10:57

number of words—our measure of the size of an instance is off only by a multiplica-
tive constant. So an algorithm that performs a computation using integers stored
using 64 bits may take twice as long as a similar algorithm coded using integers
stored in 32 bits.

Algorithmic researchers accept that they are unable to compute with pinpoint accu-
racy the costs involved in using a particular encoding in an implementation. There-
fore, they assert that performance costs that differ by a multiplicative constant are
asymptotically equivalent, or in other words, will not matter as the problem size con-
tinues to grow. As an example, we can expect 64-bit integers to require more pro-
cessing time than 32-bit integers, but we should be able to ignore that and assume
that a good algorithm for a million 32-bit integers will also be good for a million 64-
bit integers. Although such a definition would be impractical for real-world situa-
tions (who would be satisfied to learn they must pay a bill that is 1,000 times greater
than expected?), it serves as the universal means by which algorithms are compared.

For all algorithms in this book, the constants are small for virtually all platforms.
However, when implementing an algorithm in production code, you must pay
attention to the details reflected by the constants. This asymptotic approach is useful
since it can predict the performance of an algorithm on a large problem instance
based on the performance on small problem instances. It helps determine the larg-
est problem instance that can be handled by a particular algorithm implementation
(Bentley, 1999).

To store collections of information, most programming languages support arrays,
contiguous regions of memory indexed by an integer i to enable rapid access to the
i element. An array is one-dimensional when each element fits into a word in the
platform (e.g., an array of integers or Boolean values). Some arrays extend into mul-
tiple dimensions, enabling more complex data representations.

Rate of Growth of Functions

We describe the behavior of an algorithm by representing the rate of growth of its
execution time as a function of the size of the input problem instance. Characteriz-
ing an algorithm’s performance in this way is a common abstraction that ignores
numerous details. To use this measure properly requires an awareness of the details
hidden by the abstraction. Every program is run on a computing platform, which is
a general term meant to encompass:

« The computer on which the program is run, its CPU, data cache, floating-point
unit (FPU), and other on-chip features

» The programming language in which the program is written, along with the
compiler/interpreter and optimization settings for generated code

« The operating system

« Other processes being run in the background

10 |

Chapter 2: The Mathematics of Algorithms

We assume that changing the platform will change the execution time of the pro-
gram by a constant factor, and that we can therefore ignore platform differences in
conformance with the asymptotically equivalent principle described earlier.

To place this discussion in context, we briefly discuss the Sequential Search algo-
rithm, presented later in Chapter 5. Sequential Search examines a list of n > 1 dis-
tinct elements, one at a time, until a desired value, v, is found. For now, assume that:

« There are n distinct elements in the list
« The list contains the desired value v

« Each element in the list is equally likely to be the desired value v

To understand the performance of Sequential Search, we must know how many
elements it examines “on average” Since v is known to be in the list and each
element is equally likely to be v, the average number of examined elements, E(n), is
the sum of the number of elements examined for each of the n values divided by n.
Mathematically:

E(n) = é‘:lizn(n+1)=l 1

1
H,‘ 2n nt

Thus, Sequential Search examines about half of the elements in a list of n distinct
elements subject to these assumptions. If the number of elements in the list doubles,
then Sequential Search should examine about twice as many elements; the expected
number of probes is a linear function of n. That is, the expected number of probes is
“about” c*n for some constant ¢; here, ¢ = 0.5. A fundamental fact of performance
analysis is that the constant ¢ is unimportant in the long run, because the most
important cost factor is the size of the problem instance, n. As n gets larger and
larger, the error in claiming that:

n= n+l
- 2

| —
NI

becomes less significant. In fact, the ratio between the two sides of this approxima-
tion approaches 1. That is:

although the error in the estimation is significant for small values of n. In this con-
text, we say the rate of growth of the expected number of elements that Sequential
Search examines is linear. That is, we ignore the constant multiplier and are con-
cerned only when the size of a problem instance is large.

Rate of Growth of Functions | 11
13 /195

s
Q
o
3,
[=d
=2
3
[}

jo
sanewayiew

83%



