
Ledger: Command-Line Accounting

John Wiegley

i

Table of Contents

1 Introduction . 1
1.1 Building the program . 2
1.2 Getting help . 3

2 Running Ledger . 4
2.1 Usage overview . 4

2.1.1 Checking balances . 5
2.1.1.1 Sub-account balances . 6
2.1.1.2 Specific account balances . 7

2.1.2 The register report . 7
2.1.2.1 Specific register queries . 8

2.1.3 Selecting transactions . 8
2.1.3.1 By date . 9
2.1.3.2 By status . 10
2.1.3.3 By relationship . 10
2.1.3.4 By budget . 11
2.1.3.5 By value expression . 12

2.1.4 Massaging register output . 12
2.1.4.1 Summarizing . 12
2.1.4.2 Quick periods . 13
2.1.4.3 Ordering and width . 14
2.1.4.4 Averages and percentages . 15
2.1.4.5 Reporting total data . 15
2.1.4.6 Display by value expression . 15
2.1.4.7 Change report format . 15

2.1.5 Standard queries . 16
2.1.6 Reporting balance totals . 17
2.1.7 Reporting percentages . 17

2.2 Commands . 17
2.2.1 balance . 17
2.2.2 register . 17
2.2.3 print . 17
2.2.4 output . 18
2.2.5 xml . 18
2.2.6 emacs . 18
2.2.7 equity . 18
2.2.8 prices . 18
2.2.9 entry . 18

2.3 Options . 19
2.3.1 Basic options . 19
2.3.2 Report filtering . 20
2.3.3 Output customization . 21
2.3.4 Commodity reporting . 23

ii

2.3.5 Environment variables . 24
2.4 Format strings . 24
2.5 Value expressions . 26

2.5.1 Variables . 26
2.5.1.1 Transaction/account details . 27
2.5.1.2 Calculated totals . 27

2.5.2 Functions . 27
2.5.3 Operators . 28
2.5.4 Complex expressions . 28

2.6 Period expressions . 28
2.7 File format . 30
2.8 Some typical queries . 31

2.8.1 Reporting monthly expenses . 32
2.8.2 Visualizing with Gnuplot . 32

2.8.2.1 Typical plots . 32
2.9 Budgeting and forecasting . 33

2.9.1 Budgeting . 33
2.9.2 Forecasting . 34

3 Keeping a ledger . 35
3.1 Stating where money goes . 35
3.2 Assets and Liabilities . 36

3.2.1 Tracking reimbursable expenses . 37
3.3 Commodities and Currencies . 39

3.3.1 Commodity price histories . 40
3.3.2 Commodity equivalencies . 40

3.4 Accounts and Inventories . 41
3.5 Understanding Equity . 41
3.6 Dealing with Petty Cash . 42
3.7 Working with multiple funds and accounts . 42
3.8 Archiving previous years . 44
3.9 Virtual transactions . 45
3.10 Automated transactions . 45
3.11 Using Emacs to Keep Your Ledger . 46
3.12 Using GnuCash to Keep Your Ledger . 48
3.13 Using timeclock to record billable time . 48

4 Using XML . 50

Chapter 1: Introduction 1

1 Introduction

Ledger is an accounting tool with the moxie to exist. It provides no bells or whistles, and
returns the user to the days before user interfaces were even a twinkling in their father’s
CRT.

What it does offer is a double-entry accounting ledger with all the flexibility and muscle
of its modern day cousins, without any of the fat. Think of it as the Bran Muffin of
accounting tools.

To use it, you need to start keeping a ledger. This is the basis of all accounting, and if
you haven’t started yet, now is the time to learn. The little booklet that comes with your
checkbook is a ledger, so we’ll describe double-entry accounting in terms of that.

A checkbook ledger records debits (subtractions, or withdrawals) and credits (additions,
or deposits) with reference to a single account: the checking account. Where the money
comes from, and where it goes to, are described in the payee field, where you write the
person or company’s name. The ultimate aim of keeping a checkbook ledger is to know how
much money is available to spend. That’s really the aim of all ledgers.

What computers add is the ability to walk through these transactions, and tell you things
about your spending habits; to let you devise budgets and get control over your spending; to
squirrel away money into virtual savings account without having to physically move money
around; etc. As you keep your ledger, you are recording information about your life and
habits, and sometimes that information can start telling you things you aren’t aware of.
Such is the aim of all good accounting tools.

The next step up from a checkbook ledger, is a ledger that keeps track of all your
accounts, not just checking. In such a ledger, you record not only who gets paid—in the
case of a debit—but where the money came from. In a checkbook ledger, its assumed
that all the money comes from your checking account. But in a general ledger, you write
transaction two-lines: the source account and target account. There must always be a debit
from at least one account for every credit made to another account. This is what is meant by
“double-entry” accounting: the ledger must always balance to zero, with an equal number
of debits and credits.

For example, let’s say you have a checking account and a brokerage account, and you
can write checks from both of them. Rather than keep two checkbooks, you decide to use
one ledger for both. In this general ledger you need to record a payment to Pacific Bell for
your monthly phone bill. The cost is $23.00, let’s say, and you want to pay it from your
checking account. In the general ledger you need to say where the money came from, in
addition to where it’s going to. The entry might look like this:

9/29 BAL Pacific Bell $-200.00 $-200.00

Equity:Opening Balances $200.00

9/29 BAL Checking $100.00 $100.00

Equity:Opening Balances $-100.00

9/29 100 Pacific Bell $23.00 $23.00

Checking $-23.00

The first line shows a payment to Pacific Bell for $23.00. Because there is no “balance” in
a general ledger—it’s always zero—we write in the total balance of all payments to “Pacific
Bell”, which now is $223.00 (previously the balance was $200.00). This is done by looking
at the last entry for “Pacific Bell” in the ledger, adding $23.00 to that amount, and writing

Chapter 1: Introduction 2

the total in the balance column. And the money came from “Checking”—a withdrawal of
$23.00—which leaves the ending balance in “Checking” at $77.00. This is a very manual
procedure; but that’s where computers come in...

The transaction must balance to $0: $23 went to Pacific Bell, $23 came from Checking.
There is nothing left over to be accounted for, since the money has simply moved from one
account to another. This is the basis of double-entry accounting: that money never pops
in or out of existence; it is always a transaction from one account to another.

Keeping a general ledger is the same as keeping two separate ledgers: One for Pacific
Bell and one for Checking. In that case, each time a payment is written into one, you write
a corresponding withdrawal into the other. This makes it easier to write in a “running
balance”, since you don’t have to look back at the last time the account was referenced—
but it also means having a lot of ledger books, if you deal with multiple accounts.

Enter the beauty of computerized accounting. The purpose of the Ledger program is to
make general ledger accounting simple, by keeping track of the balances for you. Your only
job is to enter the transactions. If a transaction does not balance, Ledger displays an error
and indicates the incorrect transaction.1

In summary, there are two aspects of Ledger use: updating the ledger data file, and
using the Ledger tool to view the summarized result of your entries.

And just for the sake of example—as a starting point for those who want to dive in
head-first—here are the ledger entries from above, formatting as the ledger program wishes
to see them:

2004/09/29 Pacific Bell

Payable:Pacific Bell $-200.00

Equity:Opening Balances

2004/09/29 Checking

Accounts:Checking $100.00

Equity:Opening Balances

2004/09/29 Pacific Bell

Payable:Pacific Bell $23.00

Accounts:Checking

The account balances and registers in this file, if saved as ‘ledger.dat’, could be reported
using:

$ ledger -f ledger.dat balance

$ ledger -f ledger.dat register checking

$ ledger -f ledger.dat register bell

1.1 Building the program

Ledger is written in ANSI C++, and should compile on any platform. It depends on the GNU
multiprecision integer library (libgmp), and the Perl regular expression library (libpcre). It
was developed using GNU make and gcc 3.3, on a PowerBook running OS/X.

To build and install once you have these libraries on your system, enter these commands:

./configure && make install

1 In some special cases, it automatically balances this entry for you.

Chapter 1: Introduction 3

1.2 Getting help

If you need help on how to use Ledger, or run into problems, you can just the Ledger mailing
list at the following Web address:

https://lists.sourceforge.net/lists/listinfo/ledger-discuss

You can also find help at the ‘#ledger’ channel on the IRC server ‘irc.freenode.net’.

Chapter 2: Running Ledger 4

2 Running Ledger

Ledger has a very simple command-line interface, named—enticing enough—ledger. It
supports a few reporting commands, and a large number of options for refining the output
from those commands. The basic syntax of any ledger command is:

ledger [OPTIONS...] COMMAND [ARGS...]

Command options must always precede the command word. After the command word
there may appear any number of arguments. For most commands, these arguments are reg-
ular expressions that cause the output to relate only to transactions matching those regular
expressions. For the entry command, the arguments have a special meaning, described
below.

The regular expressions arguments always match the account name that a transaction
refers to. To match on the payee of the entry instead, precede the regular expression with
‘--’. For example, the following balance command reports account totals for rent, food and
movies, but only those whose payee matches Freddie:

ledger bal rent food movies -- freddie

There are many, many command options available with the ledger command, and it
takes a while to master them. However, none of them are required to use the basic reporting
commands.

2.1 Usage overview

Before getting into the details of how to run Ledger, it will be easier to introduce the
features in the context of their typical usage. To that end, this section presents a series of
recipes, gradually introducing all of the command-line features of Ledger.

For the purpose of these examples, assume the environment variable LEDGER is set to
the file ‘sample.dat’ (which is included in the distribution), and that the contents of that
file are:

= /^Expenses:Books/

(Liabilities:Taxes) -0.10

~ Monthly

Assets:Bank:Checking $500.00

Income:Salary

2004/05/01 * Checking balance

Assets:Bank:Checking $1,000.00

Equity:Opening Balances

2004/05/01 * Investment balance

Assets:Brokerage 50 AAPL @ $30.00

Equity:Opening Balances

2004/05/14 * Pay day

Assets:Bank:Checking $500.00

Income:Salary

2004/05/27 Book Store

Expenses:Books $20.00

Liabilities:MasterCard

Chapter 2: Running Ledger 5

2004/05/27 (100) Credit card company

Liabilities:MasterCard $20.00

Assets:Bank:Checking

This sample file demonstrates a basic principle of accounting which it is recommended
you follow: Keep all of your accounts under five parent Assets, Liabilities, Income, Expenses
and Equity. It is important to do so in order to make sense out of the following examples.

2.1.1 Checking balances

Ledger has seven basic commands, but by far the most often used are balance and
register. To see a summary balance of all accounts, use:

ledger bal

bal is a short-hand for balance. This command prints out the summary totals of the
five parent accounts used in ‘sample.dat’:

$1,480.00

50 AAPL Assets

$-2,500.00 Equity

$20.00 Expenses

$-500.00 Income

$-2.00 Liabilities

$-1,502.00

50 AAPL

None of the child accounts are shown, just the parent account totals. We can see that
in ‘Assets’ there is $1,480.00, and 50 shares of Apple stock. There is also a negative grand
total. Usually the grand total is zero, which means that all accounts balance1. In this case,
since the 50 shares of Apple stock cost $1,500.00 dollars, then these two amounts balance
each other in the grand total. The extra $2.00 comes from a virtual transaction being added
by the automatic entry at the top of the file. The entry is virtual because the account name
was surrounded by parentheses in an automatic entry. Automatic entries will be discussed
later, but first let’s remove the virtual transaction from the balance report by using the
‘--real’ option:

ledger --real bal

Now the report is:

$1,480.00

50 AAPL Assets

$-2,500.00 Equity

$20.00 Expenses

$-500.00 Income

$-1,500.00

50 AAPL

Since the liability was a virtual transaction, it has dropped from the report and we see
that final total is balanced.

But we only know that it balances because ‘sample.dat’ is quite simple, and we happen
to know that the 50 shares of Apple stock cost $1,500.00. We can verify that things really

1 It is impossible for accounts not to balance in ledger; it reports an error if a transaction does not balance

Chapter 2: Running Ledger 6

balance by reporting the Apple shares in terms of their cost, instead of their quantity. To
do this requires the ‘--basis’, or ‘-B’, option:

ledger --real -B bal

This command reports:

$2,980.00 Assets

$-2,500.00 Equity

$20.00 Expenses

$-500.00 Income

With the basis cost option, the grand total has disappeared, as it is now zero. The
confirms that the cost of everything balances to zero, which must always be true. Reporting
the real basis cost should never yield a remainder2.

2.1.1.1 Sub-account balances

The totals reported by the balance command are only the topmost parent accounts. To see
the totals of all child accounts as well, use the ‘-s’ option:

ledger --real -B -s bal

This reports:

$2,980.00 Assets

$1,480.00 Bank:Checking

$1,500.00 Brokerage

$-2,500.00 Equity:Opening Balances

$20.00 Expenses:Books

$-500.00 Income:Salary

This shows that the ‘Assets’ total is made up from two child account, but that the total
for each of the other accounts comes from one child account.

Sometimes you may have a lot of children, nested very deeply, but only want to report
the first two levels. This can be done with a display predicate, using a value expression.
In the value expression, T represents the reported total, and l is the display level for the
account:

ledger --real -B -d "T&l<=2" bal

This reports:

$2,980.00 Assets

$1,480.00 Bank

$1,500.00 Brokerage

$-2,500.00 Equity:Opening Balances

$20.00 Expenses:Books

$-500.00 Income:Salary

Instead of reporting ‘Bank:Checking’ as a child of ‘Assets’, it report only ‘Bank’, since
that account is a nesting level of 2, while ‘Checking’ is at level 3.

