive
target on Android phones and has been targeted by in-the-wild exploits
multiple times.

In September 2022, Jann Horn of Google’s Project Zero disclosed a number
of vulnerabilities in the Arm Mali GPU driver that were collectively
assigned CVE-2022-36449. One of the issues, 2327, is particularly relevant
to this research.

When using the Mali GPU driver, a user app first needs to create and
initialize a kbase_context kernel object. This involves the user app opening
the driver file and using the resulting file descriptor to make a series of
ioctl calls. A kbase_context object is responsible for managing resources
for each driver file that is opened and is unique for each file handle.

In particular, the kbase_context manages different types of memory that are
shared between the GPU devices and user space applications. The Mali
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driver provides the KBASE_IOCTL_MEM_IMPORT ioctl that allows users to
share memory with the GPU via direct I/O (see, for example, the
“Performing Direct I/O” section here). In this setup, the shared memory is
owned and managed by the user space application. While the kernel driver is
using the memory, the get_user_pages function is used to increase the
refcount of the user page so that it does not get freed while the kernel is
using it.

Memory imported from user space using direct I/O are represented by a
kbase_va_region with the KBASE_MEM_TYPE_IMPORTED_USER_BUF
kbase_memory_type.

A kbase_va_region in the Mali GPU driver represents a shared memory
region between the GPU device and the host device (CPU). It contains
information such as the range of the GPU addresses and the size of the
region. It also contains two kbase_mem_phy_alloc pointer fields, cpu_alloc
and gpu_alloc, that are responsible for keeping track of the memory pages
that are mapped to the GPU. In our setting, these two fields point to the same
object, so I’ll only refer to them as the gpu_alloc from now on, and code
snippets that use cpu_alloc should be understood to be applied to the
gpu_alloc as well. In order to keep track of the pages that are currently
being used by the GPU, the kbase_mem_phy_alloc contains an array, pages,
that keeps track of these pages.

For KBASE_MEM_TYPE_IMPORTED_USER_BUF type of memory, the pages array
in gpu_alloc is populated by using the get_user_pages function on the
pages that are supplied by the user. This function increases the refcount of
those pages, and then adds them to the pages array while they are in use by
the GPU, and then removes them from pages and decreases their refcount
once the GPU is no longer using the pages. This ensures that the pages won’t
be freed while the GPU is using them.

Depending on whether the user passes the KBASE_REG_SHARED_BOTH flag
when the memory is imported via the KBASE_IOCTL_MEM_IMPORT ioctl, the
user pages are either added to pages when the memory region is imported
(when KBASE_REG_SHARED_BOTH is set), or it is only added to pages when the
memory is used at a later stage.
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In the case where pages are populated when the memory is imported, the
pages cannot be removed until the kbase_va_region and its gpu_alloc is
freed. When KBASE_REG_SHARED_BOTH is not set and the pages are populated
“on demand,” the memory management becomes more interesting.

Project zero issue 2327 (CVE-2022-36449)

When the pages of a KBASE_MEM_TYPE_IMPORTED_USER_BUF are not
populated at import time, the memory can be used by submitting a GPU
software job (“softjob”) that uses the imported memory as an external
resource. I can submit a GPU job via the KBASE_IOCTL_JOB_SUBMIT ioctl
with the BASE_JD_REQ_EXTERNAL_RESOURCES requirement, and specify the
GPU address of the shared user memory as its external resource:

struct base_external_resource extres = { 
    .ext_resource = user_buf_addr;           //<------ GPU 
address of the imported user buffer 
  }; 
  struct base_jd_atom atom1 = { 
    .atom_number = 0, 
    .core_req = BASE_JD_REQ_EXTERNAL_RESOURCES, 
    .nr_extres = 1, 
    .extres_list = (uint64_t)&extres, 
    ... 
  }; 
  struct kbase_ioctl_job_submit js1 = { 
    .addr = (uint64_t)&atom1, 
    .nr_atoms = 1, 
    .stride = sizeof(atom1) 
  }; 
  ioctl(mali_fd, KBASE_IOCTL_JOB_SUBMIT, &js1); 

When a software job requires external memory resources that are mapped as
KBASE_MEM_TYPE_IMPORTED_USER_BUF, the function
kbase_jd_user_buf_map is called to insert the user pages into the pages
array of the gpu_alloc of the kbase_va_region via the
kbase_jd_user_buf_pin_pages call:

static int kbase_jd_user_buf_map(struct kbase_context *kctx, 
        struct kbase_va_region *reg) 
{ 
    ... 

8

https://android.googlesource.com/kernel/google-modules/gpu/+/refs/heads/android-gs-raviole-5.10-android13/mali_kbase/mali_kbase_core_linux.c#822
https://android.googlesource.com/kernel/google-modules/gpu/+/refs/heads/android-gs-raviole-5.10-android13/mali_kbase/mali_kbase_mem.c#4849


    int err = kbase_jd_user_buf_pin_pages(kctx, reg);   //<-----
- inserts user pages 
    ... 
} 

At this point, the user pages have their refcount incremented by
get_user_pages and the physical addresses of their underlying memory are
inserted into the pages array.

Once the software job finishes using the external resources,
kbase_jd_user_buf_unmap is used for removing the user pages from the
pages array and then decrementing their refcounts.

