Lua Cairo

Color conventions

Sample

-- taken from http://luaforge.net/projects/luacairo/

local cairo = require"lcairo"
local CAIRO = cairo

local w = 320
local h = 240
local outfile = "cairo_test2.png"

local cs = cairo.image_surface_create (CAIRO.FORMAT_RGB24, w, h)
local cr = cairo.create (cs)

cairo.set_source_rgb (cr, 1, 1, 1)
cairo.paint (cr)

cairo.set_source_rgb (cr, 0, 0, 0)
cairo.select_font_face (cr, "Sans", CAIRO.FONT_SLANT_NORMAL, CAIRO.FONT_WEIGHT_BOLD)
cairo.set_font_size (cr, w/6)
cairo.move_to (cr, 0, h/4)
cairo.show_text (cr, "Hello cairo!")

cairo.select_font_face (cr, "Sans", CAIRO.FONT_SLANT_NORMAL, CAIRO.FONT_WEIGHT_NORMAL)
cairo.set_font_size (cr, w/8)
cairo.move_to (cr, 0, 3*h/4)
cairo.text_path (cr, "Lua calling...")
cairo.set_source_rgb (cr, 0.5, 0.5, 1)
cairo.fill_preserve (cr)
cairo.set_source_rgb (cr, 0, 0, 0)
cairo.set_line_width (cr, w/200)
cairo.stroke (cr)

cairo.surface_write_to_png (cs, outfile)

Sample (for object oriented usage)

-- Adapted from Sample

local cairo = require"lcairo"
local CAIRO = cairo

local w = 320
local h = 240
local outfile = "cairo_test2.png"

local cs = cairo.ImageSurface (CAIRO.FORMAT_RGB24, w, h)
local cr = cairo.Context (cs)

cr:set_source_rgb (1, 1, 1)
cr:paint ()

cr:set_source_rgb (0, 0, 0)
cr:select_font_face ("Sans", CAIRO.FONT_SLANT_NORMAL, CAIRO.FONT_WEIGHT_BOLD)
cr:set_font_size (w/6)
cr:move_to (0, h/4)
cr:show_text ("Hello cairo!")

cr:select_font_face ("Sans", CAIRO.FONT_SLANT_NORMAL, CAIRO.FONT_WEIGHT_NORMAL)
cr:set_font_size (w/8)
cr:move_to (0, 3*h/4)
cr:text_path ("Lua calling...")
cr:set_source_rgb (0.5, 0.5, 1)
cr:fill_preserve ()
cr:set_source_rgb (0, 0, 0)
cr:set_line_width (w/200)
cr:stroke ()

cs:write_to_png (outfile)

Helper functions

Cairo API

Modify state

Path creation functions

Painting functions

Font/Text functions

Query functions

Image surface

Pattern creation functions

Matrix functions

SVG surface

PDF surface

PS surface

XCB surface

XLIB surface

WIN32 surface

BEOS surface

DIRECTFB surface

OS2 surface

GLITZ surface

QUARTZ surface

QUARTZ Image surface

Sub surface

Cairo-1.10.0

Recording surface

DRM surface

GL surface

QT surface

Script surface

Skia surface

Tee surface

VG surface

XML surface

QUARTZ font

FT

Region functions

Cairo-1.10.0

Device functions

Cairo-1.10.0

Types

cairo_bool_t
 *
 * #cairo_bool_t is used for boolean values. Returns of type
 * #cairo_bool_t will always be either 0 or 1, but testing against
 * these values explicitly is not encouraged; just use the
 * value as a boolean condition.
 *
 * 
 *  if (cairo_in_stroke (cr, x, y)) {
 *      /* do something */
 *  }
 * 


cairo_t
 *
 * A #cairo_t contains the current state of the rendering device,
 * including coordinates of yet to be drawn shapes.
 *
 * Cairo contexts, as #cairo_t objects are named, are central to
 * cairo and all drawing with cairo is always done to a #cairo_t
 * object.
 *
 * Memory management of #cairo_t is done with
 * cairo_reference() and cairo_destroy().


cairo_surface_t
 *
 * A #cairo_surface_t represents an image, either as the destination
 * of a drawing operation or as source when drawing onto another
 * surface.  To draw to a #cairo_surface_t, create a cairo context
 * with the surface as the target, using cairo_create().
 *
 * There are different subtypes of #cairo_surface_t for
 * different drawing backends; for example, cairo_image_surface_create()
 * creates a bitmap image in memory.
 * The type of a surface can be queried with cairo_surface_get_type().
 *
 * Memory management of #cairo_surface_t is done with
 * cairo_surface_reference() and cairo_surface_destroy().


cairo_device_t
 * 
 * A #cairo_device_t represents the driver interface for drawing
 * operations to a #cairo_surface_t.  There are different subtypes of
 * #cairo_device_t for different drawing backends; for example,
 * cairo_xcb_device_create() creates a device that wraps the connection
 * to an X Windows System using the XCB library.
 *
 * The type of a device can be queried with cairo_device_get_type().
 *
 * Memory management of #cairo_device_t is done with
 * cairo_device_reference() and cairo_device_destroy().
 *
 * Since: 1.10


cairo_matrix_t

 *
 * @xx: xx component of the affine transformation
 * @yx: yx component of the affine transformation
 * @xy: xy component of the affine transformation
 * @yy: yy component of the affine transformation
 * @x0: X translation component of the affine transformation
 * @y0: Y translation component of the affine transformation
 *
 * A #cairo_matrix_t holds an affine transformation, such as a scale,
 * rotation, shear, or a combination of those. The transformation of
 * a point (x, y) is given by:
 * 
 *     x_new = xx * x + xy * y + x0;
 *     y_new = yx * x + yy * y + y0;
 * 


cairo_pattern_t
 *
 * A #cairo_pattern_t represents a source when drawing onto a
 * surface. There are different subtypes of #cairo_pattern_t,
 * for different types of sources; for example,
 * cairo_pattern_create_rgb() creates a pattern for a solid
 * opaque color.
 *
 * Other than various cairo_pattern_create_type
 * functions, some of the pattern types can be implicitly created
 * using vairous cairo_set_source_type functions;
 * for example cairo_set_source_rgb().
 *
 * The type of a pattern can be queried with cairo_pattern_get_type().
 *
 * Memory management of #cairo_pattern_t is done with
 * cairo_pattern_reference() and cairo_pattern_destroy().


cairo_destroy_func_t
 * 
 * @data: The data element being destroyed.
 *
 * #cairo_destroy_func_t the type of function which is called when a
 * data element is destroyed. It is passed the pointer to the data
 * element and should free any memory and resources allocated for it.


cairo_user_data_key_t
 * 
 * @unused: not used; ignore.
 *
 * #cairo_user_data_key_t is used for attaching user data to cairo
 * data structures.  The actual contents of the struct is never used,
 * and there is no need to initialize the object; only the unique
 * address of a #cairo_data_key_t object is used.  Typically, you
 * would just use the address of a static #cairo_data_key_t object.