To review the display predicate used—T&l<=2—this rather terse expression means: Dis-
play an account only if it has a non-zero total (T), and its nesting level is less than or equal
to 2 (l<=2).

2 If it ever does, then generated transactions are involved, which can be removed using ‘--actual’

Chapter 2: Running Ledger 7

2.1.1.2 Specific account balances

While reporting the totals for all accounts can be useful, most often you will want to check
the balance of a specific account or accounts. To do this, put one or more account names
after the balance command. Since these names are really regular expressions, you can use
partial names if you wish:

ledger bal checking

Reports:
$1,480.00 Assets:Bank:Checking

Any number of names may be used:

ledger bal checking broker liab

Reports:
$1,480.00 Assets:Bank:Checking

50 AAPL Assets:Brokerage

$-2.00 Liabilities

In this case no grand total is reported, because you are asking for specific account
balances.

For those comfortable with regular expressions, any Perl regexp is allowed:

ledger bal ^assets.*checking ^liab

Reports:
$1,480.00 Assets:Bank:Checking

$-2.00 Liabilities:Taxes

2.1.2 The register report

While the balance command can be very handy for checking account totals, by far the
most powerful of Ledger’s reporting tools is the register command. In fact, internally
both commands use the same logic, but report the results differently: balance shows the
summary totals, while register reports each transaction and how it contributes to that
total.

Paradoxically, the most basic form of register is almost never used, since it displays
every transaction:

ledger reg

reg is a short-hand for register. This command reports:
2004/05/01 Checking balance Assets:Bank:Checking $1,000.00 $1,000.00

Equity:Opening Balan.. $-1,000.00 0

2004/05/01 Investment balance Assets:Brokerage 50 AAPL 50 AAPL

Equity:Opening Balan.. $-1,500.00 $-1,500.00

50 AAPL

2004/05/14 Pay day Assets:Bank:Checking $500.00 $-1,000.00

50 AAPL

Income:Salary $-500.00 $-1,500.00

50 AAPL

2004/05/27 Book Store Expenses:Books $20.00 $-1,480.00

50 AAPL

Liabilities:MasterCard $-20.00 $-1,500.00

50 AAPL

(Liabilities:Taxes) $-2.00 $-1,502.00

50 AAPL

Chapter 2: Running Ledger 8

2004/05/27 Credit card company Liabilities:MasterCard $20.00 $-1,482.00

50 AAPL

Assets:Bank:Checking $-20.00 $-1,502.00

50 AAPL

This rather verbose output shows every account transaction in ‘sample.dat’, and how it
affects the running total. The final total is identical to what we saw with the plain balance

command. To see how things really balance, we can use ‘--real -B’, just as we did with
balance:

ledger --real -B reg

Reports:

2004/05/01 Checking balance Assets:Bank:Checking $1,000.00 $1,000.00

Equity:Opening Balan.. $-1,000.00 0

2004/05/01 Investment balance Assets:Brokerage $1,500.00 $1,500.00

Equity:Opening Balan.. $-1,500.00 0

2004/05/14 Pay day Assets:Bank:Checking $500.00 $500.00

Income:Salary $-500.00 0

2004/05/27 Book Store Expenses:Books $20.00 $20.00

Liabilities:MasterCard $-20.00 0

2004/05/27 Credit card company Liabilities:MasterCard $20.00 $20.00

Assets:Bank:Checking $-20.00 0

Here we see that everything balances to zero in the end, as it must.

2.1.2.1 Specific register queries

The most common use of the register command is to summarize transactions based on
the account(s) they affect. Using ‘sample.dat’ as as example, we could look at all book
purchases using:

ledger reg books

Reports:

2004/05/29 Book Store Expenses:Books $20.00 $20.00

If a double-dash (‘--’) occurs in the list of regular expressions, any following arguments
are matched against payee names, instead of account names:

ledger reg ^liab -- credit

Reports:

2004/05/29 Credit card company Liabilities:MasterCard $20.00 $20.00

There are many reporting options for tailoring which transactions are found, and also
how to summarize the various amounts and totals that result. These are plumbed in greater
depth below.

2.1.3 Selecting transactions

Although the easiest way to use the register is to report all the transactions affecting a
set of accounts, it can often result in more information than you want. To cope with an
ever-growing amount of data, there are several options which can help you pinpoint your
report to exactly the transactions that interest you most. This is called the “calculation”
phase of Ledger. All of its related options are documented under ‘--help-calc’.

Chapter 2: Running Ledger 9

2.1.3.1 By date

‘--current’(‘-c’) displays entries occurring on or before the current date. Any entry
recorded for a future date will be ignored, as if it had not been seen. This is useful if
you happen to pre-record entries, but still wish to view your balances in terms of what is
available today.

‘--begin DATE’ (‘-b DATE’) limits the report to only those entries occurring on or after
DATE. The running total in the register will start at zero with the first transaction, even
if there are earlier entries.

To limit the display only, but still add earlier transactions to the running total, use the
display expression ‘-d ’d>=[DATE]’’):

ledger --basis -b may -d ’d>=[5/14]’ reg ^assets

Reports:

2004/05/14 Pay day Assets:Bank:Checking $500.00 $3,000.00

2004/05/27 Credit card company Assets:Bank:Checking $-20.00 $2,980.00

In this example, the displayed transactions start from ‘5/14’, but the calculated total
starts from the beginning of ‘may’.

‘--end DATE’ (‘-e DATE’) states when reporting should end, both calculation and display.
The ending date is inclusive.

The DATE argument to the ‘-b’ and ‘-e’ options can be rather flexible. Assuming the
current date to be November 15, 2004, then all of the following are equivalent:

ledger -b oct bal

ledger -b "this oct" bal

ledger -b 2004/10 bal

ledger -b 10 bal

ledger -b last bal

ledger -b "last month" bal

To constrain the report to a specific time period, use ‘--period’ (‘-p’). A time period
may have both a beginning and an end, or neither, as well as a specified interval. Here are
a few examples:

ledger -p 2004 bal

ledger -p august bal

ledger -p "from aug to oct" bal

ledger -p "daily from 8/1 to 8/15" bal

ledger -p "weekly since august" bal

ledger -p "monthly from feb to oct" bal

ledger -p "quarterly in 2004" bal

ledger -p yearly bal

See Section 2.6 [Period expressions], page 28 for more on syntax. Also, all of the options
‘-b’, ‘-e’ and ‘-p’ may be used together, but whatever information occurs last takes priority.
An example of such usage (in a script, perhaps) would be:

ledger -b 2004 -e 2005 -p monthly reg ^expenses

This command is identical to:

ledger -p "monthly in 2004" reg ^expenses

Chapter 2: Running Ledger 10

The transactions within a period may be sorted using ‘--period-sort’, which takes a
value expression. This is similar to the ‘--sort’ option, except that it sorts within each
period entry, rather than sorting all transactions in the report. See the documentation on
‘--sort’ below for more details.

2.1.3.2 By status

By default, all regular transactions are included in each report. To limit the report to
certain kinds of transactions, use one or more of the following options:

‘-C, --cleared’
Consider only cleared transactions.

‘-U, --uncleared’
Consider only uncleared and pending transactions.

‘-R, --real’
Consider only real (non-virtual) transactions.

‘-L, --actual’
Consider only actual (non-automated) transactions.

Cleared transactions are indicated by an asterix placed just before the payee name in a
transaction. The meaning of this flag is up to the user, but typically it means that an entry
has been seen on a financial statement. Pending transactions use an exclamation mark in
the same position, but are mainly used only by reconciling software. Uncleared transactions
are for things like uncashed checks, credit charges that haven’t appeared on a statement
yet, etc.

Real transactions are all non-virtual transactions, where the account name is not sur-
rounded by parentheses or square brackets. Virtual transactions are useful for showing
a transfer of money that never really happened, like money set aside for savings without
actually transferring it from the parent account.

Actual transactions are those not generated, either as part of an automated entry, or a
budget or forecast report. A useful of when you might like to filter out generated transac-
tions is with a budget:

ledger --budget --actual reg ^expenses

This command outputs all transactions affecting a budgeted account, but without
subtracting the budget amount (because the generated transactions are suppressed with
‘--actual’). The report shows how much you actually spent on budgeted items.

2.1.3.3 By relationship

Normally, a register report includes only the transactions that match the regular expressions
specified after the command word. For example, to report all expenses:

ledger reg ^expenses

This reports:
2004/05/29 Book Store Expenses:Books $20.00 $20.00

Using ‘--related’ (‘-r’) reports the transactions that did not match your query, but
only in entries that otherwise would have matched. This has the effect of indicating where
money came from, or when to:

Chapter 2: Running Ledger 11

ledger -r reg ^expenses

Reports:
2004/05/29 Book Store Liabilities:MasterCard $20.00 $20.00

2.1.3.4 By budget

There is more information about budgeting and forecasting in Section 2.9 [Budgeting and
forecasting], page 33. Basically, if you have any period entries in your ledger file, you can
use these options. A period entry looks like:

~ Monthly

Assets:Bank:Checking $500.00

Income:Salary

The difference from a regular entry is that the first line begins with a tilde (~), and
instead of a payee there’s a period expression (Section 2.6 [Period expressions], page 28).
Otherwise, a period entry is in every other way the same as a regular entry.

With such an entry in your ledger file, the ‘--budget’ option will report only transactions
that match a budgeted account. Using ‘sample.dat’ from above:

ledger --budget reg ^income

Reports:
2004/05/01 Budget entry Income:Salary $500.00 $500.00

2004/05/14 Pay day Income:Salary $-500.00 0

The final total is zero, indicating that the budget matched exactly for the reported
period. Budgeting is most often helpful with period reporting; for example, to show monthly
budget results use ‘--budget -p monthly’.

The ‘--add-budget’ option reports all matching transactions in addition to budget trans-
actions; while ‘--unbudgeted’ shows only those that don’t match a budgeted account. To
summarize:

‘--budget’
Show transactions matching budgeted accounts.

‘--unbudgeted’
Show transactions matching unbudgeted accounts.

‘--add-budget’
Show both budgeted and unbudgeted transactions together (i.e., add the gen-
erated budget transactions to the regular report).

A report with the ‘--forecast’ option will add budgeted transactions while the specified
value expression is true. For example:

ledger --forecast ’d<[2005] reg ^income

Reports:
2004/05/14 Pay day Income:Salary $-500.00 $-500.00

2004/12/01 Forecast entry Income:Salary $-500.00 $-1,000.00

2005/01/01 Forecast entry Income:Salary $-500.00 $-1,500.00

The date this report was made was November 5, 2004; the reason the first forecast entry
is in december is that forecast entries are only added for the future, and they only stop after
the value expression has matched at least once, which is why the January entry appears. A

Chapter 2: Running Ledger 12

forecast report can be very useful for determining when money will run out in an account,
or for projecting future cash flow:

ledger --forecast ’d<[2008]’ -p yearly reg ^inc ^exp

This reports balances projected income against projected expenses, showing the resulting
total in yearly intervals until 2008. For the case of ‘sample.dat’, which has no budgeted
expenses, the result of the above command (in November 2004) is:

2004/01/01 - 2004/12/31 Income:Salary $-1,000.00 $-1,000.00

Expenses:Books $20.00 $-980.00

2005/01/01 - 2005/12/31 Income:Salary $-6,000.00 $-6,980.00

2006/01/01 - 2006/12/31 Income:Salary $-6,000.00 $-12,980.00

2007/01/01 - 2007/12/31 Income:Salary $-6,000.00 $-18,980.00

2008/01/01 - 2008/01/01 Income:Salary $-500.00 $-19,480.00

2.1.3.5 By value expression

Value expressions can be quite complex, and are treated more fully in Section 2.5 [Value
expressions], page 26. They can be used for limiting a report with ‘--limit’ (‘-l’). The
following command report income since august, but expenses since october:

ledger -l ’(/income/&d>=[aug])|(/expenses/&d>=[oct])’ reg

The basic form of this value expression is ‘(A&B)|(A&B)’. The ‘A’ in each part matches
against an account name with ‘/name/’, while each ‘B’ part compares the date of the trans-
action (‘d’) with a specified month. The resulting report will contain only transactions
which match the value expression.

Another use of value expressions is to calculate the amount reported for each line of a
register report, or for computing the subtotal of each account shown in a balance report.
This example divides each transaction amount by two:

ledger -t ’a/2’ reg ^exp

The ‘-t’ option doesn’t affect the running total, only how the transaction amount is
displayed. To change the running total, use ‘-T’. In that case, you will likely want to use
the total (‘O’) instead of the amount (‘a’):

ledger -T ’O/2’ reg ^exp

2.1.4 Massaging register output

Even after filtering down your data to just the transactions you’re interested in, the default
reporting method of one transaction per line is often still too much. To combat this com-
plexity, it is possible to ask Ledger to report the details to you in many different forms,
summarized in various ways. This is the “display” phase of Ledger, and is documented
under ‘--help-disp’.

