

HTML5

 A vocabulary and associated APIs for HTML and XHTML

W3C Candidate Recommendation 6 August 2013

 	This Version:

 	http://www.w3.org/TR/2013/CR-html5-20130806/

 	Latest Published Version:

 	http://www.w3.org/TR/html5/

 	Latest Editor's Draft:

 	http://www.w3.org/html/wg/drafts/html/CR/

 	Previous Versions:

 	http://www.w3.org/TR/2012/CR-html5-20121217/

 	Editors:

 	W3C:

 	Robin Berjon, W3C

 	Steve Faulkner, The Paciello Group

 	Travis Leithead, Microsoft

 	Erika Doyle Navara, Microsoft

 	Edward O'Connor, Apple Inc.

 	Silvia Pfeiffer

 	WHATWG:

 	Ian Hickson, Google, Inc.

 This specification is also available as a single page HTML document.

 Copyright
 © 2013 W3C® (MIT, ERCIM, Keio, Beihang), All Rights Reserved. W3C
 liability,
 trademark
 and document
 use rules apply.

Abstract

 This specification defines the 5th major revision of the core language of the World Wide Web:
 the Hypertext Markup Language (HTML). In this version, new features are introduced to help Web
 application authors, new elements are introduced based on research into prevailing authoring
 practices, and special attention has been given to defining clear conformance criteria for user
 agents in an effort to improve interoperability.

Status of This document

 This section describes the status of this document at the time of its publication.
 Other documents may supersede this document. A list of current W3C publications and the
 latest revision of this technical report can be found in the W3C
 technical reports index at http://www.w3.org/TR/.

 If you wish to make comments regarding this document in a manner
 that is tracked by the W3C, please submit them via using our
 public bug database. If you cannot do this then you can also e-mail feedback to public-html-comments@w3.org
 (subscribe,
 archives),
 and arrangements will be made to transpose the comments to our
 public bug database. All feedback is welcome.

 Work on extending this specification typically proceeds through
 extension specifications
 which should be consulted to see what new features are being reviewed.

 The bulk of the text of this specification is also
 available in the WHATWG HTML Living Standard, under a license that permits reuse of the
 specification text.

 The working groups maintains a
 list of all bug reports that the editors have not yet tried to
 address and a list of issues
 for which the chairs have not yet declared a decision.
 You are very welcome to file a new bug
 for any problem you may encounter.
 These bugs and
 issues apply to multiple HTML-related specifications,
 not just this one.

 Implementors should be aware that this specification is not
 stable. Implementors who are not taking part in the
 discussions are likely to find the specification changing out from
 under them in incompatible ways. Vendors interested in
 implementing this specification before it eventually reaches the
 Candidate Recommendation stage should join the aforementioned
 mailing lists and take part in the discussions.

 This is a work in
 progress! For the latest updates from the HTML WG, possibly
 including important bug fixes, please look at the editor's draft instead.

 Publication as a Candidate Recommendation does not imply endorsement by the W3C Membership.
 This is a draft document and may be updated, replaced or obsoleted by other documents at
 any time. It is inappropriate to cite this document as other than work in progress.

 The latest stable version of the editor's draft of this
 specification is always available on the W3C HTML git repository.

 The W3C HTML Working
 Group is the W3C working group responsible for this
 specification's progress along the W3C Recommendation
 track.
 This specification is the 6 August 2013 Candidate Recommendation.

 Work on this specification is also done at the WHATWG. The W3C HTML working group
 actively pursues convergence with the WHATWG, as required by the W3C HTML working
 group charter. There are various ways to follow this work at the WHATWG:

 	Commit-Watchers mailing list (complete source diffs): http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org

 	Annotated summary with unified diffs: http://html5.org/tools/web-apps-tracker

 	Raw Subversion interface: svn checkout http://svn.whatwg.org/webapps/

 This document was published by the HTML Working Group as an updated revision to the Candidate
 Recommendation
 (http://www.w3.org/TR/2012/CR-html5-20121217/).
 This document is intended to become a W3C Recommendation. W3C publishes a Candidate Recommendation to
 indicate that the document is believed to be stable and to encourage implementation by the developer
 community. This Candidate Recommendation is expected to advance to Proposed Recommendation
 no earlier than 01 September 2014. All feedback is welcome.

 For this specification to exit the CR stage, the conditions detailed in the
 CR Exit Criteria
 (Public Permissive version 3) document will have to be met.

 The following features are at risk and may be removed due to lack of
 implementation.

 	
 Application Cache

 	
 <dialog>

 	
 <details> and
 <summary>

 	
 <input type=color>

 	
 <input type=datetime>,
 <input type=month>,
 <input type=week>,
 <input type=time>,
 <input type=datetime-local>

 	
 <output>

 	
 <style scoped>

 	
 <iframe seamless>

 	
 Custom scheme and content handlers
 (registerProtocolHandler and registerContentHandler)

 	
 Outline algorithm

 	
 UA mechanism for navigating to resources
 linked to in cite="", see Bug 18915 for more.

 This document was produced by a group operating under the 5
 February 2004 W3C Patent Policy. W3C maintains a public list of
 any patent disclosures made in connection with the deliverables
 of the group; that page also includes instructions for disclosing a
 patent. An individual who has actual knowledge of a patent which the
 individual believes contains Essential
 Claim(s) must disclose the information in accordance with section
 6 of the W3C Patent Policy.

Table of Contents

 	Introduction

 	Background

 	Audience

 	Scope

 	History

 	Design notes

 	Serializability of script execution

 	Compliance with other specifications

 	HTML vs XHTML

 	Structure of this specification

 	How to read this specification

 	Typographic conventions

 	Privacy concerns

 	A quick introduction to HTML

 	Writing secure applications with HTML

 	Common pitfalls to avoid when using the scripting APIs

 	Conformance requirements for authors

 	Presentational markup

 	Syntax errors

 	Restrictions on content models and on attribute values

 	Suggested reading

 	Common infrastructure

 	Terminology

 	Resources

 	XML

 	DOM trees

 	Scripting

 	Plugins

 	Character encodings

 	Conformance requirements

 	Conformance classes

 	Dependencies

 	Extensibility

 	Case-sensitivity and string comparison

 	Common microsyntaxes

 	Common parser idioms

 	Boolean attributes

 	Keywords and enumerated attributes

 	Numbers

 	Signed integers

 	Non-negative integers

 	Floating-point numbers

 	Percentages and lengths

 	Lists of integers

 	Lists of dimensions

 	Dates and times

 	Months

 	Dates

 	Yearless dates

 	Times

 	Local dates and times

 	Time zones

 	Global dates and times

 	Weeks

 	Durations

 	Vaguer moments in time

 	Colors

 	Space-separated tokens

 	Comma-separated tokens

 	References

 	Media queries

 	URLs

 	Terminology

 	Resolving URLs

 	Dynamic changes to base URLs

 	Fetching resources

 	Terminology

 	Processing model

 	Encrypted HTTP and related security concerns

 	Determining the type of a resource

 	Extracting character encodings from meta elements

 	CORS settings attributes

 	CORS-enabled fetch

 	Common DOM interfaces

 	Reflecting content attributes in IDL attributes

 	Collections

 	HTMLAllCollection

 	HTMLFormControlsCollection

 	HTMLOptionsCollection

 	DOMStringMap

 	Transferable objects

 	Safe passing of structured data

 	Callbacks

 	Garbage collection

 	Namespaces

 	Semantics, structure, and APIs of HTML documents

 	Documents

 	The Document object

 	Security

 	Resource metadata management

 	DOM tree accessors

 	Loading XML documents

 	Elements

 	Semantics

 	Elements in the DOM

 	Global attributes

 	The id attribute

 	The title attribute

 	The lang and xml:lang attributes

 	The translate attribute

 	The xml:base attribute (XML only)

 	The dir attribute

 	The class attribute

 	The style attribute

 	Embedding custom non-visible data with the data-* attributes

 	Element definitions

 	Attributes

 	Content models

 	Kinds of content

 	Metadata content

 	Flow content

 	Sectioning content

 	Heading content

 	Phrasing content

 	Embedded content

 	Interactive content

 	Palpable content

 	Script-supporting elements

 	Transparent content models

 	Paragraphs

 	Requirements relating to bidirectional-algorithm formatting characters

 	WAI-ARIA

 	ARIA Role Attribute

 	State and Property Attributes

 	Strong Native Semantics

 	Implicit ARIA Semantics

 	Interactions with XPath and XSLT

 	Dynamic markup insertion

 	Opening the input stream

 	Closing the input stream

 	document.write()

 	document.writeln()

 	The elements of HTML

 	The root element

 	The html element

 	Document metadata

 	The head element

 	The title element

 	The base element

 	The link element

 	The meta element

 	Standard metadata names

 	Other metadata names

 	Pragma directives

 	Other pragma directives

 	Specifying the document's character encoding

 	The style element

 	Styling

 	Scripting

 	The script element

 	Scripting languages

 	Restrictions for contents of script elements

 	Inline documentation for external scripts

 	Interaction of script elements and XSLT

 	The noscript element

 	Sections

 	The body element

 	The article element

 	The section element

 	The nav element

 	The aside element

 	The h1, h2, h3, h4, h5, and h6 elements

 	The header element

 	The footer element

 	The address element

 	Headings and sections

 	Creating an outline

 	Sample outlines

 	Usage summary

 	Article or section?

 	Grouping content

 	The p element

 	The hr element

 	The pre element

 	The blockquote element

 	The ol element

 	The ul element

 	The li element

 	The dl element

 	The dt element

 	The dd element

 	The figure element

 	The figcaption element

 	The div element

 	The main element

 	Text-level semantics

 	The a element

 	The em element

 	The strong element

 	The small element

 	The s element

 	The cite element

 	The q element

 	The dfn element

 	The abbr element

 	The data element

 	The time element

 	The code element

 	The var element

 	The samp element

 	The kbd element

 	The sub and sup elements

 	The i element

 	The b element

 	The u element

 	The mark element

 	The ruby element

 	The rt element

 	The rp element

 	The bdi element

 	The bdo element

 	The span element

 	The br element

 	The wbr element

 	Usage summary

 	Edits

 	The ins element

 	The del element

 	Attributes common to ins and del elements

 	Edits and paragraphs

 	Edits and lists

 	Edits and tables

 	Embedded content

 	The img element

 	Requirements for providing text to act as an alternative for images

 	General guidelines

 	A link or button containing nothing but an image

 	Graphical Representations: Charts, diagrams, graphs, maps, illustrations

 	Images of text

 	Images that include text

 	Images that enhance the themes or subject matter of the page content

 	A purely decorative image that doesn't add any information

 	Inline images

 	A group of images that form a single larger picture with no links

 	A group of images that form a single larger picture with links

 	Images of Pictures

 	Webcam images

 	An image not intended for the user

 	Icon Images

 	CAPTCHA Images

 	Guidance for markup generators

 	Guidance for conformance checkers

 	The iframe element

 	The embed element

 	The object element

 	The param element

 	The video element

 	The audio element

 	The source element

 	The track element

 	Media elements

 	Error codes

 	Location of the media resource

 	MIME types

 	Network states

 	Loading the media resource

 	Offsets into the media resource

 	Ready states

 	Playing the media resource

 	Seeking

 	Media resources with multiple media tracks

 	AudioTrackList and VideoTrackList objects

 	Selecting specific audio and video tracks declaratively

 	Synchronising multiple media elements

 	Introduction

 	Media controllers

 	Assigning a media controller declaratively

 	Timed text tracks

 	Text track model

 	Sourcing in-band text tracks

 	Sourcing out-of-band text tracks

 	Guidelines for exposing cues in various formats as

 	Text track API

 	Text tracks describing chapters

 	Event definitions

 	User interface

 	Time ranges

 	Event definitions

 	Event summary

 	Security and privacy considerations

 	Best practices for authors using media elements

 	Best practices for implementors of media elements

 	The canvas element

 	Color spaces and color correction

 	Serializing bitmaps to a file

 	Security with canvas elements

 	The map element

 	The area element

 	Image maps

 	Authoring

 	Processing model

 	MathML

 	SVG

 	Dimension attributes

 	Tabular data

 	The table element

 	Techniques for describing tables

 	Techniques for table design

 	The caption element

 	The colgroup element

 	The col element

 	The tbody element

 	The thead element

 	The tfoot element

 	The tr element

 	The td element

 	The th element

 	Attributes common to td and th elements

 	Processing model

 	Forming a table

 	Forming relationships between data cells and header cells

 	Examples

 	Forms

 	Introduction

 	Writing a form's user interface

 	Implementing the server-side processing for a form

 	Configuring a form to communicate with a server

 	Client-side form validation

 	Date, time, and number formats

 	Categories

 	The form element

 	The fieldset element

 	The legend element

 	The label element

 	The input element

 	States of the type attribute

 	Hidden state (type=hidden)

 	Text (type=text) state and Search state (type=search)

 	Telephone state (type=tel)

 	URL state (type=url)

 	E-mail state (type=email)

 	Password state (type=password)

 	Date and Time state (type=datetime)

 	Date state (type=date)

 	Month state (type=month)

 	Week state (type=week)

 	Time state (type=time)

 	Local Date and Time state (type=datetime-local)

 	Number state (type=number)

 	Range state (type=range)

 	Color state (type=color)

 	Checkbox state (type=checkbox)

 	Radio Button state (type=radio)

 	File Upload state (type=file)

 	Submit Button state (type=submit)

 	Image Button state (type=image)

 	Reset Button state (type=reset)

 	Button state (type=button)

 	Implemention notes regarding localization of form controls

 	Common input element attributes

 	The maxlength attribute

 	The size attribute

 	The readonly attribute

 	The required attribute

 	The multiple attribute

 	The pattern attribute

 	The min and max attributes

 	The step attribute

 	The list attribute

 	The placeholder attribute

 	Common input element APIs

 	Common event behaviors

 	The button element

 	The select element

 	The datalist element

 	The optgroup element

 	The option element

 	The textarea element

 	The keygen element

 	The output element

 	The progress element

 	The meter element

 	Form control infrastructure

 	A form control's value

 	Mutability

 	Association of controls and forms

 	Attributes common to form controls

 	Naming form controls: the name attribute

 	Submitting element directionality: the dirname attribute

 	Limiting user input length: the maxlength attribute

 	Enabling and disabling form controls: the disabled attribute

 	Form submission

 	Autofocusing a form control: the autofocus attribute

 	Autofilling form controls: the autocomplete attribute

 	APIs for the text field selections

 	Constraints

 	Definitions

 	Constraint validation

 	The constraint validation API

 	Security

 	Form submission

 	Introduction

 	Implicit submission

 	Form submission algorithm

 	Constructing the form data set

 	Selecting a form submission encoding

 	URL-encoded form data

 	Multipart form data

 	Plain text form data

 	Resetting a form

 	Interactive elements

 	The details element

 	The summary element

 	The dialog element

 	Anchor points

 	Links

 	Introduction

 	Links created by a and area elements

 	Following hyperlinks

 	Downloading resources

 	Link types

 	Link type "alternate"

 	Link type "author"

 	Link type "bookmark"

 	Link type "help"

 	Link type "icon"

 	Link type "license"

 	Link type "nofollow"

 	Link type "noreferrer"

 	Link type "prefetch"

 	Link type "search"

 	Link type "stylesheet"

 	Link type "tag"

 	Sequential link types

 	Link type "next"

 	Link type "prev"

