
Chapter 1

Finite Elements Overview

1.1 Modeling Basics

“There are no exact answers. Just bad ones, good ones and better ones. Engineering is the
art of approximation.” Approximation is performed with models. We consider a reality of
interest, e.g., a concrete beam. In a first view, it has properties such as dimensions, color,
surface texture. From a view of structural analysis the latter ones are irrelevant. A more
detailed inspection reveals a lot of more properties: composition, weight, strength, stiffness,
temperatures, conductivities, capacities, and so on. From a structural point of view some
of them are essential. We combine those essential properties to form a conceptual model.
Whether a property is essential is obvious for some, but the valuation of others might be
doubtful. We have to choose. By choosing properties our model becomes approximate
compared to reality. Approximations are more or less accurate.

On one hand, we should reduce the number of properties of a model. Any reduction of
properties will make a model less accurate. Nevertheless, it might remain a good model. On
the other hand, an over-reduction of properties will make a model inaccurate and therefore
useless. Maybe also properties are introduced which have no counterparts in the reality of
interest. Conceptual modeling is the art of choosing properties. As all other arts it cannot
be performed guided by strict rules.

The chosen properties have to be related to each other in quantitative manner. This
leads to a mathematical model. In many cases, we have systems of differential equations
relating variable properties or simply variables. After prescribing appropriate boundary and
initial conditions an exact, unique solution should exist for variables depending on spatial
coordinates and time. Thus, a particular variable forms a field. Such fields of variables are
infinite as space and time are infinite.

As analytical solutions are not available in many cases, a discretization is performed
to obtain approximate numerical solutions. Discretization reduces underlying infinite space
and time into a finite number of supporting points in space and time and maps differential
equations into algebraic equations relating a finite number of variables. This leads to a
numerical model.
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