2.1.4.1 Summarizing

When multiple transactions relate to a single entry, they are reported as part of that entry.
For example, in the case of ‘sample.dat’:

ledger reg -- book

Reports:

2004/05/29 Book Store Expenses:Books $20.00 $20.00

Liabilities:MasterCard $-20.00 0

Chapter 2: Running Ledger 13

(Liabilities:Taxes) $-2.00 $-2.00

All three transactions are part of one entry, and as such the entry details are printed
only once. To report every entry on a single line, use ‘-n’ to collapse entries with multiple
transactions:

ledger -n reg -- book

Reports:
2004/05/29 Book Store <Total> $-2.00 $-2.00

In the balance report, ‘-n’ causes the grand total not to be displayed at the bottom of
the report.

If an account occurs more than once in a report, it is possible to combine them all and
report the total per-account, using ‘-s’. For example, this command:

ledger -B reg ^assets

Reports:
2004/05/01 Checking balance Assets:Bank:Checking $1,000.00 $1,000.00

2004/05/01 Investment balance Assets:Brokerage $1,500.00 $2,500.00

2004/05/14 Pay day Assets:Bank:Checking $500.00 $3,000.00

2004/05/27 Credit card company Assets:Bank:Checking $-20.00 $2,980.00

But if the ‘-s’ option is added, the result becomes:
2004/05/01 - 2004/05/29 Assets:Bank:Checking $1,480.00 $1,480.00

Assets:Brokerage $1,500.00 $2,980.00

When account subtotaling is used, only one entry is printed, and the date and name
reflect the range of the combined transactions.

With ‘-P’, transactions relating to the same payee are combined. In this case, the date
of the combined entry is that of the latest transaction.

‘-x’ changes the payee name for each transaction to be the same as the commodity it
uses. This can be especially useful combined with other options, like ‘-P’. For example:

ledger -Px reg ^assets

Reports:
2004/05/29 $ Assets:Bank:Checking $1,480.00 $1,480.00

2004/05/01 AAPL Assets:Brokerage 50 AAPL $1,480.00

50 AAPL

This reports shows the subtotal for each commodity held, and where it is located. To
see the basis cost, or initial investment, add ‘-B’. Applied to the example above:

2004/05/29 $ Assets:Bank:Checking $1,480.00 $1,480.00

2004/05/01 AAPL Assets:Brokerage $1,500.00 $2,980.00

The only other options which affect summarized totals is ‘-E’, which works only in the
balance report. In this case, it shows matching accounts with a zero a balance, which are
ordinarily excluded. This can be useful to see all the accounts involved in a report, even if
some have no total.

2.1.4.2 Quick periods

Although the ‘-p’ option (also ‘--period’) is much more versatile, there are other options
to make the most common period reports easier:

‘-W, --weekly’
Show weekly sub-totals. Same as ‘-p weekly’.

Chapter 2: Running Ledger 14

‘-M, --monthly’
Show monthly sub-totals. Same as ‘-p monthly’.

‘-Y, --yearly’
Show yearly sub-totals. Same as ‘-p yearly’.

There is one kind of period report cannot be done with ‘-p’. This is the ‘--dow’, or
“days of the week” report, which shows summarized totals for each day of the week. The
following examples shows a “day of the week” report of income and expenses:

ledger --dow reg ^inc ^exp

Reports:

2004/05/27 Thursdays Expenses:Books $20.00 $20.00

2004/05/14 Fridays Income:Salary $-500.00 $-480.00

2.1.4.3 Ordering and width

The transactions displayed in a report are shown in the same order as they appear in the
ledger file. To change the order and sort a report, use the ‘--sort’ option. ‘--sort’ takes a
value expression to determine the value to sort against, making it possible to sort according
to complex criteria. Here are some simple and useful examples:

ledger --sort d reg ^exp # sort by date

ledger --sort t reg ^exp # sort by amount total

ledger --sort -t reg ^exp # reverse sort by amount total

ledger --sort Ut reg ^exp # sort by abs amount total

For the balance report, you will want to use ‘T’ instead of ‘t’:

ledger --sort T reg ^exp # sort by amount total

ledger --sort -T reg ^exp # reverse sort by amount total

ledger --sort UT reg ^exp # sort by abs amount total

The ‘--sort’ options sorts all transactions in a report. If periods are used (such as
‘--monthly’), this can get somewhat confusing. In that case, you’ll probably want to sort
within periods using ‘--period-sort’ instead of ‘--sort’.

And if the register seems too cramped, and you have a lot of screen real estate, you can
use ‘-w’ to format the report within 132 acolumns, instead of 80. You are more likely then
to see full payee and account names, as well as properly formatted totals when long-named
commodities are used.

If you want only the first or last N entries to be printed—which can be very useful for
viewing the last 10 entries in your checking account, while also showing the cumulative
balance from all entries—use the ‘--head’ and/or ‘--tail’ options. The two options may
be used simultaneously, for example:

ledger --tail 20 reg checking

If the output from your command is very long, Ledger can output the data to a pager
utility, such as more or less:

ledger --pager /usr/bin/less reg checking

Chapter 2: Running Ledger 15

2.1.4.4 Averages and percentages

To see the running total changed to a running average, use ‘-A’. The final transaction’s
total will be the overall average of all displayed transactions. The works in conjunction
with period reporting, so that you can see your monthly average expenses with:

ledger -AM reg ^expenses:food

ledger -AMn reg ^expenses

This works in the balance report too:

ledger -AM bal ^expenses:food

ledger -AMs bal ^expenses

The ‘-D’ option changes the running average into a deviation from the running average.
This only makes sense in the register report, however.

ledger -DM reg ^expenses:food

In the balance report only, ‘-%’ changes the reported totals into a percentage of the
parent account. This kind of report is confusing if negative amounts are involved, and
doesn’t work at all if multiple commodities occur in an account’s history. It has a somewhat
limited usefulness, therefore, but in certain cases it can be handy, such as reviewing overall
expenses:

ledger -%s -S T bal ^expenses

2.1.4.5 Reporting total data

Normally in the xml report, only transaction amounts are printed. To include the running
total under a ‘<total>’ tag, use ‘--totals’. This does not affect any other report.

In the register report only, the output can be changed with ‘-j’ to show only the date and
the amount—without commodities. This only makes sense if a single commodity appears
in the report, but can be quite useful for scripting, or passing the data to Gnuplot. To show
only the date and running total, use ‘-J’.

2.1.4.6 Display by value expression

With ‘-d’ you can decide which transactions (or accounts in the balance report) are dis-
played, according to a value expression. The computed total is not affected, only the display.
This can be very useful for shortening a report without changing the running total:

ledger -d ’d>=[last month]’ reg checking

This command shows the checking account’s register, beginning from last month, but
with the running total reflecting the entire history of the account.

2.1.4.7 Change report format

When dates are printed in any report, the default format is ‘%Y/%m/%d’, which yields dates
of the form ‘YYYY/mm/dd’. This can be changed with ‘-y’, whose argument is a strftime

string—see your system’s C library documentation for the allowable codes. Mostly you will
want to use ‘%Y’, ‘%m’ and ‘%d’, in whatever combination is convenient for your locale.

To change the format of the entire reported line, use ‘-F’. It supports quite a large
number of options, which are all documented in Section 2.4 [Format strings], page 24. In
addition, each specific kind of report (except for xml) can be changed using one of the
following options:

Chapter 2: Running Ledger 16

‘--balance-format’
balance report. Default:

%20T %2_%-a\n

‘--register-format’
register report. Default:

%D %-.20P %-.22A %12.66t %12.80T\n%/%32|%-.22A %12.66t %12.80T\n

‘--print-format’
print report. Default:

%D %-.35P %-.38A %22.108t %22.132T\n%/%48|%-.38A %22.108t %22.132T\n

‘--plot-amount-format’
register report when ‘-j’ (plot amount) is used. Default:

%D %(St)\n

‘--plot-total-format’
register report when ‘-J’ (plot total) is used. Default:

%D %(ST)\n

‘--equity-format’
equity report. Default:

\n%D %Y%C%P\n %-34W %12o%n\n%/ %-34W %12o%n\n

‘--prices-format’
prices report. Default:

\n%D %Y%C%P\n%/ %-34W %12t\n

‘--wide-register-format’
register report when ‘-w’ (wide) is used. Default:

%D %-.35P %-.38A %22.108t %22.132T\n%/%48|%-.38A %22.108t %22.132T\n

2.1.5 Standard queries

If your ledger file uses the standard top-level accounts: Assets, Liabilities, Income, Expenses,
Equity: then the following queries will enable you to generate some typical accounting
reports from your data.

Your net worth can be determined by balancing assets against liabilities:

ledger bal ^assets ^liab

By removing long-term investment and loan accounts, you can see your current net
liquidity (or liquid net worth):

ledger bal ^assets ^liab -retirement -brokerage -loan

Balancing expenses against income yields your cash flow, or net profit/loss:

ledger bal ^exp ^inc

In this case, if the number is positive it means you spent more than you earned during
the report period.

The most often used command is the “balance” command:

export LEDGER=/home/johnw/doc/ledger.dat

ledger balance

Here I’ve set my Ledger environment variable to point to where my ledger file is hiding.
Thereafter, I needn’t specify it again.

Chapter 2: Running Ledger 17

2.1.6 Reporting balance totals

The balance command prints out the summarized balances of all my top-level accounts,
excluding sub-accounts. In order to see the balances for a specific account, just specify a
regular expression after the balance command:

ledger balance expenses:food

This will show all the money that’s been spent on food, since the beginning of the ledger.
For food spending just this month (September), use:

ledger -p sep balance expenses:food

Or maybe you want to see all of your assets, in which case the -s (show sub-accounts)
option comes in handy:

ledger -s balance ^assets

To exclude a particular account, use a regular expression with a leading minus sign. The
following will show all expenses, but without food spending:

ledger balance expenses -food

2.1.7 Reporting percentages

There is no built-in way to report transaction amounts or account balances in terms of
percentages

2.2 Commands

2.2.1 balance

The balance command reports the current balance of all accounts. It accepts a list of
optional regexps, which confine the balance report to the matching accounts. If an account
contains multiple types of commodities, each commodity’s total is reported separately.

2.2.2 register

The register command displays all the transactions occurring in a single account, line
by line. The account regexp must be specified as the only argument to this command.
If any regexps occur after the required account name, the register will contain only those
transactions that match. Very useful for hunting down a particular transaction.

The output from register is very close to what a typical checkbook, or single-account
ledger, would look like. It also shows a running balance. The final running balance of any
register should always be the same as the current balance of that account.

If you have Gnuplot installed, you may plot the amount or running total of any register by
using the script ‘report’, which is included in the Ledger distribution. The only requirement
is that you add either ‘-j’ or ‘-J’ to your register command, in order to plot either the
amount or total column, respectively.

2.2.3 print

The print command prints out ledger entries in a textual format that can be parsed by
Ledger. They will be properly formatted, and output in the most economic form possible.
The “print” command also takes a list of optional regexps, which will cause only those
transactions which match in some way to be printed.

Chapter 2: Running Ledger 18

The print command can be a handy way to clean up a ledger file whose formatting has
gotten out of hand.

2.2.4 output

The output command is very similar to the print command, except that it attempts to
replicate the specified ledger file exactly. The format of the command is:

ledger -f FILENAME output FILENAME

Where ‘FILENAME’ is the name of the ledger file to output. The reason for specifying this
command is that only entries contained within that file will be output, and not an included
entries (as can happen with the print command).

2.2.5 xml

The xml command outputs results similar to what print and register display, but as an
XML form. This data can then be read in and processed. Use the ‘--totals’ option to
include the running total with each transaction.

2.2.6 emacs

The emacs command outputs results in a form that can be read directly by Emacs Lisp.
The format of the sexp is:

((BEG-POS CLEARED DATE CODE PAYEE

(ACCOUNT AMOUNT)...) ; list of transactions

...) ; list of entries

2.2.7 equity

The equity command prints out accounts balances as if they were entries. This makes it
easy to establish the starting balances for an account, such as when Section 3.8 [Archiving
previous years], page 44.

2.2.8 prices

The prices command displays the price history for matching commodities. The ‘-A’ flag
is useful with this report, to display the running average price, or ‘-D’ to show each price’s
deviation from that average.

There is also a pricesdb command which outputs the same information as prices, but
does in a format that can be parsed by Ledger.

2.2.9 entry

The entry commands simplifies the creation of new entries. It works on the principle that
80% of all transactions are variants of earlier transactions. Here’s how it works:

Say you currently have this transaction in your ledger file:
2004/03/15 * Viva Italiano

Expenses:Food $12.45

Expenses:Tips $2.55

Liabilities:MasterCard $-15.00

Now it’s ‘2004/4/9’, and you’ve just eating at ‘Viva Italiano’ again. The exact
amounts are different, but the overall form is the same. With the entry command you
can type:

Chapter 2: Running Ledger 19

ledger entry 2004/4/9 viva food 11 tips 2.50

This produces the following output:

2004/04/09 Viva Italiano

Expenses:Food $11.00

Expenses:Tips $2.50

Liabilities:MasterCard $-13.50

It works by finding a past transaction matching the regular expression ‘viva’, and as-
suming that any accounts or amounts specified will be similar to that earlier transaction.
If Ledger does not succeed in generating a new entry, an error is printed and the exit code
is set to ‘1’.

There is a shell script in the distribution’s ‘scripts’ directory called ‘entry’, which
simplifies the task of adding a new entry to your ledger. It launches vi to confirm that the
entry looks appropriate.