The pages array, however, is not the only way that these memory pages may
be accessed. The kernel driver may also create memory mappings for these
pages that allow them to be accessed from the GPU and the CPU, and these
memory mappings should be removed before the pages are removed from
the pages array. For example, kbase_unmap_external_resource, the caller
of kbase_jd_user_buf_unmap, takes care to remove the memory mappings
in the GPU by calling kbase_mmu_teardown_pages:

void kbase_unmap_external_resource(struct kbase_context *kctx, 
        struct kbase_va_region *reg, struct kbase_mem_phy_alloc 
*alloc) 
{ 
    ... 
    case KBASE_MEM_TYPE_IMPORTED_USER_BUF: { 
        alloc->imported.user_buf.current_mapping_usage_count--; 
        if (alloc->imported.user_buf.current_mapping_usage_count 
== 0) { 
            bool writeable = true; 
            if (!kbase_is_region_invalid_or_free(reg) && 
                    reg->gpu_alloc == alloc) 
                kbase_mmu_teardown_pages(                   
//kbdev, 
                        &kctx->mmu, 
                        reg->start_pfn, 
                        kbase_reg_current_backed_size(reg), 
                        kctx->as_nr); 
            if (reg && ((reg->flags & (KBASE_REG_CPU_WR | 
KBASE_REG_GPU_WR)) == 0)) 
                writeable = false; 
            kbase_jd_user_buf_unmap(kctx, alloc, writeable); 
        } 
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    } 
    ... 
} 

It is also possible to create mappings from these userspace pages to the CPU
by calling mmap on the Mali drivers file with an appropriate page offset.
When the userspace pages are removed, these CPU mappings should be
removed by calling the kbase_mem_shrink_cpu_mapping function to prevent
them from being accessed from the mmap'ed user space addresses. This,
however, was not done when user pages were removed from the
KBASE_MEM_TYPE_IMPORTED_USER_BUF memory region, meaning that, once
the refcounts of these user pages were reduced in
kbase_jd_user_buf_unmap, these pages could be freed while CPU
mappings to these pages created by the Mali driver still had access to them.
This, in particular, meant that after these pages were freed, they could still be
accessed from the user application, creating a use-after-free condition for
memory pages that was easy to exploit.

Root cause analysis can sometimes be more of an art than a science and
there can be many valid, but different views of what causes a bug. While at
one level, it may look like it is simply a case where some cleanup logic is
missing when the imported user memory is removed, the bug also
highlighted an interesting deviation in how imported memory is managed in
the Mali GPU driver.

In general, shared memory in the Mali GPU driver is managed via the
gpu_alloc of the kbase_va_region and there are two different cases where
the backing pages of a region can be freed. First, if the gpu_alloc and the
kbase_va_region themselves are freed, then the backing pages of the
kbase_va_region are also going to be freed. To prevent this from
happening, when the backing pages are used by the kernel, references of the
corresponding gpu_alloc and kbase_va_region are usually taken to prevent
them from being freed. When a CPU mapping is created via
kbase_cpu_mmap, a kbase_cpu_mapping structure is created and stored as the
vm_private_data of the created virtual memory (vm) area. The
kbase_cpu_mapping stores and increases the refcount of both the
kbase_va_region and gpu_alloc, preventing them from being freed while
the vm area is in use.
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static int kbase_cpu_mmap(struct kbase_context *kctx, 
        struct kbase_va_region *reg, 
        struct vm_area_struct *vma, 
        void *kaddr, 
        size_t nr_pages, 
        unsigned long aligned_offset, 
        int free_on_close) 
{ 
    struct kbase_cpu_mapping *map; 
    int err = 0; 
    map = kzalloc(sizeof(*map), GFP_KERNEL); 
    ... 
    vma->vm_private_data = map; 
    ... 
    map->region = kbase_va_region_alloc_get(kctx, reg); 
    ... 
    map->alloc = kbase_mem_phy_alloc_get(reg->cpu_alloc); 
    ... 
} 

When the memory region is of type KBASE_MEM_TYPE_NATIVE, its backing
pages are owned and maintained by memory region, the backing pages can
also be freed by shrinking the backing store. For example, using the
KBASE_IOCTL_MEM_COMMIT ioctl, would call kbase_mem_shrink to remove
the backing pages:

int kbase_mem_shrink(struct kbase_context *const kctx, 
        struct kbase_va_region *const reg, u64 new_pages) 
{ 
    ... 
    err = kbase_mem_shrink_gpu_mapping(kctx, reg, 
            new_pages, old_pages); 
    if (err >= 0) { 
        /* Update all CPU mapping(s) */ 
        kbase_mem_shrink_cpu_mapping(kctx, reg, 
                new_pages, old_pages); 
        kbase_free_phy_pages_helper(reg->cpu_alloc, delta); 
        ... 
    } 
    ... 
} 

In the above, both kbase_mem_shrink_gpu_mapping and
kbase_mem_shrink_cpu_mapping are called to remove potential uses of the
backing pages before they are freed. As kbase_mem_shrink frees the backing
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pages by calling kbase_free_phy_pages_helper, it only makes sense to
shrink a region where the backing store is owned by the GPU. Even in this
case, care must be taken to remove potential references to the backing pages
before freeing them. For other types of memory, references to the backing
pages may exist outside of the memory region, resizing it is generally
forbidden and the pages array is immutable throughout the lifetime of the
gpu_alloc. In this case, the backing pages should live as long as the
gpu_alloc.

This makes the semantics of KBASE_MEM_TYPE_IMPORTED_USER_BUF region
interesting. While it’s backing pages are owned by the user space application
that creates it, as we have seen, its backing store, which is stored in the
pages array of its gpu_alloc, can indeed change and backing pages can be
freed while the gpu_alloc is still alive. Recall that if
KBASE_REG_SHARED_BOTH is not set when the region is created, its backing
store will only be set when it is used as an external resource in a GPU job, in
which kbase_jd_user_buf_pin_pages is called to insert user pages to its
backing store:

static int kbase_jd_user_buf_map(struct kbase_context *kctx, 
        struct kbase_va_region *reg) 
{ 
    ... 
    int err = kbase_jd_user_buf_pin_pages(kctx, reg);   //<-----
- inserts user pages 
    ... 
} 

The backing store then shrinks back to zero after the job has finished using
the memory region by calling kbase_jd_user_buf_unmap. This, as we have
seen, can result in cleanup logic from kbase_mem_shrink being omitted by
mistake due to the need to reimplement complex memory management
logic. However, this also means the backing store of a region can be
removed without going through kbase_mem_shrink or freeing the region,
which is unusual and may break the assumptions made in other parts of the
code.