 	Other link types

 	Common idioms without dedicated elements

 	Subheadings, subtitles, alternative titles and taglines

 	Bread crumb navigation

 	Tag clouds

 	Conversations

 	Footnotes

 	Disabled elements

 	Matching HTML elements using selectors

 	Case-sensitivity

 	Pseudo-classes

 	Loading Web pages

 	Browsing contexts

 	Nested browsing contexts

 	Navigating nested browsing contexts in the DOM

 	Auxiliary browsing contexts

 	Navigating auxiliary browsing contexts in the DOM

 	Secondary browsing contexts

 	Security

 	Groupings of browsing contexts

 	Browsing context names

 	The Window object

 	Security

 	APIs for creating and navigating browsing contexts by name

 	Accessing other browsing contexts

 	Named access on the Window object

 	Garbage collection and browsing contexts

 	Closing browsing contexts

 	Browser interface elements

 	The WindowProxy object

 	Origin

 	Relaxing the same-origin restriction

 	Sandboxing

 	Session history and navigation

 	The session history of browsing contexts

 	The History interface

 	The Location interface

 	Security

 	Implementation notes for session history

 	Browsing the Web

 	Navigating across documents

 	Page load processing model for HTML files

 	Page load processing model for XML files

 	Page load processing model for text files

 	Page load processing model for multipart/x-mixed-replace resources

 	Page load processing model for media

 	Page load processing model for content that uses plugins

 	Page load processing model for inline content that doesn't have a DOM

 	Navigating to a fragment identifier

 	History traversal

 	Event definitions

 	Unloading documents

 	Event definition

 	Aborting a document load

 	Offline Web applications

 	Introduction

 	Supporting offline caching for legacy applications

 	Event summary

 	Application caches

 	The cache manifest syntax

 	Some sample manifests

 	Writing cache manifests

 	Parsing cache manifests

 	Downloading or updating an application cache

 	The application cache selection algorithm

 	Changes to the networking model

 	Expiring application caches

 	Disk space

 	Application cache API

 	Browser state

 	Web application APIs

 	Scripting

 	Introduction

 	Enabling and disabling scripting

 	Processing model

 	Definitions

 	Calling scripts

 	Creating scripts

 	Killing scripts

 	Runtime script errors

 	Runtime script errors in documents

 	The ErrorEvent interface

 	Event loops

 	Definitions

 	Processing model

 	Generic task sources

 	The javascript: URL scheme

 	Events

 	Event handlers

 	Event handlers on elements, Document objects, and Window objects

 	IDL definitions

 	Event firing

 	Events and the Window object

 	Base64 utility methods

 	Timers

 	User prompts

 	Simple dialogs

 	Printing

 	Dialogs implemented using separate documents

 	System state and capabilities

 	The Navigator object

 	Client identification

 	Language preferences

 	Custom scheme and content handlers

 	Security and privacy

 	Sample user interface

 	Manually releasing the storage mutex

 	The External interface

 	User interaction

 	The hidden attribute

 	Inert subtrees

 	Activation

 	Focus

 	Sequential focus navigation and the tabindex attribute

 	Focus management

 	Document-level focus APIs

 	Element-level focus APIs

 	Assigning keyboard shortcuts

 	Introduction

 	The accesskey attribute

 	Processing model

 	Editing

 	Making document regions editable: The contenteditable content attribute

 	Making entire documents editable: The designMode IDL attribute

 	Best practices for in-page editors

 	Editing APIs

 	Spelling and grammar checking

 	Drag and drop

 	Introduction

 	The drag data store

 	The DataTransfer interface

 	The DataTransferItemList interface

 	The DataTransferItem interface

 	The DragEvent interface

 	Drag-and-drop processing model

 	Events summary

 	The draggable attribute

 	The dropzone attribute

 	Security risks in the drag-and-drop model

 	The HTML syntax

 	Writing HTML documents

 	The DOCTYPE

 	Elements

 	Start tags

 	End tags

 	Attributes

 	Optional tags

 	Restrictions on content models

 	Restrictions on the contents of raw text and escapable raw text elements

 	Text

 	Newlines

 	Character references

 	CDATA sections

 	Comments

 	Parsing HTML documents

 	Overview of the parsing model

 	The input byte stream

 	Determining the character encoding

 	Character encodings

 	Changing the encoding while parsing

 	Preprocessing the input stream

 	Parse state

 	The insertion mode

 	The stack of open elements

 	The list of active formatting elements

 	The element pointers

 	Other parsing state flags

 	Tokenization

 	Data state

 	Character reference in data state

 	RCDATA state

 	Character reference in RCDATA state

 	RAWTEXT state

 	Script data state

 	PLAINTEXT state

 	Tag open state

 	End tag open state

 	Tag name state

 	RCDATA less-than sign state

 	RCDATA end tag open state

 	RCDATA end tag name state

 	RAWTEXT less-than sign state

 	RAWTEXT end tag open state

 	RAWTEXT end tag name state

 	Script data less-than sign state

 	Script data end tag open state

 	Script data end tag name state

 	Script data escape start state

 	Script data escape start dash state

 	Script data escaped state

 	Script data escaped dash state

 	Script data escaped dash dash state

 	Script data escaped less-than sign state

 	Script data escaped end tag open state

 	Script data escaped end tag name state

 	Script data double escape start state

 	Script data double escaped state

 	Script data double escaped dash state

 	Script data double escaped dash dash state

 	Script data double escaped less-than sign state

 	Script data double escape end state

 	Before attribute name state

 	Attribute name state

 	After attribute name state

 	Before attribute value state

 	Attribute value (double-quoted) state

 	Attribute value (single-quoted) state

 	Attribute value (unquoted) state

 	Character reference in attribute value state

 	After attribute value (quoted) state

 	Self-closing start tag state

 	Bogus comment state

 	Markup declaration open state

 	Comment start state

 	Comment start dash state

 	Comment state

 	Comment end dash state

 	Comment end state

 	Comment end bang state

 	DOCTYPE state

 	Before DOCTYPE name state

 	DOCTYPE name state

 	After DOCTYPE name state

 	After DOCTYPE public keyword state

 	Before DOCTYPE public identifier state

 	DOCTYPE public identifier (double-quoted) state

 	DOCTYPE public identifier (single-quoted) state

 	After DOCTYPE public identifier state

 	Between DOCTYPE public and system identifiers state

 	After DOCTYPE system keyword state

 	Before DOCTYPE system identifier state

 	DOCTYPE system identifier (double-quoted) state

 	DOCTYPE system identifier (single-quoted) state

 	After DOCTYPE system identifier state

 	Bogus DOCTYPE state

 	CDATA section state

 	Tokenizing character references

 	Tree construction

 	Creating and inserting nodes

 	Parsing elements that contain only text

 	Closing elements that have implied end tags

 	The rules for parsing tokens in HTML content

 	The "initial" insertion mode

 	The "before html" insertion mode

 	The "before head" insertion mode

 	The "in head" insertion mode

 	The "in head noscript" insertion mode

 	The "after head" insertion mode

 	The "in body" insertion mode

 	The "text" insertion mode

 	The "in table" insertion mode

 	The "in table text" insertion mode

 	The "in caption" insertion mode

 	The "in column group" insertion mode

 	The "in table body" insertion mode

 	The "in row" insertion mode

 	The "in cell" insertion mode

 	The "in select" insertion mode

 	The "in select in table" insertion mode

 	The "after body" insertion mode

 	The "in frameset" insertion mode

 	The "after frameset" insertion mode

 	The "after after body" insertion mode

 	The "after after frameset" insertion mode

 	The rules for parsing tokens in foreign content

 	The end

 	Coercing an HTML DOM into an infoset

 	An introduction to error handling and strange cases in the parser

 	Misnested tags: <i></i>

 	Misnested tags: <p></p>

 	Unexpected markup in tables

 	Scripts that modify the page as it is being parsed

 	The execution of scripts that are moving across multiple documents

 	Unclosed formatting elements

 	Serializing HTML fragments

 	Parsing HTML fragments

 	Named character references

 	The XHTML syntax

 	Writing XHTML documents

 	Parsing XHTML documents

 	Serializing XHTML fragments

 	Parsing XHTML fragments

 	Rendering

 	Introduction

 	The CSS user agent style sheet and presentational hints

 	Non-replaced elements

 	Hidden elements

 	The page

 	Flow content

 	Phrasing content

 	Bidirectional text

 	Quotes

 	Sections and headings

 	Lists

 	Tables

 	Margin collapsing quirks

 	Form controls

 	The hr element

 	The fieldset and legend elements

 	Replaced elements

 	Embedded content

 	Images

 	Attributes for embedded content and images

 	Image maps

 	Bindings

 	Introduction

 	The button element

 	The details element

 	The input element as a text entry widget

 	The input element as domain-specific widgets

 	The input element as a range control

 	The input element as a color well

 	The input element as a checkbox and radio button widgets

 	The input element as a file upload control

 	The input element as a button

 	The marquee element

 	The meter element

 	The progress element

 	The select element

 	The textarea element

 	The keygen element

 	Frames and framesets

 	Interactive media

 	Links, forms, and navigation

 	The title attribute

 	Editing hosts

 	Text rendered in native user interfaces

 	Print media

 	Unstyled XML documents

 	Obsolete features

 	Obsolete but conforming features

 	Warnings for obsolete but conforming features

 	Non-conforming features

 	Requirements for implementations

 	The applet element

 	The marquee element

 	Frames

 	Other elements, attributes and APIs

 	IANA considerations

 	text/html

 	multipart/x-mixed-replace

 	application/xhtml+xml

 	application/x-www-form-urlencoded

 	text/cache-manifest

 	web+ scheme prefix

 	Index

 	Elements

 	Element content categories

 	Attributes

 	Element Interfaces

 	All Interfaces

 	Events

 	References

 	Acknowledgements

Introduction

 Background

 This section is non-normative.

 The World Wide Web's markup language has always been HTML. HTML was primarily designed as a
 language for semantically describing scientific documents, although its general design and
 adaptations over the years have enabled it to be used to describe a number of other types of
 documents.

 The main area that has not been adequately addressed by HTML is a vague subject referred to as
 Web Applications. This specification attempts to rectify this, while at the same time updating the
 HTML specifications to address issues raised in the past few years.

 Audience

 This section is non-normative.

 This specification is intended for authors of documents and scripts that use the features
 defined in this specification.

 This document is probably not suited to readers who do not already have at least a passing
 familiarity with Web technologies, as in places it sacrifices clarity for precision, and brevity
 for completeness. More approachable tutorials and authoring guides can provide a gentler
 introduction to the topic.

 In particular, familiarity with the basics of DOM is necessary for a complete understanding of
 some of the more technical parts of this specification. An understanding of Web IDL, HTTP, XML,
 Unicode, character encodings, JavaScript, and CSS will also be helpful in places but is not
 essential.

 Scope

 This section is non-normative.

 This specification is limited to providing a semantic-level markup language and associated
 semantic-level scripting APIs for authoring accessible pages on the Web ranging from static
 documents to dynamic applications.

 The scope of this specification does not include providing mechanisms for media-specific
 customization of presentation (although default rendering rules for Web browsers are included at
 the end of this specification, and several mechanisms for hooking into CSS are provided as part of
 the language).

 The scope of this specification is not to describe an entire operating system. In particular,
 hardware configuration software, image manipulation tools, and applications that users would be
 expected to use with high-end workstations on a daily basis are out of scope. In terms of
 applications, this specification is targeted specifically at applications that would be expected
 to be used by users on an occasional basis, or regularly but from disparate locations, with low
 CPU requirements. Examples of such applications include online purchasing systems, searching
 systems, games (especially multiplayer online games), public telephone books or address books,
 communications software (e-mail clients, instant messaging clients, discussion software), document
 editing software, etc.

 History

 This section is non-normative.

 For its first five years (1990-1995), HTML went through a number of revisions and experienced a
 number of extensions, primarily hosted first at CERN, and then at the IETF.

 With the creation of the W3C, HTML's development changed venue again. A first abortive attempt
 at extending HTML in 1995 known as HTML 3.0 then made way to a more pragmatic approach known as
 HTML 3.2, which was completed in 1997. HTML4 quickly followed later that same year.

 The following year, the W3C membership decided to stop evolving HTML and instead begin work on
 an XML-based equivalent, called XHTML. This
 effort started with a reformulation of HTML4 in XML, known as XHTML 1.0, which added no new
 features except the new serialization, and which was completed in 2000. After XHTML 1.0, the W3C's
 focus turned to making it easier for other working groups to extend XHTML, under the banner of
 XHTML Modularization. In parallel with this, the W3C also worked on a new language that was not
 compatible with the earlier HTML and XHTML languages, calling it XHTML2.

 Around the time that HTML's evolution was stopped in 1998, parts of the API for HTML developed
 by browser vendors were specified and published under the name DOM Level 1 (in 1998) and DOM Level
 2 Core and DOM Level 2 HTML (starting in 2000 and culminating in 2003). These efforts then petered
 out, with some DOM Level 3 specifications published in 2004 but the working group being closed
 before all the Level 3 drafts were completed.

 In 2003, the publication of XForms, a technology which was positioned as the next generation of
 Web forms, sparked a renewed interest in evolving HTML itself, rather than finding replacements
 for it. This interest was borne from the realization that XML's deployment as a Web technology was
 limited to entirely new technologies (like RSS and later Atom), rather than as a replacement for
 existing deployed technologies (like HTML).

 A proof of concept to show that it was possible to extend HTML4's forms to provide many of the
 features that XForms 1.0 introduced, without requiring browsers to implement rendering engines
 that were incompatible with existing HTML Web pages, was the first result of this renewed
 interest. At this early stage, while the draft was already publicly available, and input was
 already being solicited from all sources, the specification was only under Opera Software's
 copyright.

 The idea that HTML's evolution should be reopened was tested at a W3C workshop in 2004, where
 some of the principles that underlie the HTML5 work (described below), as well as the
 aforementioned early draft proposal covering just forms-related features, were presented to the
 W3C jointly by Mozilla and Opera. The proposal was rejected on the grounds that the proposal
 conflicted with the previously chosen direction for the Web's evolution; the W3C staff and
 membership voted to continue developing XML-based replacements instead.

 Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue
 working on the effort under the umbrella of a new venue called the WHATWG. A public mailing list
 was created, and the draft was moved to the WHATWG site. The copyright was subsequently amended to
 be jointly owned by all three vendors, and to allow reuse of the specification.

 The WHATWG was based on several core principles, in particular that technologies need to be
 backwards compatible, that specifications and implementations need to match even if this means
 changing the specification rather than the implementations, and that specifications need to be
 detailed enough that implementations can achieve complete interoperability without
 reverse-engineering each other.

 The latter requirement in particular required that the scope of the HTML5 specification include
 what had previously been specified in three separate documents: HTML4, XHTML1, and DOM2 HTML. It
 also meant including significantly more detail than had previously been considered the norm.

 In 2006, the W3C indicated an interest to participate in the development of HTML5 after all,
 and in 2007 formed a working group chartered to work with the WHATWG on the development of the
 HTML5 specification. Apple, Mozilla, and Opera allowed the W3C to publish the specification under
 the W3C copyright, while keeping a version with the less restrictive license on the WHATWG
 site.

 For a number of years, both groups then worked together under the same editor: Ian Hickson.
 In 2011, the groups came to the conclusion that they had different goals: the W3C wanted to
 draw a line in the sand for features for a HTML5 Recommendation, while the WHATWG wanted to
 continue working on a Living Standard for HTML, continuously maintaining the specification
 and adding new features. In mid 2012, a new editing team was introduced at the W3C to take
 care of creating a HTML5 Recommendation and prepare a Working Draft for the next HTML
 version.

 Since then, the W3C HTML WG has been cherry picking patches from the WHATWG that resolved
 bugs registered on the W3C HTML specification or more accurately represented implemented
 reality in UAs. The W3C
 HTML editors have also added patches that resulted from discussions and decisions made by
 the W3C HTML WG as well a bug fixes from bugs not shared by the WHATWG.

 A separate document is published to document the differences between the HTML specified
 in this document and the language described in the HTML4 specification. [HTMLDIFF]

 Design notes

 This section is non-normative.

 It must be admitted that many aspects of HTML appear at first glance to be nonsensical and
 inconsistent.

 HTML, its supporting DOM APIs, as well as many of its supporting technologies, have been
 developed over a period of several decades by a wide array of people with different priorities
 who, in many cases, did not know of each other's existence.

 Features have thus arisen from many sources, and have not always been designed in especially
 consistent ways. Furthermore, because of the unique characteristics of the Web, implementation
 bugs have often become de-facto, and now de-jure, standards, as content is often unintentionally
 written in ways that rely on them before they can be fixed.

 Despite all this, efforts have been made to adhere to certain design goals. These are described
 in the next few subsections.

 Serializability of script execution

 This section is non-normative.

 To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM APIs are
 designed such that no script can ever detect the simultaneous execution of other scripts. Even
 with , the intent is that the behavior of implementations can
 be thought of as completely serializing the execution of all scripts in all browsing contexts.

 The navigator.yieldForStorageUpdates() method, in
 this model, is equivalent to allowing other scripts to run while the calling script is
 blocked.

 Compliance with other specifications

 This section is non-normative.

 This specification interacts with and relies on a wide variety of other specifications. In
 certain circumstances, unfortunately, conflicting needs have led to this specification violating
 the requirements of these other specifications. Whenever this has occurred, the transgressions
 have each been noted as a "willful violation", and the reason for the violation has
 been noted.

 HTML vs XHTML

 This section is non-normative.

 This specification defines an abstract language for describing documents and applications, and
 some APIs for interacting with in-memory representations of resources that use this language.

 The in-memory representation is known as "DOM HTML", or "the DOM" for short.

 There are various concrete syntaxes that can be used to transmit resources that use this
 abstract language, two of which are defined in this specification.

 The first such concrete syntax is the HTML syntax. This is the format suggested for most
 authors. It is compatible with most legacy Web browsers. If a document is transmitted with the
 text/html MIME type, then it will be processed as an HTML document by
 Web browsers. This specification defines version 5.0 of the HTML syntax, known as "HTML 5.0".

 The second concrete syntax is the XHTML syntax, which is an application of XML. When a document
 is transmitted with an XML MIME type, such as application/xhtml+xml,
 then it is treated as an XML document by Web browsers, to be parsed by an XML processor. Authors
 are reminded that the processing for XML and HTML differs; in particular, even minor syntax errors
 will prevent a document labeled as XML from being rendered fully, whereas they would be ignored in
 the HTML syntax. This specification defines version 5.0 of the XHTML syntax, known as
 "XHTML 5.0".

 The DOM, the HTML syntax, and the XHTML syntax cannot all represent the same content. For
 example, namespaces cannot be represented using the HTML syntax, but they are supported in the DOM
 and in the XHTML syntax. Similarly, documents that use the noscript feature can be
 represented using the HTML syntax, but cannot be represented with the DOM or in the XHTML syntax.
 Comments that contain the string "-->" can only be represented in the
 DOM, not in the HTML and XHTML syntaxes.

 Structure of this specification

 This section is non-normative.

 This specification is divided into the following major sections:

 	Introduction

 	Non-normative materials providing a context for the HTML standard.

 	Common infrastructure

 	The conformance classes, algorithms, definitions, and the common underpinnings of the rest of
 the specification.

 	Semantics, structure, and APIs of HTML documents

 	Documents are built from elements. These elements form a tree using the DOM. This section
 defines the features of this DOM, as well as introducing the features common to all elements, and
 the concepts used in defining elements.

 	The elements of HTML

 	Each element has a predefined meaning, which is explained in this section. Rules for authors
 on how to use the element are also given. This includes large signature features of HTML such
 as video playback and subtitles, form controls and form submission, and a 2D graphics API known
 as the HTML canvas.

 	Loading Web pages

 	HTML documents do not exist in a vacuum — this section defines many of the features
 that affect environments that deal with multiple pages, such as Web browsers and offline
 caching of Web applications.

 	Web application APIs

 	This section introduces basic features for scripting of applications in HTML.

 	User interaction

 	HTML documents can provide a number of mechanisms for users to interact with and modify
 content, which are described in this section, such as how focus works, and drag-and-drop.

 	The HTML syntax

 	The XHTML syntax

 	All of these features would be for naught if they couldn't be represented in a serialized
 form and sent to other people, and so these sections define the syntaxes of HTML and XHTML.

 	Rendering

 	This section defines the default rendering rules for Web browsers.

 There are also some appendices, listing obsolete features and IANA considerations, and several indices.

 How to read this specification

 This specification should be read like all other specifications. First, it should be read
 cover-to-cover, multiple times. Then, it should be read backwards at least once. Then it should be
 read by picking random sections from the contents list and following all the cross-references.

 As described in the conformance requirements section below, this specification describes
 conformance criteria for a variety of conformance classes. In particular, there are conformance
 requirements that apply to producers, for example authors and the documents they create,
 and there are conformance requirements that apply to consumers, for example Web browsers.
 They can be distinguished by what they are requiring: a requirement on a producer states what is
 allowed, while a requirement on a consumer states how software is to act.

 For example, "the foo attribute's value must be a valid
 integer" is a requirement on producers, as it lays out the allowed values; in contrast,
 the requirement "the foo attribute's value must be parsed using the
 rules for parsing integers" is a requirement on consumers, as it describes how to
 process the content.

 Requirements on producers have no bearing whatsoever on consumers.

 Continuing the above example, a requirement stating that a particular attribute's value is
 constrained to being a valid integer emphatically does not imply anything
 about the requirements on consumers. It might be that the consumers are in fact required to treat
 the attribute as an opaque string, completely unaffected by whether the value conforms to the
 requirements or not. It might be (as in the previous example) that the consumers are required to
 parse the value using specific rules that define how invalid (non-numeric in this case) values
 are to be processed.

 Typographic conventions

 This is a definition, requirement, or explanation.

 This is a note.

 This is an example.

 This is an open issue.

 This is a warning.

 interface Example {
 // this is an IDL definition
};

 	variable = object . method([optionalArgument])

 	

 This is a note to authors describing the usage of an interface.

 /* this is a CSS fragment */

 The defining instance of a term is marked up like this. Uses of that
 term are marked up like this or like this.

 The defining instance of an element, attribute, or API is marked up like this. References to that element, attribute, or API are marked
 up like this.

 Other code fragments are marked up like this.

 Variables are marked up like this.

 This is an implementation requirement.

 In an algorithm, steps in synchronous sections are
 marked with ⌛.

 Privacy concerns

 This section is non-normative.

 Some features of HTML trade user convenience for a measure of user privacy.