Here are a few more examples of the entry command, assuming the above journal entry:

ledger entry 4/9 viva 11.50

ledger entry 4/9 viva 11.50 checking # (from ‘checking’)

ledger entry 4/9 viva food 11.50 tips 8

ledger entry 4/9 viva food 11.50 tips 8 cash

ledger entry 4/9 viva food $11.50 tips $8 cash

ledger entry 4/9 viva dining "DM 11.50"

2.3 Options

With all of the reports, command-line options are useful to modify the output generated.
These command-line options always occur before the command word. This is done to
distinguish options from exclusive regular expressions, which also begin with a dash. The
basic form for most commands is:

ledger [OPTIONS] COMMAND [REGEXPS...] [-- [REGEXPS...]]

The OPTIONS and REGEXPS expressions are both optional. You could just use
‘ledger balance’, without any options—which prints a summary of all accounts. But
for more specific reporting, or to change the appearance of the output, options are needed.

2.3.1 Basic options

These are the most basic command options. Most likely, the user will want to set them
using Section 2.3.5 [Environment variables], page 24, instead of using actual command-line
options:

‘--help’ (‘-h’) prints a summary of all the options, and what they are used for. This
can be a handy way to remember which options do what. This help screen is also printed
if ledger is run without a command.

‘--version’ (‘-v’) prints the current version of ledger and exits. This is useful for sending
bug reports, to let the author know which version of ledger you are using.

‘--file FILE’ (‘-f FILE’) reads FILE as a ledger file. Typically, the environment vari-
able LEDGER_FILE is set, rather than using this command-line option.

‘--output FILE’ (‘-o FILE’) redirects output from any command to FILE. By default,
all output goes to standard output.

Chapter 2: Running Ledger 20

‘--init-file FILE’ (‘-i FILE’) causes FILE to be read by ledger before any other ledger
file. This file may not contain any transactions, but it may contain option settings. To
specify options in the init file, use the same syntax as the command-line, but put each
option on it’s own line. Here’s an example init file:

--price-db ~/finance/.pricedb

--pager /usr/bin/less

; ~/.ledgerrc ends here

Option settings on the command-line or in the environment always take precedence over
settings in the init file.

‘--cache FILE’ identifies FILE as the default binary cache file. That is, if the ledger
file to be read is specified using the environment variable LEDGER_FILE, then whenever a
command is finished a binary copy will be written to the specified cache, to speed up the
loading time of subsequent queries. This filename can also be given using the environment
variable LEDGER_CACHE, or by putting the option into your init file. The ‘--no-cache’
option causes Ledger to always ignore the binary cache.

‘--account NAME’ (‘-a NAME’) specifies the default account which QIF file transactions
are assumed to relate to.

2.3.2 Report filtering

These options change which transactions affect the outcome of a report, in ways other than
just using regular expressions:

‘--current’(‘-c’) displays only entries occurring on or before the current date.

‘--begin DATE’ (‘-b DATE’) constrains the report to entries on or after DATE. Only
entries after that date will be calculated, which means that the running total in the balance
report will always start at zero with the first matching entry. (Note: This is different from
using ‘--display’ to constrain what is displayed).

‘--end DATE’ (‘-e DATE’) constrains the report so that entries on or after DATE are not
considered. The ending date is inclusive.

‘--period STR’ (‘-p STR’) sets the reporting period to STR. This will subtotal all match-
ing entries within each period separately, making it easy to see weekly, monthly, quarterly,
etc., transaction totals. A period string can even specify the beginning and end of the
report range, using simple terms like “last june” or “next month”. For more using period
expressions, see Section 2.6 [Period expressions], page 28.

‘--period-sort EXPR’ sorts the transactions within each reporting period using the value
expression EXPR. This is most often useful when reporting monthly expenses, in order to
view the highest expense categories at the top of each month:

ledger -M --period-sort -At reg ^Expenses

‘--cleared’ (‘-C’) displays only transactions whose entry has been marked “cleared”
(by placing an asterix to the right of the date).

‘--uncleared’ (‘-U’) displays only transactions whose entry has not been marked
“cleared” (i.e., if there is no asterix to the right of the date).

‘--real’ (‘-R’) displays only real transactions, not virtual. (A virtual transaction is
indicated by surrounding the account name with parentheses or brackets; see the section
on using virtual transactions for more information).

Chapter 2: Running Ledger 21

‘--actual’ (‘-L’) displays only actual transactions, and not those created due to auto-
mated transactions.

‘--related’ (‘-r’) displays transactions that are related to whichever transactions would
otherwise have matched the filtering criteria. In the register report, this shows where money
went to, or the account it came from. In the balance report, it shows all the accounts affected
by entries having a related transaction. For example, if a file had this entry:

2004/03/20 Safeway

Expenses:Food $65.00

Expenses:Cash $20.00

Assets:Checking $-85.00

And the register command was:

ledger -r register food

The following would be output, showing the transactions related to the transaction that
matched:

2004/03/20 Safeway Expenses:Cash $-20.00 $-20.00

Assets:Checking $85.00 $65.00

‘--budget’ is useful for displaying how close your transactions meet your budget.
‘--add-budget’ also shows unbudgeted transactions, while ‘--unbudgeted’ shows only
those. ‘--forecast’ is a related option that projects your budget into the future, showing
how it will affect future balances. See Section 2.9 [Budgeting and forecasting], page 33.

‘--limit EXPR’ (‘-l EXPR’) limits which transactions take part in the calculations of a
report.

‘--amount EXPR’ (‘-t EXPR’) changes the value expression used to calculate the “value”
column in the register report, the amount used to calculate account totals in the balance
report, and the values printed in the equity report. See Section 2.5 [Value expressions],
page 26.

‘--total EXPR’ (‘-T EXPR’) sets the value expression used for the “totals” column in the
register and balance reports.

2.3.3 Output customization

These options affect only the output, but not which transactions are used to create it:

‘--collapse’ (‘-n’) causes entries in a register report with multiple transactions to be
collapsed into a single, subtotaled entry.

‘--subtotal’ (‘-s’) causes all entries in a register report to be collapsed into a single,
subtotaled entry.

‘--by-payee’ (‘-P’) reports subtotals by payee.

‘--comm-as-payee’ (‘-x’) changes the payee of every transaction to be the commodity
used in that transaction. This can be useful when combined with other options, such as
‘-s’.

‘--empty’ (‘-E’) includes even empty accounts in the balance report.

‘--weekly’ (‘-W’) reports transaction totals by the week. The week begins on whichever
day of the week begins the month containing that transaction. To set a specific begin date,
use a period string, such as ‘weekly from DATE’. ‘--monthly’ (‘-M’) reports transaction
totals by month; ‘--yearly’ (‘-Y’) reports transaction totals by year. For more complex
period, using the ‘--period’ option described above.

Chapter 2: Running Ledger 22

‘--dow’ reports transactions totals for each day of the week. This is an easy way to see
if weekend spending is more than on weekdays.

‘--sort EXPR’ (‘-S EXPR’) sorts a report by comparing the values determined using the
value expression EXPR. For example, using ‘-S -UT’ in the balance report will sort account
balances from greatest to least, using the absolute value of the total. For more on how to
use value expressions, see Section 2.5 [Value expressions], page 26.

‘--wide’ (‘-w’) causes the default register report to assume 132 columns instead of 80.

‘--head’ causes only the first N entries to be printed. This is different from using the
command-line utility head, which would limit to the first N transactions. ‘--tail’ outputs
only the last N entries. Both options may be used simultaneously. If a negative amount is
given, it will invert the meaning of the flag (instead of the first five entries being printed,
for example, it would print all but the first five).

‘--pager’ tells Ledger to pass its output to the given pager program—very useful when
the output is especially long. This behavior can be made the default by setting the LEDGER_
PAGER environment variable.

‘--average’ (‘-A’) reports the average transaction value.

‘--deviation’ (‘-D’) reports each transaction’s deviation from the average. It is only
meaningful in the register and prices reports.

‘--percentage’ (‘-%’) shows account subtotals in the balance report as percentages of
the parent account.

‘--totals’ include running total information in the xml report.

‘--amount-data’ (‘-j’) changes the register report so that it output nothing but the
date and the value column, and the latter without commodities. This is only meaningful if
the report uses a single commodity. This data can then be fed to other programs, which
could plot the date, analyze it, etc.

‘--total-data’ (‘-J’) changes the register report so that it output nothing but the
date and totals column, without commodities.

‘--display EXPR’ (‘-d EXPR’) limits which transactions or accounts or actually displayed
in a report. They might still be calculated, and be part of the running total of a register
report, for example, but they will not be displayed. This is useful for seeing last month’s
checking transactions, against a running balance which includes all transaction values:

ledger -d "d>=[last month]" reg checking

The output from this command is very different from the following, whose running total
includes only transactions from the last month onward:

ledger -p "last month" reg checking

Which is more useful depends on what you’re looking to know: the total amount for the
reporting range (‘-p’), or simply a display restricted to the reporting range (using ‘-d’).

‘--date-format STR’ (‘-y STR’) changes the basic date format used by reports. The
default uses a date like 2004/08/01, which represents the default date format of ‘%Y/%m/%d’.
To change the way dates are printed in general, the easiest way is to put ‘--date-format
FORMAT’ in the Ledger initialization file ‘~/.ledgerrc’ (or the file referred to by LEDGER_

INIT).

Chapter 2: Running Ledger 23

‘--format STR’ (‘-F STR’) sets the reporting format for whatever report ledger is about
to make. See Section 2.4 [Format strings], page 24. There are also specific format commands
for each report type:

• ‘--balance-format STR’

• ‘--register-format STR’

• ‘--print-format STR’

• ‘--plot-amount-format STR’ (-j register)

• ‘--plot-total-format STR’ (-J register)

• ‘--equity-format STR’

• ‘--prices-format STR’

• ‘--wide-register-format STR’ (-w register)

2.3.4 Commodity reporting

These options affect how commodity values are displayed:

‘--price-db FILE’ sets the file that is used for recording downloaded commodity prices.
It is always read on startup, to determine historical prices. Other settings can be placed in
this file manually, to prevent downloading quotes for a specific, for example. This is done
by adding a line like the following:

; Don’t download quotes for the dollar, or timelog values

N $

N h

‘--price-exp MINS’ (‘-L MINS’) sets the expected freshness of price quotes, in min-
utes. That is, if the last known quote for any commodity is older than this value—and
if ‘--download’ is being used—then the Internet will be consulted again for a newer price.
Otherwise, the old price is still considered to be fresh enough.

‘--download’ (‘-Q’) causes quotes to be automagically downloaded, as needed, by run-
ning a script named getquote and expecting that script to return a value understood by
ledger. A sample implementation of a getquote script, implemented in Perl, is provided in
the distribution. Downloaded quote price are then appended to the price database, usually
specified using the environment variable LEDGER_PRICE_DB.

There are several different ways that ledger can report the totals it displays. The most
flexible way to adjust them is by using value expressions, and the ‘-t’ and ‘-T’ options. How-
ever, there are also several “default” reports, which will satisfy most users basic reporting
needs:

-O, --quantity

Reports commodity totals (this is the default)

-B, --basis

Reports the cost basis for all transactions.

-V, --market

Reports the last known market value for all commodities.

-g, --performance

Reports the net gain/loss for each transaction in a register report.

Chapter 2: Running Ledger 24

-G --gain Reports the net gain/loss for all commodities in the report that have a price
history.

2.3.5 Environment variables

Every option to ledger may be set using an environment variable. If an option has a
long name such ‘--this-option’, setting the environment variable LEDGER_THIS_OPTION

will have the same affect as specifying that option on the command-line. Options on the
command-line always take precedence over environment variable settings, however.

Note that you may also permanently specify option values by placing option settings in
the file ‘~/.ledgerrc’, for example:

--cache /tmp/.mycache

--pager /usr/bin/less

2.4 Format strings

Format strings may be used to change the output format of reports. They are specified by
passing a formatting string to the ‘--format’ (‘-F’) option. Within that string, constructs
are allowed which make it possible to display the various parts of an account or transaction
in custom ways.

Within a format strings, a substitution is specified using a percent character (‘%’). The
basic format of all substitutions is:

%[-][MIN WIDTH][.MAX WIDTH]EXPR

If the optional minus sign (‘-’) follows the percent character, whatever is substituted
will be left justified. The default is right justified. If a minimum width is given next, the
substituted text will be at least that wide, perhaps wider. If a period and a maximum
width is given, the substituted text will never be wider than this, and will be truncated to
fit. Here are some examples:

%-P An entry’s payee, left justified

%20P The same, right justified, at least 20 chars wide

%.20P The same, no more than 20 chars wide

%-.20P Left justified, maximum twenty chars wide

The expression following the format constraints can be a single letter, or an expression
enclosed in parentheses or brackets. The allowable expressions are:

% Inserts a percent sign.

t Inserts the results of the value expression specified by ‘-t’. If ‘-t’ was not
specified, the current report style’s value expression is used.

T Inserts the results of the value expression specified by ‘-T’. If ‘-T’ was not
specified, the current report style’s value expression is used.

| Inserts a single space. This is useful if a width is specified, for inserting a certain
number of spaces.

_ Inserts a space for each level of an account’s depth. That is, if an account
has two parents, this construct will insert two spaces. If a minimum width is
specified, that much space is inserted for each level of depth. Thus ‘%5_’, for
an account with four parents, will insert twenty spaces.

Chapter 2: Running Ledger 25

(EXPR) Inserts the amount resulting from the value expression given in parentheses.
To insert five times the total value of an account, for example, one could say
‘%12(5*O)’. Note: It’s important to put the five first in that expression, so that
the commodity doesn’t get stripped from the total.

