When the differential operators of the Lagrangian act under these conditions then each such operation creates a new term containing the factor (U{((x)}, the 4-gradient of the scalar clock hand function U{((x)}.  Let us look first at what happens if φ (the equivalent of our staff, S, in the business example) stays constant.  In the Lagrangian we will have expressions like U(().V(x). V(x) will contain various things including the relative phase changes going on as determined by the energy etc, but U is a just a function of some constant global phase displacement ( that applies everywhere. Thus, just as with N when the staff was not changing in our business example, the differential operator only picks out the V(x) to work on, effectively ignoring the U, other than to leave it as a multiplying constant, just as it did in Ia. In such a case each differential operator produces the ‘normal’ term in our equation of motion

([U(().V(x)] ( U((). (V(x),

 i.e. the rate of change of U times V is just U times the rate of change of V, since only V is changing.  We get one such term for each differential operation in the equations (there will be several such operations). You can assume that when this is done with all the differential operators in the Lagrangian the quantum equations of motion produce sensible results, i.e. ones confirmed by experiment.

However if we now allow our previously global phase factor to arbitrarily differ from one place to another, then, from each differential acting on U{((x)}.V(x), then, just as with our combined staff and materials cost changes in the business in II, we get two terms, i.e.

([U{((x)}.V(x)] (  U{((x)}. (V(x) + V(x).([U{((x)}];

the rate of change of U.V is now U times the rate of change of V plus V times the rate of change of U. 
Lastly, just as we had with our numbers of service N being a function of the number of staff S that changed is functional shape when S itself changed as in III, so the differential of the whole clock-hand function ([U{((x)}] now appearing in this added term is itself given by the product of the gradient of the phase angle ( and the gradient of clock-hand function U, which I’ll write as (U, so that we have this part becoming ([U{((x)}] = (U.(((x). Thus the whole additional term, resulting from allowing local changes of (, becomes + V(x). (U.(((x).
Since we have said that we wish to be able to make any changes we like to the phase angle, (, then (((x) is arbitrary, so this new term is totally arbitrary and renders the whole equation nonsense in terms of the physics it describes.  Every time there is a differential operation in the Lagrangian or the equation of motion that is there to give us something looking like U{((x)}. (V(x), we get this nasty additional new term of the term + V(x).(U.(((x), which is bound to be physical gibberish. 

To counteract this we need something that yields a further term that is equal and opposite to the nasty one, i.e. everything gets repeated but with –V(x).(U.(((x) coming in, to cancel out the +V(x).(U.(((x). 

Instead of ( we put (( + Q) such that when ( ( ((x), Q is transformed according to Q ( Q - (((x).

Before we make any local phase change, our individual differential operators now yield



(( + Q) U(().V(x) ( U(().(V(x) + Q.U(().V(x)


(A)

The differential operation just produces the equivalent if Ia (or Ib), and the Q just multiplies the thing being operated on i.e. the U.V. The addition of the Q.U.V terms will clearly change each part of the Lagrangian and the equations of motion that involve one or more differentials, but what this change will be will depend upon what Q is (we are certainly not going to be interested in any arbitrary Q, but so far we have only constrained it to be something that transforms under a change in ( such that it is equal to what it was before the change minus the differential (gradient) of (.  We must leave the question of what this change means for the physics of (A) until later. 

What we first need to know is what happens to it when we then make our local phase changes, that is when ( ( ((x) and Q ( Q - (((x). Well plugging these in, what we get is

[( + Q - (((x)] U{((x)}.V(x) ( U{((x)}.(V(x)  +  (U.(((x).V(x)  
 {from the ( operator}





   + Q.U{((x)}.V(x) - (((x). U{((x)}.V(x).
  {from the Q - (((x)}
If I re-write the terms on the right-hand side, changing their order and swapping the order of factors in the very last one, we get


[( + Q - (((x)] U{((x)}.V(x) ( U{((x)}.(V(x) + Q.U{((x)}.V(x) 






        + [(U - U{((x)].(((x).V(x).

(B)

We see that the first two terms on the right-hand side of (B), are just the same terms we had in (A), when ( was just a global factor, so if there were only these two we would have achieved our first goal and made the equations all be unchanged when ( ( ((x). 

Unfortunately we still have the last part [(U - U{((x)].(((x).V(x) which is really the two nasty terms; the (U.(((x).V(x) from the change the differential operator sees, and the - U{((x)}.(((x).V(x) that comes from the - (((x) provided by our Q.

