
ARM ELF File Format

ARM DUI 00101-A
Copyright © 1997 and 1998 ARM Limited. All rights reserved.
ARM DUI 0101A

ARM ELF File Format
Copyright © 1997 and 1998 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

ARM, Thumb, StrongARM, and the ARM Powered logo are registered trademarks of ARM Limited.

Angel, ARMulator, EmbeddedICE, Multi-ICE, ARM7TDMI, ARM9TDMI, and TDMI are trademarks of
ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM in good faith. However,
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Change History

Date Issue Change

Nov 1998 A Created.
1 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0101 A

ARM ELF File Format

ugger.
Overview of ELF File Format

This document describes the ARM implementation of the ELF file format used in the
ARM Software Development Toolkit version 2.50. It is assumed that the reader is
familiar with ELF version 1. This section only describes options taken by ARM in its
executable file format. Unless otherwise stated, Executable ARM ELF files are as
defined in the TIS Portable Formats Specification, Version 1.1.

Object file format

ELF describes three types of Object File:

• relocatable file

• executable file

• shared object file.

In general, an ELF Object File has the following organization:

Section header table

The view of an Object File as a series of named Sections is used by a linker or deb
Several Sections are denoted special and have reserved names. For example:

• .symtab

• .strtab

The Section Header Table gives access to such sections.

Linking View Execution View

ELF Header ELF Header

Program Header Table
(Optional)

Program Header Table

Section 1 Segment 1

....

Section n Segment 2

....

....

Section Header Table Section Header Table
(Optional)
ARM DUI 0101 A Copyright © 1997 and 1998 ARM Limited. All rights reserved. 2

ARM ELF File Format
Program header table

The view of an Object File as a series of Segments is typically used by a loader in order
to create an executable process image for a particular runtime environment.

The Program Header Table gives access to such Segments.

Executable ARM ELF File Layout

The ARM linker is used to produce an Executable ARM ELF file. For simple cases, it
lays out the file as shown in Generic ELF File Layout on page 4.

Extra information is encoded in the file for scatter-loaded and overlayed executables
and these special cases are described in Scatter-loaded Executables on page 10.

Only Segments will form part of the final executable image. Sections are included in the
Executable to provide further information about the executable image.
3 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0101 A

ARM ELF File Format
Generic ELF File Layout

A simple Executable ARM ELF file has the conceptual layout shown in the diagram on
the right.

Note that the actual ordering of the file may be different from that shown, since only an
ELF header has a fixed position in the file.

All other parts of the file have a position defined by:

• the ELF header

• the Program Header Table

• the Section Header Table.

ELF Header

Program Header Table

Text segment

Data segment

BSS segment

".symtab" section

".strtab" section

".shstrtab" section

Debug sections

Section Header Table
ARM DUI 0101 A Copyright © 1997 and 1998 ARM Limited. All rights reserved. 4

ARM ELF File Format

ore
ARM-specific ELF Header Values

This section describes the values in the ELF header which need to be defined for the
ARM target environment. All other values are as specified in the Tool Interface
Standard Portable Formats Specification:

e_machine is set to EM_ARM (defined as 40)

e_ident[EI_CLASS]
is set to ELFCLASS32

e_ident[EI_DATA]
is set to:

ELFDATA2LSB for little-endian targets

ELFDATA2MSB for big-endian targets

Note

The endianness of the target is determined by the endianness of the Object Files
submitted to the ARM linker. The linker will produce an error message if presented with
object files of mixed endianness.

Segments

There are three types of Segment:

• Text

• Data

• BSS

Entries for these appear in the Program Header Table.

In a simple Executable ARM ELF file, there is just one of each type of Segment. M
complex cases are described in Scatter-loaded Executables on page 10.

Attributes of these Segments are described below:

Text Segment

Contains the code for the executable.
5 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0101 A

ARM ELF File Format
p_type - set to PT_LOAD
p_vaddr - load address of the segment
p_paddr - 0
p_filesz - size of text segment
p_memsz - same as p_filesz
p_flags - PF_X + PF_R
p_align - 4

Data Segment

Contains initialized read-write data for the executable.

p_type - set to PT_LOAD
p_vaddr - load address of data segment
p_paddr - 0
p_filesz - size of data segment
p_memsz - same as p_filesz
p_flags - PF_R + PF_W
p_align - 4

BSS Segment

Contains uninitialized data, which should be zeroed either when an image is created, or
at program startup by the runtime environment. Note that a BSS Segment is
distinguished by having a p_filesz of 0 to indicate that it occupies no space in the
executable file.

p_type - set to PT_LOAD
p_vaddr - load address of BSS data segment
p_paddr - 0
p_filesz - 0 (note: occupies no file space)
p_memsz - size of BSS segment
p_flags - PF_R + PF_W
p_align - 4

Sections

Under the ELF specification, an executable object file can include a Section Header
Table which describes Sections in the file. In Executable ARM ELF, all Executables
have at least two Sections, unless the linker has been invoked with -nodebug:

• the Symbol Table Section

• the String Table Section.