[DATEFMT]

Inserts the result of formatting a transaction’s date with a date format
string, exactly like those supported by strftime. For example: ‘%[%Y/%m/%d
%H:%M:%S]’.

S Insert the pathname of the file from which the entry’s data was read.

B Inserts the beginning character position of that entry within the file.

b Inserts the beginning line of that entry within the file.

E Inserts the ending character position of that entry within the file.

e Inserts the ending line of that entry within the file.

D By default, this is the same as ‘%[%Y/%m%/d]’. The date format used can be
changed at any time with the ‘-y’ flag, however. Using ‘%D’ gives the user more
control over the way dates are output.

d This is the same as the ‘%D’ option, unless the entry has an effective date, in
which case it prints ‘[ACTUAL_DATE=EFFECtIVE_DATE]’.

X If a transaction has been cleared, this inserts ‘*’ followed by a space; otherwise
nothing is inserted.

Y This is the same as ‘%X’, except that it only displays a state character if all of
the member transactions have the same state.

C Inserts the checking number for an entry, in parentheses, followed by a space;
if none was specified, nothing is inserted.

P Inserts the payee related to a transaction.

a Inserts the optimal short name for an account. This is normally used in balance
reports. It prints a parent account’s name if that name has not been printed
yet, otherwise it just prints the account’s name.

A Inserts the full name of an account.

W This is the same as ‘%A’, except that it first displays the transaction’s state if
the entry’s transaction states are not all the same, followed by the full account
name. This is offered as a printing optimization, so that combined with ‘%Y’,
only the minimum amount of state detail is printed.

o Inserts the “optimized” form of a transaction’s amount. This is used by the print
report. In some cases, this inserts nothing; in others, it inserts the transaction
amount and its cost. It’s use is not recommend unless you are modifying the
print report.

n Inserts the note associated with a transaction, preceded by two spaces and a
semi-colon, if it exists. Thus, no none becomes an empty string, while the note
‘foo’ is substituted as ‘ ; foo’.

Chapter 2: Running Ledger 26

N Inserts the note associated with a transaction, if one exists.

/ The ‘%/’ construct is special. It separates a format string between what is
printed for the first transaction of an entry, and what is printed for all subse-
quent transactions. If not used, the same format string is used for all transac-
tions.

2.5 Value expressions

Value expressions are an expression language used by Ledger to calculate values used by
the program for many different purposes:

1. The values displayed in reports

2. For predicates (where truth is anything non-zero), to determine which transactions are
calculated (‘-l’) or displayed (‘-d’).

3. For sorting criteria, to yield the sort key.

4. In the matching criteria used by automated transactions.

Value expressions support most simple math and logic operators, in addition to a set
of one letter functions and variables. A function’s argument is whatever follows it. The
following is a display predicate that I use with the balance command:

ledger -d /^Liabilities/?T<0:UT>100 balance

The effect is that account totals are displayed only if: 1) A Liabilities account has a total
less than zero; or 2) the absolute value of the account’s total exceeds 100 units of whatever
commodity contains. If it contains multiple commodities, only one of them must exceed
100 units.

Display predicates are also very handy with register reports, to constrain which entries
are printed. For example, the following command shows only entries from the beginning of
the current month, while still calculating the running balance based on all entries:

ledger -d "d>[this month]" register checking

This advantage to this command’s complexity is that it prints the running total in terms
of all entries in the register. The following, simpler command is similar, but totals only the
displayed transactions:

ledger -b "this month" register checking

2.5.1 Variables

Below are the one letter variables available in any value expression. For the register and print
commands, these variables relate to individual transactions, and sometimes the account
affected by a transaction. For the balance command, these variables relate to accounts—
often with a subtle difference in meaning. The use of each variable for both is specified.

t This maps to whatever the user specified with ‘-t’. In a register report, ‘-t’
changes the value column; in a balance report, it has no meaning by default. If
‘-t’ was not specified, the current report style’s value expression is used.

T This maps to whatever the user specified with ‘-T’. In a register report, ‘-T’
changes the totals column; in a balance report, this is the value given for each
account. If ‘-T’ was not specified, the current report style’s value expression is
used.

Chapter 2: Running Ledger 27

m This is always the present moment/date.

2.5.1.1 Transaction/account details

d A transaction’s date, as the number of seconds past the epoch. This is always
“today” for an account.

a The transaction’s amount; the balance of an account, without considering chil-
dren.

b The cost of a transaction; the cost of an account, without its children.

v The market value of a transaction, or an account without its children.

g The net gain (market value minus cost basis), for a transaction or an account
without its children. It is the same as ‘v-b’.

l The depth (“level”) of an account. If an account has one parent, it’s depth is
one.

n The index of a transaction, or the count of transactions affecting an account.

X 1 if a transaction’s entry has been cleared, 0 otherwise.

R 1 if a transaction is not virtual, 0 otherwise.

Z 1 if a transaction is not automated, 0 otherwise.

2.5.1.2 Calculated totals

O The total of all transactions seen so far, or the total of an account and all its
children.

N The total count of transactions affecting an account and all its children.

B The total cost of all transactions seen so far; the total cost of an account and
all its children.

V The market value of all transactions seen so far, or of an account and all its
children.

G The total net gain (market value minus cost basis), for a series of transactions,
or an account and its children. It is the same as ‘V-B’.

2.5.2 Functions

The available one letter functions are:

- Negates the argument.

U The absolute (unsigned) value of the argument.

S Strips the commodity from the argument.

A The arithmetic mean of the argument; ‘Ax’ is the same as ‘x/n’.

P The present market value of the argument. The syntax ‘P(x,d)’ is supported,
which yields the market value at time ‘d’. If no date is given, then the current
moment is used.

Chapter 2: Running Ledger 28

2.5.3 Operators

The binary and ternary operators, in order of precedence, are:

1. ‘* /’

2. ‘+ -’

3. ‘! < > =’

4. ‘& | ?:’

2.5.4 Complex expressions

More complicated expressions are possible using:

NUM A plain integer represents a commodity-less amount.

{AMOUNT} An amount in braces can be any kind of amount supported by ledger, with or
without a commodity. Use this for decimal values.

/REGEXP/

W/REGEXP/

A regular expression that matches against an account’s full name. If a trans-
action, this will match against the account affected by the transaction.

//REGEXP/

p/REGEXP/

A regular expression that matches against an entry’s payee name.

///REGEXP/

w/REGEXP/

A regular expression that matches against an account’s base name. If a trans-
action, this will match against the account affected by the transaction.

c/REGEXP/

A regular expression that matches against the entry code (the text that occurs
between parentheses before the payee name).

e/REGEXP/

A regular expression that matches against a transaction’s note, or comment
field.

(EXPR) A sub-expression is nested in parenthesis. This can be useful passing more
complicated arguments to functions, or for overriding the natural precedence
order of operators.

[DATE] Useful specifying a date in plain terms. For example, you could say
‘[2004/06/01]’.

2.6 Period expressions

A period expression indicates a span of time, or a reporting interval, or both. The full
syntax is:

[INTERVAL] [BEGIN] [END]

The optional INTERVAL part may be any one of:

Chapter 2: Running Ledger 29

every day

every week

every monthly

every quarter

every year

every N days # N is any integer

every N weeks

every N months

every N quarters

every N years

daily

weekly

biweekly

monthly

bimonthly

quarterly

yearly

After the interval, a begin time, end time, both or neither may be specified. As for the
begin time, it can be either of:

from <SPEC>

since <SPEC>

The end time can be either of:

to <SPEC>

until <SPEC>

Where SPEC can be any of:

2004

2004/10

2004/10/1

10/1

october

oct

this week # or day, month, quarter, year

next week

last week

The beginning and ending can be given at the same time, if it spans a single period. In
that case, just use SPEC by itself. In that case, the period ‘oct’, for example, will cover
all the days in october. The possible forms are:

<SPEC>

in <SPEC>

Here are a few examples of period expressions:

monthly

monthly in 2004

weekly from oct

weekly from last month

from sep to oct

Chapter 2: Running Ledger 30

from 10/1 to 10/5

monthly until 2005

from apr

until nov

last oct

weekly last august

2.7 File format

The ledger file format is quite simple, but also very flexible. It supports many options,
though typically the user can ignore most of them. They are summarized below.

The initial character of each line determines what the line means, and how it should be
interpreted. Allowable initial characters are:

NUMBER A line beginning with a number denotes an entry. It may be followed by any
number of lines, each beginning with whitespace, to denote the entry’s account
transactions. The format of the first line is:

DATE[=EDATE] [*|!] [(CODE)] DESC

If ‘*’ appears after the date (with optional effective date), it indicates the entry
is “cleared”, which can mean whatever the user wants it t omean. If ‘!’ appears
after the date, it indicates d the entry is “pending”; i.e., tentatively cleared from
the user’s point of view, but not yet actually cleared. If a ‘CODE’ appears in
parentheses, it may be used to indicate a check number, or the type of the
transaction. Following these is the payee, or a description of the transaction.

The format of each following transaction is:

ACCOUNT AMOUNT [; NOTE]

The ‘ACCOUNT’ may be surrounded by parentheses if it is a virtual
transactions, or square brackets if it is a virtual transactions that must
balance. The ‘AMOUNT’ can be followed by a per-unit transaction cost, by
specifying ‘@ AMOUNT’, or a complete transaction cost with ‘@@ AMOUNT’.
Lastly, the ‘NOTE’ may specify an actual and/or effective date for the
transaction by using the syntax ‘[ACTUAL_DATE]’ or ‘[=EFFECTIVE_DATE]’ or
‘[ACTUAL_DATE=EFFECtIVE_DATE]’.

= An automated entry. A value expression must appear after the equal sign.

After this initial line there should be a set of one or more transactions, just as
if it were normal entry. If the amounts of the transactions have no commodity,
they will be applied as modifiers to whichever real transaction is matched by
the value expression.

~ A period entry. A period expression must appear after the tilde.

After this initial line there should be a set of one or more transactions, just as
if it were normal entry.

! A line beginning with an exclamation mark denotes a command directive. It
must be immediately followed by the command word. The supported commands
are:

Chapter 2: Running Ledger 31

‘!include’
Include the stated ledger file.

‘!account’
The account name is given is taken to be the parent of all transac-
tions that follow, until ‘!end’ is seen.

‘!end’ Ends an account block.

; A line beginning with a colon indicates a comment, and is ignored.

Y If a line begins with a capital Y, it denotes the year used for all subsequent
entries that give a date without a year. The year should appear immediately
after the Y, for example: ‘Y2004’. This is useful at the beginning of a file, to
specify the year for that file. If all entries specify a year, however, this command
has no effect.

P Specifies a historical price for a commodity. These are usually found in a pricing
history file (see the ‘-Q’ option). The syntax is:

P DATE SYMBOL PRICE

N SYMBOL Indicates that pricing information is to be ignored for a given symbol, nor will
quotes ever be downloaded for that symbol. Useful with a home currency, such
as the dollar ($). It is recommended that these pricing options be set in the price
database file, which defaults to ‘~/.pricedb’. The syntax for this command is:

N SYMBOL

D AMOUNT Specifies the default commodity to use, by specifying an amount in the expected
format. The entry command will use this commodity as the default when none
other can be determined. This command may be used multiple times, to set
the default flags for different commodities; whichever is seen last is used as the
default commodity. For example, to set US dollars as the default commodity,
while also setting the thousands flag and decimal flag for that commodity, use:

D $1,000.00

C AMOUNT1 = AMOUNT2

Specifies a commodity conversion, where the first amount is given to be equiv-
alent to the second amount. The first amount should use the decimal precision
desired during reporting:

C 1.00 Kb = 1024 bytes

i, o, b, h

These four relate to timeclock support, which permits ledger to read timelog
files. See the timeclock’s documentation for more info on the syntax of its
timelog files.

2.8 Some typical queries

A query such as the following shows all expenses since last October, sorted by total:

ledger -b "last oct" -s -S T bal ^expenses

From left to right the options mean: Show entries since October, 2003; show all sub-
accounts; sort by the absolute value of the total; and report the balance for all expenses.

Chapter 2: Running Ledger 32

2.8.1 Reporting monthly expenses

The following query makes it easy to see monthly expenses, with each month’s expenses
sorted by the amount:

ledger -M --period-sort t reg ^expenses

Now, you might wonder where the money came from to pay for these things. To see that
report, add ‘-r’, which shows the “related account” transactions:

ledger -M --period-sort t -r reg ^expenses

But maybe this prints too much information. You might just want to see how much
you’re spending with your MasterCard. That kind of query requires the use of a display
predicate, since the transactions calculated must match ‘^expenses’, while the transactions
displayed must match ‘mastercard’. The command would be:

ledger -M -r -d /mastercard/ reg ^expenses

This query says: Report monthly subtotals; report the “related account” transactions;
display only related transactions whose account matches ‘mastercard’, and base the calcu-
lation on transactions matching ‘^expenses’.

This works just as well for report the overall total, too:

ledger -s -r -d /mastercard/ reg ^expenses

The ‘-s’ option subtotals all transactions, just as ‘-M’ subtotaled by the month. The
running total in both cases is off, however, since a display expression is being used.