CVE-2022-46395
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The idea is to look for code that accesses the backing store of a memory
region and see if it implicitly assumes that the backing store is only removed
when either of the followings happens:

1. When the memory region is freed, or
2. When the backing store is shrunk by the kbase_mem_shrink call

It turns out that the kbase_vmap_prot function had made these assumptions.
The function kbase_vmap_prot is used by the driver to temporarily map the
backing pages of a memory region to the kernel address space via vmap so
that it can access them. It calls kbase_vmap_phy_pages to perform the
mapping. To prevent the region from being freed while the vmap is valid, a
kbase_vmap_struct is created for the lifetime of the mapping, which also
holds a reference to the gpu_alloc of the kbase_va_region:

static int kbase_vmap_phy_pages(struct kbase_context *kctx, 
        struct kbase_va_region *reg, u64 offset_bytes, size_t 
size, 
        struct kbase_vmap_struct *map) 
{ 
    ... 
    map->cpu_alloc = reg->cpu_alloc; 
    ... 
    map->gpu_alloc = reg->gpu_alloc; 
    ... 
    kbase_mem_phy_alloc_kernel_mapped(reg->cpu_alloc); 
    return 0; 
} 

The refcounts of map->cpu_alloc and map->gpu_alloc are incremented in
kbase_vmap_prot before entering this function. To prevent the backing store
from being shrunk by kbase_mem_commit, kbase_vmap_phy_pages also calls
kbase_mem_phy_alloc_kernel_mapped, which increments kernel_mappings
in the gpu_alloc:

static inline void 
kbase_mem_phy_alloc_kernel_mapped(struct kbase_mem_phy_alloc 
*alloc) 
{ 
    atomic_inc(&alloc->kernel_mappings); 
} 
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This prevents kbase_mem_commit from shrinking the backing store of the
memory region while it is mapped by kbase_vmap_prot, as
kbase_mem_commit will check the kernel_mappings of a memory region:

int kbase_mem_commit(struct kbase_context *kctx, u64 gpu_addr, 
u64 new_pages) 
{ 
    ... 
    if (atomic_read(&reg->cpu_alloc->kernel_mappings) > 0) 
        goto out_unlock; 
    ... 
} 

When kbase_mem_shrink is used outside of kbase_mem_commit, it is always
used within the jctx.lock of the corresponding kbase_context. As
mappings created by kbase_vmap_prot are only valid with this lock held,
other uses of kbase_mem_shrink cannot free the backing pages while the
mappings are in use either.

However, as we have seen, a KBASE_MEM_TYPE_IMPORTED_USER_BUF memory
region can remove its backing store without going through
kbase_mem_shrink. In fact, the KBASE_IOCTL_STICKY_RESOURCE_UNMAP can
be used to trigger kbase_unmap_external_resource to remove its backing
pages without holding the jctx.lock of the kbase_context. This means that
many uses of kbase_vmap_prot are vulnerable to a race condition that can
remove its vmap'ed page while the mapping is in use, causing a use-after-
free in the memory pages. For example, the
KBASE_IOCTL_SOFT_EVENT_UPDATE ioctl calls the
kbase_write_soft_event_status, which uses kbase_vmap_prot to create a
mapping, and then unmap it after the kernel finishes writing to it:

static int kbasep_write_soft_event_status( 
        struct kbase_context *kctx, u64 evt, unsigned char 
new_status) 
{ 
    ... 
    mapped_evt = kbase_vmap_prot(kctx, evt, sizeof(*mapped_evt), 
                     KBASE_REG_CPU_WR, &map); 
    //Race window start 
    if (!mapped_evt)                             
        return -EFAULT; 
    *mapped_evt = new_status; 
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    //Race window end 
    kbase_vunmap(kctx, &map); 
    return 0; 
} 

If the memory region that evt belongs to is of type
KBASE_MEM_TYPE_IMPORTED_USER_BUF, then between kbase_vmap_prot and
kbase_vunmap, the memory region can have its backing pages removed by
another thread using the KBASE_IOCTL_STICKY_RESOURCE_UNMAP ioctl.
There are other uses of kbase_vmap_prot in the driver, but they follow a
similar usage pattern and the use in KBASE_IOCTL_SOFT_EVENT_UPDATE has a
simpler call graph, so I’ll stick to it in this research.

The problem? The race window is very, very tiny.

Winning a tight race and widening the race
window

The race window in this case is very tight and consists of very few
instructions, so even hitting it is hard enough, let alone trying to free and
replace the backing pages inside this tiny window. In the past, I’ve used a
technique from Exploiting race conditions on [ancient] Linux of Jann Horn
to widen the race window. While the technique can certainly be used to
widen the race window here, it lacks the fine control in timing that I need
here to hit the small race window. Fortunately, another technique that was
also developed by Jann Horn in Racing against the clock—hitting a tiny
kernel race window is just what I need here.

The main idea of controlling race windows on the Linux kernel using these
techniques is to interrupt a task inside the race window, causing it to pause.
By controlling the timing of interrupts and the length of these pauses, the
race window can be widened to allow other tasks to run within it. In the
Linux kernel, there are different ways in which a task can be interrupted.

The technique in Exploiting race conditions on [ancient] Linux uses task
priorities to manipulate interrupts. The idea is to pin a low priority task on a
CPU, and then run another task with high priority on the same CPU during
the race window. The Linux kernel scheduler will then interrupt the low
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priority task to allow the high priority task to run. While this can stop the
low priority task for a long time, depending on how long it takes the high
priority task to run, it is difficult to control the precise timing of the
interrupt.