cairo_status_t
 * 
 * @CAIRO_STATUS_SUCCESS: no error has occurred
 * @CAIRO_STATUS_NO_MEMORY: out of memory
 * @CAIRO_STATUS_INVALID_RESTORE: cairo_restore() called without matching cairo_save()
 * @CAIRO_STATUS_INVALID_POP_GROUP: no saved group to pop, i.e. cairo_pop_group() without matching cairo_push_group()
 * @CAIRO_STATUS_NO_CURRENT_POINT: no current point defined
 * @CAIRO_STATUS_INVALID_MATRIX: invalid matrix (not invertible)
 * @CAIRO_STATUS_INVALID_STATUS: invalid value for an input #cairo_status_t
 * @CAIRO_STATUS_NULL_POINTER: %NULL pointer
 * @CAIRO_STATUS_INVALID_STRING: input string not valid UTF-8
 * @CAIRO_STATUS_INVALID_PATH_DATA: input path data not valid
 * @CAIRO_STATUS_READ_ERROR: error while reading from input stream
 * @CAIRO_STATUS_WRITE_ERROR: error while writing to output stream
 * @CAIRO_STATUS_SURFACE_FINISHED: target surface has been finished
 * @CAIRO_STATUS_SURFACE_TYPE_MISMATCH: the surface type is not appropriate for the operation
 * @CAIRO_STATUS_PATTERN_TYPE_MISMATCH: the pattern type is not appropriate for the operation
 * @CAIRO_STATUS_INVALID_CONTENT: invalid value for an input #cairo_content_t
 * @CAIRO_STATUS_INVALID_FORMAT: invalid value for an input #cairo_format_t
 * @CAIRO_STATUS_INVALID_VISUAL: invalid value for an input Visual*
 * @CAIRO_STATUS_FILE_NOT_FOUND: file not found
 * @CAIRO_STATUS_INVALID_DASH: invalid value for a dash setting
 * @CAIRO_STATUS_INVALID_DSC_COMMENT: invalid value for a DSC comment (Since 1.2)
 * @CAIRO_STATUS_INVALID_INDEX: invalid index passed to getter (Since 1.4)
 * @CAIRO_STATUS_CLIP_NOT_REPRESENTABLE: clip region not representable in desired format (Since 1.4)
 * @CAIRO_STATUS_TEMP_FILE_ERROR: error creating or writing to a temporary file (Since 1.6)
 * @CAIRO_STATUS_INVALID_STRIDE: invalid value for stride (Since 1.6)
 * @CAIRO_STATUS_FONT_TYPE_MISMATCH: the font type is not appropriate for the operation (Since 1.8)
 * @CAIRO_STATUS_USER_FONT_IMMUTABLE: the user-font is immutable (Since 1.8)
 * @CAIRO_STATUS_USER_FONT_ERROR: error occurred in a user-font callback function (Since 1.8)
 * @CAIRO_STATUS_NEGATIVE_COUNT: negative number used where it is not allowed (Since 1.8)
 * @CAIRO_STATUS_INVALID_CLUSTERS: input clusters do not represent the accompanying text and glyph array (Since 1.8)
 * @CAIRO_STATUS_INVALID_SLANT: invalid value for an input #cairo_font_slant_t (Since 1.8)
 * @CAIRO_STATUS_INVALID_WEIGHT: invalid value for an input #cairo_font_weight_t (Since 1.8)
 * @CAIRO_STATUS_INVALID_SIZE: invalid value (typically too big) for the size of the input (surface, pattern, etc.) (Since 1.10)
 * @CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED: user-font method not implemented (Since 1.10)
 * @CAIRO_STATUS_DEVICE_TYPE_MISMATCH: the device type is not appropriate for the operation (Since 1.10)
 * @CAIRO_STATUS_DEVICE_ERROR: an operation to the device caused an unspecified error (Since 1.10)
 * @CAIRO_STATUS_LAST_STATUS: this is a special value indicating the number of
 *   status values defined in this enumeration.  When using this value, note
 *   that the version of cairo at run-time may have additional status values
 *   defined than the value of this symbol at compile-time. (Since 1.10)
 *
 * #cairo_status_t is used to indicate errors that can occur when
 * using Cairo. In some cases it is returned directly by functions.
 * but when using #cairo_t, the last error, if any, is stored in
 * the context and can be retrieved with cairo_status().
 *
 * New entries may be added in future versions.  Use cairo_status_to_string()
 * to get a human-readable representation of an error message.


cairo_content_t
 * 
 * @CAIRO_CONTENT_COLOR: The surface will hold color content only.
 * @CAIRO_CONTENT_ALPHA: The surface will hold alpha content only.
 * @CAIRO_CONTENT_COLOR_ALPHA: The surface will hold color and alpha content.
 *
 * #cairo_content_t is used to describe the content that a surface will
 * contain, whether color information, alpha information (translucence
 * vs. opacity), or both.
 *
 * Note: The large values here are designed to keep #cairo_content_t
 * values distinct from #cairo_format_t values so that the
 * implementation can detect the error if users confuse the two types.


cairo_write_func_t
 * 
 * @closure: the output closure
 * @data: the buffer containing the data to write
 * @length: the amount of data to write
 *
 * #cairo_write_func_t is the type of function which is called when a
 * backend needs to write data to an output stream.  It is passed the
 * closure which was specified by the user at the time the write
 * function was registered, the data to write and the length of the
 * data in bytes.  The write function should return
 * %CAIRO_STATUS_SUCCESS if all the data was successfully written,
 * %CAIRO_STATUS_WRITE_ERROR otherwise.
 *
 * Returns: the status code of the write operation


cairo_read_func_t
 * 
 * @closure: the input closure
 * @data: the buffer into which to read the data
 * @length: the amount of data to read
 *
 * #cairo_read_func_t is the type of function which is called when a
 * backend needs to read data from an input stream.  It is passed the
 * closure which was specified by the user at the time the read
 * function was registered, the buffer to read the data into and the
 * length of the data in bytes.  The read function should return
 * %CAIRO_STATUS_SUCCESS if all the data was successfully read,
 * %CAIRO_STATUS_READ_ERROR otherwise.
 *
 * Returns: the status code of the read operation