 In general, due to the Internet's architecture, a user can be distinguished from another by the
 user's IP address. IP addresses do not perfectly match to a user; as a user moves from device to
 device, or from network to network, their IP address will change; similarly, NAT routing, proxy
 servers, and shared computers enable packets that appear to all come from a single IP address to
 actually map to multiple users. Technologies such as onion routing can be used to further
 anonymize requests so that requests from a single user at one node on the Internet appear to come
 from many disparate parts of the network.

 However, the IP address used for a user's requests is not the only mechanism by which a user's
 requests could be related to each other. Cookies, for example, are designed specifically to enable
 this, and are the basis of most of the Web's session features that enable you to log into a site
 with which you have an account.

 There are other mechanisms that are more subtle. Certain characteristics of a user's system can
 be used to distinguish groups of users from each other; by collecting enough such information, an
 individual user's browser's "digital fingerprint" can be computed, which can be as good, if not
 better, as an IP address in ascertaining which requests are from the same user.

 Grouping requests in this manner, especially across multiple sites, can be used for both benign
 (and even arguably positive) purposes, as well as for malevolent purposes. An example of a
 reasonably benign purpose would be determining whether a particular person seems to prefer sites
 with dog illustrations as opposed to sites with cat illustrations (based on how often they visit
 the sites in question) and then automatically using the preferred illustrations on subsequent
 visits to participating sites. Malevolent purposes, however, could include governments combining
 information such as the person's home address (determined from the addresses they use when getting
 driving directions on one site) with their apparent political affiliations (determined by
 examining the forum sites that they participate in) to determine whether the person should be
 prevented from voting in an election.

 Since the malevolent purposes can be remarkably evil, user agent implementors are encouraged to
 consider how to provide their users with tools to minimize leaking information that could be used
 to fingerprint a user.

 Unfortunately, as the first paragraph in this section implies, sometimes there is great benefit
 to be derived from exposing the very information that can also be used for fingerprinting
 purposes, so it's not as easy as simply blocking all possible leaks. For instance, the ability to
 log into a site to post under a specific identity requires that the user's requests be
 identifiable as all being from the same user, more or less by definition. More subtly, though,
 information such as how wide text is, which is necessary for many effects that involve drawing
 text onto a canvas (e.g. any effect that involves drawing a border around the text) also leaks
 information that can be used to group a user's requests. (In this case, by potentially exposing,
 via a brute force search, which fonts a user has installed, information which can vary
 considerably from user to user.)

 Features in this specification which can be used to
 fingerprint the user are marked as this paragraph is.
 [image: (This is a fingerprinting vector.)]

 Other features in the platform can be used for the same purpose, though, including, though not
 limited to:

 	The exact list of which features a user agents supports.

 	The maximum allowed stack depth for recursion in script.

 	Features that describe the user's environment, like Media Queries and the Screen
 object. [MQ] [CSSOMVIEW]

 	The user's time zone.

 A quick introduction to HTML

 This section is non-normative.

 A basic HTML document looks like this:

 <!DOCTYPE html>
<html>
 <head>
 <title>Sample page</title>
 </head>
 <body>
 <h1>Sample page</h1>
 <p>This is a simple sample.</p>
 <!-- this is a comment -->
 </body>
</html>

 HTML documents consist of a tree of elements and text. Each element is denoted in the source by
 a start tag, such as "<body>", and
 an end tag, such as "</body>".
 (Certain start tags and end tags can in certain cases be omitted and are implied by other tags.)

 Tags have to be nested such that elements are all completely within each other, without
 overlapping:

 <p>This is very wrong!</p>

 <p>This is correct.</p>

 This specification defines a set of elements that can be used in HTML, along with rules about
 the ways in which the elements can be nested.

 Elements can have attributes, which control how the elements work. In the example below, there
 is a hyperlink, formed using the a element and its href attribute:

 simple

 Attributes are placed inside the start tag, and consist
 of a name and a value, separated by an "=" character.
 The attribute value can remain unquoted if it doesn't contain space characters or any of " ' ` = < or
 >. Otherwise, it has to be quoted using either single or double quotes.
 The value, along with the "=" character, can be omitted altogether if the
 value is the empty string.

 <!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

 HTML user agents (e.g. Web browsers) then parse this markup, turning it into a DOM
 (Document Object Model) tree. A DOM tree is an in-memory representation of a document.

 DOM trees contain several kinds of nodes, in particular a DocumentType node,
 Element nodes, Text nodes, Comment nodes, and in some cases
 ProcessingInstruction nodes.

 The markup snippet at the top of this section would be
 turned into the following DOM tree:

 	DOCTYPE: html
	html	head	#text:
	title	#text:

	#text:

	#text:
	body	#text:
	h1	#text:

	#text:
	p	#text:
	a 	#text:

	#text:

	#text:
	#comment:
	#text:

 The root element of this tree is the html element, which is the
 element always found at the root of HTML documents. It contains two elements, head
 and body, as well as a Text node between them.

 There are many more Text nodes in the DOM tree than one would initially expect,
 because the source contains a number of spaces (represented here by "␣") and line breaks
 ("⏎") that all end up as Text nodes in the DOM. However, for historical
 reasons not all of the spaces and line breaks in the original markup appear in the DOM. In
 particular, all the whitespace before head start tag ends up being dropped silently,
 and all the whitespace after the body end tag ends up placed at the end of the
 body.

 The head element contains a title element, which itself contains a
 Text node with the text "Sample page". Similarly, the body element
 contains an h1 element, a p element, and a comment.

 This DOM tree can be manipulated from scripts in the page. Scripts (typically in JavaScript)
 are small programs that can be embedded using the script element or using event
 handler content attributes. For example, here is a form with a script that sets the value
 of the form's output element to say "Hello World":

 <form name="main">
 Result: <output name="result"></output>
 <script>
 document.forms.main.elements.result.value = 'Hello World';
 </script>
</form>

 Each element in the DOM tree is represented by an object, and these objects have APIs so that
 they can be manipulated. For instance, a link (e.g. the a element in the tree above)
 can have its "href" attribute changed in several
 ways:

 var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'http://example.com/'); // change the content attribute directly

 Since DOM trees are used as the way to represent HTML documents when they are processed and
 presented by implementations (especially interactive implementations like Web browsers), this
 specification is mostly phrased in terms of DOM trees, instead of the markup described above.

 HTML documents represent a media-independent description of interactive content. HTML documents
 might be rendered to a screen, or through a speech synthesizer, or on a braille display. To
 influence exactly how such rendering takes place, authors can use a styling language such as
 CSS.

 In the following example, the page has been made yellow-on-blue using CSS.

 <!DOCTYPE html>
<html>
 <head>
 <title>Sample styled page</title>
 <style>
 body { background: navy; color: yellow; }
 </style>
 </head>
 <body>
 <h1>Sample styled page</h1>
 <p>This page is just a demo.</p>
 </body>
</html>

 For more details on how to use HTML, authors are encouraged to consult tutorials and guides.
 Some of the examples included in this specification might also be of use, but the novice author is
 cautioned that this specification, by necessity, defines the language with a level of detail that
 might be difficult to understand at first.

 Writing secure applications with HTML

 This section is non-normative.

 When HTML is used to create interactive sites, care needs to be taken to avoid introducing
 vulnerabilities through which attackers can compromise the integrity of the site itself or of the
 site's users.

 A comprehensive study of this matter is beyond the scope of this document, and authors are
 strongly encouraged to study the matter in more detail. However, this section attempts to provide
 a quick introduction to some common pitfalls in HTML application development.

 The security model of the Web is based on the concept of "origins", and correspondingly many of
 the potential attacks on the Web involve cross-origin actions. [ORIGIN]

 	Not validating user input

 	Cross-site scripting (XSS)

 	SQL injection

 	

 When accepting untrusted input, e.g. user-generated content such as text comments, values in
 URL parameters, messages from third-party sites, etc, it is imperative that the data be
 validated before use, and properly escaped when displayed. Failing to do this can allow a
 hostile user to perform a variety of attacks, ranging from the potentially benign, such as
 providing bogus user information like a negative age, to the serious, such as running scripts
 every time a user looks at a page that includes the information, potentially propagating the
 attack in the process, to the catastrophic, such as deleting all data in the server.

 When writing filters to validate user input, it is imperative that filters always be
 whitelist-based, allowing known-safe constructs and disallowing all other input. Blacklist-based
 filters that disallow known-bad inputs and allow everything else are not secure, as not
 everything that is bad is yet known (for example, because it might be invented in the
 future).

 For example, suppose a page looked at its URL's query string to determine what to display,
 and the site then redirected the user to that page to display a message, as in:

 Say Hello
 Say Welcome
 Say Kittens

 If the message was just displayed to the user without escaping, a hostile attacker could
 then craft a URL that contained a script element:

 http://example.com/message.cgi?say=%3Cscript%3Ealert%28%27Oh%20no%21%27%29%3C/script%3E

 If the attacker then convinced a victim user to visit this page, a script of the attacker's
 choosing would run on the page. Such a script could do any number of hostile actions, limited
 only by what the site offers: if the site is an e-commerce shop, for instance, such a script
 could cause the user to unknowingly make arbitrarily many unwanted purchases.

 This is called a cross-site scripting attack.

 There are many constructs that can be used to try to trick a site into executing code. Here
 are some that authors are encouraged to consider when writing whitelist filters:

 	When allowing harmless-seeming elements like img, it is important to whitelist
 any provided attributes as well. If one allowed all attributes then an attacker could, for
 instance, use the onload attribute to run arbitrary
 script.

 	When allowing URLs to be provided (e.g. for links), the scheme of each URL also needs to be
 explicitly whitelisted, as there are many schemes that can be abused. The most prominent
 example is "javascript:", but user agents can
 implement (and indeed, have historically implemented) others.

 	Allowing a base element to be inserted means any script elements
 in the page with relative links can be hijacked, and similarly that any form submissions can
 get redirected to a hostile site.

 	Cross-site request forgery (CSRF)

 	

 If a site allows a user to make form submissions with user-specific side-effects, for example
 posting messages on a forum under the user's name, making purchases, or applying for a passport,
 it is important to verify that the request was made by the user intentionally, rather than by
 another site tricking the user into making the request unknowingly.

 This problem exists because HTML forms can be submitted to other origins.

 Sites can prevent such attacks by populating forms with user-specific hidden tokens, or by
 checking Origin headers on all requests.

 	Clickjacking

 	

 A page that provides users with an interface to perform actions that the user might not wish
 to perform needs to be designed so as to avoid the possibility that users can be tricked into
 activating the interface.

 One way that a user could be so tricked is if a hostile site places the victim site in a
 small iframe and then convinces the user to click, for instance by having the user
 play a reaction game. Once the user is playing the game, the hostile site can quickly position
 the iframe under the mouse cursor just as the user is about to click, thus tricking the user
 into clicking the victim site's interface.

 To avoid this, sites that do not expect to be used in frames are encouraged to only enable
 their interface if they detect that they are not in a frame (e.g. by comparing the window object to the value of the top
 attribute).

 Common pitfalls to avoid when using the scripting APIs

 This section is non-normative.

 Scripts in HTML have "run-to-completion" semantics, meaning that the browser will generally run
 the script uninterrupted before doing anything else, such as firing further events or continuing
 to parse the document.

 On the other hand, parsing of HTML files happens asynchronously and incrementally, meaning that
 the parser can pause at any point to let scripts run. This is generally a good thing, but it does
 mean that authors need to be careful to avoid hooking event handlers after the events could have
 possibly fired.

 There are two techniques for doing this reliably: use event handler content
 attributes, or create the element and add the event handlers in the same script. The latter
 is safe because, as mentioned earlier, scripts are run to completion before further events can
 fire.

 One way this could manifest itself is with img elements and the load event. The event could fire as soon as the element has been
 parsed, especially if the image has already been cached (which is common).

 Here, the author uses the onload handler on an
 img element to catch the load event:

 If the element is being added by script, then so long as the event handlers are added in the
 same script, the event will still not be missed:

 <script>
 var img = new Image();
 img.src = 'games.png';
 img.alt = 'Games';
 img.onload = gamesLogoHasLoaded;
 // img.addEventListener('load', gamesLogoHasLoaded, false); // would work also
</script>

 However, if the author first created the img element and then in a separate
 script added the event listeners, there's a chance that the load
 event would be fired in between, leading it to be missed:

 <!-- Do not use this style, it has a race condition! -->

 <!-- the 'load' event might fire here while the parser is taking a
 break, in which case you will not see it! -->
 <script>
 var img = document.getElementById('games');
 img.onload = gamesLogoHasLoaded; // might never fire!
 </script>

 Conformance requirements for authors

 This section is non-normative.

 Unlike previous versions of the HTML specification, this specification defines in some detail
 the required processing for invalid documents as well as valid documents.

 However, even though the processing of invalid content is in most cases well-defined,
 conformance requirements for documents are still important: in practice, interoperability (the
 situation in which all implementations process particular content in a reliable and identical or
 equivalent way) is not the only goal of document conformance requirements. This section details
 some of the more common reasons for still distinguishing between a conforming document and one
 with errors.

 Presentational markup

 This section is non-normative.

 The majority of presentational features from previous versions of HTML are no longer allowed.
 Presentational markup in general has been found to have a number of problems:

 	The use of presentational elements leads to poorer accessibility

 	

 While it is possible to use presentational markup in a way that provides users of assistive
 technologies (ATs) with an acceptable experience (e.g. using ARIA), doing so is significantly
 more difficult than doing so when using semantically-appropriate markup. Furthermore, even using
 such techniques doesn't help make pages accessible for non-AT non-graphical users, such as users
 of text-mode browsers.

 Using media-independent markup, on the other hand, provides an easy way for documents to be
 authored in such a way that they work for more users (e.g. text browsers).

 	Higher cost of maintenance

 	

 It is significantly easier to maintain a site written in such a way that the markup is
 style-independent. For example, changing the color of a site that uses
 throughout requires changes across the entire site, whereas
 a similar change to a site based on CSS can be done by changing a single file.

 	Larger document sizes

 	

 Presentational markup tends to be much more redundant, and thus results in larger document
 sizes.

 For those reasons, presentational markup has been removed from HTML in this version. This
 change should not come as a surprise; HTML4 deprecated presentational markup many years ago and
 provided a mode (HTML4 Transitional) to help authors move away from presentational markup; later,
 XHTML 1.1 went further and obsoleted those features altogether.

 The only remaining presentational markup features in HTML are the style attribute and the style element. Use of the style attribute is somewhat discouraged in production environments, but
 it can be useful for rapid prototyping (where its rules can be directly moved into a separate
 style sheet later) and for providing specific styles in unusual cases where a separate style sheet
 would be inconvenient. Similarly, the style element can be useful in syndication or
 for page-specific styles, but in general an external style sheet is likely to be more convenient
 when the styles apply to multiple pages.

 It is also worth noting that some elements that were previously presentational have been
 redefined in this specification to be media-independent: b, i,
 hr, s, small, and u.

 Syntax errors

 This section is non-normative.

 The syntax of HTML is constrained to avoid a wide variety of problems.

 	Unintuitive error-handling behavior

 	

 Certain invalid syntax constructs, when parsed, result in DOM trees that are highly
 unintuitive.

 For example, the following markup fragment results in a DOM with an hr element
 that is an earlier sibling of the corresponding table element:

 <table><hr>...

 	Errors with optional error recovery

 	

 To allow user agents to be used in controlled environments without having to implement the
 more bizarre and convoluted error handling rules, user agents are permitted to fail whenever
 encountering a parse error.

 	Errors where the error-handling behavior is not compatible with streaming user agents

 	

 Some error-handling behavior, such as the behavior for the <table><hr>... example mentioned above, are incompatible with streaming
 user agents (user agents that process HTML files in one pass, without storing state). To avoid
 interoperability problems with such user agents, any syntax resulting in such behavior is
 considered invalid.

 	Errors that can result in infoset coercion

 	

 When a user agent based on XML is connected to an HTML parser, it is possible that certain
 invariants that XML enforces, such as comments never containing two consecutive hyphens, will be
 violated by an HTML file. Handling this can require that the parser coerce the HTML DOM into an
 XML-compatible infoset. Most syntax constructs that require such handling are considered
 invalid.

 	Errors that result in disproportionally poor performance

 	

 Certain syntax constructs can result in disproportionally poor performance. To discourage the
 use of such constructs, they are typically made non-conforming.

 For example, the following markup results in poor performance, since all the unclosed
 i elements have to be reconstructed in each paragraph, resulting in progressively
 more elements in each paragraph:

 <p><i>He dreamt.
<p><i>He dreamt that he ate breakfast.
<p><i>Then lunch.
<p><i>And finally dinner.

 The resulting DOM for this fragment would be:

 	p	i	#text:

	p	i	i	#text:

	p	i	i	i	#text:

	p	i	i	i	i	#text:

 	Errors involving fragile syntax constructs

 	

 There are syntax constructs that, for historical reasons, are relatively fragile. To help
 reduce the number of users who accidentally run into such problems, they are made
 non-conforming.

 For example, the parsing of certain named character references in attributes happens even
 with the closing semicolon being omitted. It is safe to include an ampersand followed by
 letters that do not form a named character reference, but if the letters are changed to a
 string that does form a named character reference, they will be interpreted as that
 character instead.

 In this fragment, the attribute's value is "?bill&ted":

 Bill and Ted

 In the following fragment, however, the attribute's value is actually "?art©", not the intended "?art©",
 because even without the final semicolon, "©" is handled the same
 as "©" and thus gets interpreted as "©":

 Art and Copy

 To avoid this problem, all named character references are required to end with a semicolon,
 and uses of named character references without a semicolon are flagged as errors.

 Thus, the correct way to express the above cases is as
 follows:

 Bill and Ted <!-- &ted is ok, since it's not a named character reference -->

 Art and Copy <!-- the & has to be escaped, since © is a named character reference -->

 	Errors involving known interoperability problems in legacy user agents

 	

 Certain syntax constructs are known to cause especially subtle or serious problems in legacy
 user agents, and are therefore marked as non-conforming to help authors avoid them.

 For example, this is why the "`" (U+0060) character is not allowed in unquoted
 attributes. In certain legacy user agents, it is sometimes treated as a
 quote character.

 Another example of this is the DOCTYPE, which is required to trigger no-quirks
 mode, because the behavior of legacy user agents in quirks mode is often
 largely undocumented.

 	Errors that risk exposing authors to security attacks

 	

 Certain restrictions exist purely to avoid known security problems.

 For example, the restriction on using UTF-7 exists purely to avoid authors falling prey to a
 known cross-site-scripting attack using UTF-7. [UTF7]

 	Cases where the author's intent is unclear

 	

 Markup where the author's intent is very unclear is often made non-conforming. Correcting
 these errors early makes later maintenance easier.

 For example, it is unclear whether the author intended the following to be an
 h1 heading or an h2 heading:

 <h1>Contact details</h2>

 	Cases that are likely to be typos

 	

 When a user makes a simple typo, it is helpful if the error can be caught early, as this can
 save the author a lot of debugging time. This specification therefore usually considers it an
 error to use element names, attribute names, and so forth, that do not match the names defined
 in this specification.

 For example, if the author typed <capton> instead of
 <caption>, this would be flagged as an error and the author could correct the
 typo immediately.