The Linux kernel also provides APIs that allow users to schedule an
interrupt at a precise time in the future. This allows more fine-grain control
in the timing of the interrupts and was explored in Racing against the clock
—hitting a tiny kernel race window. One such API is the timerfd. A
timerfd is a file descriptor where its availability can be scheduled using the
hardware timer. By using the timerfd_settime syscall, I can create a
timerfd, and schedule it to be ready for use in a future time. If I have epoll
instances that monitor the timerfd, then by the time the timerfd is ready,
the epoll instances will be iterated through and be woken up.

 
  migrate_to_cpu(0);   //<------- pin this task to a cpu 
 
  int tfd = timerfd_create(CLOCK_MONOTONIC, 0);   //<----- 
creates timerfd 
  //Adds epoll watchers 
  int epfds[NR_EPFDS]; 
  for (int i=0; i<NR_EPFDS; i++) 
    epfds[i] = epoll_create1(0); 
 
  for (int i=0; i<NR_EPFDS; i++) { 
    struct epoll_event ev = { .events = EPOLLIN }; 
    epoll_ctl(epfd[i], EPOLL_CTL_ADD, fd, &ev); 
  }   
   
  timerfd_settime(tfd, TFD_TIMER_ABSTIME, ...);  //<----- 
schedule tfd to be available at a later time 
 
  ioctl(mali_fd, KBASE_IOCTL_SOFT_EVENT_UPDATE,...); //<---- tfd 
becomes available and interrupts this ioctl   

In the above, I created a timerfd, tfd, using timerfd_create, and then
added epoll watchers to it using the epoll_ctl syscall. After this, I schedule
tfd to be available at a precise time in the future, and then run the
KBASE_IOCTL_SOFT_EVENT_UPDATE ioctl. If the tfd becomes available
while the KBASE_IOCTL_SOFT_EVENT_UPDATE is running, then it’ll be
interrupted and the epoll watchers of tfd are processed instead. By creating
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a large list of epoll watchers and scheduling tfd so that it becomes available
inside the race window of KBASE_IOCTL_SOFT_EVENT_UPDATE, I can widen
the race window enough to free and replace the backing stores of my
KBASE_MEM_TYPE_IMPORTED_USER_BUF memory region. Having said that, the
race window is still very difficult to hit and most attempts to trigger the bug
will fail. This means that I need some ways to tell whether the bug has
triggered before I continue with the next step of the exploit. Recall that the
race window happens between the calls kbase_vmap_prot and
kbase_vunmap:

static int kbasep_write_soft_event_status( 
        struct kbase_context *kctx, u64 evt, unsigned char 
new_status) 
{ 
    ... 
    mapped_evt = kbase_vmap_prot(kctx, evt, sizeof(*mapped_evt), 
                     KBASE_REG_CPU_WR, &map); 
    //Race window start 
    if (!mapped_evt)                             
        return -EFAULT; 
    *mapped_evt = new_status; 
    //Race window end 
    kbase_vunmap(kctx, &map); 
    return 0; 
} 

The call kbase_vmap_prot holds the kctx->reg_lock for almost the entire
duration of the function:

void *kbase_vmap_prot(struct kbase_context *kctx, u64 gpu_addr, 
size_t size, 
              unsigned long prot_request, struct 
kbase_vmap_struct *map) 
{ 
    struct kbase_va_region *reg; 
    void *addr = NULL; 
    u64 offset_bytes; 
    struct kbase_mem_phy_alloc *cpu_alloc; 
    struct kbase_mem_phy_alloc *gpu_alloc; 
    int err; 
    kbase_gpu_vm_lock(kctx);         //reg_lock 
    ... 
out_unlock: 
    kbase_gpu_vm_unlock(kctx);      //reg_lock 
    return addr; 
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fail_vmap_phy_pages: 
    kbase_gpu_vm_unlock(kctx); 
    kbase_mem_phy_alloc_put(cpu_alloc); 
    kbase_mem_phy_alloc_put(gpu_alloc); 
    return NULL; 
} 

A common case of failure is when the interrupt happens during the
kbase_vmap_prot function. In this case, the kctx->reg_lock, which is a
mutex, is held. To test whether the mutex is held when the interrupt happens,
I can make an ioctl call that requires the kctx->reg_lock during the
interrupt from a different thread. There are many options, and I choose
KBASE_IOCTL_MEM_FREE because this requires the kctx->reg_lock most of
the time and can be made to return early if an invalid argument is supplied.
If the kctx->reg_lock is held by KBASE_IOCTL_SOFT_EVENT_UPDATE (which
calls kbase_vmap_prot) while the interrupt happens, then
KBASE_IOCTL_MEM_FREE cannot proceed and would return after the
KBASE_IOCTL_SOFT_EVENT_UPDATE. Otherwise, the KBASE_IOCTL_MEM_FREE
ioctl will return first. By comparing the time when these ioctl calls return,
I can determine whether the interrupt happened inside the kctx->reg_lock.
Moreover, if the interrupt happens inside kbase_vmap_prot, then the address
evt that I supplied to kbasep_write_soft_event_status would not have
been written to.

So, if both of the following are true, then I know the interrupt must have
happened before the race window ended, but not inside the
kbase_vmap_prot function:

1. If an KBASE_IOCTL_MEM_FREE started during the interrupt in another
thread returns before the KBASE_IOCTL_SOFT_EVENT_UPDATE

2. The address evt has not been written to

The above conditions, however, can still be true if the interrupt happens
before kbase_vmap_prot. In this case, if I remove the backing pages from
the KBASE_MEM_TYPE_IMPORTED_USER_BUF memory region, then the
kbase_vmap_prot call would simply fail because the address evt, which
belongs to the memory region, is no longer invalid. This then results in the
KBASE_IOCTL_SOFT_EVENT_UPDATE returning an error.
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This gives me an indicator of when the interrupt happened and whether I
should proceed with the exploit or try triggering the bug again. To decide
whether the race is won, I can then do the following during the interrupt:

1. Check if evt is written to, if it is, then the interrupt happened too late
and the race was lost.

2. If evt is not written to, then make a KBASE_IOCTL_MEM_FREE ioctlfrom
another thread. If the ioctl returns and before the
KBASE_IOCTL_SOFT_EVENT_UPDATE ioctl that is being interrupted, then
proceed to the next step, otherwise, the interrupt happened inside
kbase_vmap_prots and the race was lost. (interrupt happens too early).

3. Proceed to remove the backing pages of the
KBASE_MEM_TYPE_IMPORTED_USER_BUF region that evt belongs to. If the
KBASE_IOCTL_SOFT_EVENT_UPDATE ioctl returns an error, then the
interrupt happened before the kbase_vmap_prot call and the race was
lost. Otherwise, the race is likely won and I can proceed to the next
stage in the exploit.

