XX

values x at which at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is positive. Optimal rule: An optimal rule (within a class of rules) is the rule has the smallest risk over all possible populations. Pivotal quantity: A known Borel function R of (X, θ) is called a pivotal

 $\Theta \subset \mathcal{R}$ is said to have monotone likelihood ratio in Y(x) if, for any $\theta_1 < \theta_2, \, \theta_i \in \Theta, \, f_{\theta_2}(x)/f_{\theta_1}(x)$ is a nondecreasing function of Y(x) for

quantity if and only if the distribution of $R(X,\theta)$ does not depend on any unknown quantity. Population: The distribution (or probability measure) of an observation from a random experiment is called the population. Power of a test: The power of a test T is the expected value of T with

respect to the true population. Prior and posterior distribution: Let X be a sample from a population indexed by $\theta \in \Theta \subset \mathcal{R}^k$. A distribution defined on Θ that does not depend on X is called a prior. When the population of X is considered as the conditional distribution of X given θ and the prior is considered as the distribution of θ , the conditional distribution of

 θ given X is called the posterior distribution of θ . Probability and probability space: A measure P defined on a σ -field \mathcal{F} on a set Ω is called a probability if and only if $P(\Omega) = 1$. The triple (Ω, \mathcal{F}, P) is called a probability space. Probability density: Let (Ω, \mathcal{F}, P) be a probability space and ν be a σ finite measure on \mathcal{F} . If $P \ll \nu$, then the Radon-Nikodym derivative

of P with respect to ν is the probability density with respect to ν (and is called Lebesgue density if ν is the Lebesgue measure on \mathcal{R}^k). Random sample: A sample $X = (X_1, ..., X_n)$, where each X_i is a random d-vector with a fixed positive integer d, is called a random sample of size n from a population or distribution P if $X_1,...,X_n$ are independent and identically distributed as P.

Randomized decision rule: Let X be a sample with range \mathcal{X} , A be the action space, and \mathcal{F}_A be a σ -field on A. A randomized decision rule is a function $\delta(x,C)$ on $\mathcal{X} \times \mathcal{F}_A$ such that, for every $C \in \mathcal{F}_A$, $\delta(X,C)$ is a Borel function and, for every $X \in \mathcal{X}$, $\delta(X,C)$ is a probability measure on \mathcal{F}_A . A nonrandomized decision rule T can be viewed as

a degenerate randomized decision rule δ , i.e., $\delta(X, \{a\}) = I_{\{a\}}(T(X))$ for any $a \in A$ and $X \in \mathcal{X}$.

Risk: The risk of a decision rule is the expectation (with respect to the true population) of the loss of the decision rule. Sample: The observation from a population treated as a random element

is called a sample.