cairo_operator_t
 * 
 * @CAIRO_OPERATOR_CLEAR: clear destination layer (bounded)
 * @CAIRO_OPERATOR_SOURCE: replace destination layer (bounded)
 * @CAIRO_OPERATOR_OVER: draw source layer on top of destination layer
 * (bounded)
 * @CAIRO_OPERATOR_IN: draw source where there was destination content
 * (unbounded)
 * @CAIRO_OPERATOR_OUT: draw source where there was no destination
 * content (unbounded)
 * @CAIRO_OPERATOR_ATOP: draw source on top of destination content and
 * only there
 * @CAIRO_OPERATOR_DEST: ignore the source
 * @CAIRO_OPERATOR_DEST_OVER: draw destination on top of source
 * @CAIRO_OPERATOR_DEST_IN: leave destination only where there was
 * source content (unbounded)
 * @CAIRO_OPERATOR_DEST_OUT: leave destination only where there was no
 * source content
 * @CAIRO_OPERATOR_DEST_ATOP: leave destination on top of source content
 * and only there (unbounded)
 * @CAIRO_OPERATOR_XOR: source and destination are shown where there is only
 * one of them
 * @CAIRO_OPERATOR_ADD: source and destination layers are accumulated
 * @CAIRO_OPERATOR_SATURATE: like over, but assuming source and dest are
 * disjoint geometries
 * @CAIRO_OPERATOR_MULTIPLY: source and destination layers are multiplied.
 * This causes the result to be at least as dark as the darker inputs.
 * @CAIRO_OPERATOR_SCREEN: source and destination are complemented and
 * multiplied. This causes the result to be at least as light as the lighter
 * inputs.
 * @CAIRO_OPERATOR_OVERLAY: multiplies or screens, depending on the
 * lightness of the destination color.
 * @CAIRO_OPERATOR_DARKEN: replaces the destination with the source if it
 * is darker, otherwise keeps the source.
 * @CAIRO_OPERATOR_LIGHTEN: replaces the destination with the source if it
 * is lighter, otherwise keeps the source.
 * @CAIRO_OPERATOR_COLOR_DODGE: brightens the destination color to reflect
 * the source color.
 * @CAIRO_OPERATOR_COLOR_BURN: darkens the destination color to reflect
 * the source color.
 * @CAIRO_OPERATOR_HARD_LIGHT: Multiplies or screens, dependant on source
 * color.
 * @CAIRO_OPERATOR_SOFT_LIGHT: Darkens or lightens, dependant on source
 * color.
 * @CAIRO_OPERATOR_DIFFERENCE: Takes the difference of the source and
 * destination color.
 * @CAIRO_OPERATOR_EXCLUSION: Produces an effect similar to difference, but
 * with lower contrast.
 * @CAIRO_OPERATOR_HSL_HUE: Creates a color with the hue of the source
 * and the saturation and luminosity of the target.
 * @CAIRO_OPERATOR_HSL_SATURATION: Creates a color with the saturation
 * of the source and the hue and luminosity of the target. Painting with
 * this mode onto a gray area prduces no change.
 * @CAIRO_OPERATOR_HSL_COLOR: Creates a color with the hue and saturation
 * of the source and the luminosity of the target. This preserves the gray
 * levels of the target and is useful for coloring monochrome images or
 * tinting color images.
 * @CAIRO_OPERATOR_HSL_LUMINOSITY: Creates a color with the luminosity of
 * the source and the hue and saturation of the target. This produces an
 * inverse effect to @CAIRO_OPERATOR_HSL_COLOR.
 *
 * #cairo_operator_t is used to set the compositing operator for all cairo
 * drawing operations.
 *
 * The default operator is %CAIRO_OPERATOR_OVER.
 *
 * The operators marked as unbounded modify their
 * destination even outside of the mask layer (that is, their effect is not
 * bound by the mask layer).  However, their effect can still be limited by
 * way of clipping.
 *
 * To keep things simple, the operator descriptions here
 * document the behavior for when both source and destination are either fully
 * transparent or fully opaque.  The actual implementation works for
 * translucent layers too.
 * For a more detailed explanation of the effects of each operator, including
 * the mathematical definitions, see
 * http://cairographics.org/operators/.


cairo_antialias_t
 * 
 * @CAIRO_ANTIALIAS_DEFAULT: Use the default antialiasing for
 *   the subsystem and target device
 * @CAIRO_ANTIALIAS_NONE: Use a bilevel alpha mask
 * @CAIRO_ANTIALIAS_GRAY: Perform single-color antialiasing (using
 *  shades of gray for black text on a white background, for example).
 * @CAIRO_ANTIALIAS_SUBPIXEL: Perform antialiasing by taking
 *  advantage of the order of subpixel elements on devices
 *  such as LCD panels
 *
 * Specifies the type of antialiasing to do when rendering text or shapes.


cairo_fill_rule_t
 * 
 * @CAIRO_FILL_RULE_WINDING: If the path crosses the ray from
 * left-to-right, counts +1. If the path crosses the ray
 * from right to left, counts -1. (Left and right are determined
 * from the perspective of looking along the ray from the starting
 * point.) If the total count is non-zero, the point will be filled.
 * @CAIRO_FILL_RULE_EVEN_ODD: Counts the total number of
 * intersections, without regard to the orientation of the contour. If
 * the total number of intersections is odd, the point will be
 * filled.
 *
 * #cairo_fill_rule_t is used to select how paths are filled. For both
 * fill rules, whether or not a point is included in the fill is
 * determined by taking a ray from that point to infinity and looking
 * at intersections with the path. The ray can be in any direction,
 * as long as it doesn't pass through the end point of a segment
 * or have a tricky intersection such as intersecting tangent to the path.
 * (Note that filling is not actually implemented in this way. This
 * is just a description of the rule that is applied.)
 *
 * The default fill rule is %CAIRO_FILL_RULE_WINDING.
 *
 * New entries may be added in future versions.


cairo_line_cap_t
 * 
 * @CAIRO_LINE_CAP_BUTT: start(stop) the line exactly at the start(end) point
 * @CAIRO_LINE_CAP_ROUND: use a round ending, the center of the circle is the end point
 * @CAIRO_LINE_CAP_SQUARE: use squared ending, the center of the square is the end point
 *
 * Specifies how to render the endpoints of the path when stroking.
 *
 * The default line cap style is %CAIRO_LINE_CAP_BUTT.


cairo_line_join_t
 * 
 * @CAIRO_LINE_JOIN_MITER: use a sharp (angled) corner, see
 * cairo_set_miter_limit()
 * @CAIRO_LINE_JOIN_ROUND: use a rounded join, the center of the circle is the
 * joint point
 * @CAIRO_LINE_JOIN_BEVEL: use a cut-off join, the join is cut off at half
 * the line width from the joint point
 *
 * Specifies how to render the junction of two lines when stroking.
 *
 * The default line join style is %CAIRO_LINE_JOIN_MITER.


cairo_rectangle_t
 * 
 * @x: X coordinate of the left side of the rectangle
 * @y: Y coordinate of the the top side of the rectangle
 * @width: width of the rectangle
 * @height: height of the rectangle
 *
 * A data structure for holding a rectangle.
 *
 * Since: 1.4


cairo_rectangle_list_t
 * 
 * @status: Error status of the rectangle list
 * @rectangles: Array containing the rectangles
 * @num_rectangles: Number of rectangles in this list
 * 
 * A data structure for holding a dynamically allocated
 * array of rectangles.
 *
 * Since: 1.4


cairo_scaled_font_t
 *
 * A #cairo_scaled_font_t is a font scaled to a particular size and device
 * resolution. A #cairo_scaled_font_t is most useful for low-level font
 * usage where a library or application wants to cache a reference
 * to a scaled font to speed up the computation of metrics.
 *
 * There are various types of scaled fonts, depending on the
 * font backend they use. The type of a
 * scaled font can be queried using cairo_scaled_font_get_type().
 *
 * Memory management of #cairo_scaled_font_t is done with
 * cairo_scaled_font_reference() and cairo_scaled_font_destroy().


cairo_font_face_t
 *
 * A #cairo_font_face_t specifies all aspects of a font other
 * than the size or font matrix (a font matrix is used to distort
 * a font by sheering it or scaling it unequally in the two
 * directions) . A font face can be set on a #cairo_t by using
 * cairo_set_font_face(); the size and font matrix are set with
 * cairo_set_font_size() and cairo_set_font_matrix().
 *
 * There are various types of font faces, depending on the
 * font backend they use. The type of a
 * font face can be queried using cairo_font_face_get_type().
 *
 * Memory management of #cairo_font_face_t is done with
 * cairo_font_face_reference() and cairo_font_face_destroy().