The following figure illustrates these conditions and their relations to the
race window.
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One byte to root them all

Once the race is won, I can proceed to free and then replace the backing
pages of the KBASE_MEM_TYPE_IMPORTED_USER_BUF region. Then, after the
interrupt returns, KBASE_IOCTL_SOFT_EVENT_UPDATE will write new_status
to the free’d (and now replaced) backing page of the
KBASE_MEM_TYPE_IMPORTED_USER_BUF region via the kernel address created
by vmap.

I’d like to replace those pages with memory pages used by the kernel. The
problem here is that memory pages in the Linux kernel are allocated
according to their zones and migrate type, and pages do not generally get
allocated to a different zone or migrate type. In our case, the backing pages
of the KBASE_MEM_TYPE_IMPORTED_USER_BUF come from a user space
application, which are generally allocated with the GFP_HIGHUSER or the
GFP_HIGHUSER_MOVABLE flag. On Android, which lacks the ZONE_HIGHMEM
zone, this translates into an allocation in the ZONE_NORMAL with
MIGRATE_UNMOVABLE (for GFP_HIGHUSER flag), or MIGRATE_MOVABLE (for
GFP_HIGHUSER_MOVABLE flag) migrate type. Memory pages used by the
kernel, such as those used by the SLUB allocator for allocating kernel
objects, on the other hand, are allocated in the ZONE_NORMAL with
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MIGRATE_UNMOVABLE migration type. Many user space memory, such as those
allocated via the mmap syscall, are allocated with the GFP_HIGHUSER_MOVABLE
flag, making them unsuitable for my purpose. In order to replace the backing
pages with kernel memory pages, I therefore need to find a way to map
pages to user space that are allocated with the GFP_HIGHUSER flag.

The situation is similar to what I had with “The code that wasn’t there:
Reading memory on an Android device by accident.” In the section
“Leaking Kernel memory,” I used the asynchronous I/O file system to
allocate user space memory with the GFP_HIGHUSER flag. By first allocating
user space memory with the asynchronous I/O file system and then
importing that memory to the Mali driver to create a
KBASE_MEM_TYPE_IMPORTED_USER_BUF region with that memory as backing
pages, I can create a KBASE_MEM_TYPE_IMPORTED_USER_BUF memory region
with backing pages in ZONE_NORMAL and the MIGRATE_UNMOVABLE migrate
type, which can be reused as kernel pages.

One big problem with bugs in kbase_vmap_prot is that, in all uses of
kbase_vmap_prot, there is very little control of the write value. In the case
of the KBASE_IOCTL_SOFT_EVENT_UPDATE, it is only possible to write either
zero or one to the chosen address:

static int kbasep_write_soft_event_status( 
        struct kbase_context *kctx, u64 evt, unsigned char 
new_status) 
{ 
    ... 
    if ((new_status != BASE_JD_SOFT_EVENT_SET) && 
        (new_status != BASE_JD_SOFT_EVENT_RESET)) 
        return -EINVAL; 
    mapped_evt = kbase_vmap_prot(kctx, evt, sizeof(*mapped_evt), 
                     KBASE_REG_CPU_WR, &map); 
    ... 
    *mapped_evt = new_status; 
    kbase_vunmap(kctx, &map); 
    return 0; 
} 

In the above, new_status, which is the value to be written to the address
evt, is checked to ensure that it is either BASE_JD_SOFT_EVENT_SET, or
BASE_JD_SOFT_EVENT_RESET, which are one or zero, respectively.
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Even though the write primitive is rather restrictive, by replacing the backing
page of my KBASE_MEM_TYPE_IMPORTED_USER_BUF region with page table
global directories (PGD) used by the kernel, or with pages used by the
SLUB allocator, I still have a fairly strong primitive.

However, since the bug is rather difficult to trigger, ideally, I’d like to be
able to replace the backing page reliably and finish the exploit by triggering
the bug once only. This makes replacing the pages with kernel PGD or
SLUB allocator backing pages less than ideal here, so let’s have a look at
another option.

While most kernel objects are allocated via variants of the kmalloc call,
which uses the SLUB allocator to allocate the object, large objects are
sometimes allocated using variants of the vmalloc call. Unlike kmalloc,
vmalloc allocates memory at the granularity of pages and it takes the page
directly from the kernel page allocator. While vmalloc is inefficient for
small locations, for allocations of objects larger than the size of a page,
vmalloc is often considered a more optimal choice. It is also considered
more secure as the allocated memory is used exclusively by the allocated
object and a guard page is often inserted at the end of the memory. This
means that any out-of-bounds access is likely to either hit unused memory or
the guard page. In our case, however, replacing the backing page with a
vmalloc object is just what I need. To optimize allocation, the kernel page
allocator maintains a per CPU cache which it uses to keep track of pages that
are recently freed on each CPU. New allocations from the same CPU are
simply given the most recently freed page on that CPU from the per CPU
cache. So by freeing the backing pages of a
KBASE_MEM_TYPE_IMPORTED_USER_BUF region on a CPU, and then
immediately allocating an object via vmalloc, the newly allocated object
will reuse the backing pages of the KBASE_MEM_TYPE_IMPORTED_USER_BUF
region. This allows me to write either zero or one to any offset in this object.
A suitable object allocated by vzalloc (a variant of vmalloc that zeros out
the allocated memory) is none but the kbase_mem_phy_alloc itself. The
object is created by kbase_alloc_create, which can be triggered via many
ioctl calls such as the KBASE_IOCTL_MEM_ALLOC:

static inline struct kbase_mem_phy_alloc *kbase_alloc_create( 
        struct kbase_context *kctx, size_t nr_pages, 
        enum kbase_memory_type type, int group_id) 
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{ 
    ... 
    size_t alloc_size = sizeof(*alloc) + sizeof(*alloc->pages) * 
nr_pages; 
    ... 
    /* Allocate based on the size to reduce internal 
fragmentation of vmem */ 
    if (alloc_size > KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD) 
        alloc = vzalloc(alloc_size); 
    else 
        alloc = kzalloc(alloc_size, GFP_KERNEL); 
    ... 
} 