 	Errors that could interfere with new syntax in the future

 	

 In order to allow the language syntax to be extended in the future, certain otherwise
 harmless features are disallowed.

 For example, "attributes" in end tags are ignored currently, but they are invalid, in case a
 future change to the language makes use of that syntax feature without conflicting with
 already-deployed (and valid!) content.

 Some authors find it helpful to be in the practice of always quoting all attributes and always
 including all optional tags, preferring the consistency derived from such custom over the minor
 benefits of terseness afforded by making use of the flexibility of the HTML syntax. To aid such
 authors, conformance checkers can provide modes of operation wherein such conventions are
 enforced.

 Restrictions on content models and on attribute values

 This section is non-normative.

 Beyond the syntax of the language, this specification also places restrictions on how elements
 and attributes can be specified. These restrictions are present for similar reasons:

 	Errors involving content with dubious semantics

 	

 To avoid misuse of elements with defined meanings, content models are defined that restrict
 how elements can be nested when such nestings would be of dubious value.

 For example, this specification disallows nesting a section
 element inside a kbd element, since it is highly unlikely for an author to indicate
 that an entire section should be keyed in.

 	Errors that involve a conflict in expressed semantics

 	

 Similarly, to draw the author's attention to mistakes in the use of elements, clear
 contradictions in the semantics expressed are also considered conformance errors.

 In the fragments below, for example, the semantics are nonsensical: a separator cannot
 simultaneously be a cell, nor can a radio button be a progress bar.

 <hr role="cell">

 <input type=radio role=progressbar>

 Another example is the restrictions on the content models of the
 ul element, which only allows li element children. Lists by definition
 consist just of zero or more list items, so if a ul element contains something
 other than an li element, it's not clear what was meant.

 	Cases where the default styles are likely to lead to confusion

 	

 Certain elements have default styles or behaviors that make certain combinations likely to
 lead to confusion. Where these have equivalent alternatives without this problem, the confusing
 combinations are disallowed.

 For example, div elements are rendered as block boxes, and
 span elements as inline boxes. Putting a block box in an inline box is
 unnecessarily confusing; since either nesting just div elements, or nesting just
 span elements, or nesting span elements inside div
 elements all serve the same purpose as nesting a div element in a span
 element, but only the latter involves a block box in an inline box, the latter combination is
 disallowed.

 Another example would be the way interactive content cannot be
 nested. For example, a button element cannot contain a textarea
 element. This is because the default behavior of such nesting interactive elements would be
 highly confusing to users. Instead of nesting these elements, they can be placed side by
 side.

 	Errors that indicate a likely misunderstanding of the specification

 	

 Sometimes, something is disallowed because allowing it would likely cause author
 confusion.

 For example, setting the disabled
 attribute to the value "false" is disallowed, because despite the
 appearance of meaning that the element is enabled, it in fact means that the element is
 disabled (what matters for implementations is the presence of the attribute, not its
 value).

 	Errors involving limits that have been imposed merely to simplify the language

 	

 Some conformance errors simplify the language that authors need to learn.

 For example, the area element's shape attribute, despite accepting both circ and circle values in practice as synonyms, disallows
 the use of the circ value, so as to simplify
 tutorials and other learning aids. There would be no benefit to allowing both, but it would
 cause extra confusion when teaching the language.

 	Errors that involve peculiarities of the parser

 	

 Certain elements are parsed in somewhat eccentric ways (typically for historical reasons),
 and their content model restrictions are intended to avoid exposing the author to these
 issues.

 For example, a form element isn't allowed inside phrasing content,
 because when parsed as HTML, a form element's start tag will imply a
 p element's end tag. Thus, the following markup results in two paragraphs, not one:

 <p>Welcome. <form><label>Name:</label> <input></form>

 It is parsed exactly like the following:

 <p>Welcome. </p><form><label>Name:</label> <input></form>

 	Errors that would likely result in scripts failing in hard-to-debug ways

 	

 Some errors are intended to help prevent script problems that would be hard to debug.

 This is why, for instance, it is non-conforming to have two id attributes with the same value. Duplicate IDs lead to the wrong
 element being selected, with sometimes disastrous effects whose cause is hard to determine.

 	Errors that waste authoring time

 	

 Some constructs are disallowed because historically they have been the cause of a lot of
 wasted authoring time, and by encouraging authors to avoid making them, authors can save time in
 future efforts.

 For example, a script element's src attribute causes the element's contents to be ignored.
 However, this isn't obvious, especially if the element's contents appear to be executable script
 — which can lead to authors spending a lot of time trying to debug the inline script
 without realizing that it is not executing. To reduce this problem, this specification makes it
 non-conforming to have executable script in a script element when the src attribute is present. This means that authors who are
 validating their documents are less likely to waste time with this kind of mistake.

 	Errors that involve areas that affect authors migrating to and from XHTML

 	

 Some authors like to write files that can be interpreted as both XML and HTML with similar
 results. Though this practice is discouraged in general due to the myriad of subtle
 complications involved (especially when involving scripting, styling, or any kind of automated
 serialization), this specification has a few restrictions intended to at least somewhat mitigate
 the difficulties. This makes it easier for authors to use this as a transitionary step when
 migrating between HTML and XHTML.

 For example, there are somewhat complicated rules surrounding the lang and xml:lang attributes
 intended to keep the two synchronized.

 Another example would be the restrictions on the values of xmlns attributes in the HTML serialization, which are intended to ensure that
 elements in conforming documents end up in the same namespaces whether processed as HTML or
 XML.

 	Errors that involve areas reserved for future expansion

 	

 As with the restrictions on the syntax intended to allow for new syntax in future revisions
 of the language, some restrictions on the content models of elements and values of attributes
 are intended to allow for future expansion of the HTML vocabulary.

 For example, limiting the values of the target attribute that start with an "_" (U+005F) character to only specific predefined values allows new predefined values to be introduced
 at a future time without conflicting with author-defined values.

 	Errors that indicate a mis-use of other specifications

 	

 Certain restrictions are intended to support the restrictions made by other
 specifications.

 For example, requiring that attributes that take media queries use only
 valid media queries reinforces the importance of following the conformance rules of
 that specification.

 Suggested reading

 This section is non-normative.

 The following documents might be of interest to readers of this specification.

 	Character Model for the World Wide Web 1.0: Fundamentals [CHARMOD]

 	This Architectural Specification provides authors of specifications, software
 developers, and content developers with a common reference for interoperable text manipulation on
 the World Wide Web, building on the Universal Character Set, defined jointly by the Unicode
 Standard and ISO/IEC 10646. Topics addressed include use of the terms 'character', 'encoding' and
 'string', a reference processing model, choice and identification of character encodings,
 character escaping, and string indexing.

 	Unicode Security Considerations [UTR36]

 	Because Unicode contains such a large number of characters and incorporates
 the varied writing systems of the world, incorrect usage can expose programs or systems to
 possible security attacks. This is especially important as more and more products are
 internationalized. This document describes some of the security considerations that programmers,
 system analysts, standards developers, and users should take into account, and provides specific
 recommendations to reduce the risk of problems.

 	Web Content Accessibility Guidelines (WCAG) 2.0 [WCAG]

 	Web Content Accessibility Guidelines (WCAG) 2.0 covers a wide range of
 recommendations for making Web content more accessible. Following these guidelines will make
 content accessible to a wider range of people with disabilities, including blindness and low
 vision, deafness and hearing loss, learning disabilities, cognitive limitations, limited
 movement, speech disabilities, photosensitivity and combinations of these. Following these
 guidelines will also often make your Web content more usable to users in
 general.

 	Authoring Tool Accessibility Guidelines (ATAG) 2.0 [ATAG]

 	This specification provides guidelines for designing Web content
 authoring tools that are more accessible for people with disabilities. An authoring tool that
 conforms to these guidelines will promote accessibility by providing an accessible user interface
 to authors with disabilities as well as by enabling, supporting, and promoting the production of
 accessible Web content by all authors.

 	User Agent Accessibility Guidelines (UAAG) 2.0 [UAAG]

 	This document provides guidelines for designing user agents that
 lower barriers to Web accessibility for people with disabilities. User agents include browsers
 and other types of software that retrieve and render Web content. A user agent that conforms to
 these guidelines will promote accessibility through its own user interface and through other
 internal facilities, including its ability to communicate with other technologies (especially
 assistive technologies). Furthermore, all users, not just users with disabilities, should find
 conforming user agents to be more usable.

 	Polyglot Markup: HTML-Compatible XHTML Documents [POLYGLOT]

 	A document that uses polyglot markup is a document
 that is a stream of bytes that parses into identical document trees
 (with the exception of the xmlns attribute on the root element)
 when processed as HTML and when processed as XML. Polyglot markup
 that meets a well defined set of constraints is interpreted as
 compatible, regardless of whether they are processed as HTML or as
 XHTML, per the HTML5 specification. Polyglot markup uses a specific
 DOCTYPE, namespace declarations, and a specific case —
 normally lower case but occasionally camel case — for element
 and attribute names. Polyglot markup uses lower case for certain
 attribute values. Further constraints include those on empty
 elements, named entity references, and the use of scripts and
 style.

 	HTML to Platform Accessibility APIs Implementation Guide [HPAAIG]

 	This is draft documentation mapping HTML
 elements and attributes to accessibility API Roles, States and
 Properties on a variety of platforms. It provides recommendations
 on deriving the accessible names and descriptions for HTML
 elements. It also provides accessible feature implementation
 examples.

Common infrastructure

 Terminology

 This specification refers to both HTML and XML attributes and IDL attributes, often in the same
 context. When it is not clear which is being referred to, they are referred to as content attributes for HTML and XML attributes, and IDL
 attributes for those defined on IDL interfaces. Similarly, the term "properties" is used for
 both JavaScript object properties and CSS properties. When these are ambiguous they are qualified
 as object properties and CSS properties respectively.

 Generally, when the specification states that a feature applies to the HTML syntax
 or the XHTML syntax, it also includes the other. When a feature specifically only
 applies to one of the two languages, it is called out by explicitly stating that it does not apply
 to the other format, as in "for HTML, ... (this does not apply to XHTML)".

 This specification uses the term document to refer to any use of HTML,
 ranging from short static documents to long essays or reports with rich multimedia, as well as to
 fully-fledged interactive applications. The term is used to refer both to Document
 objects and their descendant DOM trees, and to serialized byte streams using the HTML syntax or XHTML syntax, depending
 on context.

 In the context of the DOM structures, the terms HTML
 document and XML document are used as defined in the DOM
 specification, and refer specifically to two different modes that Document objects
 can find themselves in. [DOM] (Such uses are always hyperlinked to their
 definition.)

 In the context of byte streams, the term HTML document refers to resources labeled as
 text/html, and the term XML document refers to resources labeled with an XML
 MIME type.

 The term XHTML document is used to refer to both Documents in the XML document mode that contains element nodes in the HTML
 namespace, and byte streams labeled with an XML MIME type that contain
 elements from the HTML namespace, depending on context.

 For simplicity, terms such as shown, displayed, and
 visible might sometimes be used when referring to the way a document is
 rendered to the user. These terms are not meant to imply a visual medium; they must be considered
 to apply to other media in equivalent ways.

 When an algorithm B says to return to another algorithm A, it implies that A called B. Upon
 returning to A, the implementation must continue from where it left off in calling B.

 The term "transparent black" refers to the color with red, green, blue, and alpha channels all
 set to zero.

 Resources

 The specification uses the term supported when referring to whether a user
 agent has an implementation capable of decoding the semantics of an external resource. A format or
 type is said to be supported if the implementation can process an external resource of that
 format or type without critical aspects of the resource being ignored. Whether a specific resource
 is supported can depend on what features of the resource's format are in use.

 For example, a PNG image would be considered to be in a supported format if its
 pixel data could be decoded and rendered, even if, unbeknownst to the implementation, the image
 also contained animation data.

 An MPEG-4 video file would not be considered to be in a supported format if the
 compression format used was not supported, even if the implementation could determine the
 dimensions of the movie from the file's metadata.

 What some specifications, in particular the HTTP specification, refer to as a
 representation is referred to in this specification as a resource. [HTTP]

 The term MIME type is used to refer to what is sometimes called an Internet media
 type in protocol literature. The term media type in this specification is used to refer
 to the type of media intended for presentation, as used by the CSS specifications. [RFC2046] [MQ]

 A string is a valid MIME type if it matches the media-type
 rule defined in section 3.7 "Media Types" of RFC 2616. In particular, a valid MIME
 type may include MIME type parameters. [HTTP]

 A string is a valid MIME type with no parameters if it matches the media-type rule defined in section 3.7 "Media Types" of RFC 2616, but does not
 contain any ";" (U+003B) characters. In other words, if it consists only of a type and
 subtype, with no MIME Type parameters. [HTTP]

 The term HTML MIME type is used to refer to the MIME type
 text/html.

 A resource's critical subresources are those that the resource needs to have
 available to be correctly processed. Which resources are considered critical or not is defined by
 the specification that defines the resource's format.

 The term data: URL refers to URLs that use the data: scheme. [RFC2397]

 XML

 To ease migration from HTML to XHTML, UAs conforming to this specification
 will place elements in HTML in the http://www.w3.org/1999/xhtml namespace, at least
 for the purposes of the DOM and CSS. The term "HTML elements", when used in this
 specification, refers to any element in that namespace, and thus refers to both HTML and XHTML
 elements.

 Except where otherwise stated, all elements defined or mentioned in this specification are in
 the HTML namespace ("http://www.w3.org/1999/xhtml"), and all attributes
 defined or mentioned in this specification have no namespace.

 The term element type is used to refer to the set of elements that have a given
 local name and namespace. For example, button elements are elements with the element
 type button, meaning they have the local name "button" and
 (implicitly as defined above) the HTML namespace.

 Attribute names are said to be XML-compatible if they match the Name production defined in
 XML, they contain no ":" (U+003A) characters, and their first three characters are not an
 ASCII case-insensitive match for the string "xml". [XML]

 The term XML MIME type is used to refer to the MIME
 types text/xml, application/xml, and any
 MIME type whose subtype ends with the four characters "+xml".
 [RFC3023]

 DOM trees

 The root element of a Document object is that Document's
 first element child, if any. If it does not have one then the Document has no root
 element.

 The term root element, when not referring to a Document object's root
 element, means the furthest ancestor element node of whatever node is being discussed, or the node
 itself if it has no ancestors. When the node is a part of the document, then the node's root
 element is indeed the document's root element; however, if the node is not currently part
 of the document tree, the root element will be an orphaned node.

 When an element's root element is the root element of a
 Document object, it is said to be in a Document. An
 element is said to have been inserted into a
 document when its root element changes and is now the document's root
 element. Analogously, an element is said to have been removed from a document when its root element changes from being the
 document's root element to being another element.

 A node's home subtree is the subtree rooted at that node's root
 element. When a node is in a Document, its home
 subtree is that Document's tree.

 The Document of a Node (such as an element) is the
 Document that the Node's ownerDocument IDL attribute returns. When a
 Node is in a Document then that Document is
 always the Node's Document, and the Node's ownerDocument IDL attribute thus always returns that
 Document.

 The Document of a content attribute is the Document of the
 attribute's element.

 The term tree order means a pre-order, depth-first traversal of DOM nodes involved
 (through the parentNode/childNodes relationship).

 When it is stated that some element or attribute is ignored, or
 treated as some other value, or handled as if it was something else, this refers only to the
 processing of the node after it is in the DOM.

 A content attribute is said to change value only if its new value is
 different than its previous value; setting an attribute to a value it already has does not change
 it.

 The term empty, when used of an attribute value, Text node, or
 string, means that the length of the text is zero (i.e. not even containing spaces or control
 characters).

 Scripting

 The construction "a Foo object", where Foo is actually an interface,
 is sometimes used instead of the more accurate "an object implementing the interface
 Foo".

 An IDL attribute is said to be getting when its value is being retrieved
 (e.g. by author script), and is said to be setting when a new value is
 assigned to it.

 If a DOM object is said to be live, then the attributes and methods on that object
 operate on the actual underlying data, not a snapshot of the
 data.

 In the contexts of events, the terms fire and dispatch are used as defined in the
 DOM specification: firing an event means to create and dispatch it, and dispatching an event means to follow the steps that propagate
 the event through the tree. The term trusted event is
 used to refer to events whose isTrusted attribute is
 initialized to true. [DOM]

 Plugins

 The term plugin refers to a user-agent defined set of content handlers used by the
 user agent that can take part in the user agent's rendering of a Document object, but
 that neither act as child browsing contexts of the
 Document nor introduce any Node objects to the Document's
 DOM.

 Typically such content handlers are provided by third parties, though a user agent can also
 designate built-in content handlers as plugins.

 A user agent must not consider the types text/plain and
 application/octet-stream as having a registered plugin.

 One example of a plugin would be a PDF viewer that is instantiated in a
 browsing context when the user navigates to a PDF file. This would count as a plugin
 regardless of whether the party that implemented the PDF viewer component was the same as that
 which implemented the user agent itself. However, a PDF viewer application that launches separate
 from the user agent (as opposed to using the same interface) is not a plugin by this
 definition.

 This specification does not define a mechanism for interacting with plugins, as it
 is expected to be user-agent- and platform-specific. Some UAs might opt to support a plugin
 mechanism such as the Netscape Plugin API; others might use remote content converters or have
 built-in support for certain types. Indeed, this specification doesn't require user agents to
 support plugins at all. [NPAPI]

 A plugin can be secured if it honors the semantics of
 the sandbox attribute.

 For example, a secured plugin would prevent its contents from creating pop-up
 windows when the plugin is instantiated inside a sandboxed iframe.

 Browsers should take extreme care when interacting with external content
 intended for plugins. When third-party software is run with the same
 privileges as the user agent itself, vulnerabilities in the third-party software become as
 dangerous as those in the user agent.

 Character encodings

 A character encoding, or just encoding where that is not
 ambiguous, is a defined way to convert between byte streams and Unicode strings, as defined in the
 Encoding standard. An encoding has an encoding name and one or more
 encoding labels, referred to as the encoding's name and
 labels in the Encoding specification. [ENCODING]

 An ASCII-compatible character encoding is a single-byte or variable-length
 encoding in which the bytes 0x09, 0x0A, 0x0C, 0x0D, 0x20 - 0x22, 0x26, 0x27, 0x2C -
 0x3F, 0x41 - 0x5A, and 0x61 - 0x7A, ignoring bytes that are the second and later bytes of multibyte
 sequences, all correspond to single-byte sequences that map to the same Unicode characters as
 those bytes in Windows-1252. [ENCODING]

 This includes such encodings as Shift_JIS, HZ-GB-2312, and variants of ISO-2022,
 even though it is possible in these encodings for bytes like 0x70 to be part of longer sequences
 that are unrelated to their interpretation as ASCII. It excludes UTF-16 variants, as well as
 obsolete legacy encodings such as UTF-7, GSM03.38, and EBCDIC variants.