cairo_glyph_t
 * 
 * @index: glyph index in the font. The exact interpretation of the
 *      glyph index depends on the font technology being used.
 * @x: the offset in the X direction between the origin used for
 *     drawing or measuring the string and the origin of this glyph.
 * @y: the offset in the Y direction between the origin used for
 *     drawing or measuring the string and the origin of this glyph.
 *
 * The #cairo_glyph_t structure holds information about a single glyph
 * when drawing or measuring text. A font is (in simple terms) a
 * collection of shapes used to draw text. A glyph is one of these
 * shapes. There can be multiple glyphs for a single character
 * (alternates to be used in different contexts, for example), or a
 * glyph can be a ligature of multiple
 * characters. Cairo doesn't expose any way of converting input text
 * into glyphs, so in order to use the Cairo interfaces that take
 * arrays of glyphs, you must directly access the appropriate
 * underlying font system.
 *
 * Note that the offsets given by @x and @y are not cumulative. When
 * drawing or measuring text, each glyph is individually positioned
 * with respect to the overall origin


cairo_text_extents_t

 *
 * @x_bearing: the horizontal distance from the origin to the
 *   leftmost part of the glyphs as drawn. Positive if the
 *   glyphs lie entirely to the right of the origin.
 * @y_bearing: the vertical distance from the origin to the
 *   topmost part of the glyphs as drawn. Positive only if the
 *   glyphs lie completely below the origin; will usually be
 *   negative.
 * @width: width of the glyphs as drawn
 * @height: height of the glyphs as drawn
 * @x_advance:distance to advance in the X direction
 *    after drawing these glyphs
 * @y_advance: distance to advance in the Y direction
 *   after drawing these glyphs. Will typically be zero except
 *   for vertical text layout as found in East-Asian languages.
 *
 * The #cairo_text_extents_t structure stores the extents of a single
 * glyph or a string of glyphs in user-space coordinates. Because text
 * extents are in user-space coordinates, they are mostly, but not
 * entirely, independent of the current transformation matrix. If you call
 * cairo_scale(cr, 2.0, 2.0), text will
 * be drawn twice as big, but the reported text extents will not be
 * doubled. They will change slightly due to hinting (so you can't
 * assume that metrics are independent of the transformation matrix),
 * but otherwise will remain unchanged.


cairo_font_extents_t

 *
 * @ascent: the distance that the font extends above the baseline.
 *          Note that this is not always exactly equal to the maximum
 *          of the extents of all the glyphs in the font, but rather
 *          is picked to express the font designer's intent as to
 *          how the font should align with elements above it.
 * @descent: the distance that the font extends below the baseline.
 *           This value is positive for typical fonts that include
 *           portions below the baseline. Note that this is not always
 *           exactly equal to the maximum of the extents of all the
 *           glyphs in the font, but rather is picked to express the
 *           font designer's intent as to how the the font should
 *           align with elements below it.
 * @height: the recommended vertical distance between baselines when
 *          setting consecutive lines of text with the font. This
 *          is greater than @ascent+@descent by a
 *          quantity known as the line spacing
 *          or external leading. When space
 *          is at a premium, most fonts can be set with only
 *          a distance of @ascent+@descent between lines.
 * @max_x_advance: the maximum distance in the X direction that
 *         the the origin is advanced for any glyph in the font.
 * @max_y_advance: the maximum distance in the Y direction that
 *         the the origin is advanced for any glyph in the font.
 *         this will be zero for normal fonts used for horizontal
 *         writing. (The scripts of East Asia are sometimes written
 *         vertically.)
 *
 * The #cairo_font_extents_t structure stores metric information for
 * a font. Values are given in the current user-space coordinate
 * system.
 *
 * Because font metrics are in user-space coordinates, they are
 * mostly, but not entirely, independent of the current transformation
 * matrix. If you call cairo_scale(cr, 2.0, 2.0),
 * text will be drawn twice as big, but the reported text extents will
 * not be doubled. They will change slightly due to hinting (so you
 * can't assume that metrics are independent of the transformation
 * matrix), but otherwise will remain unchanged.


cairo_font_slant_t
 * 
 * @CAIRO_FONT_SLANT_NORMAL: Upright font style
 * @CAIRO_FONT_SLANT_ITALIC: Italic font style
 * @CAIRO_FONT_SLANT_OBLIQUE: Oblique font style
 *
 * Specifies variants of a font face based on their slant.


cairo_font_weight_t
 * 
 * @CAIRO_FONT_WEIGHT_NORMAL: Normal font weight
 * @CAIRO_FONT_WEIGHT_BOLD: Bold font weight
 *
 * Specifies variants of a font face based on their weight.


cairo_subpixel_order_t
 * 
 * @CAIRO_SUBPIXEL_ORDER_DEFAULT: Use the default subpixel order for
 *   for the target device
 * @CAIRO_SUBPIXEL_ORDER_RGB: Subpixel elements are arranged horizontally
 *   with red at the left
 * @CAIRO_SUBPIXEL_ORDER_BGR:  Subpixel elements are arranged horizontally
 *   with blue at the left
 * @CAIRO_SUBPIXEL_ORDER_VRGB: Subpixel elements are arranged vertically
 *   with red at the top
 * @CAIRO_SUBPIXEL_ORDER_VBGR: Subpixel elements are arranged vertically
 *   with blue at the top
 *
 * The subpixel order specifies the order of color elements within
 * each pixel on the display device when rendering with an
 * antialiasing mode of %CAIRO_ANTIALIAS_SUBPIXEL.


cairo_hint_style_t
 * 
 * @CAIRO_HINT_STYLE_DEFAULT: Use the default hint style for
 *   font backend and target device
 * @CAIRO_HINT_STYLE_NONE: Do not hint outlines
 * @CAIRO_HINT_STYLE_SLIGHT: Hint outlines slightly to improve
 *   contrast while retaining good fidelity to the original
 *   shapes.
 * @CAIRO_HINT_STYLE_MEDIUM: Hint outlines with medium strength
 *   giving a compromise between fidelity to the original shapes
 *   and contrast
 * @CAIRO_HINT_STYLE_FULL: Hint outlines to maximize contrast
 *
 * Specifies the type of hinting to do on font outlines. Hinting
 * is the process of fitting outlines to the pixel grid in order
 * to improve the appearance of the result. Since hinting outlines
 * involves distorting them, it also reduces the faithfulness
 * to the original outline shapes. Not all of the outline hinting
 * styles are supported by all font backends.
 *
 * New entries may be added in future versions.


cairo_hint_metrics_t
 * 
 * @CAIRO_HINT_METRICS_DEFAULT: Hint metrics in the default
 *  manner for the font backend and target device
 * @CAIRO_HINT_METRICS_OFF: Do not hint font metrics
 * @CAIRO_HINT_METRICS_ON: Hint font metrics
 *
 * Specifies whether to hint font metrics; hinting font metrics
 * means quantizing them so that they are integer values in
 * device space. Doing this improves the consistency of
 * letter and line spacing, however it also means that text
 * will be laid out differently at different zoom factors.


cairo_font_options_t
 *
 * An opaque structure holding all options that are used when
 * rendering fonts.
 *
 * Individual features of a #cairo_font_options_t can be set or
 * accessed using functions named
 * cairo_font_options_set_feature_name and
 * cairo_font_options_get_feature_name, like
 * cairo_font_options_set_antialias() and
 * cairo_font_options_get_antialias().
 *
 * New features may be added to a #cairo_font_options_t in the
 * future.  For this reason, cairo_font_options_copy(),
 * cairo_font_options_equal(), cairo_font_options_merge(), and
 * cairo_font_options_hash() should be used to copy, check
 * for equality, merge, or compute a hash value of
 * #cairo_font_options_t objects.