When creating a kbase_mem_phy_alloc object, the allocation size,
alloc_size depends on the size of the region to be created. If alloc_size is
larger than the KBASE_MEM_PHY_ALLOC_LARGE_THRESHOLD, then vzalloc is
used for allocating the object. By making a KBASE_IOCTL_MEM_ALLOC ioctl
call immediately after the KBASE_IOCTL_STICKY_RESOURCE_UNMAP ioctl call
that frees the backing pages of a KBASE_MEM_TYPE_IMPORTED_USER_BUF
memory region, I can reliably replace the backing page with a kernel page
that holds a kbase_mem_phy_alloc object:

 
ioctl(mali_fd, KBASE_IOCTL_STICKY_RESOURCE_UNMAP, ...);  //<----
-- frees backing page 
ioctl(mali_fd, KBASE_IOCTL_MEM_ALLOC, ...);              //<----
-- reclaim backing page as kbase_mem_phy_alloc 

So, what should I rewrite in this object? There are many options, for
example, rewriting the kref field can easily cause a refcounting problem and
turn this into a UAF of a kbase_mem_phy_alloc, which is easy to exploit. It
is, however, much simpler to just set the gpu_mappings field to zero:

struct kbase_mem_phy_alloc { 
    struct kref           kref; 
    atomic_t              gpu_mappings; 
    atomic_t              kernel_mappings; 
    size_t                nents; 
    struct tagged_addr    *pages; 
    ... 
} 
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The Mali driver allows memory regions to share the same backing pages via
the KBASE_IOCTL_MEM_ALIAS ioctl call. A memory region created by
KBASE_IOCTL_MEM_ALLOC can be aliased by passing it as a parameter in the
call to KBASE_IOCTL_MEM_ALIAS:

 
  union kbase_ioctl_mem_alloc alloc = ...; 
  ... 
  ioctl(mali_fd, KBASE_IOCTL_MEM_ALLOC, &alloc); 
  void* region = mmap(NULL, ..., mali_fd, alloc.out.gpu_va); 
  union kbase_ioctl_mem_alias alias = ...; 
  ... 
  struct base_mem_aliasing_info ai = ...; 
  ai.handle.basep.handle = (uint64_t)region; 
  ... 
  alias.in.aliasing_info = (uint64_t)(&ai); 
  ioctl(mali_fd, KBASE_IOCTL_MEM_ALIAS, &alias); 
  void* alias_region = mmap(NULL, ..., mali_fd,  
alias.out.gpu_va); 

In the above, a memory region is created using KBASE_IOCTL_MEM_ALLOC,
and mapped to region. This region is then passed to the
KBASE_IOCTL_MEM_ALIAS call. After mapping the result to user space, both
region and alias_region share the same backing pages. As both regions
now share the same backing pages, region must be prevented from resizing
via the KBASE_IOCTL_MEM_COMMIT ioctl, otherwise the backing pages may
be freed while it is still mapped to the alias_region:

 
  union kbase_ioctl_mem_alloc alloc = ...; 
  ... 
  ioctl(mali_fd, KBASE_IOCTL_MEM_ALLOC, &alloc); 
  void* region = mmap(NULL, ..., mali_fd, alloc.out.gpu_va); 
  union kbase_ioctl_mem_alias alias = ...; 
  ... 
  struct base_mem_aliasing_info ai = ...; 
  ai.handle.basep.handle = (uint64_t)region; 
  ... 
  alias.in.aliasing_info = (uint64_t)(&ai); 
  ioctl(mali_fd, KBASE_IOCTL_MEM_ALIAS, &alias); 
  void* alias_region = mmap(NULL, ..., mali_fd,  
alias.out.gpu_va); 
 
  struct kbase_ioctl_mem_commit commit = ...; 
  commit.gpu_addr = (uint64_t)region; 
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  ioctl(mali_fd, KBASE_IOCTL_MEM_COMMIT, &commit);  //<---- 
ioctl fail as region cannot be resized 

This is achieved using the gpu_mappings field in the gpu_alloc of a
kbase_va_region. The gpu_mappings field keeps track of the number of
memory regions that are sharing the same backing pages. When a region is
aliased, gpu_mappings is incremented:

u64 kbase_mem_alias(struct kbase_context *kctx, u64 *flags, u64 
stride, 
            u64 nents, struct base_mem_aliasing_info *ai, 
            u64 *num_pages) 
{ 
    ... 
    for (i = 0; i < nents; i++) { 
        if (ai[i].handle.basep.handle > PAGE_SHIFT) <gpu_alloc; 
            ... 
            kbase_mem_phy_alloc_gpu_mapped(alloc);  
//gpu_mappings 
        } 
        ... 
    } 
    ... 
} 

The gpu_mappings is checked in the KBASE_IOCTL_MEM_COMMIT call to
ensure that the region is not mapped multiple times:

int kbase_mem_commit(struct kbase_context *kctx, u64 gpu_addr, 
u64 new_pages) 
{ 
    ... 
    if (atomic_read(&reg->gpu_alloc->gpu_mappings) > 1) 
        goto out_unlock; 
    ... 
} 

So, by overwriting gpu_mappings of a memory region to zero, I can cause an
aliased memory region to pass the above check and have its backing store
resized. This then causes its backing pages to be removed without removing
the alias mappings. In particular, after shrinking the backing store, the alias
region can be used to access backing pages that are already freed.
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The situation is now very similar to what I had in “Corrupting memory
without memory corruption” and I can apply the technique from the section,
“Breaking out of the context,” to this bug.

To recap, I now have a kbase_va_region whose backing pages are already
freed and I’d like to reuse these freed backing pages so I can gain read and
write access to arbitrary memory. To understand how this can be done, we
need to know how backing pages to a kbase_va_region are allocated.

