with N/ N LT
\

Q: What is xshell?
A: Xshell is a collection of scripts which allow users to easily run text-
based applications from the iLiad's menu system.

Q: What's the purpose of xshell?
A: Since the iLiad has no built-in command-line terminal, xshell is de-
signed to install and keep track of user-installed terminals.

Q: How does xshell differ from mrxvt?

A: Mrxvt is a windowed terminal program, and the xshell installer in-
cludes mrxvt. The xshell scripts provide an interface to this installation
of mrxvt.

Q: Why did you make xshell?

A: The iLiad can’t handle a lone text-based application. One possible solu-
tion would be to package the mrxvt terminal with each separate text-based
application, but this would waste valuable storage. Xshell implements a
different solution: package text-based applications with a tiny launcher
script. This launcher script locates and runs the terminal for the text-
based application.

.../Programs/text-app/ .../ _xshell/
launch.sh *startxshell~>
text-app mrxvt |<—'

Q: How does it work, in short?

A: Each text-based application comes bundled with the xshell launcher
script. When run, this launcher script locates and connects up with the
xshell base installation, containing mrxvt. Then startxshell launches
our text-based application in a mrxvt window.

Q: What are the advantages of this approach?

A: 1. Multiple applications share the same terminal program. This prevents
wasting space. The terminal program can be moved to a different
location.

2. It's possible to move mrxvt to a different location. It's probably best
to keep it in internal memory, but some might prefer to move it onto
a card.

3. Terminal programs other than mrxvt could easily be used.

4. All these changes are possible without reinstalling or reconfiguring
the applications.

.../Programs/text-appl/

launch.sh

text-appl “\@ewhere/else/_xshell/

startxshell

.../Programs/text-app2/

launch.sh
text-app2

Information for developers

We now elaborate on the oversimplifed execution model summarized above.

The typical text-based application will live in a directory containing a
manifest.xml, a run.sh, the application (which we shall call text-app)
together with its supporting libraries, and a copy of the launch.sh script
from xshell.

The xshell directory (typically named _xshell/ to keep it hidden from
the contentLister) contains prerun, startxshell, and mrxvt.

/usr/local/programs/text-app/ /mnt/free/_xshell/
manifest.xml prerun
run.sh startxshell
text-app mrxvt
launch.sh

The execution chain is summarized in the diagram below.

contentLister ——manifest.xml —> run.sh

|

mrxvt <— startxshell <—— launch.sh

| |

text-app prerun

The contentLister is the menu from which a user selects an applica-
tion. When the user selects the menu option corresponding to text-app,
the contentLister executes manifest.xml, which contains the line
<startpage>run.sh</startpage>, causing run.sh to execute.

The typical run.sh will be

#!/bin/sh

export scriptdir=¢/usr/bin/dirname $0°
cd $scriptdir

./launch.sh --execute ./text-app

Next, launch.sh locates the _xshell/ directory. It then runs
startxshell, passing on the “--execute ./text-app" arguments. Af-
ter setting up the fonts and libraries, startxshell calls “mrxvt -e
./text-app"” finally launching text-app inside of an mrxvt window.

Upgrading launch.sh

Before launch.sh runs startxshell, it calls prerun with its version
number and location. For example, if we are running launch.sh v0.5.0,
it would execute something like

prerun 050 /usr/local/programs/text-app/launch.sh

Now suppose we just upgraded to xshell v0.5.1, which came with a new
launch.sh v0.5.1. Our application only has v0.5.0. But when we execute
prerun, it will replace the old launch.sh with the new one. When we
restart our application, it will run with the new launch. sh.

How launch.sh finds _xshell/

First, launch.sh checks to see if a location was specified by the
--location argument. If so, it will use that. Otherwise, it will check the

location specified in /home/root/.xshell. If this is not valid, it searches
/mnt/free/, /usr/local/programs/, /mnt/card/, /mnt/cf/, and
/mnt/usb/ for the subdirectories _xshell/ and Programs/_xshell/. It
selects the _xshell/ directory with the highest version number. If no such
directory is found, it fails.

Note The original search algorithm was to use find /mnt/x/ -name
startxshell. However, | figured this was a security risk since an at-
tacker might cause an application to create a temporary file named
startxshell. Since FAT32 defaults to enabling execute permis-
sions, this could lead to arbitrary code execution.

Command line arguments

launch.sh
--help Displays a summary of these
command line arguments
--launcherversion Prints the version in a

human-readable format

--launcherversionnum Prints the version as a number

--location Prints the location of _xshell/

--location directory Uses the _xshell/ directory in the
specified location

arguments All unrecognized arguments are
passed on to startxshell

startxshell

—--help or Displays a summary of these
--xshellhelp command line arguments
--xshellversion Prints the version in a

human-readable format

--xshellversionnum Prints the version as a number

--terminalinfo Prints the version of the terminal
being used

--execute command Executes the command in the
terminal

--hold Waits for the user to press a key
after the program terminates

—--working-directory Starts the terminal in the specified

directory directory
--passargs arguments Pass all remaining arguments to the

terminal program

Examples

launch.sh --hold --execute /sbin/ifconfig

This will open a window displaying ifconfig. It will remain open until
the user presses a key.

launch.sh --passargs -title "My terminal"

This sets the title of the mrxvt window.

cat ‘launch.sh --locationf

Prints the code for the startxshell script currently being used.

launch.sh --help ; launch.sh --xshellhelp

Prints command line arguments available to both launch. sh directly, and
those available indirectly via startxshell.

Ben Mares, June 2008