2.8.2 Visualizing with Gnuplot

If you have Gnuplot installed, you can graph any of the above register reports. The script
to do this is included in the ledger distribution, and is named ‘scripts/report’. Install
‘report’ anywhere along your PATH, and then use report instead of ledger when doing
a register report. The only thing to keep in mind is that you must specify ‘-j’ or ‘-J’ to
indicate whether Gnuplot should plot the amount, or the running total. For example, this
command plots total monthly expenses made on your MasterCard.

report -j -M -r -d /mastercard/ reg ^expenses

The report script is a very simple Bourne shell script, that passes a set of scripted
commands to Gnuplot. Feel free to modify the script to your liking, since you may prefer
histograms to line plots, for example.

2.8.2.1 Typical plots

Here are some useful plots:
report -j -M reg ^expenses # monthly expenses

report -J reg checking # checking account balance

report -J reg ^income ^expenses # cash flow report

net worth report, ignoring non-$ transactions

report -J -l "Ua>={\$0.01}" reg ^assets ^liab

net worth report starting last February. the use of a display

predicate (-d) is needed, otherwise the balance will start at

zero, and thus the y-axis will not reflect the true balance

Chapter 2: Running Ledger 33

report -J -l "Ua>={\$0.01}" -d "d>=[last feb]" reg ^assets ^liab

The last report uses both a calculation predicate (‘-l’) and a display predicate (‘-d’).
The calculation predicates limits the report to transactions whose amount is greater than
$1 (which can only happen if the transaction amount is in dollars). The display predicate
limits the entries displayed to just those since last February, even those entries from before
then will be computed as part of the balance.

2.9 Budgeting and forecasting

2.9.1 Budgeting

Keeping a budget allows you to pay closer attention to your income and expenses, by
reporting how far your actual financial activity is from your expectations.

To start keeping a budget, put some period entries at the top of your ledger file. A
period entry is almost identical to a regular entry, except that it begins with a tilde and
has a period expression in place of a payee. For example:

~ Monthly

Expenses:Rent $500.00

Expenses:Food $450.00

Expenses:Auto:Gas $120.00

Expenses:Insurance $150.00

Expenses:Phone $125.00

Expenses:Utilities $100.00

Expenses:Movies $50.00

Expenses $200.00 ; all other expenses

Assets

~ Yearly

Expenses:Auto:Repair $500.00

Assets

These two period entries give the usual monthly expenses, as well as one typical yearly
expense. For help on finding out what your average monthly expense is for any category,
use a command like:

ledger -p "this year" -MAs bal ^expenses

The reported totals are the current year’s average for each account.

Once these period entries are defined, creating a budget report is as easy as adding
‘--budget’ to the command-line. For example, a typical monthly expense report would be:

ledger -M reg ^exp

To see the same report balanced against your budget, use:

ledger --budget -M reg ^exp

A budget report includes only those accounts that appear in the budget. To see all
expenses balanced against the budget, use ‘--add-budget’. You can even see only the
unbudgeted expenses using ‘--unbudgeted’:

ledger --unbudgeted -M reg ^exp

You can also use these flags with the balance command.

Chapter 2: Running Ledger 34

2.9.2 Forecasting

Sometimes it’s useful to know what your finances will look like in the future, such as
determining when an account will reach zero. Ledger makes this easy to do, using the same
period entries as are used for budgeting. An example forecast report can be generated with:

ledger --forecast "T>{\$-500.00}" register ^assets ^liabilities

This report continues outputting transactions until the running total is greater than
$-500.00. A final transaction is always output, to show you what the total afterwards would
be.

Forecasting can also be used with the balance report, but by date only, and not against
the running total:

ledger --forecast "d<[2010]" bal ^assets ^liabilities

Chapter 3: Keeping a ledger 35

3 Keeping a ledger

The most important part of accounting is keeping a good ledger. If you have a good ledger,
tools can be written to work whatever mathematically tricks you need to better understand
your spending patterns. Without a good ledger, no tool, however smart, can help you.

The Ledger program aims at making ledger entry as simple as possible. Since it is a
command-line tool, it does not provide a user interface for keeping a ledger. If you like,
you may use GnuCash to maintain your ledger, in which case the Ledger program will read
GnuCash’s data files directly. In that case, read the GnuCash manual now, and skip to the
next chapter.

If you are not using GnuCash, but a text editor to maintain your ledger, read on. Ledger
has been designed to make data entry as simple as possible, by keeping the ledger format
easy, and also by automagically determining as much information as possible based on the
nature of your entries.

For example, you do not need to tell Ledger about the accounts you use. Any time
Ledger sees a transaction involving an account it knows nothing about, it will create it. If
you use a commodity that is new to Ledger, it will create that commodity, and determine
its display characteristics (placement of the symbol before or after the amount, display
precision, etc) based on how you used the commodity in the transaction.

Here is the Pacific Bell example from above, given as a Ledger transaction:

9/29 (100) Pacific Bell

Expenses:Utilities:Phone $23.00

Assets:Checking $-23.00

As you can see, it is very similar to what would be written on paper, minus the computed
balance totals, and adding in account names that work better with Ledger’s scheme of
things. In fact, since Ledger is smart about many things, you don’t need to specify the
balanced amount, if it is the same as the first line:

9/29 (100) Pacific Bell

Expenses:Utilities:Phone $23.00

Assets:Checking

For this entry, Ledger will figure out that $-23.00 must come from ‘Assets:Checking’
in order to balance the entry.

3.1 Stating where money goes

Accountants will talk of “credits” and “debits”, but the meaning is often different from the
layman’s understanding. To avoid confusion, Ledger uses only subtractions and additions,
although the underlying intent is the same as standard accounting principles.

Recall that every transaction will involve two or more accounts. Money is transferred
from one or more accounts to one or more other accounts. To record the transaction, an
amount is subtracted from the source accounts, and added to the target accounts.

In order to write a Ledger entry correctly, you must determine where the money comes
from and where it goes to. For example, when you are paid a salary, you must add money
to your bank account and also subtract it from an income account:

9/29 My Employer

Assets:Checking $500.00

Chapter 3: Keeping a ledger 36

Income:Salary $-500.00

Why is the Income a negative figure? When you look at the balance totals for your
ledger, you may be surprised to see that Expenses are a positive figure, and Income is a
negative figure. It may take some getting used to, but to properly use a general ledger you
must think in terms of how money moves. Rather than Ledger “fixing” the minus signs,
let’s understand why they are there.

When you earn money, the money has to come from somewhere. Let’s call that some-
where “society”. In order for society to give you an income, you must take money away
(withdraw) from society in order to put it into (make a payment to) your bank. When
you then spend that money, it leaves your bank account (a withdrawal) and goes back to
society (a payment). This is why Income will appear negative—it reflects the money you
have drawn from society—and why Expenses will be positive—it is the amount you’ve given
back. These additions and subtractions will always cancel each other out in the end, because
you don’t have the ability to create new money: it must always come from somewhere, and
in the end must always leave. This is the beginning of economy, after which the explanation
gets terribly difficult.

Based on that explanation, here’s another way to look at your balance report: every
negative figure means that that account or person or place has less money now than when
you started your ledger; and every positive figure means that that account or person or
place has more money now that when you started your ledger. Make sense?

3.2 Assets and Liabilities

Assets are money that you have, and Liabilities are money that you owe. “Liabilities” is
just a more inclusive name for Debts.

An Asset is typically increased by transferring money from an Income account, such as
when you get paid. Here is a typical entry:

2004/09/29 My Employer

Assets:Checking $500.00

Income:Salary

Money, here, comes from an Income account belonging to “My Employer”, and is trans-
ferred to your checking account. The money is now yours, which makes it an Asset.

Liabilities track money owed to others. This can happen when you borrow money to buy
something, or if you owe someone money. Here is an example of increasing a MasterCard
liability by spending money with it:

2004/09/30 Restaurant

Expenses:Dining $25.00

Liabilities:MasterCard

The Dining account balance now shows $25 spent on Dining, and a corresponding $25
owed on the MasterCard—and therefore shown as $-25.00. The MasterCard liability shows
up as negative because it offsets the value of your assets.

The combined total of your Assets and Liabilities is your net worth. So to see your
current net worth, use this command:

ledger balance ^assets ^liabilities

Relatedly, your Income accounts show up negative, because they transfer money from
an account in order to increase your assets. Your Expenses show up positive because that

Chapter 3: Keeping a ledger 37

is where the money went to. The combined total of Income and Expenses is your cash flow.
A positive cash flow means you are spending more than you make, since income is always
a negative figure. To see your current cash flow, use this command:

ledger balance ^income ^expenses

Another common question to ask of your expenses is: How much do I spend each month
on X? Ledger provides a simple way of displaying monthly totals for any account. Here is
an example that summarizes your monthly automobile expenses:

ledger -M register expenses:auto

This assumes, of course, that you use account names like ‘Expenses:Auto:Gas’ and
‘Expenses:Auto:Repair’.

3.2.1 Tracking reimbursable expenses

Sometimes you will want to spend money on behalf of someone else, which will eventually
get repaid. Since the money is still “yours”, it is really an asset. And since the expenditure
was for someone else, you don’t want it contaminating your Expenses reports. You will
need to keep an account for tracking reimbursements.

This is fairly easy to do in ledger. When spending the money, spend it to your As-
sets:Reimbursements, using a different account for each person or business that you spend
money for. For example:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard

This shows $100.00 spent on a MasterCard at Circuit City, with the expense was made
on behalf of Company XYZ. Later, when Company XYZ pays the amount back, the money
will transfer from that reimbursement account back to a regular asset account:

2004/09/29 Company XYZ

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ

This deposits the money owed from Company XYZ into a checking account, presumably
because they paid the amount back with a check.

But what to do if you run your own business, and you want to keep track of expenses
made on your own behalf, while still tracking everything in a single ledger file? This is
more complex, because you need to track two separate things: 1) The fact that the money
should be reimbursed to you, and 2) What the expense account was, so that you can later
determine where your company is spending its money.

This kind of transaction is best handled with mirrored transactions in two different files,
one for your personal accounts, and one for your company accounts. But keeping them in
one file involves the same kinds of transactions, so those are what is shown here. First, the
personal entry, which shows the need for reimbursement:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard

This is the same as above, except that you own Company XYZ, and are keeping track
of its expenses in the same ledger file. This entry should be immediately followed by an
equivalent entry, which shows the kind of expense, and also notes the fact that $100.00 is
now payable to you:

Chapter 3: Keeping a ledger 38

2004/09/29 Circuit City

Company XYZ:Expenses:Computer:Software $100.00

Company XYZ:Accounts Payable:Your Name

This second entry shows that Company XYZ has just spent $100.00 on software, and
that this $100.00 came from Your Name, which must be paid back.

These two entries can also be merged, to make things a little clearer. Note that all
amounts must be specified now:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard $-100.00

Company XYZ:Expenses:Computer:Software $100.00

Company XYZ:Accounts Payable:Your Name $-100.00

To “pay back” the reimbursement, just reverse the order of everything, except this time
drawing the money from a company asset, paying it to accounts payable, and then drawing
it again from the reimbursement account, and paying it to your personal asset account. It’s
easier shown than said:

2004/10/15 Company XYZ

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ $-100.00

Company XYZ:Accounts Payable:Your Name $100.00

Company XYZ:Assets:Checking $-100.00

And now the reimbursements account is paid off, accounts payable is paid off, and $100.00
has been effectively transferred from the company’s checking account to your personal check-
ing account. The money simply “waited”—in both ‘Assets:Reimbursements:Company
XYZ’, and ‘Company XYZ:Accounts Payable:Your Name’—until such time as it could be paid
off.

The value of tracking expenses from both sides like that is that you do not contaminate
your personal expense report with expenses made on behalf of others, while at the same
time making it possible to generate accurate reports of your company’s expenditures. It is
more verbose than just paying for things with your personal assets, but it gives you a very
accurate information trail.

The advantage to keep these doubled entries together is that they always stay in sync.
The advantage to keeping them apart is that it clarifies the transfer’s point of view. To
keep the transactions in separate files, just separate the two entries that were joined above.
For example, for both the expense and the pay-back shown above, the following four entries
would be created. Two in your personal ledger file:

2004/09/29 Circuit City

Assets:Reimbursements:Company XYZ $100.00

Liabilities:MasterCard $-100.00

2004/10/15 Company XYZ

Assets:Checking $100.00

Assets:Reimbursements:Company XYZ $-100.00

And two in your company ledger file:

!account Company XYZ

2004/09/29 Circuit City

Expenses:Computer:Software $100.00

Accounts Payable:Your Name $-100.00

Chapter 3: Keeping a ledger 39

2004/10/15 Company XYZ

Accounts Payable:Your Name $100.00

Assets:Checking $-100.00

!end

(Note: The ‘!account’ above means that all accounts mentioned in the file are children
of that account. In this case it means that all activity in the file relates to Company XYZ).

After creating these entries, you will always know that $100.00 was spent using your
MasterCard on behalf of Company XYZ, and that Company XYZ spent the money on
computer software and paid it back about two weeks later.

3.3 Commodities and Currencies

Ledger makes no assumptions about the commodities you use; it only requires that you
specify a commodity. The commodity may be any non-numeric string that does not contain
a period, comma, forward slash or at-sign. It may appear before or after the amount,
although it is assumed that symbols appearing before the amount refer to currencies, while
non-joined symbols appearing after the amount refer to commodities. Here are some valid
currency and commodity specifiers:

$20.00 ; currency: twenty US dollars

40 AAPL ; commodity: 40 shares of Apple stock

60 DM ; currency: 60 Deutsch Mark

50 ; currency: 50 British pounds

50 EUR ; currency: 50 Euros (or use appropriate symbol)

Ledger will examine the first use of any commodity to determine how that commodity
should be printed on reports. It pays attention to whether the name of commodity was
separated from the amount, whether it came before or after, the precision used in specifying
the amount, whether thousand marks were used, etc. This is done so that printing the
commodity looks the same as the way you use it.