cairo_font_type_t
 * 
 * @CAIRO_FONT_TYPE_TOY: The font was created using cairo's toy font api
 * @CAIRO_FONT_TYPE_FT: The font is of type FreeType
 * @CAIRO_FONT_TYPE_WIN32: The font is of type Win32
 * @CAIRO_FONT_TYPE_QUARTZ: The font is of type Quartz (Since: 1.6)
 * @CAIRO_FONT_TYPE_USER: The font was create using cairo's user font api (Since: 1.8)
 *
 * #cairo_font_type_t is used to describe the type of a given font
 * face or scaled font. The font types are also known as "font
 * backends" within cairo.
 *
 * The type of a font face is determined by the function used to
 * create it, which will generally be of the form
 * cairo_type_font_face_create(). The font face type can be queried
 * with cairo_font_face_get_type()
 *
 * The various #cairo_font_face_t functions can be used with a font face
 * of any type.
 *
 * The type of a scaled font is determined by the type of the font
 * face passed to cairo_scaled_font_create(). The scaled font type can
 * be queried with cairo_scaled_font_get_type()
 *
 * The various #cairo_scaled_font_t functions can be used with scaled
 * fonts of any type, but some font backends also provide
 * type-specific functions that must only be called with a scaled font
 * of the appropriate type. These functions have names that begin with
 * cairo_type_scaled_font() such as cairo_ft_scaled_font_lock_face().
 *
 * The behavior of calling a type-specific function with a scaled font
 * of the wrong type is undefined.
 *
 * New entries may be added in future versions.
 *
 * Since: 1.2


cairo_path_data_type_t
 * 
 * @CAIRO_PATH_MOVE_TO: A move-to operation
 * @CAIRO_PATH_LINE_TO: A line-to operation
 * @CAIRO_PATH_CURVE_TO: A curve-to operation
 * @CAIRO_PATH_CLOSE_PATH: A close-path operation
 *
 * #cairo_path_data_t is used to describe the type of one portion
 * of a path when represented as a #cairo_path_t.
 * See #cairo_path_data_t for details.


cairo_path_data_t
 *
 * #cairo_path_data_t is used to represent the path data inside a
 * #cairo_path_t.
 *
 * The data structure is designed to try to balance the demands of
 * efficiency and ease-of-use. A path is represented as an array of
 * #cairo_path_data_t, which is a union of headers and points.
 *
 * Each portion of the path is represented by one or more elements in
 * the array, (one header followed by 0 or more points). The length
 * value of the header is the number of array elements for the current
 * portion including the header, (ie. length == 1 + # of points), and
 * where the number of points for each element type is as follows:
 *
 * 
 *     %CAIRO_PATH_MOVE_TO:     1 point
 *     %CAIRO_PATH_LINE_TO:     1 point
 *     %CAIRO_PATH_CURVE_TO:    3 points
 *     %CAIRO_PATH_CLOSE_PATH:  0 points
 * 
 *
 * The semantics and ordering of the coordinate values are consistent
 * with cairo_move_to(), cairo_line_to(), cairo_curve_to(), and
 * cairo_close_path().
 *
 * Here is sample code for iterating through a #cairo_path_t:
 *
 * 
 *      int i;
 *      cairo_path_t *path;
 *      cairo_path_data_t *data;
 *  
 *      path = cairo_copy_path (cr);
 *  
 *      for (i=0; i < path->num_data; i += path->data[i].header.length) {
 *          data = &path->data[i];
 *          switch (data->header.type) {
 *          case CAIRO_PATH_MOVE_TO:
 *              do_move_to_things (data[1].point.x, data[1].point.y);
 *              break;
 *          case CAIRO_PATH_LINE_TO:
 *              do_line_to_things (data[1].point.x, data[1].point.y);
 *              break;
 *          case CAIRO_PATH_CURVE_TO:
 *              do_curve_to_things (data[1].point.x, data[1].point.y,
 *                                  data[2].point.x, data[2].point.y,
 *                                  data[3].point.x, data[3].point.y);
 *              break;
 *          case CAIRO_PATH_CLOSE_PATH:
 *              do_close_path_things ();
 *              break;
 *          }
 *      }
 *      cairo_path_destroy (path);
 * 
 *
 * As of cairo 1.4, cairo does not mind if there are more elements in
 * a portion of the path than needed.  Such elements can be used by
 * users of the cairo API to hold extra values in the path data
 * structure.  For this reason, it is recommended that applications
 * always use data->header.length to
 * iterate over the path data, instead of hardcoding the number of
 * elements for each element type.


cairo_path_t
 * 
 * @status: the current error status
 * @data: the elements in the path
 * @num_data: the number of elements in the data array
 *
 * A data structure for holding a path. This data structure serves as
 * the return value for cairo_copy_path() and
 * cairo_copy_path_flat() as well the input value for
 * cairo_append_path().
 *
 * See #cairo_path_data_t for hints on how to iterate over the
 * actual data within the path.
 *
 * The num_data member gives the number of elements in the data
 * array. This number is larger than the number of independent path
 * portions (defined in #cairo_path_data_type_t), since the data
 * includes both headers and coordinates for each portion.


cairo_device_type_t
 * 
 * cairo_device_type_t:
 * @CAIRO_DEVICE_TYPE_DRM: The surface is of type Direct Render Manager
 * @CAIRO_DEVICE_TYPE_GL: The surface is of type OpenGL
 * @CAIRO_DEVICE_TYPE_SCRIPT: The surface is of type script
 * @CAIRO_DEVICE_TYPE_XCB: The surface is of type xcb
 * @CAIRO_DEVICE_TYPE_XLIB: The surface is of type xlib
 * @CAIRO_DEVICE_TYPE_XML: The surface is of type XML
 *   cairo_surface_create_for_rectangle()
 *
 * #cairo_device_type_t is used to describe the type of a given
 * device. The devices types are also known as "backends" within cairo.
 *
 * The device type can be queried with cairo_device_get_type()
 *
 * The various #cairo_device_t functions can be used with surfaces of
 * any type, but some backends also provide type-specific functions
 * that must only be called with a device of the appropriate
 * type. These functions have names that begin with
 * cairo_type_device such as cairo_xcb_device_debug_set_render_version().
 *
 * The behavior of calling a type-specific function with a surface of
 * the wrong type is undefined.
 *
 * New entries may be added in future versions.
 *
 * Since: 1.10