When allocating pages for the backing store of a kbase_va_region, the
kbase_mem_pool_alloc_pages function is used:

int kbase_mem_pool_alloc_pages(struct kbase_mem_pool *pool, 
size_t nr_4k_pages, 
        struct tagged_addr *pages, bool partial_allowed) 
{ 
    ... 
    /* Get pages from this pool */ 
    while (nr_from_pool--) { 
        p = kbase_mem_pool_remove_locked(pool);     //next_pool) 
{ 
        /* Allocate via next pool */ 
        err = kbase_mem_pool_alloc_pages(pool->next_pool,      
//<----- 2. 
                nr_4k_pages - i, pages + i, partial_allowed); 
        ... 
    } else { 
        /* Get any remaining pages from kernel */ 
        while (i != nr_4k_pages) { 
            p = kbase_mem_alloc_page(pool);     //<------- 3. 
            ... 
        } 
        ... 
    } 
    ... 
} 

The input argument kbase_mem_pool is a memory pool managed by the
kbase_context object associated with the driver file that is used to allocate
the GPU memory. As the comments suggest, the allocation is actually done
in tiers. First the pages will be allocated from the current kbase_mem_pool
using kbase_mem_pool_remove_locked (1 in the above). If there is not
enough capacity in the current kbase_mem_pool to meet the request, then
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pool->next_pool is used to allocate the pages (2 in the above). If even
pool->next_pool does not have the capacity, then kbase_mem_alloc_page
is used to allocate pages directly from the kernel via the buddy allocator (the
page allocator in the kernel). 
When freeing a page, the same happens: kbase_mem_pool_free_pages first
tries to return the pages to the kbase_mem_pool of the current
kbase_context, if the memory pool is full, it’ll try to return the remaining
pages to pool->next_pool. If the next pool is also full, then the remaining
pages are returned to the kernel by freeing them via the buddy allocator. 
As noted in “Corrupting memory without memory corruption,” pool-
>next_pool is a memory pool managed by the Mali driver and shared by all
the kbase_context. It is also used for allocating page table global directories
(PGD) used by GPU contexts. In particular, this means that by carefully
arranging the memory pools, it is possible to cause a freed backing page in a
kbase_va_region to be reused as a PGD of a GPU context. (The details of
how to achieve this can be found in the section, “Breaking out of the
context.”) As the bottom level PGD stores the physical addresses of the
backing pages to GPU virtual memory addresses, being able to write to a
PGD allows me to map arbitrary physical pages to the GPU memory, which
I can then read from and write to by issuing GPU commands. This gives me
access to arbitrary physical memory. As physical addresses for kernel code
and static data are not randomized and depend only on the kernel image, I
can use this primitive to overwrite arbitrary kernel code and gain arbitrary
kernel code execution. 
The exploit for Pixel 6 can be found here with some setup notes.

Conclusions

In this post I’ve shown how root cause analysis of CVE-2022-36449
revealed the unusual memory management in
KBASE_MEM_TYPE_IMPORTED_USER_BUF memory region, which then led to the
discovery of another vulnerability. This shows how important it is to carry
out root cause analysis of existing vulnerabilities and to use the knowledge
to identify new variants of an issue. While CVE-2022-46395 seems very
difficult to exploit due to a very tight race window and the limited write
primitive that can be achieved by the bug, I’ve demonstrated how techniques
from Racing against the clock—hitting a tiny kernel race window can be
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used to exploit seemingly impossible race conditions, and how UAF in
memory pages can be exploited reliably even with a very limited write
primitive.

This article was downloaded by calibre from https://github.blog/2023-05-
25-rooting-with-root-cause-finding-a-variant-of-a-project-zero-bug/
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How to automate a Microsoft Power Platform
deployment using GitHub Actions

Low-code has enabled not only developers to deploy code more easily, but
it has also lowered the barrier to entry for many others to deploy
applications without having to have a large amount of coding knowledge.
Low-code has enabled so many to deliver applications and solve problems
in their organizations with greater ease.

Microsoft Power Platform is a powerful suite of tools that allows users to
build custom solutions for their organization with low-code tools. GitHub,
on the other hand, is a powerful web-based platform that allows developers
to manage, secure, and deliver their code. In this blog post, we will explore
how to automate a Power Platform deployment using the CI/CD capability
of GitHub Actions.

What is GitHub Actions

GitHub Actions is a powerful automation tool that allows developers to
automate tasks, such as building, testing and deploying code. It is actually
more than just a continuous integration and continuous deployment tool. It
provides a wide range of pre-built actions, which are reusable units of code
that can be combined to create workflows. GitHub Actions also supports
custom actions, which can be built and shared across teams and the
community.

Why automation

Why automation? Simply, human error. We all make mistakes. We want to
increase our efficiency and productivity, all while reducing our human
errors. GitHub Actions are an easy to use automation tool that work directly
from a GitHub repository, enabling your deployments to occur closer to
your code. Also, there are a lot of platform tools from GitHub that you can
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integrate into your code base, for example, GitHub Advanced Security. It is
all about bringing your tools closer to the developer and enabling you to do
more with your code.

Automating your Power Platform deployment
with GitHub Actions

Automating your Power Platform deployment with GitHub Actions has
several benefits:

1. Consistency: automation ensures that each deployment is identical and
prescriptive, eliminating the risk of human error.

2. Efficiency: reduces the time and effort required to deploy solutions,
allowing you and your teams to deliver more value at an increased
rate.

3. Version Control: track your changes with GitHub as your version
control provider, allowing you to have full visibility of code changes
and the ability to rollback to a previous version if needed, preventing
unnecessary downtime.

4. Collaboration: leveraging GitHub to allow your teams to work on the
same code simultaneously, increasing communication across your
teams.

Watch the video below to follow along with a hands-on tutorial:

In the above video we cover off everything you need to know about
deploying your Power Platform deployment with GitHub Actions; follow
the links below to jump into each topic:

Integrate Power Platform development into GitHub Codespaces
Leverage GitHub Environments to segment your workflow
Access the Microsoft Power Platform actions lab from a GitHub
repository
Export your Power Platform solution and check it in
Release your Power Platform solution from a QA environment through
to production
Review your CI/CD deployment in Power Platform
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Automating your Power Platform deployments with GitHub Actions can
help you save time, reduce errors, and increase productivity. Good luck
automating and remember, you can automate so much more than your
CI/CD workflows with GitHub Actions!