An account may contain multiple commodities, in which case it will have separate totals
for each. For example, if your brokerage account contains both cash, gold, and several stock
quantities, the balance might look like:

$200.00

100.00 AU

AAPL 40

BORL 100

FEQTX 50 Assets:Brokerage

This balance report shows how much of each commodity is in your brokerage account.

Sometimes, you will want to know the current street value of your balance, and not the
commodity totals. For this to happen, you must specify what the current price is for each
commodity. The price can be any commodity, in which case the balance will be computed
in terms of that commodity. The usual way to specify prices is with a price history file,
which might look like this:

P 2004/06/21 02:18:01 FEQTX $22.49

P 2004/06/21 02:18:01 BORL $6.20

P 2004/06/21 02:18:02 AAPL $32.91

P 2004/06/21 02:18:02 AU $400.00

Chapter 3: Keeping a ledger 40

Specify the price history to use with the ‘--price-db’ option, with the ‘-V’ option to
report in terms of current market value:

ledger --price-db prices.db -V balance brokerage

The balance for your brokerage account will be reported in US dollars, since the prices
database uses that currency.

$40880.00 Assets:Brokerage

You can convert from any commodity to any other commodity. Let’s say you had $5000
in your checking account, and for whatever reason you wanted to know many ounces of gold
that would buy, in terms of the current price of gold:

ledger -T "{1 AU}*(O/P{1 AU})" balance checking

Although the total expression appears complex, it is simply saying that the reported
total should be in multiples of AU units, where the quantity is the account total divided by
the price of one AU. Without the initial multiplication, the reported total would still use
the dollars commodity, since multiplying or dividing amounts always keeps the left value’s
commodity. The result of this command might be:

14.01 AU Assets:Checking

3.3.1 Commodity price histories

Whenever a commodity is purchased using a different commodity (such as a share of com-
mon stock using dollars), it establishes a price for that commodity on that day. It is also
possible, by recording price details in a ledger file, to specify other prices for commodities
at any given time. Such price entries might look like those below:

P 2004/06/21 02:17:58 TWCUX $27.76

P 2004/06/21 02:17:59 AGTHX $25.41

P 2004/06/21 02:18:00 OPTFX $39.31

P 2004/06/21 02:18:01 FEQTX $22.49

P 2004/06/21 02:18:02 AAPL $32.91

By default, ledger will not consider commodity prices when generating its various reports.
It will always report balances in terms of the commodity total, rather than the current
value of those commodities. To enable pricing reports, use one of the commodity reporting
options.

3.3.2 Commodity equivalencies

Sometimes a commodity has several forms which are all equivalent. An example of this is
time. Whether tracked in terms of minutes, hours or days, it should be possible to convert
between the various forms. Doing this requires the use of commodity equivalencies.

For example, you might have the following two transactions, one which transfers an hour
of time into a ‘Billable’ account, and another which decreases the same account by ten
minutes. The resulting report will indicate that fifty minutes remain:

2005/10/01 Work done for company

Billable:Client 1h

Project:XYZ

2005/10/02 Return ten minutes to the project

Project:XYZ 10m

Billable:Client

Reporting the balance for this ledger file produces:

Chapter 3: Keeping a ledger 41

50.0m Billable:Client

-50.0m Project:XYZ

This example works because ledger already knows how to handle seconds, minutes and
hours, as part of its time tracking support. Defining other equivalencies is simple. The
following is an example that creates data equivalencies, helpful for tracking bytes, kilobytes,
megabytes, and more:

C 1.00 Kb = 1024 b

C 1.00 Mb = 1024 Kb

C 1.00 Gb = 1024 Mb

C 1.00 Tb = 1024 Gb

Each of these definitions correlates a commodity (such as ‘Kb’) and a default precision,
with a certain quantity of another commodity. In the above example, kilobytes are reporetd
with two decimal places of precision and each kilobyte is equal to 1024 bytes.

Equivalency chains can be as long as desired. Whenever a commodity would report as
a decimal amount (less than ‘1.00’), the next smallest commodity is used. If a commodity
could be reported in terms of a higher commodity without resulting to a partial fraction,
then the larger commodity is used.

3.4 Accounts and Inventories

Since Ledger’s accounts and commodity system is so flexible, you can have accounts that
don’t really exist, and use commodities that no one else recognizes. For example, let’s say
you are buying and selling various items in EverQuest, and want to keep track of them
using a ledger. Just add items of whatever quantity you wish into your EverQuest account:

9/29 Get some stuff at the Inn

Places:Black’s Tavern -3 Apples

Places:Black’s Tavern -5 Steaks

EverQuest:Inventory

Now your EverQuest:Inventory has 3 apples and 5 steaks in it. The amounts are negative,
because you are taking from Black’s Tavern in order to add to your Inventory account. Note
that you don’t have to use ‘Places:Black’s Tavern’ as the source account. You could use
‘EverQuest:System’ to represent the fact that you acquired them online. The only purpose
for choosing one kind of source account over another is for generate more informative reports
later on. The more you know, the better analysis you can perform.

If you later sell some of these items to another player, the entry would look like:

10/2 Sturm Brightblade

EverQuest:Inventory -2 Steaks

EverQuest:Inventory 15 Gold

Now you’ve turned 2 steaks into 15 gold, courtesy of your customer, Sturm Brightblade.

3.5 Understanding Equity

The most confusing entry in any ledger will be your equity account— because starting
balances can’t come out of nowhere.

When you first start your ledger, you will likely already have money in some of your
accounts. Let’s say there’s $100 in your checking account; then add an entry to your ledger
to reflect this amount. Where will money come from? The answer: your equity.

Chapter 3: Keeping a ledger 42

10/2 Opening Balance

Assets:Checking $100.00

Equity:Opening Balances

But what is equity? You may have heard of equity when people talked about house
mortgages, as “the part of the house that you own”. Basically, equity is like the value of
something. If you own a car worth $5000, then you have $5000 in equity in that car. In
order to turn that car (a commodity) into a cash flow, or a credit to your bank account,
you will have to debit the equity by selling it.

When you start a ledger, you are probably already worth something. Your net worth
is your current equity. By transferring the money in the ledger from your equity to your
bank accounts, you are crediting the ledger account based on your prior equity. That is
why, when you look at the balance report, you will see a large negative number for Equity
that never changes: Because that is what you were worth (what you debited from yourself
in order to start the ledger) before the money started moving around. If the total positive
value of your assets is greater than the absolute value of your starting equity, it means you
are making money.

Clear as mud? Keep thinking about it. Until you figure it out, put ‘-Equity’ at the end
of your balance command, to remove the confusing figure from the total.

3.6 Dealing with Petty Cash

Something that stops many people from keeping a ledger at all is the insanity of tracking
small cash expenses. They rarely generate a receipt, and there are often a lot of small
transactions, rather than a few large ones, as with checks.

One solution is: don’t bother. Move your spending to a debit card, but in general ignore
cash. Once you withdraw it from the ATM, mark it as already spent to an ‘Expenses:Cash’
category:

2004/03/15 ATM

Expenses:Cash $100.00

Assets:Checking

If at some point you make a large cash expense that you want to track, just “move” the
amount of the expense from ‘Expenses:Cash’ into the target account:

2004/03/20 Somebody

Expenses:Food $65.00

Expenses:Cash

This way, you can still track large cash expenses, while ignoring all of the smaller ones.

3.7 Working with multiple funds and accounts

There are situations when the accounts you’re tracking are different between your clients
and the financial institutions where money is kept. An example of this is working as the
treasurer for a religious institution. From the secular point of view, you might be working
with three different accounts:

• Checking

• Savings

• Credit Card

Chapter 3: Keeping a ledger 43

From a religious point of view, the community expects to divide its resources into multiple
“funds”, from which it makes purchases or reserves resources for later:

• School fund

• Building fund

• Community fund

The problem with this kind of setup is that when you spend money, it comes from two
or more places at once: the account and the fund. And yet, the correlation of amounts
between funds and accounts is rarely one-to-one. What if the school fund has ‘$500.00’,
but ‘$400.00’ of that comes from Checking, and ‘$100.00’ from Savings?

Traditional finance packages require that the money reside in only one place. But there
are really two “views” of the data: from the account point of view and from the fund point
of view – yet both sets should reflect the same overall expenses and cash flow. It’s simply
where the money resides that differs.

This situation can be handled one of two ways. The first is using virtual transactions
to represent the fact that money is moving to and from two kind of accounts at the same
time:

2004/03/20 Contributions

Assets:Checking $500.00

Income:Donations

2004/03/25 Distribution of donations

[Funds:School] $300.00

[Funds:Building] $200.00

[Assets:Checking] $-500.00

The use of square brackets in the second entry ensures that the virtual transactions
balance to zero. Now money can be spent directly from a fund at the same time as money
is drawn from a physical account:

2004/03/25 Payment for books (paid from Checking)

Expenses:Books $100.00

Assets:Checking $-100.00

(Funds:School) $-100.00

When reports are generated, by default they’ll appear in terms of the funds. In this
case, you will likely want to mask out your ‘Assets’ account, because otherwise the balance
won’t make much sense:

ledger bal -^Assets

If the ‘--real’ option is used, the report will be in terms of the real accounts:

ledger --real bal

If more asset accounts are needed as the source of a transaction, just list them as you
would normally, for example:

2004/03/25 Payment for books (paid from Checking)

Expenses:Books $100.00

Assets:Checking $-50.00

Liabilities:Credit Card $-50.00

(Funds:School) $-100.00

The second way of tracking funds is to use entry codes. In this respect the codes become
like virtual accounts that embrace the entire set of transactions. Basically, we are associating

Chapter 3: Keeping a ledger 44

an entry with a fund by setting its code. Here are two entries that desposit money into,
and spend money from, the ‘Funds:School’ fund:

2004/03/25 (Funds:School) Donations

Assets:Checking $100.00

Income:Donations

2004/04/25 (Funds:School) Payment for books

Expenses:Books $50.00

Assets:Checking

Note how the accounts now relate only to the real accounts, and any balance or registers
reports will reflect this. That the entries relate to a particular fund is kept only in the code.

How does this become a fund report? By using the ‘--code-as-payee’ option, you can
generate a register report where the payee for each transaction shows the code. Alone, this
is not terribly interesting; but when combined with the ‘--by-payee’ option, you will now
see account subtotals for any transactions related to a specific fund. So, to see the current
monetary balances of all funds, the command would be:

ledger --code-as-payee -P reg ^Assets

Or to see a particular funds expenses, the ‘School’ fund in this case:

ledger --code-as-payee -P reg ^Expenses -- School

Both approaches yield different kinds of flexibility, depending on how you prefer to think
of your funds: as virtual accounts, or as tags associated with particular entries. Your own
tastes will decide which is best for your situation.

3.8 Archiving previous years

After a while, your ledger can get to be pretty large. While this will not slow down the
ledger program much—it’s designed to process ledger files very quickly—things can start
to feel “messy”; and it’s a universal complaint that when finances feel messy, people avoid
them.

Thus, archiving the data from previous years into their own files can offer a sense of
completion, and freedom from the past. But how to best accomplish this with the ledger
program? There are two commands that make it very simple: print, and equity.

Let’s take an example file, with data ranging from year 2000 until 2004. We want to
archive years 2000 and 2001 to their own file, leaving just 2003 and 2004 in the current file.
So, use print to output all the earlier entries to a file called ‘ledger-old.dat’:

ledger -f ledger.dat -b 2000 -e 2001 print > ledger-old.dat

To delete older data from the current ledger file, use print again, this time specifying
year 2002 as the starting date:

ledger -f ledger.dat -b 2002 print > x

mv x ledger.dat

However, now the current file contains only transactions from 2002 onward, which will
not yield accurate present-day balances, because the net income from previous years is no
longer being tallied. To compensate for this, we must append an equity report for the old
ledger at the beginning of the new one:

ledger -f ledger-old.dat equity > equity.dat

cat equity.dat ledger.dat > x

Chapter 3: Keeping a ledger 45

mv x ledger.dat

rm equity.dat

Now the balances reported from ‘ledger.dat’ are identical to what they were before the
data was split.

How often should you split your ledger? You never need to, if you don’t want to. Even
eighty years of data will not slow down ledger much—and that’s just using present day
hardware! Or, you can keep the previous and current year in one file, and each year before
that in its own file. It’s really up to you, and how you want to organize your finances. For
those who also keep an accurate paper trail, it might be useful to archive the older years to
their own files, then burn those files to a CD to keep with the paper records—along with
any electronic statements received during the year. In the arena of organization, just keep
in mind this maxim: Do whatever keeps you doing it.

3.9 Virtual transactions

A virtual transaction is when you, in your mind, see money as moving to a certain place,
when in reality that money has not moved at all. There are several scenarios in which this
type of tracking comes in handy, and each of them will be discussed in detail.

To enter a virtual transaction, surround the account name in parentheses. This form
of usage does not need to balance. However, if you want to ensure the virtual transaction
balances with other virtual transactions in the same entry, use square brackets. For example:

10/2 Paycheck

Assets:Checking $1000.00

Income:Salary $-1000.00

(Debt:Alimony) $200.00

In this example, after receiving a paycheck an alimony debt is increased—even though
no money has moved around yet.