cairo_surface_type_t
 * 
 * @CAIRO_SURFACE_TYPE_IMAGE: The surface is of type image
 * @CAIRO_SURFACE_TYPE_PDF: The surface is of type pdf
 * @CAIRO_SURFACE_TYPE_PS: The surface is of type ps
 * @CAIRO_SURFACE_TYPE_XLIB: The surface is of type xlib
 * @CAIRO_SURFACE_TYPE_XCB: The surface is of type xcb
 * @CAIRO_SURFACE_TYPE_GLITZ: The surface is of type glitz
 * @CAIRO_SURFACE_TYPE_QUARTZ: The surface is of type quartz
 * @CAIRO_SURFACE_TYPE_WIN32: The surface is of type win32
 * @CAIRO_SURFACE_TYPE_BEOS: The surface is of type beos
 * @CAIRO_SURFACE_TYPE_DIRECTFB: The surface is of type directfb
 * @CAIRO_SURFACE_TYPE_SVG: The surface is of type svg
 * @CAIRO_SURFACE_TYPE_OS2: The surface is of type os2
 * @CAIRO_SURFACE_TYPE_WIN32_PRINTING: The surface is a win32 printing surface
 * @CAIRO_SURFACE_TYPE_QUARTZ_IMAGE: The surface is of type quartz_image
 * @CAIRO_SURFACE_TYPE_SCRIPT: The surface is of type script, since 1.10
 * @CAIRO_SURFACE_TYPE_QT: The surface is of type Qt, since 1.10
 * @CAIRO_SURFACE_TYPE_RECORDING: The surface is of type recording, since 1.10
 * @CAIRO_SURFACE_TYPE_VG: The surface is a OpenVG surface, since 1.10
 * @CAIRO_SURFACE_TYPE_GL: The surface is of type OpenGL, since 1.10
 * @CAIRO_SURFACE_TYPE_DRM: The surface is of type Direct Render Manager, since 1.10
 * @CAIRO_SURFACE_TYPE_TEE: The surface is of type 'tee' (a multiplexing surface), since 1.10
 * @CAIRO_SURFACE_TYPE_XML: The surface is of type XML (for debugging), since 1.10
 * @CAIRO_SURFACE_TYPE_SKIA: The surface is of type Skia, since 1.10
 * @CAIRO_SURFACE_TYPE_SUBSURFACE: The surface is a subsurface created with
 *   cairo_surface_create_for_rectangle(), since 1.10
 *
 * #cairo_surface_type_t is used to describe the type of a given
 * surface. The surface types are also known as "backends" or "surface
 * backends" within cairo.
 *
 * The type of a surface is determined by the function used to create
 * it, which will generally be of the form cairo_type_surface_create(),
 * (though see cairo_surface_create_similar() as well).
 *
 * The surface type can be queried with cairo_surface_get_type()
 *
 * The various #cairo_surface_t functions can be used with surfaces of
 * any type, but some backends also provide type-specific functions
 * that must only be called with a surface of the appropriate
 * type. These functions have names that begin with
 * cairo_type_surface such as cairo_image_surface_get_width().
 *
 * The behavior of calling a type-specific function with a surface of
 * the wrong type is undefined.
 *
 * New entries may be added in future versions.
 *
 * Since: 1.2


cairo_format_t
 * 
 * @CAIRO_FORMAT_INVALID: no such format exists or is supported.
 * @CAIRO_FORMAT_ARGB32: each pixel is a 32-bit quantity, with
 *   alpha in the upper 8 bits, then red, then green, then blue.
 *   The 32-bit quantities are stored native-endian. Pre-multiplied
 *   alpha is used. (That is, 50% transparent red is 0x80800000,
 *   not 0x80ff0000.)
 * @CAIRO_FORMAT_RGB24: each pixel is a 32-bit quantity, with
 *   the upper 8 bits unused. Red, Green, and Blue are stored
 *   in the remaining 24 bits in that order.
 * @CAIRO_FORMAT_A8: each pixel is a 8-bit quantity holding
 *   an alpha value.
 * @CAIRO_FORMAT_A1: each pixel is a 1-bit quantity holding
 *   an alpha value. Pixels are packed together into 32-bit
 *   quantities. The ordering of the bits matches the
 *   endianess of the platform. On a big-endian machine, the
 *   first pixel is in the uppermost bit, on a little-endian
 *   machine the first pixel is in the least-significant bit.
 * @CAIRO_FORMAT_RGB16_565: This format value is deprecated. It has
 *   never been properly implemented in cairo and should not be used
 *   by applications. (since 1.2)
 *
 * #cairo_format_t is used to identify the memory format of
 * image data.
 *
 * New entries may be added in future versions.


cairo_pattern_type_t
 * 
 * @CAIRO_PATTERN_TYPE_SOLID: The pattern is a solid (uniform)
 * color. It may be opaque or translucent.
 * @CAIRO_PATTERN_TYPE_SURFACE: The pattern is a based on a surface (an image).
 * @CAIRO_PATTERN_TYPE_LINEAR: The pattern is a linear gradient.
 * @CAIRO_PATTERN_TYPE_RADIAL: The pattern is a radial gradient.
 *
 * #cairo_pattern_type_t is used to describe the type of a given pattern.
 *
 * The type of a pattern is determined by the function used to create
 * it. The cairo_pattern_create_rgb() and cairo_pattern_create_rgba()
 * functions create SOLID patterns. The remaining
 * cairo_pattern_create functions map to pattern types in obvious
 * ways.
 *
 * The pattern type can be queried with cairo_pattern_get_type()
 *
 * Most #cairo_pattern_t functions can be called with a pattern of any
 * type, (though trying to change the extend or filter for a solid
 * pattern will have no effect). A notable exception is
 * cairo_pattern_add_color_stop_rgb() and
 * cairo_pattern_add_color_stop_rgba() which must only be called with
 * gradient patterns (either LINEAR or RADIAL). Otherwise the pattern
 * will be shutdown and put into an error state.
 *
 * New entries may be added in future versions.
 *
 * Since: 1.2


cairo_extend_t
 * 
 * @CAIRO_EXTEND_NONE: pixels outside of the source pattern
 *   are fully transparent
 * @CAIRO_EXTEND_REPEAT: the pattern is tiled by repeating
 * @CAIRO_EXTEND_REFLECT: the pattern is tiled by reflecting
 *   at the edges (Implemented for surface patterns since 1.6)
 * @CAIRO_EXTEND_PAD: pixels outside of the pattern copy
 *   the closest pixel from the source (Since 1.2; but only
 *   implemented for surface patterns since 1.6)
 *
 * #cairo_extend_t is used to describe how pattern color/alpha will be
 * determined for areas "outside" the pattern's natural area, (for
 * example, outside the surface bounds or outside the gradient
 * geometry).
 *
 * The default extend mode is %CAIRO_EXTEND_NONE for surface patterns
 * and %CAIRO_EXTEND_PAD for gradient patterns.
 *
 * New entries may be added in future versions.


cairo_filter_t
 * 
 * @CAIRO_FILTER_FAST: A high-performance filter, with quality similar
 *     to %CAIRO_FILTER_NEAREST
 * @CAIRO_FILTER_GOOD: A reasonable-performance filter, with quality
 *     similar to %CAIRO_FILTER_BILINEAR
 * @CAIRO_FILTER_BEST: The highest-quality available, performance may
 *     not be suitable for interactive use.
 * @CAIRO_FILTER_NEAREST: Nearest-neighbor filtering
 * @CAIRO_FILTER_BILINEAR: Linear interpolation in two dimensions
 * @CAIRO_FILTER_GAUSSIAN: This filter value is currently
 *     unimplemented, and should not be used in current code.
 *
 * #cairo_filter_t is used to indicate what filtering should be
 * applied when reading pixel values from patterns. See
 * cairo_pattern_set_source() for indicating the desired filter to be
 * used with a particular pattern.