 The term a UTF-16 encoding refers to any variant of UTF-16: UTF-16LE or UTF-16BE,
 regardless of the presence or absence of a BOM. [ENCODING]

 The term code unit is used as defined in the Web IDL specification: a 16 bit
 unsigned integer, the smallest atomic component of a DOMString. (This is a narrower
 definition than the one used in Unicode, and is not the same as a code point.) [WEBIDL]

 The term Unicode code point means a Unicode scalar value where
 possible, and an isolated surrogate code point when not. When a conformance requirement is defined
 in terms of characters or Unicode code points, a pair of code units
 consisting of a high surrogate followed by a low surrogate must be treated as the single code
 point represented by the surrogate pair, but isolated surrogates must each be treated as the
 single code point with the value of the surrogate. [UNICODE]

 In this specification, the term character, when not qualified as Unicode
 character, is synonymous with the term Unicode code point.

 The term Unicode character is used to mean a Unicode scalar value
 (i.e. any Unicode code point that is not a surrogate code point). [UNICODE]

 The code-unit length of a string is the number of code
 units in that string.

 This complexity results from the historical decision to define the DOM API in
 terms of 16 bit (UTF-16) code units, rather than in terms of Unicode characters.

 Conformance requirements

 All diagrams, examples, and notes in this specification are non-normative, as are all sections
 explicitly marked non-normative. Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD
 NOT", "MAY", and "OPTIONAL" in the normative parts of
 this document are to be interpreted as described in RFC2119. The key word "OPTIONALLY" in the
 normative parts of this document is to be interpreted with the same normative meaning as "MAY" and
 "OPTIONAL". For readability, these words do not appear in all uppercase letters in this
 specification. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as "strip any leading space
 characters" or "return false and abort these steps") are to be interpreted with the meaning of the
 key word ("must", "should", "may", etc) used in introducing the algorithm.

 For example, were the spec to say:

 To eat an orange, the user must:
1. Peel the orange.
2. Separate each slice of the orange.
3. Eat the orange slices.

 ...it would be equivalent to the following:

 To eat an orange:
1. The user must peel the orange.
2. The user must separate each slice of the orange.
3. The user must eat the orange slices.

 Here the key word is "must".

 The former (imperative) style is generally preferred in this specification for stylistic
 reasons.

 Conformance requirements phrased as algorithms or specific steps may be implemented in any
 manner, so long as the end result is equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to be performant.)

 Conformance classes

 This specification describes the conformance criteria for documents.

 Conforming documents are those that comply with all the conformance criteria for
 documents. For readability, some of these conformance requirements are phrased as conformance
 requirements on authors; such requirements are implicitly requirements on documents: by
 definition, all documents are assumed to have had an author. (In some cases, that author may
 itself be a user agent — such user agents are subject to additional rules, as explained
 below.)

 For example, if a requirement states that "authors must not use the foobar element", it would imply that documents are not allowed to contain elements
 named foobar.

 There is no implied relationship between document conformance requirements
 and implementation conformance requirements. User agents are not free to handle non-conformant
 documents as they please; the processing model described in this specification applies to
 implementations regardless of the conformity of the input documents.

 User agents fall into several (overlapping) categories with different conformance
 requirements.

 	Web browsers and other interactive user agents

 	

 Web browsers that support the XHTML syntax must process elements and attributes
 from the HTML namespace found in XML documents as described in this specification,
 so that users can interact with them, unless the semantics of those elements have been
 overridden by other specifications.

 A conforming XHTML processor would, upon finding an XHTML script
 element in an XML document, execute the script contained in that element. However, if the
 element is found within a transformation expressed in XSLT (assuming the user agent also
 supports XSLT), then the processor would instead treat the script element as an
 opaque element that forms part of the transform.

 Web browsers that support the HTML syntax must process documents labeled with an
 HTML MIME type as described in this specification, so that users can interact with
 them.

 User agents that support scripting must also be conforming implementations of the IDL
 fragments in this specification, as described in the Web IDL specification. [WEBIDL]

 Unless explicitly stated, specifications that override the semantics of HTML
 elements do not override the requirements on DOM objects representing those elements. For
 example, the script element in the example above would still implement the
 HTMLScriptElement interface.

 	Non-interactive presentation user agents

 	

 User agents that process HTML and XHTML documents purely to render non-interactive versions
 of them must comply to the same conformance criteria as Web browsers, except that they are
 exempt from requirements regarding user interaction.

 Typical examples of non-interactive presentation user agents are printers
 (static UAs) and overhead displays (dynamic UAs). It is expected that most static
 non-interactive presentation user agents will also opt to lack scripting
 support.

 A non-interactive but dynamic presentation UA would still execute scripts,
 allowing forms to be dynamically submitted, and so forth. However, since the concept of "focus"
 is irrelevant when the user cannot interact with the document, the UA would not need to support
 any of the focus-related DOM APIs.

 	Visual user agents that support the suggested default rendering

 	

 User agents, whether interactive or not, may be designated (possibly as a user option) as
 supporting the suggested default rendering defined by this specification.

 This is not required. In particular, even user agents that do implement the suggested default
 rendering are encouraged to offer settings that override this default to improve the experience
 for the user, e.g. changing the color contrast, using different focus styles, or otherwise
 making the experience more accessible and usable to the user.

 User agents that are designated as supporting the suggested default rendering must, while so
 designated, implement the rules in the rendering section that that
 section defines as the behavior that user agents are expected to implement.

 	User agents with no scripting support

 	

 Implementations that do not support scripting (or which have their scripting features
 disabled entirely) are exempt from supporting the events and DOM interfaces mentioned in this
 specification. For the parts of this specification that are defined in terms of an events model
 or in terms of the DOM, such user agents must still act as if events and the DOM were
 supported.

 Scripting can form an integral part of an application. Web browsers that do not
 support scripting, or that have scripting disabled, might be unable to fully convey the author's
 intent.

 	Conformance checkers

 	

 Conformance checkers must verify that a document conforms to the applicable conformance
 criteria described in this specification. Automated conformance checkers are exempt from
 detecting errors that require interpretation of the author's intent (for example, while a
 document is non-conforming if the content of a blockquote element is not a quote,
 conformance checkers running without the input of human judgement do not have to check that
 blockquote elements only contain quoted material).

 Conformance checkers must check that the input document conforms when parsed without a
 browsing context (meaning that no scripts are run, and that the parser's
 scripting flag is disabled), and should also check that the input document conforms
 when parsed with a browsing context in which scripts execute, and that the scripts
 never cause non-conforming states to occur other than transiently during script execution
 itself. (This is only a "SHOULD" and not a "MUST" requirement because it has been proven to be
 impossible. [COMPUTABLE])

 The term "HTML validator" can be used to refer to a conformance checker that itself conforms
 to the applicable requirements of this specification.

 XML DTDs cannot express all the conformance requirements of this specification. Therefore, a
 validating XML processor and a DTD cannot constitute a conformance checker. Also, since neither
 of the two authoring formats defined in this specification are applications of SGML, a
 validating SGML system cannot constitute a conformance checker either.

 To put it another way, there are three types of conformance criteria:

 	Criteria that can be expressed in a DTD.

 	Criteria that cannot be expressed by a DTD, but can still be checked by a machine.

 	Criteria that can only be checked by a human.

 A conformance checker must check for the first two. A simple DTD-based validator only checks
 for the first class of errors and is therefore not a conforming conformance checker according
 to this specification.

 	Data mining tools

 	

 Applications and tools that process HTML and XHTML documents for reasons other than to either
 render the documents or check them for conformance should act in accordance with the semantics
 of the documents that they process.

 A tool that generates document outlines but
 increases the nesting level for each paragraph and does not increase the nesting level for each
 section would not be conforming.

 	Authoring tools and markup generators

 	

 Authoring tools and markup generators must generate conforming documents.
 Conformance criteria that apply to authors also apply to authoring tools, where appropriate.

 Authoring tools are exempt from the strict requirements of using elements only for their
 specified purpose, but only to the extent that authoring tools are not yet able to determine
 author intent. However, authoring tools must not automatically misuse elements or encourage
 their users to do so.

 For example, it is not conforming to use an address element for
 arbitrary contact information; that element can only be used for marking up contact information
 for the author of the document or section. However, since an authoring tool is likely unable to
 determine the difference, an authoring tool is exempt from that requirement. This does not mean,
 though, that authoring tools can use address elements for any block of italics text
 (for instance); it just means that the authoring tool doesn't have to verify that when the user
 uses a tool for inserting contact information for a section, that the user really is doing that
 and not inserting something else instead.

 In terms of conformance checking, an editor has to output documents that conform
 to the same extent that a conformance checker will verify.

 When an authoring tool is used to edit a non-conforming document, it may preserve the
 conformance errors in sections of the document that were not edited during the editing session
 (i.e. an editing tool is allowed to round-trip erroneous content). However, an authoring tool
 must not claim that the output is conformant if errors have been so preserved.

 Authoring tools are expected to come in two broad varieties: tools that work from structure
 or semantic data, and tools that work on a What-You-See-Is-What-You-Get media-specific editing
 basis (WYSIWYG).

 The former is the preferred mechanism for tools that author HTML, since the structure in the
 source information can be used to make informed choices regarding which HTML elements and
 attributes are most appropriate.

 However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements they know are
 appropriate, and should not use elements that they do not know to be appropriate. This might in
 certain extreme cases mean limiting the use of flow elements to just a few elements, like
 div, b, i, and span and making liberal use
 of the style attribute.

 All authoring tools, whether WYSIWYG or not, should make a best effort attempt at enabling
 users to create well-structured, semantically rich, media-independent content.

 User agents may impose implementation-specific limits on otherwise
 unconstrained inputs, e.g. to prevent denial of service attacks, to guard against running out of
 memory, or to work around platform-specific limitations.
 [image: (This is a fingerprinting vector.)]

 For compatibility with existing content and prior specifications, this specification describes
 two authoring formats: one based on XML (referred to as the XHTML syntax), and one
 using a custom format inspired by SGML (referred to as the HTML
 syntax). Implementations must support at least one of these two formats, although
 supporting both is encouraged.

 Some conformance requirements are phrased as requirements on elements, attributes, methods or
 objects. Such requirements fall into two categories: those describing content model restrictions,
 and those describing implementation behavior. Those in the former category are requirements on
 documents and authoring tools. Those in the second category are requirements on user agents.
 Similarly, some conformance requirements are phrased as requirements on authors; such requirements
 are to be interpreted as conformance requirements on the documents that authors produce. (In other
 words, this specification does not distinguish between conformance criteria on authors and
 conformance criteria on documents.)

 Dependencies

 This specification relies on several other underlying specifications.

 	Unicode and Encoding

 	

 The Unicode character set is used to represent textual data, and the Encoding standard
 defines requirements around character encodings. [UNICODE]

 This specification introduces terminology
 based on the terms defined in those specifications, as described earlier.

 The following terms are used as defined in the Encoding specification: [ENCODING]

 	Getting an encoding

	The encoder and decoder algorithms for various encodings, including
 the UTF-8 encoder and UTF-8 decoder

	The generic decode algorithm which takes a byte stream and an encoding and
 returns a character stream

	The UTF-8 decode algorithm which takes a byte stream and returns a character
 stream, additionally stripping one leading UTF-8 Byte Order Mark (BOM), if any

 The UTF-8 decoder is distinct from the UTF-8 decode
 algorithm. The latter first strips a Byte Order Mark (BOM), if any, and then invokes the
 former.

 For readability, character encodings are sometimes referenced in this specification with a
 case that differs from the canonical case given in the encoding standard. (For example,
 "UTF-16LE" instead of "utf16-le".)

 	XML

 	

 Implementations that support the XHTML syntax must support some version of XML,
 as well as its corresponding namespaces specification, because that syntax uses an XML
 serialization with namespaces. [XML] [XMLNS]

 	URLs

 	

 The following terms are defined in the URL standard: [URL]

 	URL

	Absolute URL

	Relative URL

	Relative schemes

	The URL parser

	Parsed URL

	The scheme component of a parsed URL

	The scheme data component of a parsed URL

	The username component of a parsed URL

	The password component of a parsed URL

	The host component of a parsed URL

	The port component of a parsed URL

	The path component of a parsed URL

	The query component of a parsed URL

	The fragment component of a parsed URL

	Parse errors from the URL parser

	The URL serializer

	Default encode set

	Percent encode

	UTF-8 percent encode

	Percent decode

	Decoder error

	URLUtils interface

	URLUtilsReadOnly interface

	href attribute

	protocol attribute

	The get the base hook for URLUtils

	The update steps hook for URLUtils

	The set the input algorithm for URLUtils

	The query encoding of an URLUtils object

	The input of an URLUtils object

	The url of an URLUtils object

 	Cookies

 	

 The following terms are defined in the Cookie specification: [COOKIES]

 	cookie-string

	receives a set-cookie-string

 	CORS

 	

 The following terms are defined in the CORS specification: [CORS]

 	cross-origin request

	cross-origin request status

	custom request headers

	simple cross-origin request

	redirect steps

	omit credentials flag

	resource sharing check

 	Web IDL

 	

 The IDL fragments in this specification must be interpreted as required for conforming IDL
 fragments, as described in the Web IDL specification. [WEBIDL]

 The terms supported property indices, determine the value
 of an indexed property, support named properties, supported property
 names, determine the value of a named property, platform array
 objects, and read only (when applied to arrays) are
 used as defined in the Web IDL specification. The algorithm to convert a DOMString to a
 sequence of Unicode characters is similarly that defined in the Web IDL specification.

 Where this specification says an interface or exception is exposed to JavaScript,
 it refers to the manner, described in the Web IDL specification, in which an ECMAScript global
 environment exposes interfaces and exceptions.

 When this specification requires a user agent to create a Date object
 representing a particular time (which could be the special value Not-a-Number), the milliseconds
 component of that time, if any, must be truncated to an integer and the time value of the newly
 created Date object must represent the time after that truncation.

 For instance, given the time 23045 millionths of a second after 01:00 UTC on
 January 1st 2000, i.e. the time 2000-01-01T00:00:00.023045Z, then the Date object
 created representing that time would represent the same time as that created representing the
 time 2000-01-01T00:00:00.023Z, 45 millionths earlier. If the given time is NaN, then the result
 is a Date object that represents a time value NaN (indicating that the object does
 not represent a specific instant of time).

 	JavaScript

 	

 Some parts of the language described by this specification only support JavaScript as the
 underlying scripting language. [ECMA262]

 The term "JavaScript" is used to refer to ECMA262, rather than the official term
 ECMAScript, since the term JavaScript is more widely known. Similarly, the MIME
 type used to refer to JavaScript in this specification is text/javascript, since that is the most commonly used type, despite it being an officially obsoleted type according to RFC 4329. [RFC4329]

 The term JavaScript global environment refers to the global
 environment concept defined in the ECMAScript specification.

 The ECMAScript SyntaxError exception is also
 defined in the ECMAScript specification. [ECMA262]

 	DOM

 	

 The Document Object Model (DOM) is a representation — a model — of a document and
 its content. The DOM is not just an API; the conformance criteria of HTML implementations are
 defined, in this specification, in terms of operations on the DOM. [DOM]

 Implementations must support DOM and the events defined in DOM Events, because this
 specification is defined in terms of the DOM, and some of the features are defined as extensions
 to the DOM interfaces. [DOM] [DOMEVENTS]

 In particular, the following features are defined in the DOM specification: [DOM]

 	Attr interface

 	Comment interface

 	DOMImplementation interface

 	Document interface

 	DocumentFragment interface

 	DocumentType interface

 	DOMException interface

 	Element interface

 	Node interface

 	NodeList interface

 	ProcessingInstruction interface

 	Text interface

 	HTMLCollection interface

 	item() method

	The terms collections and represented by the collection

 	DOMTokenList interface

 	DOMSettableTokenList interface

 	createDocument() method

 	createHTMLDocument() method

 	createElement() method

 	createElementNS() method

 	getElementById() method

 	insertBefore() method

 	ownerDocument attribute

 	The node document concept

 	childNodes attribute

 	localName attribute

 	parentNode attribute

 	namespaceURI attribute

 	tagName attribute

 	id attribute

 	textContent attribute

 	The insert, append, remove, and replace algorithms for nodes

 	The nodes are inserted and nodes are removed concepts

 	The attribute list concept.

 	The data of a text node.

 	Event interface

 	EventTarget interface

 	EventInit dictionary type

 	target attribute

 	isTrusted attribute

 	The type of an event

 	The concept of an event listener and the event listeners associated with an EventTarget

 	The concept of a regular event parent and a cross-boundary event parent

 	The encoding (herein the character encoding) and content type of a Document

 	The distinction between XML documents and HTML documents

 	The terms quirks mode, limited-quirks mode, and no-quirks mode

 	The algorithm to clone a Node, and the concept of cloning steps used by that algorithm

 	The concept of base URL change steps and the definition of what happens when an element is affected by a base URL change

 	The concept of an element's unique identifier (ID)

 	The concept of a DOM range, and the terms start, end, and boundary point as applied to ranges.

 	MutationObserver interface

 	The MutationObserver scripting environment concept

 	The invoke MutationObserver objects algorithm

 The term throw in this specification is used as defined in the DOM specification.
 The following DOMException types are defined in the DOM specification: [DOM]

 	IndexSizeError

 	HierarchyRequestError

 	WrongDocumentError

 	InvalidCharacterError

 	NoModificationAllowedError

 	NotFoundError

 	NotSupportedError

 	InvalidStateError

 	SyntaxError

 	InvalidModificationError

 	NamespaceError

 	InvalidAccessError

 	SecurityError

 	NetworkError

 	AbortError

 	URLMismatchError

 	QuotaExceededError

 	TimeoutError

 	InvalidNodeTypeError

 	DataCloneError

 For example, to throw a TimeoutError exception, a user
 agent would construct a DOMException object whose type was the string "TimeoutError" (and whose code was the number 23, for legacy reasons) and
 actually throw that object as an exception.

 The associated with a Document, as
 defined in the DOM specification, is referred to in this specification as the document's
 address.

 The following features are defined in the DOM Events specification: [DOMEVENTS]

 	MouseEvent interface

 	MouseEventInit dictionary type

 	The UIEvent interface's detail attribute

 	click event

 This specification sometimes uses the term name to refer to the event's type; as in, "an event named click" or "if the event name is keypress". The terms "name" and "type" for events
 are synonymous.