Useful Resources

Further documentation for GitHub Actions and Power Platform
GitHub Marketplace for Power Platform Actions
Getting started with GitHub Actions
Learn more about Microsoft Power Platform

This article was downloaded by calibre from https://github.blog/2023-05-
24-how-to-automate-a-microsoft-power-platform-deployment-using-github-
actions/
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Kelsey Hightower on leadership in open source
and the future of Kubernetes

Subscribe to The ReadME Podcast on Apple Podcasts, Spotify, or wherever
you listen to podcasts.

“The future of Kubernetes, if we’re being honest, is that it has to go away.
If we’re still talking about Kubernetes 20 years from now, that would be a
sad moment in tech because we didn’t come up with any better ideas,” says
Kelsey Hightower, Kubernetes superstar and developer advocate.

However, Kubernetes isn’t going anywhere just yet, and Kelsey outlines the
unique features that keep the community moving forward. “Kubernetes has
enough extension points for security, storage modules, cloud provider
integrations, and so on, that there’s no need to hit the fork button. If you’ve
been a maintainer, you know that the hardest thing is to add new
functionality without getting sidetracked. Kubernetes’ API model, its plugin
model, was a gift to all future maintainers. It relieves this group from
having to figure out how to add every bell and whistle.”

In this special episode of The ReadME Podcast, dedicated to GitHub’s
Maintainer Month, Kelsey joins hosts Martin Woodward and Neha Batra to
discuss his philosophy on fostering thriving open source communities and
the importance of empathy to a maintainer’s success. The conversation
underscores the critical role of the individuals behind the open source
projects we consume and celebrates their tireless efforts and the profound
impact they’ve had on the tech community.

Thank you to Aaron Francis, Cassidy Williams, Frances Coronel, Anthony
Sottile, Peter Strömberg, and Brandon Ringe, and of course, Kelsey
Hightower, for helping us to celebrate this Maintainer Month!

Kelsey
Hightower

In this special episode, Kelsey shares his origin story, insights
on the future of Kubernetes, and advice on making
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https://gh.io/AAkt3lf
https://podcasts.apple.com/us/podcast/the-readme-podcast/id1567016194
https://open.spotify.com/show/660KitvdJDX2vUmioAbwSQ
https://github.com/readme/podcast/kelsey-hightower
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https://github.com/readme/podcast/kelsey-hightower


—Present complicated technology easier to understand.
The
open/closed
equilibrium

Striking a balance between openness and control in open
source projects, preserving the integrity of community
insights, and how humor can transform communities.

Fusing tech
and
progress

How open source is powering nuclear fusion research, advice
for fortifying your career against change, and practical tips on
using GitHub.

Innovation
without
barriers

Reframing disability and accessibility, playing Minecraft with
your eyes, and what AI means for the future of accessibility.

To hear all of Kelsey’s advice, including tips on succession planning and
how to identify future project leaders, tune in to this bonus episode of The
ReadME Podcast. And don’t miss next month’s episode, where we’ll go
beyond the code to examine what it takes to build a successful open source
project. Subscribe to The ReadME Podcast on Apple Podcasts, Spotify, or
wherever you listen.

This article was downloaded by calibre from https://github.blog/2023-05-
24-kelsey-hightower-on-leadership-in-open-source-and-the-future-of-
kubernetes/
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Announcing the public preview of GitHub
Advanced Security for Azure DevOps

Web applications are foundational to nearly every aspect of everyday life,
whether they are used for shopping and remote work, or to provide life-
saving services in hospitals and power critical infrastructure. However, the
proliferation of web applications doesn’t come without risk. Applications
continue to be a top attack vector, and are at the center of more than 40% of
all data breaches.

At GitHub, we want to make it as easy as possible to not only build
innovative software, but build it securely. GitHub Advanced Security’s
(GHAS) application security testing tools were built to provide a
frictionless, native experience for developers, to help drive innovation
forward. This native approach is critical, as oftentimes security findings
take six months or more to fix. With GHAS’ real time vulnerability
detection, developers can fix issues in minutes, not months. For instance,
the fix rate of vulnerabilities identified by CodeQL during a pull request is
72% compared to the industry norm fix rate of 15%, seven days after a
vulnerability has been detected. This is just one of the reasons GHAS users
fixed 24 million vulnerable packages in 2022.

Today, GHAS will be publicly available on Azure DevOps. GHAS has
been a game-changer for many development teams, providing critical
application security testing capabilities, such as secret scanning,
dependency scanning (SCA), and code scanning (SAST) natively in the
developer workflow. With these features natively embedded in Azure
DevOps, teams can leverage the power of GHAS without leaving their
familiar Azure DevOps environment.

Secret scanning: stop secret leaks
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Secret scanning detects and prevents secret exposure in your application
development process. Stolen credentials are present in nearly 50% of
security incidents, highlighting the need for organizations to secure their
secrets. GHAS for Azure DevOps provides out-of-the-box secret scanning,
with no additional tooling required. You can easily enable it on all your
repositories to instantly detect exposed secrets. In 2022 alone, GitHub
detected over 1.7 million exposed secrets.

Dependency scanning: secure your software
supply chain

Dependency scanning is another key feature that can help identify
vulnerabilities in open source packages used in Azure Repos. With the rise
of open source supply chain attacks, and the presence of vulnerabilities like
Log4Shell, developers need to take extra precautions to ensure their code is
secure. GHAS for Azure DevOps identifies the open source packages used
in Azure Repos and provides guidance on how to upgrade those packages to
mitigate vulnerabilities.

Code scanning: prevent and fix vulnerabilities in
your code

Code scanning is a critical component of any robust application security
strategy, and GHAS’ CodeQL static analysis engine has quickly become an
industry leader in detecting static code vulnerabilities. With the integration
of CodeQL scans directly into Azure Pipelines, developers can now detect
hundreds of code security vulnerabilities across a wide range of languages,
including C#, C/C++, Python, JavaScript/TypeScript, Java, Go, and more.

Interested in learning more? Sign up for the preview, and we’ll do our best
to get your Azure DevOps organization(s) enabled as soon as possible!.

This article was downloaded by calibre from https://github.blog/2023-05-
23-announcing-the-public-preview-of-github-advanced-security-for-azure-
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