cairo_pdf_version_t
 * 
 * @CAIRO_PDF_VERSION_1_4: The version 1.4 of the PDF specification.
 * @CAIRO_PDF_VERSION_1_5: The version 1.5 of the PDF specification.
 *
 * #cairo_pdf_version_t is used to describe the version number of the PDF
 * specification that a generated PDF file will conform to.
 *
 * Since 1.10


cairo_ps_level_t
 * 
 * @CAIRO_PS_LEVEL_2: The language level 2 of the PostScript specification.
 * @CAIRO_PS_LEVEL_3: The language level 3 of the PostScript specification.
 *
 * #cairo_ps_level_t is used to describe the language level of the
 * PostScript Language Reference that a generated PostScript file will
 * conform to.


cairo_script_mode_t
 * 
 * CAIRO_SCRIPT_MODE_BINARY
 * CAIRO_SCRIPT_MODE_ASCII


cairo_svg_version_t
 * 
 * @CAIRO_SVG_VERSION_1_1: The version 1.1 of the SVG specification.
 * @CAIRO_SVG_VERSION_1_2: The version 1.2 of the SVG specification.
 *
 * #cairo_svg_version_t is used to describe the version number of the SVG
 * specification that a generated SVG file will conform to.
 

cairo_text_cluster_t
 *
 * @num_bytes: the number of bytes of UTF-8 text covered by cluster
 * @num_glyphs: the number of glyphs covered by cluster
 *
 * The #cairo_text_cluster_t structure holds information about a single
 * text cluster.  A text cluster is a minimal
 * mapping of some glyphs corresponding to some UTF-8 text.
 *
 * For a cluster to be valid, both @num_bytes and @num_glyphs should
 * be non-negative, and at least one should be non-zero.
 * Note that clusters with zero glyphs are not as well supported as
 * normal clusters.  For example, PDF rendering applications typically
 * ignore those clusters when PDF text is being selected.
 *
 * See cairo_show_text_glyphs() for how clusters are used in advanced
 * text operations.
 *
 * Since: 1.8
 

cairo_text_cluster_flags_t
 *
 * @CAIRO_TEXT_CLUSTER_FLAG_BACKWARD: The clusters in the cluster array
 * map to glyphs in the glyph array from end to start.
 *
 * Specifies properties of a text cluster mapping.
 *
 * Since: 1.8
 

cairo_region_t
 * 
 * A #cairo_region_t represents a set of integer-aligned rectangles.
 *
 * It allows set-theoretical operations like cairo_region_union() and
 * cairo_region_intersect() to be performed on them.
 *
 * Memory management of #cairo_region_t is done with
 * cairo_region_reference() and cairo_region_destroy().
 *
 * Since: 1.10
 

cairo_rectangle_int_t
 * 
 * @x: X coordinate of the left side of the rectangle
 * @y: Y coordinate of the the top side of the rectangle
 * @width: width of the rectangle
 * @height: height of the rectangle
 *
 * A data structure for holding a rectangle with integer coordinates.
 *
 * Since: 1.10
 

cairo_region_overlap_t
 * 
    CAIRO_REGION_OVERLAP_IN,		/* completely inside region */
    CAIRO_REGION_OVERLAP_OUT,		/* completely outside region */
    CAIRO_REGION_OVERLAP_PART		/* partly inside region */
 

cairo_user_scaled_font_init_func_t
 *
 * @scaled_font: the scaled-font being created
 * @cr: a cairo context, in font space
 * @extents: font extents to fill in, in font space
 *
 * #cairo_user_scaled_font_init_func_t is the type of function which is
 * called when a scaled-font needs to be created for a user font-face.
 *
 * The cairo context @cr is not used by the caller, but is prepared in font
 * space, similar to what the cairo contexts passed to the render_glyph
 * method will look like.  The callback can use this context for extents
 * computation for example.  After the callback is called, @cr is checked
 * for any error status.
 *
 * The @extents argument is where the user font sets the font extents for
 * @scaled_font.  It is in font space, which means that for most cases its
 * ascent and descent members should add to 1.0.  @extents is preset to
 * hold a value of 1.0 for ascent, height, and max_x_advance, and 0.0 for
 * descent and max_y_advance members.
 *
 * The callback is optional.  If not set, default font extents as described
 * in the previous paragraph will be used.
 *
 * Note that @scaled_font is not fully initialized at this
 * point and trying to use it for text operations in the callback will result
 * in deadlock.
 *
 * Returns: %CAIRO_STATUS_SUCCESS upon success, or an error status on error.
 *
 * Since: 1.8

typedef cairo_status_t (*cairo_user_scaled_font_init_func_t) (cairo_scaled_font_t  *scaled_font,
							      cairo_t              *cr,
							      cairo_font_extents_t *extents);


cairo_user_scaled_font_render_glyph_func_t
 * 
 * @scaled_font: user scaled-font
 * @glyph: glyph code to render
 * @cr: cairo context to draw to, in font space
 * @extents: glyph extents to fill in, in font space
 *
 * #cairo_user_scaled_font_render_glyph_func_t is the type of function which
 * is called when a user scaled-font needs to render a glyph.
 *
 * The callback is mandatory, and expected to draw the glyph with code @glyph to
 * the cairo context @cr.  @cr is prepared such that the glyph drawing is done in
 * font space.  That is, the matrix set on @cr is the scale matrix of @scaled_font,
 * The @extents argument is where the user font sets the font extents for
 * @scaled_font.  However, if user prefers to draw in user space, they can
 * achieve that by changing the matrix on @cr.  All cairo rendering operations
 * to @cr are permitted, however, the result is undefined if any source other
 * than the default source on @cr is used.  That means, glyph bitmaps should
 * be rendered using cairo_mask() instead of cairo_paint().
 *
 * Other non-default settings on @cr include a font size of 1.0 (given that
 * it is set up to be in font space), and font options corresponding to
 * @scaled_font.
 *
 * The @extents argument is preset to have x_bearing,
 * width, and y_advance of zero,
 * y_bearing set to -font_extents.ascent,
 * height to font_extents.ascent+font_extents.descent,
 * and x_advance to font_extents.max_x_advance.
 * The only field user needs to set in majority of cases is
 * x_advance.
 * If the width field is zero upon the callback returning
 * (which is its preset value), the glyph extents are automatically computed
 * based on the drawings done to @cr.  This is in most cases exactly what the
 * desired behavior is.  However, if for any reason the callback sets the
 * extents, it must be ink extents, and include the extents of all drawing
 * done to @cr in the callback.
 *
 * Returns: %CAIRO_STATUS_SUCCESS upon success, or
 * %CAIRO_STATUS_USER_FONT_ERROR or any other error status on error.
 *
 * Since: 1.8

typedef cairo_status_t (*cairo_user_scaled_font_render_glyph_func_t) (cairo_scaled_font_t  *scaled_font,
								      unsigned long         glyph,
								      cairo_t              *cr,
								      cairo_text_extents_t *extents);