 The following features are defined in the DOM Parsing and
 Serialization specification: [DOMPARSING]

 	innerHTML

 	outerHTML

 User agents are also encouraged to implement the
 features described in the HTML Editing APIs and
 UndoManager and DOM Transaction
 specifications.
 [EDITING]
 [UNDO]

 The following parts of the Fullscreen specification are referenced from this specification,
 in part to define the rendering of dialog elements, and also to define how the
 Fullscreen API interacts with the sandboxing features in HTML: [FULLSCREEN]

 	The top layer concept

 	requestFullscreen()

	The fullscreen enabled flag

 	The fully exit fullscreen algorithm

 	Typed Arrays

 	

 The ArrayBuffer and ArrayBufferView interfaces and underlying concepts
 from the Typed Array Specification are used for several features in this specification. The
 Uint8ClampedArray interface type is specifically used in the definition of the
 canvas element's 2D API. [TYPEDARRAY]

 	File API

 	

 This specification uses the following features defined in the File API specification: [FILEAPI]

 	Blob

 	File

 	FileList

 	Blob.close()

 	Blob.type

 	The concept of read errors

 	XMLHttpRequest

 	

 This specification references the XMLHttpRequest specification to define how the two
 specifications interact and to use its ProgressEvent features. The following
 features and terms are defined in the XMLHttpRequest specification: [XHR]

 	Document response entity body

	XMLHttpRequest base URL

	XMLHttpRequest origin

	XMLHttpRequest referrer source

	ProgressEvent

	Fire a progress event named e

 	Server-Sent Events

 	

 This specification references EventSource which is specified
 in the Server-Sent Events specification [EVENTSOURCE]

 	Media Queries

 	

 Implementations must support the Media Queries language. [MQ]

 	CSS modules

 	

 While support for CSS as a whole is not required of implementations of this specification
 (though it is encouraged, at least for Web browsers), some features are defined in terms of
 specific CSS requirements.

 In particular, some features require that a string be parsed as a CSS <color>
 value. When parsing a CSS value, user agents are required by the CSS specifications to
 apply some error handling rules. These apply to this specification also. [CSSCOLOR] [CSS]

 For example, user agents are required to close all open constructs upon
 finding the end of a style sheet unexpectedly. Thus, when parsing the string "rgb(0,0,0" (with a missing close-parenthesis) for a color value, the close
 parenthesis is implied by this error handling rule, and a value is obtained (the color 'black').
 However, the similar construct "rgb(0,0," (with both a missing parenthesis
 and a missing "blue" value) cannot be parsed, as closing the open construct does not result in a
 viable value.

 The term CSS element reference identifier is used as defined in the CSS
 Image Values and Replaced Content specification to define the API that declares
 identifiers for use with the CSS 'element()' function. [CSSIMAGES]

 Similarly, the term provides a paint source is used as defined in the CSS
 Image Values and Replaced Content specification to define the interaction of certain HTML
 elements with the CSS 'element()' function. [CSSIMAGES]

 The term default object size is also defined in the CSS Image Values and
 Replaced Content specification. [CSSIMAGES]

 Support for the CSS Object Model is required for implementations that support scripting. The
 following features and terms are defined in the CSSOM specifications: [CSSOM] [CSSOMVIEW]

 	Screen

 	LinkStyle

 	CSSStyleDeclaration

 	cssText attribute of CSSStyleDeclaration

 	StyleSheet

 	sheet

 	disabled

 	Alternative style sheet sets and the preferred style sheet set

 	Serializing a CSS value

 	Scroll an element into view

 	Scroll to the beginning of the document

 The term CSS styling attribute is defined in the CSS Style Attributes
 specification. [CSSATTR]

 The CanvasRenderingContext2D object's use of fonts depends on the features
 described in the CSS Fonts specification, including in particular
 FontLoader. [CSSFONTS]

 	SVG

 	

 The following interface is defined in the SVG specification: [SVG]

 	SVGMatrix

 	WebGL

 	

 The following interface is defined in the WebGL specification: [WEBGL]

 	WebGLRenderingContext

 	WebVTT

 	

 Implementations may support WebVTT as a text track format for subtitles, captions,
 chapter titles, metadata, etc, for media resources. [WEBVTT]

 The following terms, used in this specification, are defined in the WebVTT specification:

 	WebVTT file

	WebVTT file using cue text

	WebVTT file using chapter title text

	WebVTT file using only nested cues

	WebVTT parser

	The rules for updating the display of WebVTT text tracks

	The rules for interpreting WebVTT cue text

	The WebVTT text track cue writing direction

 	The WebSocket protocol

 	

 The following terms are defined in the WebSocket protocol specification: [WSP]

 	establish a WebSocket connection

	the WebSocket connection is established

	validate the server's response

	extensions in use

	subprotocol in use

	headers to send appropriate cookies

	cookies set during the server's opening handshake

	a WebSocket message has been received

	fail the WebSocket connection

	close the WebSocket connection

	start the WebSocket closing handshake

	the WebSocket closing handshake is started

	the WebSocket connection is closed (possibly cleanly)

	the WebSocket connection close code

	the WebSocket connection close reason

 	ARIA

 	

 The terms strong native semantics is used as defined in the ARIA specification.
 The term default implicit ARIA semantics has the same meaning as the term implicit
 WAI-ARIA semantics as used in the ARIA specification. [ARIA]

 The role and aria-*
 attributes are defined in the ARIA specification. [ARIA]

 This specification does not require support of any particular network protocol, style
 sheet language, scripting language, or any of the DOM specifications beyond those required in the
 list above. However, the language described by this specification is biased towards CSS as the
 styling language, JavaScript as the scripting language, and HTTP as the network protocol, and
 several features assume that those languages and protocols are in use.

 A user agent that implements the HTTP protocol must implement the Web Origin Concept
 specification and the HTTP State Management Mechanism specification (Cookies) as well. [HTTP] [ORIGIN] [COOKIES]

 This specification might have certain additional requirements on character
 encodings, image formats, audio formats, and video formats in the respective sections.

 Extensibility

 HTML has a wide number of extensibility mechanisms that can be used for adding semantics in a
 safe manner:

 	Authors can use the class attribute to extend elements,
 effectively creating their own elements, while using the most applicable existing "real" HTML
 element, so that browsers and other tools that don't know of the extension can still support it
 somewhat well. This is the tack used by microformats, for example.

 	Authors can include data for inline client-side scripts or server-side site-wide scripts to
 process using the data-*="" attributes. These are guaranteed to
 never be touched by browsers, and allow scripts to include data on HTML elements that scripts can
 then look for and process.

 	Authors can use the <meta name="" content=""> mechanism to
 include page-wide metadata by registering extensions to the
 predefined set of metadata names.

 	Authors can use the rel="" mechanism to annotate
 links with specific meanings by registering extensions to
 the predefined set of link types. This is also used by microformats. Additionally,
 absolute URLs that do not contain any non-ASCII characters, nor
 characters in the range U+0041 (LATIN CAPITAL LETTER A) through
 U+005A (LATIN CAPITAL LETTER Z) (inclusive), may be used as link
 types.

 	Authors can embed raw data using the <script type="">
 mechanism with a custom type, for further handling by inline or server-side scripts.

 	Authors can create plugins and invoke them using the
 embed element. This is how Flash works.

 	Authors can extend APIs using the JavaScript prototyping mechanism. This is widely used by
 script libraries, for instance.

 Vendor-specific proprietary user agent extensions to this specification are strongly
 discouraged. Documents must not use such extensions, as doing so reduces interoperability and
 fragments the user base, allowing only users of specific user agents to access the content in
 question.

 If such extensions are nonetheless needed, e.g. for experimental purposes, then vendors are
 strongly urged to use one of the following extension mechanisms:

 For markup-level features that can be limited to the XML serialization and need not be
 supported in the HTML serialization, vendors should use the namespace mechanism to define custom
 namespaces in which the non-standard elements and attributes are supported.

 For markup-level features that are intended for use with the HTML syntax,
 extensions should be limited to new attributes of the form "x-vendor-feature", where vendor is a
 short string that identifies the vendor responsible for the extension, and feature is the name of the feature. New element names should not be created. Using
 attributes for such extensions exclusively allows extensions from multiple vendors to co-exist on
 the same element, which would not be possible with elements. Using the "x-vendor-feature" form allows extensions to be made
 without risk of conflicting with future additions to the specification.

 For instance, a browser named "FerretBrowser" could use "ferret" as a vendor prefix, while a
 browser named "Mellblom Browser" could use "mb". If both of these browsers invented extensions
 that turned elements into scratch-and-sniff areas, an author experimenting with these features
 could write:

 <p>This smells of lemons!
<span x-ferret-smellovision x-ferret-smellcode="LEM01"
 x-mb-outputsmell x-mb-smell="lemon juice"></p>

 Attribute names beginning with the two characters "x-" are reserved for
 user agent use and are guaranteed to never be formally added to the HTML language. For
 flexibility, attributes names containing underscores (the U+005F LOW LINE character) are also
 reserved for experimental purposes and are guaranteed to never be formally added to the HTML
 language.

 Pages that use such attributes are by definition non-conforming.

 For DOM extensions, e.g. new methods and IDL attributes, the new members should be prefixed by
 vendor-specific strings to prevent clashes with future versions of this specification.

 For events, experimental event types should be prefixed with vendor-specific strings.

 For example, if a user agent called "Pleasold" were to add an event to indicate when
 the user is going up in an elevator, it could use the prefix "pleasold" and
 thus name the event "pleasoldgoingup", possibly with an event handler
 attribute named "onpleasoldgoingup".

 All extensions must be defined so that the use of extensions neither contradicts nor causes the
 non-conformance of functionality defined in the specification.

 For example, while strongly discouraged from doing so, an implementation "Foo Browser" could
 add a new IDL attribute "fooTypeTime" to a control's DOM interface that
 returned the time it took the user to select the current value of a control (say). On the other
 hand, defining a new control that appears in a form's elements array would be in violation of the above requirement,
 as it would violate the definition of elements given in
 this specification.

 When adding new reflecting IDL attributes corresponding to content
 attributes of the form "x-vendor-feature", the IDL attribute should be named "vendorFeature" (i.e. the "x" is
 dropped from the IDL attribute's name).

 When vendor-neutral extensions to this specification are needed, either this specification can
 be updated accordingly, or an extension specification can be written that overrides the
 requirements in this specification. When someone applying this specification to their activities
 decides that they will recognize the requirements of such an extension specification, it becomes an

 applicable
 specification.

The conformance terminology for documents depends on the nature
 of the changes introduced by such applicable specifications, and on
 the content and intended interpretation of the document. Applicable
 specifications MAY define new document content (e.g. a foobar
 element), MAY prohibit certain otherwise conforming content (e.g.
 prohibit use of <table>s), or MAY change the semantics, DOM
 mappings, or other processing rules for content defined in this
 specification. Whether a document is or is not a conforming HTML5 document does not
 depend on the use of applicable specifications: if the syntax and
 semantics of a given conforming
 HTML5 document is unchanged by the use of applicable
 specification(s), then that document remains a conforming HTML5 document. If the
 semantics or processing of a given (otherwise conforming) document
 is changed by use of applicable specification(s), then it is not a
 conforming HTML5 document. For
 such cases, the applicable specifications SHOULD define conformance
 terminology.

 As a suggested but not required convention, such
 specifications might define conformance terminology such as:
 "Conforming HTML5+XXX document", where XXX is a short
 name for the applicable specification. (Example: "Conforming
 HTML5+AutomotiveExtensions document").

 a consequence of the rule given above is that
 certain syntactically correct HTML5 documents may not be conforming HTML5 documents in the
 presence of applicable specifications. (Example: the applicable
 specification defines <table> to be a piece of furniture —
 a document written to that specification and containing a <table>
 element is NOT a conforming HTML5
 document, even if the element happens to be syntactically
 correct HTML5.)

 User agents must treat elements and attributes that they do not understand as semantically
 neutral; leaving them in the DOM (for DOM processors), and styling them according to CSS (for CSS
 processors), but not inferring any meaning from them.

 When support for a feature is disabled (e.g. as an emergency measure to mitigate a security
 problem, or to aid in development, or for performance reasons), user agents must act as if they
 had no support for the feature whatsoever, and as if the feature was not mentioned in this
 specification. For example, if a particular feature is accessed via an attribute in a Web IDL
 interface, the attribute itself would be omitted from the objects that implement that interface
 — leaving the attribute on the object but making it return null or throw an exception is
 insufficient.

 Case-sensitivity and string comparison

 Comparing two strings in a case-sensitive manner means comparing them exactly, code
 point for code point.

 Comparing two strings in an ASCII case-insensitive manner means comparing them
 exactly, code point for code point, except that the characters in the range U+0041 to U+005A (i.e.
 LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and the corresponding characters in the range
 U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) are considered to also
 match.

 Comparing two strings in a compatibility caseless manner means using the Unicode
 compatibility caseless match operation to compare the two strings. [UNICODE]

 Except where otherwise stated, string comparisons must be performed in a
 case-sensitive manner.

 Converting a string to ASCII uppercase means
 replacing all characters in the range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z) with the corresponding characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL
 LETTER A to LATIN CAPITAL LETTER Z).

 Converting a string to ASCII lowercase means
 replacing all characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN
 CAPITAL LETTER Z) with the corresponding characters in the range U+0061 to U+007A (i.e. LATIN
 SMALL LETTER A to LATIN SMALL LETTER Z).

 A string pattern is a prefix match for a string s when pattern is not longer than s and
 truncating s to pattern's length leaves the two strings as
 matches of each other.

 Common microsyntaxes

 There are various places in HTML that accept particular data types, such as dates or numbers.
 This section describes what the conformance criteria for content in those formats is, and how to
 parse them.

 Implementors are strongly urged to carefully examine any third-party libraries
 they might consider using to implement the parsing of syntaxes described below. For example, date
 libraries are likely to implement error handling behavior that differs from what is required in
 this specification, since error-handling behavior is often not defined in specifications that
 describe date syntaxes similar to those used in this specification, and thus implementations tend
 to vary greatly in how they handle errors.

 Common parser idioms

 The space characters, for the purposes of this
 specification, are U+0020 SPACE, "tab" (U+0009), "LF" (U+000A), "FF" (U+000C), and "CR" (U+000D).

 The White_Space characters are those that have the Unicode
 property "White_Space" in the Unicode PropList.txt data file. [UNICODE]

 This should not be confused with the "White_Space" value (abbreviated "WS") of the
 "Bidi_Class" property in the Unicode.txt data file.

 The uppercase ASCII letters are the characters in the range uppercase ASCII letters.

 The lowercase ASCII letters are the characters in the range lowercase ASCII letters.

 The ASCII digits are the characters in the range ASCII digits.

 The alphanumeric ASCII characters are those that are either uppercase ASCII
 letters, lowercase ASCII letters, or ASCII digits.

 The ASCII hex digits are the characters in the ranges ASCII digits, U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F, and U+0061
 LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F.

 The uppercase ASCII hex digits are the characters in the ranges ASCII digits and U+0041 LATIN CAPITAL LETTER A to U+0046 LATIN CAPITAL LETTER F only.

 The lowercase ASCII hex digits are the characters in the ranges ASCII digits and U+0061 LATIN SMALL LETTER A to U+0066 LATIN SMALL LETTER F
 only.

 Some of the micro-parsers described below follow the pattern of having an input variable that holds the string being parsed, and having a position variable pointing at the next character to parse in input.

 For parsers based on this pattern, a step that requires the user agent to collect a
 sequence of characters means that the following algorithm must be run, with characters being the set of characters that can be collected:

 	Let input and position be the same variables as
 those of the same name in the algorithm that invoked these steps.

 	Let result be the empty string.

 	While position doesn't point past the end of input
 and the character at position is one of the characters,
 append that character to the end of result and advance position to the next character in input.

 	Return result.

 The step skip whitespace means that the user agent must collect a sequence of
 characters that are space characters. The step
 skip White_Space characters means that the user agent must collect a sequence of
 characters that are White_Space characters. In both cases, the collected
 characters are not used. [UNICODE]

 When a user agent is to strip line breaks from a string, the user agent must remove
 any "LF" (U+000A) and "CR" (U+000D) characters from that string.

 When a user agent is to strip leading and trailing whitespace from a string, the
 user agent must remove all space characters that are at the
 start or end of the string.

 When a user agent is to strip and collapse whitespace in a string, it must replace
 any sequence of one or more consecutive space characters in
 that string with a single U+0020 SPACE character, and then strip leading and trailing
 whitespace from that string.

 When a user agent has to strictly split a string on a particular delimiter character
 delimiter, it must use the following algorithm:

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Let tokens be an ordered list of tokens, initially empty.

 	While position is not past the end of input:

 	Collect a sequence of characters that are not the delimiter character.

 	Append the string collected in the previous step to tokens.

 	Advance position to the next character in input.

 	Return tokens.

 For the special cases of splitting a string on spaces and on commas, this
 algorithm does not apply (those algorithms also perform whitespace trimming).

 Boolean attributes

 A number of attributes are boolean attributes. The
 presence of a boolean attribute on an element represents the true value, and the absence of the
 attribute represents the false value.

 If the attribute is present, its value must either be the empty string or a value that is an
 ASCII case-insensitive match for the attribute's canonical name, with no leading or
 trailing whitespace.

 The values "true" and "false" are not allowed on boolean attributes. To represent
 a false value, the attribute has to be omitted altogether.

 Here is an example of a checkbox that is checked and disabled. The checked and disabled
 attributes are the boolean attributes.

 <label><input type=checkbox checked name=cheese disabled> Cheese</label>

 This could be equivalently written as this:

<label><input type=checkbox checked=checked name=cheese disabled=disabled> Cheese</label>

 You can also mix styles; the following is still equivalent:

 <label><input type='checkbox' checked name=cheese disabled=""> Cheese</label>

 Keywords and enumerated attributes

 Some attributes are defined as taking one of a finite set of keywords. Such attributes are
 called enumerated attributes. The keywords are each
 defined to map to a particular state (several keywords might map to the same state, in
 which case some of the keywords are synonyms of each other; additionally, some of the keywords can
 be said to be non-conforming, and are only in the specification for historical reasons). In
 addition, two default states can be given. The first is the invalid value default, the
 second is the missing value default.

 If an enumerated attribute is specified, the attribute's value must be an ASCII
 case-insensitive match for one of the given keywords that are not said to be
 non-conforming, with no leading or trailing whitespace.

 When the attribute is specified, if its value is an ASCII case-insensitive match
 for one of the given keywords then that keyword's state is the state that the attribute
 represents. If the attribute value matches none of the given keywords, but the attribute has an
 invalid value default, then the attribute represents that state. Otherwise, if the
 attribute value matches none of the keywords but there is a missing value default state
 defined, then that is the state represented by the attribute. Otherwise, there is no
 default, and invalid values mean that there is no state represented.

 When the attribute is not specified, if there is a missing value default state
 defined, then that is the state represented by the (missing) attribute. Otherwise, the absence of
 the attribute means that there is no state represented.

 The empty string can be a valid keyword.

 Numbers

 Signed integers

 A string is a valid integer if it consists of one or more ASCII digits,
 optionally prefixed with a "-" (U+002D) character.

 A valid integer without a "-" (U+002D) prefix represents the number
 that is represented in base ten by that string of digits. A valid integer
 with a "-" (U+002D) prefix represents the number represented in base ten by
 the string of digits that follows the U+002D HYPHEN-MINUS, subtracted from zero.

 The rules for parsing integers are as given in the following algorithm. When
 invoked, the steps must be followed in the order given, aborting at the first step that returns a
 value. This algorithm will return either an integer or an error.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Let sign have the value "positive".

 	Skip whitespace.

 	If position is past the end of input, return an
 error.

 	

 If the character indicated by position (the first character) is a "-" (U+002D) character:

 	Let sign be "negative".

 	Advance position to the next character.

 	If position is past the end of input, return an
 error.