Further Sections may appear in the file, and these are described later in Scatter-loaded
Executables on page 10.
ARM DUI 0101 A Copyright © 1997 and 1998 ARM Limited. All rights reserved. 6

ARM ELF File Format
When an Executable contains source-level debugging information, it also includes
several Debugging Sections, as described below.

If required, an Executable can be stripped of its Sections, leaving just the Text, Data and
BSS Segments. The Section Header Table is also removed.

Symbol Table Section

The Symbol Table Section has the following attributes:

sh_name: ".symtab"
sh_type: SHT_SYMTAB
sh_addr: 0 (to indicate it is not part of the image)

Note

In Executable ARM ELF we do not set the SHF_ALLOC bit in the sh_flags field, thus
indicating that there is no space allocated for the symbol table in the image which will
be created from this Executable.

This symbol table can be used for low-level debugging symbol information.

String Table Section

The String Table Section holds all strings referenced by other Sections in the
Executable. In particular it will hold the textual names of entries in the Symbol Table
Section. It has the following attributes:

sh_name: ".strtab"
sh_type: SHT_STRTAB
sh_addr: 0 (to indicate it is not part of the image)

Section Name String Table

The Section Name String Table holds the textual names of all sections. It has the
following attributes:

sh_name: ".shstrtab"
sh_type: SHT_STRTAB
sh_addr: 0 (to indicate it is not part of the image)

Debugging Sections

ARM Executable ELF supports three types of debugging information held in debugging
Sections. A consumer of an ELF executable can distinguish between these three types
of debugging information by examining the Section Table for the executable:
7 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0101 A

ARM ELF File Format

D

F
a

F

s

s

• ASD debugging tables

These provide backwards compatibility with ARM's Symbolic Debugger. AS
debugging information is stored in a single Section in the executable named
.asd.

• DWARF version 1.0

When DWARF 1.0 debugging information is included by the linker in the EL
executable, the file contains the following ELF Sections, each of which has
Section Header Table entry:

• DWARF version 2.0

When DWARF 2.0 debugging information is included by the linker in the EL
executable, the file contains the following ELF sections, each of which has a
Section Header Table entry:

Section name Contents

.debug debugging entries

.line fileinfo entries

.debug_pubnames table for accelerated access to debug item

.debug_aranges address ranges for compilation units

Section name Contents

.debug_info debugging entries

.debug_line fileinfo statement program

.debug_pubnames table for accelerated access to debug item

.debug_aranges address ranges for compilation units

.debug_macinfo macro information (#define / #undef)

.debug_frame call frame information

.debug_abbrev abbreviation table

.debug_str debug string table
ARM DUI 0101 A Copyright © 1997 and 1998 ARM Limited. All rights reserved. 8

ARM ELF File Format
Each of the .debug_* sections will have type SHT_PROGBITS. These are only
included when source-level debugging information is available.

Each entry will have a sh_addr member of 0 indicating that the file contains the
debugging information, but that this information will not be included in an image
created from the executable.

Note

This means debugging information (albeit maybe only low-level debug symbols) can be
kept for a program image residing in ROM without that information appearing in the
ROM itself.
9 Copyright © 1997 and 1998 ARM Limited. All rights reserved. ARM DUI 0101 A

ARM ELF File Format

ore

value
g

s:

ress
e can

 file for
which
ddress
t

ns
Scatter-loaded Executables

When scatter loading is used, the ARM linker generates Section Header Table entries
for a load region, where the Section name is taken from the load region name as defined
in the scatter description.

If the load region contains a mixture of code, data and uninitialized data, there will be
more than one Segment generated for that load region:

• each Segment generated will have its own Section Header Table entry, so m
than one Section may have the same name

• each Section Header Table entry will have its sh_offset field set to the same
as the p_offset field of the Program Header Table entry for its correspondin
Segment.

Each Section Header Table entry for a load region will have the following attribute

 sh_name: name of load region (as given in scatter description)

 sh_type: SHT_PROGBITS or SHT_NOBITS (for zero init areas)

 sh_addr: same as p_vaddr of corresponding Segment

 sh_offset: same as p_offset of corresponding Segment

 sh_flags:bit SHF_LOADREGION set

The p_vaddr field of each Segment of a scatter-loaded Executable is the load add
of the Segment, which need not necessarily be its execution address. Startup cod
move (part of) a Segment to its execution address using the symbols:

Load$$reg$$Base
Image$$reg$$Base
Image$$reg$$Length

as described in the Software Development Toolkit User Guide.

The Section Header Table entries can be used to generate a separate plain binary
each load region, using the Section name as the name of the generated file. A tool
does this would need to merge any Sections of the same name, sorting them by a
(sh_addr). Alternatively a single image can be made simply by using the Segmen
information held in the Program Header Table.

Note

Debugging information (if included) for the Executable will refer to memory locatio
in execution regions rather than load regions.
ARM DUI 0101 A Copyright © 1997 and 1998 ARM Limited. All rights reserved. 10

	ARM ELF File Format
	Overview of ELF File Format
	Object file format
	Executable ARM ELF File Layout

	Generic ELF File Layout
	ARM-specific ELF Header Values
	Segments
	Sections

	Scatter-loaded Executables