cairo_user_scaled_font_text_to_glyphs_func_t
 * 
 * @scaled_font: the scaled-font being created
 * @utf8: a string of text encoded in UTF-8
 * @utf8_len: length of @utf8 in bytes
 * @glyphs: pointer to array of glyphs to fill, in font space
 * @num_glyphs: pointer to number of glyphs
 * @clusters: pointer to array of cluster mapping information to fill, or %NULL
 * @num_clusters: pointer to number of clusters
 * @cluster_flags: pointer to location to store cluster flags corresponding to the
 *                 output @clusters
 *
 * #cairo_user_scaled_font_text_to_glyphs_func_t is the type of function which
 * is called to convert input text to an array of glyphs.  This is used by the
 * cairo_show_text() operation.
 *
 * Using this callback the user-font has full control on glyphs and their
 * positions.  That means, it allows for features like ligatures and kerning,
 * as well as complex shaping required for scripts like
 * Arabic and Indic.
 *
 * The @num_glyphs argument is preset to the number of glyph entries available
 * in the @glyphs buffer. If the @glyphs buffer is %NULL, the value of
 * @num_glyphs will be zero.  If the provided glyph array is too short for
 * the conversion (or for convenience), a new glyph array may be allocated
 * using cairo_glyph_allocate() and placed in @glyphs.  Upon return,
 * @num_glyphs should contain the number of generated glyphs.  If the value
 * @glyphs points at has changed after the call, the caller will free the
 * allocated glyph array using cairo_glyph_free().
 * The callback should populate the glyph indices and positions (in font space)
 * assuming that the text is to be shown at the origin.
 *
 * If @clusters is not %NULL, @num_clusters and @cluster_flags are also
 * non-%NULL, and cluster mapping should be computed. The semantics of how
 * cluster array allocation works is similar to the glyph array.  That is,
 * if @clusters initially points to a non-%NULL value, that array may be used
 * as a cluster buffer, and @num_clusters points to the number of cluster
 * entries available there.  If the provided cluster array is too short for
 * the conversion (or for convenience), a new cluster array may be allocated
 * using cairo_text_cluster_allocate() and placed in @clusters.  Upon return,
 * @num_clusters should contain the number of generated clusters.
 * If the value @clusters points at has changed after the call, the caller
 * will free the allocated cluster array using cairo_text_cluster_free().
 *
 * The callback is optional.  If @num_glyphs is negative upon
 * the callback returning or if the return value
 * is %CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED, the unicode_to_glyph callback
 * is tried.  See #cairo_user_scaled_font_unicode_to_glyph_func_t.
 *
 * Note: While cairo does not impose any limitation on glyph indices,
 * some applications may assume that a glyph index fits in a 16-bit
 * unsigned integer.  As such, it is advised that user-fonts keep their
 * glyphs in the 0 to 65535 range.  Furthermore, some applications may
 * assume that glyph 0 is a special glyph-not-found glyph.  User-fonts
 * are advised to use glyph 0 for such purposes and do not use that
 * glyph value for other purposes.
 *
 * Returns: %CAIRO_STATUS_SUCCESS upon success,
 * %CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED if fallback options should be tried,
 * or %CAIRO_STATUS_USER_FONT_ERROR or any other error status on error.
 *
 * Since: 1.8

typedef cairo_status_t (*cairo_user_scaled_font_text_to_glyphs_func_t) (cairo_scaled_font_t        *scaled_font,
									const char	           *utf8,
									int		            utf8_len,
									cairo_glyph_t	          **glyphs,
									int		           *num_glyphs,
									cairo_text_cluster_t      **clusters,
									int		           *num_clusters,
									cairo_text_cluster_flags_t *cluster_flags);


cairo_user_scaled_font_unicode_to_glyph_func_t
 * 
 * @scaled_font: the scaled-font being created
 * @unicode: input unicode character code-point
 * @glyph_index: output glyph index
 *
 * #cairo_user_scaled_font_unicode_to_glyph_func_t is the type of function which
 * is called to convert an input Unicode character to a single glyph.
 * This is used by the cairo_show_text() operation.
 *
 * This callback is used to provide the same functionality as the
 * text_to_glyphs callback does (see #cairo_user_scaled_font_text_to_glyphs_func_t)
 * but has much less control on the output,
 * in exchange for increased ease of use.  The inherent assumption to using
 * this callback is that each character maps to one glyph, and that the
 * mapping is context independent.  It also assumes that glyphs are positioned
 * according to their advance width.  These mean no ligatures, kerning, or
 * complex scripts can be implemented using this callback.
 *
 * The callback is optional, and only used if text_to_glyphs callback is not
 * set or fails to return glyphs.  If this callback is not set or if it returns
 * %CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED, an identity mapping from Unicode
 * code-points to glyph indices is assumed.
 *
 * Note: While cairo does not impose any limitation on glyph indices,
 * some applications may assume that a glyph index fits in a 16-bit
 * unsigned integer.  As such, it is advised that user-fonts keep their
 * glyphs in the 0 to 65535 range.  Furthermore, some applications may
 * assume that glyph 0 is a special glyph-not-found glyph.  User-fonts
 * are advised to use glyph 0 for such purposes and do not use that
 * glyph value for other purposes.
 *
 * Returns: %CAIRO_STATUS_SUCCESS upon success,
 * %CAIRO_STATUS_USER_FONT_NOT_IMPLEMENTED if fallback options should be tried,
 * or %CAIRO_STATUS_USER_FONT_ERROR or any other error status on error.
 *
 * Since: 1.8

typedef cairo_status_t (*cairo_user_scaled_font_unicode_to_glyph_func_t) (cairo_scaled_font_t *scaled_font,
									  unsigned long        unicode,
									  unsigned long       *glyph_index);


Object Oriented Interface

- Class naming taken from Cairomm
- Methods use related C-API binding implementation (so their implementation status is same)
- Only one of C-API's create functions is used as class constructor for related cairo type
    [C]   cairo_surface_t * cairo_image_surface_create (cairo_format_t format, int width, int height);
    [Lua] surface_o = cairo.ImageSurface(format, width, height)
    
- Class methods chosen via C-API function's first parameter:
    [C]   void cairo_set_font_face (cairo_t *cr, cairo_font_face_t *font_face);
    [Lua] cr_o:set_font_face(font_face)  -- Context class
    
    [C]   void cairo_matrix_init_identity (cairo_matrix_t *matrix);
    [Lua] matrix_o:init_identity()
    
- Function and method return values are same:
    [C]   cairo_surface_t * cairo_get_group_target (cairo_t *cr);
    [Lua] target_lud = cairo.get_group_target(cr)
          target_lud = cr:get_group_target()
          
          -- return value may wrapped as a Surface object
          target_o = cairo.SurfaceFromLUD(cr:get_group_target(), true) -- give ownership
          target_o = cairo.SurfaceFromLUD(cr:get_group_target())       -- by default ownership is not transferred
    
- Functions and methods accepts object or lightuserdata as parameter (except destroy functions, they only accepts lightuserdata):
    [C]   cairo_format_t cairo_image_surface_get_format (cairo_surface_t *surface);
    [Lua] int = cairo.image_surface_get_format(surface_lud)
          int = cairo.image_surface_get_format(surface_o)
          
    [C]   void cairo_set_source_surface (cairo_t *cr, cairo_surface_t *surface, double x, double y);
    [Lua] cairo.set_source_surface(cr_lud, surface_lud, x, y)
          cairo.set_source_surface(cr_o, surface_o, x, y)
          cr:set_source_surface(surface_lud, x, y)
          cr:set_source_surface(surface_o, x, y)
    

- Classes:
- Wrappers:
Object creators from a lightuserdata to corresponding class
Syntax: o = cairo.ContextFromLUD(crlud, transfer_ownership) -- transfer_ownership: true/false(default)


Based on cairo.h (1.10.2) - Prepared by Hakki Dogusan - http://www.dynaset.org/dogusanh - Last update: 2011-01-11