 Otherwise, if the character indicated by position (the first character)
 is a "+" (U+002B) character:

 	Advance position to the next character. (The "+"
 is ignored, but it is not conforming.)

 	If position is past the end of input, return an
 error.

 	If the character indicated by position is not an ASCII digit, then return an error.

 	Collect a sequence of characters that are ASCII digits, and
 interpret the resulting sequence as a base-ten integer. Let value be that
 integer.

 	If sign is "positive", return value, otherwise return the result of subtracting
 value from zero.

 Non-negative integers

 A string is a valid non-negative integer if it consists of one or more ASCII
 digits.

 A valid non-negative integer represents the number that is represented in base ten
 by that string of digits.

 The rules for parsing non-negative integers are as given in the following algorithm.
 When invoked, the steps must be followed in the order given, aborting at the first step that
 returns a value. This algorithm will return either zero, a positive integer, or an error.

 	Let input be the string being parsed.

 	Let value be the result of parsing input using the
 rules for parsing integers.

 	If value is an error, return an error.

 	If value is less than zero, return an error.

 	Return value.

 Floating-point numbers

 A string is a valid floating-point number if it consists of:

 	Optionally, a "-" (U+002D) character.

 	One or both of the following, in the given order:

 	A series of one or more ASCII digits.

 	

 	A single "." (U+002E) character.

 	A series of one or more ASCII digits.

 	Optionally:

 	Either a "e" (U+0065) character or a "E" (U+0045) character.

 	Optionally, a "-" (U+002D) character or "+" (U+002B) character.

 	A series of one or more ASCII digits.

 A valid floating-point number represents the number obtained by multiplying the
 significand by ten raised to the power of the exponent, where the significand is the first number,
 interpreted as base ten (including the decimal point and the number after the decimal point, if
 any, and interpreting the significand as a negative number if the whole string starts with a
 "-" (U+002D) character and the number is not zero), and where the exponent is the
 number after the E, if any (interpreted as a negative number if there is a "-" (U+002D) character between the E and the number and the number is not zero, or else ignoring a "+" (U+002B) character between the E and the number if there is one). If there is no E, then the
 exponent is treated as zero.

 The Infinity and Not-a-Number (NaN) values are not valid floating-point numbers.

 The best
 representation of the number n as a floating-point number is the string
 obtained from applying the JavaScript operator ToString to n. The JavaScript
 operator ToString is not uniquely determined. When there are multiple possible strings that could
 be obtained from the JavaScript operator ToString for a particular value, the user agent must
 always return the same string for that value (though it may differ from the value used by other
 user agents).

 The rules for parsing floating-point number values are as given in the following
 algorithm. This algorithm must be aborted at the first step that returns something. This algorithm
 will return either a number or an error.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Let value have the value 1.

 	Let divisor have the value 1.

 	Let exponent have the value 1.

 	Skip whitespace.

 	If position is past the end of input, return an
 error.

 	

 If the character indicated by position is a U+002D HYPHEN-MINUS character
 (-):

 	Change value and divisor to −1.

 	Advance position to the next character.

 	If position is past the end of input, return an
 error.

 Otherwise, if the character indicated by position (the first character)
 is a "+" (U+002B) character:

 	Advance position to the next character. (The "+"
 is ignored, but it is not conforming.)

 	If position is past the end of input, return an
 error.

 	If the character indicated by position is a "." (U+002E), and
 that is not the last character in input, and the character after the
 character indicated by position is an ASCII
 digit, then set value to zero and jump to the step labeled
 fraction.

	If the character indicated by position is not an ASCII digit, then return an error.

 	Collect a sequence of characters that are ASCII digits, and
 interpret the resulting sequence as a base-ten integer. Multiply value by
 that integer.

 	If position is past the end of input, jump to the
 step labeled conversion.

 	Fraction: If the character indicated by position is a "." (U+002E), run these substeps:

 	Advance position to the next character.

 	If position is past the end of input, or if the
 character indicated by position is not an ASCII
 digit, "e" (U+0065), or "E" (U+0045), then jump
 to the step labeled conversion.

 	If the character indicated by position is a "e" (U+0065) character or a "E" (U+0045) character, skip the remainder of
 these substeps.

	Fraction loop: Multiply divisor by ten.

 	Add the value of the character indicated by position, interpreted as a
 base-ten digit (0..9) and divided by divisor, to value.

 	Advance position to the next character.

 	If position is past the end of input, then jump
 to the step labeled conversion.

 	If the character indicated by position is an ASCII digit, jump back to the step labeled fraction loop in these
 substeps.

 	If the character indicated by position is a "e" (U+0065) character or a "E" (U+0045) character, run these substeps:

 	Advance position to the next character.

 	If position is past the end of input, then jump
 to the step labeled conversion.

 	

 If the character indicated by position is a "-" (U+002D) character:

 	Change exponent to −1.

 	Advance position to the next character.

 	If position is past the end of input, then
 jump to the step labeled conversion.

 Otherwise, if the character indicated by position is a "+" (U+002B) character:

 	Advance position to the next character.

 	If position is past the end of input, then
 jump to the step labeled conversion.

 	If the character indicated by position is not an ASCII digit, then jump to the step labeled conversion.

 	Collect a sequence of characters that are ASCII digits, and
 interpret the resulting sequence as a base-ten integer. Multiply exponent
 by that integer.

 	Multiply value by ten raised to the exponentth
 power.

 	Conversion: Let S be the set of finite IEEE 754
 double-precision floating-point values except −0, but with two special values added: 21024 and −21024.

 	Let rounded-value be the number in S that is
 closest to value, selecting the number with an even significand if there are
 two equally close values. (The two special values 21024 and −21024 are considered to have even significands for this purpose.)

 	If rounded-value is 21024 or −21024, return an error.

 	Return rounded-value.

 Percentages and lengths

 The rules for parsing dimension values are as given in the following algorithm. When
 invoked, the steps must be followed in the order given, aborting at the first step that returns a
 value. This algorithm will return either a number greater than or equal to 1.0, or an error; if a
 number is returned, then it is further categorized as either a percentage or a length.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Skip whitespace.

 	If position is past the end of input, return an
 error.

 	If the character indicated by position is a U+002B PLUS SIGN character
 (+), advance position to the next character.

 	Collect a sequence of characters that are "0" (U+0030) characters,
 and discard them.

 	If position is past the end of input, return an
 error.

 	If the character indicated by position is not one of "1" (U+0031) to "9" (U+0039), then return an error.

 	Collect a sequence of characters that are ASCII digits, and
 interpret the resulting sequence as a base-ten integer. Let value be that
 number.

 	If position is past the end of input, return value as a length.

 	

 If the character indicated by position is a U+002E FULL STOP character
 (.):

 	Advance position to the next character.

 	If position is past the end of input, or if the
 character indicated by position is not an ASCII
 digit, then return value as a length.

 	Let divisor have the value 1.

 	Fraction loop: Multiply divisor by ten.

 	Add the value of the character indicated by position, interpreted as a
 base-ten digit (0..9) and divided by divisor, to value.

 	Advance position to the next character.

 	If position is past the end of input, then
 return value as a length.

 	If the character indicated by position is an ASCII digit, return to the step labeled fraction loop in these
 substeps.

 	If position is past the end of input, return value as a length.

 	If the character indicated by position is a "%" (U+0025) character, return value as a percentage.

 	Return value as a length.

 Lists of integers

 A valid list of integers is a number of valid
 integers separated by U+002C COMMA characters, with no other characters (e.g. no space characters). In addition, there might be restrictions on the
 number of integers that can be given, or on the range of values allowed.

 The rules for parsing a list of integers are as follows:

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Let numbers be an initially empty list of integers. This list will be
 the result of this algorithm.

 	If there is a character in the string input at position position, and it is either a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON
 character, then advance position to the next character in input, or to beyond the end of the string if there are no more
 characters.

 	If position points to beyond the end of input,
 return numbers and abort.

 	If the character in the string input at position position is a U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then
 return to step 4.

 	Let negated be false.

 	Let value be
 0.

 	Let started be false. This variable is set to true when the parser
 sees a number or a "-" (U+002D) character.

 	Let got number be false. This variable is set to true when the parser
 sees a number.

 	Let finished be false. This variable is set to true to switch parser
 into a mode where it ignores characters until the next separator.

 	Let bogus be false.

 	Parser: If the character in the string input at position position is:

 	A U+002D HYPHEN-MINUS character

 	

 Follow these substeps:

 	If got number is true, let finished be true.

 	If finished is true, skip to the next step in the overall set of
 steps.

 	If started is true, let negated be false.

 	Otherwise, if started is false and if bogus is
 false, let negated be true.

 	Let started be true.

 	An ASCII digit

 	

 Follow these substeps:

 	If finished is true, skip to the next step in the overall set of
 steps.

 	Multiply value by ten.

 	Add the value of the digit, interpreted in base ten, to value.

 	Let started be true.

 	Let got number be true.

 	A U+0020 SPACE character

 	A U+002C COMMA character

 	A U+003B SEMICOLON character

 	

 Follow these substeps:

 	If got number is false, return the numbers list
 and abort. This happens if an entry in the list has no digits, as in "1,2,x,4".

 	If negated is true, then negate value.

 	Append value to the numbers list.

 	Jump to step 4 in the overall set of steps.

 	A character in the range U+0001 to U+001F, U+0021 to U+002B, U+002D to U+002F, U+003A, U+003C to U+0040, U+005B to U+0060, U+007b to U+007F
 (i.e. any other non-alphabetic ASCII character)

 	

 Follow these substeps:

 	If got number is true, let finished be true.

 	If finished is true, skip to the next step in the overall set of
 steps.

 	Let negated be false.

 	Any other character

 	

 Follow these substeps:

 	If finished is true, skip to the next step in the overall set of
 steps.

 	Let negated be false.

 	Let bogus be true.

 	If started is true, then return the numbers list,
 and abort. (The value in value is not appended to the list first; it is
 dropped.)

 	Advance position to the next character in input,
 or to beyond the end of the string if there are no more characters.

 	If position points to a character (and not to beyond the end of input), jump to the big Parser step above.

 	If negated is true, then negate value.

 	If got number is true, then append value to the
 numbers list.

 	Return the numbers list and abort.

 Lists of dimensions

 The rules for parsing a list of dimensions are as
 follows. These rules return a list of zero or more pairs consisting
 of a number and a unit, the unit being one of percentage,
 relative, and absolute.

 	Let raw input be the string being
 parsed.

 	If the last character in raw input is a
 "," (U+002C) character, then remove that character from raw input.

 	Split the string raw input on commas. Let raw
 tokens be the resulting list of tokens.

 	Let result be an empty list of
 number/unit pairs.

 	

 For each token in raw tokens, run the
 following substeps:

 	Let input be the token.

 	Let position be a pointer into input, initially pointing at the start of the
 string.

 	Let value be the number 0.

 	Let unit be absolute.

 	If position is past the end of input, set unit to
 relative and jump to the last substep.

 	If the character at position is an ASCII
 digit, collect a sequence of characters that are ASCII digits,
 interpret the resulting sequence as an integer in base ten, and increment value by that integer.

 	

 If the character at position is a "." (U+002E) character, run these substeps:

 	Collect a sequence of characters consisting of space characters and ASCII digits. Let s
 be the resulting sequence.

 	Remove all space
 characters in s.

 	

 If s is not the empty string, run these
 subsubsteps:

 	Let length be the number of
 characters in s (after the spaces were
 removed).

 	Let fraction be the result of
 interpreting s as a base-ten integer, and
 then dividing that number by .

 	Increment value by fraction.

 	Skip whitespace.

 	

 If the character at position is a "%" (U+0025) character, then set unit to
 percentage.

 Otherwise, if the character at position
 is a "*" (U+002A) character, then set unit to relative.

 	Add an entry to result consisting of
 the number given by value and the unit given
 by unit.

 	Return the list result.

 Dates and times

 In the algorithms below, the number of days in month month of year
 year is: 31 if month is 1, 3, 5, 7, 8, 10,
 or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28 otherwise. This
 takes into account leap years in the Gregorian calendar. [GREGORIAN]

 When ASCII digits are used in the date and time syntaxes defined in this section,
 they express numbers in base ten.

 While the formats described here are intended to be subsets of the corresponding
 ISO8601 formats, this specification defines parsing rules in much more detail than ISO8601.
 Implementors are therefore encouraged to carefully examine any date parsing libraries before using
 them to implement the parsing rules described below; ISO8601 libraries might not parse dates and
 times in exactly the same manner. [ISO8601]

 Where this specification refers to the proleptic Gregorian calendar, it means the
 modern Gregorian calendar, extrapolated backwards to year 1. A date in the proleptic
 Gregorian calendar, sometimes explicitly referred to as a proleptic-Gregorian
 date, is one that is described using that calendar even if that calendar was not in use at
 the time (or place) in question. [GREGORIAN]

 The use of the Gregorian calendar as the wire format in this specification is an
 arbitrary choice resulting from the cultural biases of those involved in the decision. See also
 the section discussing date, time, and number formats in forms
 and the time element.

 Months

 A month consists of a specific proleptic-Gregorian
 date with no time-zone information and no date information beyond a year and a month. [GREGORIAN]

 A string is a valid month string representing a year year and
 month month if it consists of the following components in the given order:

 	Four or more ASCII digits, representing year, where year > 0

 	A "-" (U+002D) character

 	Two ASCII digits, representing the month month, in the range
 1 ≤ month ≤ 12

 The rules to parse a month string are as follows. This will return either a year and
 month, or nothing. If at any point the algorithm says that it "fails", this means that it is
 aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a month component to obtain year and month. If this returns nothing, then fail.

	If position is not beyond the
 end of input, then fail.

 	Return year and month.

 The rules to parse a month component, given an input string and
 a position, are as follows. This will return either a year and a month, or
 nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
 point and returns nothing.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not at least four characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the year.

 	If year is not a number greater than zero, then fail.

 	If position is beyond the end of input or if the
 character at position is not a U+002D HYPHEN-MINUS character, then fail.
 Otherwise, move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the month.

 	If month is not a number in the range 1 ≤ month ≤ 12, then fail.

 	Return year and month.

 Dates

 A date consists of a specific proleptic-Gregorian
 date with no time-zone information, consisting of a year, a month, and a day. [GREGORIAN]

 A string is a valid date string representing a year year, month
 month, and day day if it consists of the following
 components in the given order:

 	A valid month string, representing year and month

 	A "-" (U+002D) character

 	Two ASCII digits, representing day, in the range
 1 ≤ day ≤ maxday where maxday is the number of
 days in the month month and year year

 The rules to parse a date string are as follows. This will return either a date, or
 nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
 point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Let date be the date with year year, month month, and day day.

 	Return date.

 The rules to parse a date component, given an input string and a
 position, are as follows. This will return either a year, a month, and a day,
 or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at
 that point and returns nothing.

 	Parse a month component to obtain year and month. If this returns nothing, then fail.

 	Let maxday be the number of days in month month of year year.

 	If position is beyond the end of input or if the
 character at position is not a U+002D HYPHEN-MINUS character, then fail.
 Otherwise, move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the day.

 	If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

 	Return year, month, and day.

 Yearless dates

 A yearless date consists of a Gregorian month and a
 day within that month, but with no associated year. [GREGORIAN]

 A string is a valid yearless date string representing a month month and a day day if it consists of the following components
 in the given order:

 	Optionally, two "-" (U+002D) characters

 	Two ASCII digits, representing the month month, in the range
 1 ≤ month ≤ 12

 	A "-" (U+002D) character

 	Two ASCII digits, representing day, in the range
 1 ≤ day ≤ maxday where maxday is the number of
 days in the month month and any arbitrary leap year (e.g. 4 or
 2000)

 In other words, if the month is "02",
 meaning February, then the day can be 29, as if the year was a leap year.

 The rules to parse a yearless date string are as follows. This will return either a
 month and a day, or nothing. If at any point the algorithm says that it "fails", this means that
 it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a yearless date component to obtain month and day. If this returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Return month and day.

 The rules to parse a yearless date component, given an input
 string and a position, are as follows. This will return either a month and a
 day, or nothing. If at any point the algorithm says that it "fails", this means that it is aborted
 at that point and returns nothing.

 	Collect a sequence of characters that are "-" (U+002D) characters.
 If the collected sequence is not exactly zero or two characters long, then fail.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the month.

 	If month is not a number in the range 1 ≤ month ≤ 12, then fail.

 	Let maxday be the number of days in month month of any arbitrary leap year (e.g. 4
 or 2000).

 	If position is beyond the end of input or if the
 character at position is not a U+002D HYPHEN-MINUS character, then fail.
 Otherwise, move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the day.

 	If day is not a number in the range 1 ≤ day ≤ maxday, then fail.

 	Return month and day.

 Times

 A time consists of a specific time with no time-zone
 information, consisting of an hour, a minute, a second, and a fraction of a second.

 A string is a valid time string representing an hour hour, a
 minute minute, and a second second if it consists of the
 following components in the given order:

 	Two ASCII digits, representing hour, in the range
 0 ≤ hour ≤ 23

 	A ":" (U+003A) character

 	Two ASCII digits, representing minute, in the range
 0 ≤ minute ≤ 59

 	Optionally (required if second is
 non-zero):

 	A ":" (U+003A) character

 	Two ASCII digits, representing the integer part of second,
 in the range 0 ≤ s ≤ 59

 	Optionally (required if second is not an
 integer):

 	A 002E FULL STOP character (.)

 	One, two, or three ASCII digits, representing the fractional part of second

 The second component cannot be 60 or 61; leap seconds cannot
 be represented.

 The rules to parse a time string are as follows. This will return either a time, or
 nothing. If at any point the algorithm says that it "fails", this means that it is aborted at that
 point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Let time be the time with hour hour, minute minute, and second second.

 	Return time.

 The rules to parse a time component, given an input string and a
 position, are as follows. This will return either an hour, a minute, and a
 second, or nothing. If at any point the algorithm says that it "fails", this means that it is
 aborted at that point and returns nothing.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the hour.

 	If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

 	If position is beyond the end of input or if the
 character at position is not a U+003A COLON character, then fail. Otherwise,
 move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the minute.

 	If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

 	Let second be a string with the value "0".

 	

 If position is not beyond the end of input and the
 character at position is a U+003A COLON, then run these substeps:

 	Advance position to the next character in input.

 	If position is beyond the end of input, or at
 the last character in input, or if the next two characters in input starting at position are not both ASCII
 digits, then fail.

 	Collect a sequence of characters that are either ASCII digits
 or U+002E FULL STOP characters. If the collected sequence is three characters long, or if it is
 longer than three characters long and the third character is not a U+002E FULL STOP character,
 or if it has more than one U+002E FULL STOP character, then fail. Otherwise, let the collected
 string be second instead of its previous value.

 	Interpret second as a base-ten number (possibly with a fractional
 part). Let second be that number instead of the string version.

 	If second is not a number in the range 0 ≤ second < 60, then fail.

 	Return hour, minute, and second.