10/2 Paycheck

Assets:Checking $1000.00

Income:Salary $-1000.00

[Savings:Trip] $200.00

[Assets:Checking] $-200.00

In this example, $200 has been deducted from checking toward savings for a trip. It
will appear as though the money has been moved from the account into ‘Savings:Trip’,
although no money has actually moved anywhere.

When balances are displayed, virtual transactions will be factored in. To view balances
without any virtual balances factored in, using the ‘-R’ flag, for “reality”.

3.10 Automated transactions

As a Bah’, I need to compute Huqqu’llh whenever I acquire assets. It is similar to tithing
for Jews and Christians, or to Zakt for Muslims. The exact details of computing Huqqu’llh
are somewhat complex, but if you have further interest, please consult the Web.

Ledger makes this otherwise difficult law very easy. Just set up an automated transaction
at the top of your ledger file:

; This automated entry will compute Huqqu’llh based on this

; journal’s transactions. Any that match will affect the

; Liabilities:Huququ’llah account by 19% of the value of that

Chapter 3: Keeping a ledger 46

; transaction.

= /^(?:Income:|Expenses:(?:Business|Rent$|Furnishings|Taxes|Insurance))/

(Liabilities:Huququ’llah) 0.19

This automated transaction works by looking at each transaction in the ledger file. If
any match the given value expression, 19% of the transaction’s value is applied to the
‘Liabilities:Huququ’llah’ account. So, if $1000 is earned from ‘Income:Salary’, $190
is added to ‘Liabilities:Huqqu’llh’; if $1000 is spent on Rent, $190 is subtracted. The
ultimate balance of Huqqu’llh reflects how much is owed in order to fulfill one’s obliga-
tion to Huqqu’llh. When ready to pay, just write a check to cover the amount shown in
‘Liabilities:Huququ’llah’. That entry would look like:

2003/01/01 (101) Baha’i Huqqu’llh Trust

Liabilities:Huququ’llah $1,000.00

Assets:Checking

That’s it. To see how much Huqq is currently owed based on your ledger entries, use:

ledger balance Liabilities:Huquq

This works fine, but omits one aspect of the law: that Huquq is only due once the
liability exceeds the value of 19 mithqls of gold (which is roughly 2.22 ounces). So what we
want is for the liability to appear in the balance report only when it exceeds the present
day value of 2.22 ounces of gold. This can be accomplished using the command:

ledger -Q -t "/Liab.*Huquq/?(a/P{2.22 AU}<={-1.0}&a):a" -s bal liab

With this command, the current price for gold is downloaded, and the Huqqu’llh is
reported only if its value exceeds that of 2.22 ounces of gold. If you wish the liability to be
reflected in the parent subtotal either way, use this instead:

ledger -Q -T "/Liab.*Huquq/?(O/P{2.22 AU}<={-1.0}&O):O" -s bal liab

In some cases, you may wish to refer to the account of whichever transaction matched
your automated entry’s value expression. To do this, use the special account name
‘$account’:

= /^Some:Long:Account:Name/

[$account] -0.10

[Savings] 0.10

This example causes 10% of the matching account’s total to be deferred to the ‘Savings’
account—as a balanced virtual transaction, which may be excluded from reports by using
‘--real’.

3.11 Using Emacs to Keep Your Ledger

In the Ledger tarball is an Emacs module, ‘ledger.el’. This module makes the process of
keeping a text ledger much easier for Emacs users. I recommend putting this at the top of
your ledger file:

; -*-ledger-*-

And this in your ‘.emacs’ file, after copying ‘ledger.el’ to your ‘site-lisp’ directory:

(load "ledger")

Now when you edit your ledger file, it will be in ledger-mode. ledger-mode adds these
commands:

Chapter 3: Keeping a ledger 47

C-c C-a For quickly adding new entries based on the form of older ones (see previous
section).

C-c C-c Toggles the “cleared” flag of the transaction under point.

C-c C-d Delete the entry under point.

C-c C-r Reconciles an account by displaying the transactions in another buffer, where
simply hitting the spacebar will toggle the pending flag of the transaction in
the ledger. Once all the appropriate transactions have been marked, press C-c
C-c in the reconcile buffer to “commit” the reconciliation, which will mark all
of the entries as cleared, and display the new cleared balance in the minibuffer.

C-c C-m Set the default month for new entries added with C-c C-a. This is handy if you
have a large number of transactions to enter from a previous month.

C-c C-y Set the default year for new entries added with C-c C-a. This is handy if you
have a large number of transactions to enter from a previous year.

Once you enter the reconcile buffer, there are several key commands available:

RET Visit the ledger file entry corresponding to the reconcile entry.

C-c C-c Commit the reconcialation. This marks all of the marked transactions as
“cleared”, saves the ledger file, and then displays the new cleared balance.

C-l Refresh the reconcile buffer by re-reading transactions from the ledger data file.

SPC Toggle the transaction under point as cleared.

a Add a new entry to the ledger data file, and refresh the reconcile buffer to
include its transactions (if the entry is added to the same account as the one
being reconciled).

d Delete the entry related to the transaction under point. Note: This may result
in multiple transactions being deleted.

n Move to the next line.

p Move to the previous line.

C-c C-r

r Attempt to auto-reconcile the transactions to the entered balance. If it can do
so, it will mark all those transactions as pending that would yield the specified
balance.

C-x C-s

s Save the ledger data file, and show the current cleared balance for the account
being reconciled.

q Quit the reconcile buffer.

There is also an emacs command which can be used to output reports in a format directly
read-able from Emacs Lisp.

Chapter 3: Keeping a ledger 48

3.12 Using GnuCash to Keep Your Ledger

The Ledger tool is fast and simple, but it offers no custom method for actually editing the
ledger. It assumes you know how to use a text editor, and like doing so. There is, at least,
an Emacs mode that makes editing Ledger’s data files much easier.

You are also free to use GnuCash to maintain your ledger, and the Ledger program for
querying and reporting on the contents of that ledger. It takes a little longer to parse the
XML data format that GnuCash uses, but the end result is identical.

Then again, why would anyone use a Gnome-centric, multi-megabyte behemoth to edit
their data, and only a one megabyte binary to query it?

3.13 Using timeclock to record billable time

The timeclock tool makes it easy to track time events, like clocking into and out of a
particular job. These events accumulate in a timelog file.

Each in/out event may have an optional description. If the “in” description is a ledger
account name, these in/out pairs may be viewed as virtual transactions, adding time com-
modities (hours) to that account.

For example, the command-line version of the timeclock tool could be used to begin a
timelog file like:

export TIMELOG=$HOME/.timelog

ti ClientOne category

sleep 10

to waited for ten seconds

The ‘.timelog’ file now contains:

i 2004/10/06 15:21:00 ClientOne category

o 2004/10/06 15:21:10 waited for ten seconds

Ledger parses this directly, as if it had seen the following entry:

2004/10/06 category

(ClientOne) 10s

In other words, the timelog event pair is seen as adding 0.00277h (ten seconds) worth of
time to the ‘ClientOne’ account. This would be considered billable time, which later could
be invoiced and credited to accounts receivable:

2004/11/01 (INV#1) ClientOne, Inc.

Receivable:ClientOne $0.10

ClientOne -0.00277h @ $35.00

The above transaction converts the clocked time into an invoice for the time spent, at
an hourly rate of $35. Once the invoice is paid, the money is deposited from the receivable
account into a checking account:

2004/12/01 ClientOne, Inc.

Assets:Checking $0.10

Receivable:ClientOne

And now the time spent has been turned into hard cash in the checking account.

The advantage to using timeclock and invoicing to bill time is that you will always know,
by looking at the balance report, exactly how much unbilled and unpaid time you’ve spent
working for any particular client.

Chapter 3: Keeping a ledger 49

I like to ‘!include’ my timelog at the top of my company’s accounting ledger, with the
attached prefix ‘Billable’:

; -*-ledger-*-

; This is the ledger file for my company. But first, include the

; timelog data, entering all of the time events within the umbrella

; account "Billable".

!account Billable

!include /home/johnw/.timelog

!end

; Here follows this fiscal year’s transactions for the company.

2004/11/01 (INV#1) ClientOne, Inc.

Receivable:ClientOne $0.10

Billable:ClientOne -0.00277h @ $35.00

2004/12/01 ClientOne, Inc.

Assets:Checking $0.10

Receivable:ClientOne

Chapter 4: Using XML 50

4 Using XML

By default, Ledger uses a human-readable data format, and displays its reports in a manner
meant to be read on screen. For the purpose of writing tools which use Ledger, however, it
is possible to read and display data using XML. This chapter documents that format.

The general format used for Ledger data is:
<?xml version="1.0"?>

<ledger>

<entry>...</entry>

<entry>...</entry>

<entry>...</entry>...

</ledger>

The data stream is enclosed in a ‘ledger’ tag, which contains a series of one or more
entries. Each ‘entry’ describes the entry and contains a series of one or more transactions:

<entry>

<en:date>2004/03/01</en:date>

<en:cleared/>

<en:code>100</en:code>

<en:payee>John Wiegley</en:payee>

<en:transactions>

<transaction>...</transaction>

<transaction>...</transaction>

<transaction>...</transaction>...

</en:transactions>

</entry>

The date format for ‘en:date’ is always ‘YYYY/MM/DD’. The ‘en:cleared’ tag is optional,
and indicates whether the transaction has been cleared or not. There is also an ‘en:pending’
tag, for marking pending transactions. The ‘en:code’ and ‘en:payee’ tags both contain
whatever text the user wishes.

After the initial entry data, there must follow a set of transactions marked with
‘en:transactions’. Typically these transactions will all balance each other, but if not
they will be automatically balanced into an account named ‘<Unknown>’.

Within the ‘en:transactions’ tag is a series of one or more ‘transaction’’s, which
have the following form:

<transaction>

<tr:account>Expenses:Computer:Hardware</tr:account>

<tr:amount>

<value type="amount">

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

</value>

</tr:amount>

</transaction>

This is a basic transaction. It may also be begin with ‘tr:virtual’ and/or
‘tr:generated’ tags, to indicate virtual and auto-generated transactions. Then follows the
‘tr:account’ tag, which contains the full name of the account the transaction is related
to. Colons separate parent from child in an account name.

Lastly follows the amount of the transaction, indicated by ‘tr:amount’. Within this tag
is a ‘value’ tag, of which there are four different kinds, each with its own format:

Chapter 4: Using XML 51

1. boolean

2. integer

3. amount

4. balance

The format of a boolean value is ‘true’ or ‘false’ surrounded by a ‘boolean’ tag, for
example:

<boolean>true</boolean>

The format of an integer value is the numerical value surrounded by an ‘integer’ tag,
for example:

<integer>12036</integer>

The format of an amount contains two members, the commodity and the quantity. The
commodity can have a set of flags that indicate how to display it. The meaning of the flags
(all of which are optional) are:

P The commodity is prefixed to the value.

S The commodity is separated from the value by a space.

T Thousands markers are used to display the amount.

E The format of the amount is European, with period used as a thousands marker,
and comma used as the decimal point.

The actual quantity for an amount is an integer of arbitrary size. Ledger uses the GNU
multi-precision math library to handle such values. The XML format assumes the reader
to be equally capable. Here is an example amount:

<value type="amount">

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

</value>

Lastly, a balance value contains a series of amounts, each with a different commodity.
Unlike the name, such a value does need to balance. It is called a balance because it sums
several amounts. For example:

<value type="balance">

<balance>

<amount>

<commodity flags="PT">$</commodity>

<quantity>90.00</quantity>

</amount>

<amount>

<commodity flags="TE">DM</commodity>

<quantity>200.00</quantity>

</amount>

</balance>

</value>

That is the extent of the XML data format used by Ledger. It will output such data if
the xml command is used, and can read the same data as long as the ‘expat’ library was
available when Ledger was built.

	Introduction
	Building the program
	Getting help

	Running Ledger
	Usage overview
	Checking balances
	Sub-account balances
	Specific account balances

	The register report
	Specific register queries

	Selecting transactions
	By date
	By status
	By relationship
	By budget
	By value expression

	Massaging register output
	Summarizing
	Quick periods
	Ordering and width
	Averages and percentages
	Reporting total data
	Display by value expression
	Change report format

	Standard queries
	Reporting balance totals
	Reporting percentages

	Commands
	balance
	register
	print
	output
	xml
	emacs
	equity
	prices
	entry

	Options
	Basic options
	Report filtering
	Output customization
	Commodity reporting
	Environment variables

	Format strings
	Value expressions
	Variables
	Transaction/account details
	Calculated totals

	Functions
	Operators
	Complex expressions

	Period expressions
	File format
	Some typical queries
	Reporting monthly expenses
	Visualizing with Gnuplot
	Typical plots

	Budgeting and forecasting
	Budgeting
	Forecasting

	Keeping a ledger
	Stating where money goes
	Assets and Liabilities
	Tracking reimbursable expenses

	Commodities and Currencies
	Commodity price histories
	Commodity equivalencies

	Accounts and Inventories
	Understanding Equity
	Dealing with Petty Cash
	Working with multiple funds and accounts
	Archiving previous years
	Virtual transactions
	Automated transactions
	Using Emacs to Keep Your Ledger
	Using GnuCash to Keep Your Ledger
	Using timeclock to record billable time

	Using XML