 Local dates and times

 A local date and time consists of a specific
 proleptic-Gregorian date, consisting of a year, a month, and a day, and a time,
 consisting of an hour, a minute, a second, and a fraction of a second, but expressed without a
 time zone. [GREGORIAN]

 A string is a valid local date and time string representing a date and time if it
 consists of the following components in the given order:

 	A valid date string representing the date

 	A "T" (U+0054) character or a U+0020 SPACE character

 	A valid time string representing the time

 A string is a valid normalized local date and time string representing a date and
 time if it consists of the following components in the given order:

 	A valid date string representing the date

 	A "T" (U+0054) character

 	A valid time string representing the time, expressed as the shortest possible
 string for the given time (e.g. omitting the seconds component entirely if the given time is zero
 seconds past the minute)

 The rules to parse a local date and time string are as follows. This will return
 either a date and time, or nothing. If at any point the algorithm says that it "fails", this means
 that it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

	If position is beyond the end of input or if the
 character at position is neither a U+0054 LATIN CAPITAL LETTER T character
 (T) nor a U+0020 SPACE character, then fail. Otherwise, move position
 forwards one character.

 	Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Let date be the date with year year, month month, and day day.

 	Let time be the time with hour hour, minute minute, and second second.

 	Return date and time.

 Time zones

 A time-zone offset consists of a signed number of hours and
 minutes.

 A string is a valid time-zone offset string representing a time-zone offset if it
 consists of either:

 	A "Z" (U+005A) character, allowed only if the time zone is
 UTC

 	

 Or, the following components, in the given order:

 	Either a "+" (U+002B) character or, if the time-zone offset is not zero, a "-" (U+002D) character, representing the sign of the time-zone offset

 	Two ASCII digits, representing the hours component hour of
 the time-zone offset, in the range 0 ≤ hour ≤ 23

 	Optionally, a ":" (U+003A) character

 	Two ASCII digits, representing the minutes component minute of the time-zone offset, in the range 0 ≤ minute ≤ 59

 This format allows for time-zone offsets from -23:59 to +23:59. In practice,
 however, right now the range of offsets of actual time zones is -12:00 to +14:00, and the minutes
 component of offsets of actual time zones is always either 00, 30, or 45. There is no guarantee
 that this will remain so forever, however; time zones are changed by countries at will and do
 not follow a standard.

 See also the usage notes and examples in the global
 date and time section below for details on using time-zone offsets with historical times
 that predate the formation of formal time zones.

 The rules to parse a time-zone offset string are as follows. This will return either
 a time-zone offset, or nothing. If at any point the algorithm says that it "fails", this means
 that it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this
 returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Return the time-zone offset that is timezonehours
 hours and timezoneminutes minutes from UTC.

 The rules to parse a time-zone offset component, given an input
 string and a position, are as follows. This will return either time-zone hours
 and time-zone minutes, or nothing. If at any point the algorithm says that it "fails", this means
 that it is aborted at that point and returns nothing.

 	

 If the character at position is a U+005A LATIN CAPITAL LETTER Z character
 (Z), then:

 	Let timezonehours be 0.

 	Let timezoneminutes be 0.

 	Advance position to the next character in input.

 Otherwise, if the character at position is either a "+" (U+002B)
 or a "-" (U+002D), then:

 	If the character at position is a "+" (U+002B), let sign be "positive". Otherwise, it's a "-" (U+002D); let sign be "negative".

 	Advance position to the next character in input.

 	Collect a sequence of characters that are ASCII digits. Let
 s be the collected sequence.

 	

 If s is exactly two characters long, then run these substeps:

 	Interpret s as a base-ten integer. Let that number be the timezonehours.

 	If position is beyond the end of input or if
 the character at position is not a U+003A COLON character, then fail.
 Otherwise, move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If
 the collected sequence is not exactly two characters long, then fail. Otherwise, interpret
 the resulting sequence as a base-ten integer. Let that number be the timezoneminutes.

 If s is exactly four characters long, then run these substeps:

 	Interpret the first two characters of s as a base-ten integer. Let
 that number be the timezonehours.

 	Interpret the last two characters of s as a base-ten integer. Let
 that number be the timezoneminutes.

 Otherwise, fail.

 	If timezonehours is not a number in the range
 0 ≤ timezonehours ≤ 23, then
 fail.

 	If sign is "negative", then negate timezonehours.

 	If timezoneminutes is not a number in the range
 0 ≤ timezoneminutes ≤ 59,
 then fail.

 	If sign is "negative", then negate timezoneminutes.

 Otherwise, fail.

 	Return timezonehours and timezoneminutes.

 Global dates and times

 A global date and time consists of a specific
 proleptic-Gregorian date, consisting of a year, a month, and a day, and a time,
 consisting of an hour, a minute, a second, and a fraction of a second, expressed with a time-zone
 offset, consisting of a signed number of hours and minutes. [GREGORIAN]

 A string is a valid global date and time string representing a date, time, and a
 time-zone offset if it consists of the following components in the given order:

 	A valid date string representing the date

 	A "T" (U+0054) character or a U+0020 SPACE character

 	A valid time string representing the time

 	A valid time-zone offset string representing the time-zone offset

 Times in dates before the formation of UTC in the mid twentieth century must be expressed and
 interpreted in terms of UT1 (contemporary Earth solar time at the 0° longitude), not UTC (the
 approximation of UT1 that ticks in SI seconds). Time before the formation of time zones must be
 expressed and interpeted as UT1 times with explicit time zones that approximate the contemporary
 difference between the appropriate local time and the time observed at the location of Greenwich,
 London.

 The following are some examples of dates written as valid global date and time strings.

 	"0037-12-13 00:00Z"

 	Midnight in areas using London time on the birthday of Nero (the Roman Emperor). See below
 for further discussion on which date this actually corresponds to.

 	"1979-10-14T12:00:00.001-04:00"

 	One millisecond after noon on October 14th 1979, in the time zone in use on the east coast
 of the USA during daylight saving time.

 	"8592-01-01T02:09+02:09"

 	Midnight UTC on the 1st of January, 8592. The time zone associated with that time is two
 hours and nine minutes ahead of UTC, which is not currently a real time zone, but is nonetheless
 allowed.

 Several things are notable about these dates:

 	Years with fewer than four digits have to be zero-padded. The date "37-12-13" would not be a
 valid date.

 	If the "T" is replaced by a space, it must be a single space
 character. The string "2001-12-21 12:00Z" (with two spaces
 between the components) would not be parsed successfully.

 	To unambiguously identify a moment in time prior to the introduction of the Gregorian
 calendar (insofar as moments in time before the formation of UTC can be unambiguously
 identified), the date has to be first converted to the Gregorian calendar from the calendar in
 use at the time (e.g. from the Julian calendar). The date of Nero's birth is the 15th of
 December 37, in the Julian Calendar, which is the 13th of December 37 in the proleptic
 Gregorian calendar.

 	The time and time-zone offset components are not optional.

 	Dates before the year one can't be represented as a datetime in this version of HTML.

 	Times of specific events in ancient times are, at best, approximations, since time was not
 well coordinated or measured until relatively recent decades.

 	Time-zone offsets differ based on daylight savings time.

 The zone offset is not a complete time zone specification. When working
 with real date and time values, consider using a separate field for time zone,
 perhaps using IANA time zone IDs. [TIMEZONES]

 A string is a valid normalized forced-UTC global date and time
 string representing a date, time, and a time-zone offset if it
 consists of the following components in the given order:

 	A valid date string representing the date converted to the UTC time zone

 	A "T" (U+0054) character

 	A valid time string representing the time converted to the UTC time zone and
 expressed as the shortest possible string for the given time (e.g. omitting the seconds component
 entirely if the given time is zero seconds past the minute)

 	A "Z" (U+005A) character

 The rules to parse a global date and time string are as follows. This will return
 either a time in UTC, with associated time-zone offset information for round-tripping or display
 purposes, or nothing. If at any point the algorithm says that it "fails", this means that it is
 aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Parse a date component to obtain year, month, and day. If this returns nothing, then fail.

	If position is beyond the end of input or if the
 character at position is neither a U+0054 LATIN CAPITAL LETTER T character
 (T) nor a U+0020 SPACE character, then fail. Otherwise, move position
 forwards one character.

 	Parse a time component to obtain hour, minute, and second. If this returns nothing, then fail.

	If position is beyond the end of input, then
 fail.

 	Parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this
 returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	Let time be the moment in time at year year, month
 month, day day, hours hour, minute
 minute, second second, subtracting timezonehours hours and timezoneminutes minutes. That moment in time is a moment in the UTC time
 zone.

 	Let timezone be timezonehours
 hours and timezoneminutes minutes from UTC.

 	Return time and timezone.

 Weeks

 A week consists of a week-year number and a week number
 representing a seven-day period starting on a Monday. Each week-year in this calendaring system
 has either 52 or 53 such seven-day periods, as defined below. The seven-day period starting on the
 Gregorian date Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year
 1970. Consecutive weeks are numbered sequentially. The week before the number 1 week in a
 week-year is the last week in the previous week-year, and vice versa. [GREGORIAN]

 A week-year with a number year has 53 weeks if it corresponds to either a
 year year in the proleptic Gregorian calendar that has a Thursday
 as its first day (January 1st), or a year year in the proleptic
 Gregorian calendar that has a Wednesday as its first day (January 1st) and where year is a number divisible by 400, or a number divisible by 4 but not by 100. All
 other week-years have 52 weeks.

 The week number of the last day of a week-year with 53 weeks is 53; the week number
 of the last day of a week-year with 52 weeks is 52.

 The week-year number of a particular day can be different than the number of the
 year that contains that day in the proleptic Gregorian calendar. The first week in a
 week-year y is the week that contains the first Thursday of the Gregorian year
 y.

 For modern purposes, a week as defined here is
 equivalent to ISO weeks as defined in ISO 8601. [ISO8601]

 A string is a valid week string representing a week-year year
 and week week if it consists of the following components in the given
 order:

 	Four or more ASCII digits, representing year, where year > 0

 	A "-" (U+002D) character

 	A "W" (U+0057) character

 	Two ASCII digits, representing the week week, in the range
 1 ≤ week ≤ maxweek, where maxweek is the week number of the last day of week-year year

 The rules to parse a week string are as follows. This will return either a week-year
 number and week number, or nothing. If at any point the algorithm says that it "fails", this means
 that it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not at least four characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the year.

 	If year is not a number greater than zero, then fail.

 	If position is beyond the end of input or if the
 character at position is not a U+002D HYPHEN-MINUS character, then fail.
 Otherwise, move position forwards one character.

 	If position is beyond the end of input or if the
 character at position is not a "W" (U+0057) character,
 then fail. Otherwise, move position forwards one character.

 	Collect a sequence of characters that are ASCII digits. If the
 collected sequence is not exactly two characters long, then fail. Otherwise, interpret the
 resulting sequence as a base-ten integer. Let that number be the week.

 	Let maxweek be the week number of the last day of year
 year.

 	If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

 	If position is not beyond the end of input, then fail.

 	Return the week-year number year and the week number week.

 Durations

 A duration consists of a number of seconds.

 Since months and seconds are not comparable (a month is not a precise number of
 seconds, but is instead a period whose exact length depends on the precise day from which it is
 measured) a duration as defined in this specification cannot
 include months (or years, which are equivalent to
 twelve months). Only durations that describe a specific number of seconds can be described.

 A string is a valid duration string representing a duration t if it consists of either of the
 following:

 	

 A literal U+0050 LATIN CAPITAL LETTER P character followed by one or more of the following
 subcomponents, in the order given, where the number of days, hours, minutes, and
 seconds corresponds to the same number of seconds as in t:

 	One or more ASCII digits followed by a U+0044 LATIN CAPITAL LETTER D
 character, representing a number of days.

 	

 A U+0054 LATIN CAPITAL LETTER T character followed by one or more of the following
 subcomponents, in the order given:

 	One or more ASCII digits followed by a U+0048 LATIN CAPITAL LETTER H
 character, representing a number of hours.

 	One or more ASCII digits followed by a U+004D LATIN CAPITAL LETTER M
 character, representing a number of minutes.

 	

 The following components:

 	One or more ASCII digits, representing a number of seconds.

 	Optionally, a "." (U+002E) character followed by one, two, or three
 ASCII digits, representing a fraction of a second.

 	A U+0053 LATIN CAPITAL LETTER S character.

 This, as with a number of other date- and time-related microsyntaxes defined in
 this specification, is based on one of the formats defined in ISO 8601. [ISO8601]

 	

 One or more duration time components, each with
 a different duration time component scale, in any order; the sum of the represented
 seconds being equal to the number of seconds in t.

 A duration time component is a string consisting of the following components:

 	Zero or more space characters.

 	One or more ASCII digits, representing a number of time units, scaled by
 the duration time component scale specified (see below) to represent a number of
 seconds.

 	If the duration time component scale specified is 1 (i.e. the units are
 seconds), then, optionally, a "." (U+002E) character followed by one, two, or three
 ASCII digits, representing a fraction of a second.

 	Zero or more space characters.

 	

 One of the following characters, representing the duration time component scale
 of the time unit used in the numeric part of the duration time component:

 	U+0057 LATIN CAPITAL LETTER W character

 	U+0077 LATIN SMALL LETTER W character

 	Weeks. The scale is 604800.

 	U+0044 LATIN CAPITAL LETTER D character

 	U+0064 LATIN SMALL LETTER D character

 	Days. The scale is 86400.

 	U+0048 LATIN CAPITAL LETTER H character

 	U+0068 LATIN SMALL LETTER H character

 	Hours. The scale is 3600.

 	U+004D LATIN CAPITAL LETTER M character

 	U+006D LATIN SMALL LETTER M character

 	Minutes. The scale is 60.

 	U+0053 LATIN CAPITAL LETTER S character

 	U+0073 LATIN SMALL LETTER S character

 	Seconds. The scale is 1.

 	Zero or more space
 characters.

 This is not based on any of the formats in ISO 8601. It is intended to be a more
 human-readable alternative to the ISO 8601 duration format.

 The rules to parse a duration string are as follows. This will return either a duration or nothing. If at any point the algorithm says that it
 "fails", this means that it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Let months, seconds, and component
 count all be zero.

 	

 Let M-disambiguator be minutes.

 This flag's other value is months. It is used to disambiguate the "M"
 unit in ISO8601 durations, which use the same unit for months and minutes. Months are not
 allowed, but are parsed for future compatibility and to avoid misinterpreting ISO8601 durations
 that would be valid in other contexts.

 	Skip whitespace.

 	If position is past the end of input, then
 fail.

 	If the character in input pointed to by position
 is a U+0050 LATIN CAPITAL LETTER P character, then advance position to the
 next character, set M-disambiguator to months, and skip
 whitespace.

 	

 Run the following substeps in a loop, until a step requiring the loop to be broken or the
 entire algorithm to fail is reached:

 	Let units be undefined. It will be assigned one of the following
 values: years, months, weeks, days, hours, minutes,
 and seconds.

 	Let next character be undefined. It is used to process characters
 from the input.

 	If position is past the end of input, then break
 the loop.

 	If the character in input pointed to by position
 is a U+0054 LATIN CAPITAL LETTER T character, then advance position to the
 next character, set M-disambiguator to minutes, skip
 whitespace, and return to the top of the loop.

 	Set next character to the character in input
 pointed to by position.

 	

 If next character is a "." (U+002E) character, then let N equal zero. (Do not advance position. That is taken care
 of below.)

 Otherwise, if next character is an ASCII
 digit, then collect a sequence of characters that are ASCII
 digits, interpret the resulting sequence as a base-ten integer, and let N be that number.

 Otherwise next character is not part of a number; fail.

 	If position is past the end of input, then
 fail.

 	Set next character to the character in input
 pointed to by position, and this time advance position
 to the next character. (If next character was a U+002E FULL STOP character
 (.) before, it will still be that character this time.)

 	

 If next character is a "." (U+002E) character, then run these
 substeps:

 	Collect a sequence of characters that are ASCII digits. Let
 s be the resulting sequence.

 	If s is the empty string, then fail.

 	Let length be the number of characters in s.

 	Let fraction be the result of interpreting s
 as a base-ten integer, and then dividing that number by .

 	Increment N by fraction.

 	Skip whitespace.

 	If position is past the end of input, then
 fail.

 	Set next character to the character in input
 pointed to by position, and advance position to the
 next character.

 	If next character is neither a U+0053 LATIN CAPITAL LETTER S
 character nor a U+0073 LATIN SMALL LETTER S character, then fail.

 	Set units to seconds.

 Otherwise, run these substeps:

 	If next character is a space character, then
 skip whitespace, set next character to the character in input pointed to by position, and advance position to the next character.

 	

 If next character is a U+0059 LATIN CAPITAL LETTER Y character, or a
 U+0079 LATIN SMALL LETTER Y character, set units to years and set
 M-disambiguator to months.

 If next character is a U+004D LATIN CAPITAL LETTER M character or a
 U+006D LATIN SMALL LETTER M character, and M-disambiguator is
 months, then set units to months.

 If next character is a U+0057 LATIN CAPITAL LETTER W character or a
 U+0077 LATIN SMALL LETTER W character, set units to weeks and set
 M-disambiguator to minutes.

 If next character is a U+0044 LATIN CAPITAL LETTER D character or a
 U+0064 LATIN SMALL LETTER D character, set units to days and set
 M-disambiguator to minutes.

 If next character is a U+0048 LATIN CAPITAL LETTER H character or a
 U+0068 LATIN SMALL LETTER H character, set units to hours and set
 M-disambiguator to minutes.

 If next character is a U+004D LATIN CAPITAL LETTER M character or a
 U+006D LATIN SMALL LETTER M character, and M-disambiguator is
 minutes, then set units to minutes.

 If next character is a U+0053 LATIN CAPITAL LETTER S character or a
 U+0073 LATIN SMALL LETTER S character, set units to seconds and
 set M-disambiguator to minutes.

 Otherwise if next character is none of the above characters, then
 fail.

 	Increment component count.

 	Let multiplier be 1.

 	If units is years, multiply multiplier by
 12 and set units to months.

 	

 If units is months, add the product of N and
 multiplier to months.

 Otherwise, run these substeps:

 	If units is weeks, multiply multiplier
 by 7 and set units to days.

 	If units is days, multiply multiplier
 by 24 and set units to hours.

 	If units is hours, multiply multiplier
 by 60 and set units to minutes.

 	If units is minutes, multiply multiplier by 60 and set units to seconds.

 	Forcibly, units is now seconds. Add the product of N and multiplier to seconds.

 	Skip whitespace.

 	If component count is zero,
 fail.

 	If months is not zero, fail.

 	Return the duration consisting of seconds seconds.

 Vaguer moments in time

 A string is a valid date string with optional time if
 it is also one of the following:

 	A valid date string

 	A valid global date and time string

 The rules to parse a date or time string are as follows. The algorithm will return
 either a date, a time, a global date and time, or nothing. If at any point the algorithm
 says that it "fails", this means that it is aborted at that point and returns nothing.

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Set start position to the same position as position.

 	Set the date present and time present flags to
 true.

 	Parse a date component to obtain year, month, and day. If this fails, then set the date
 present flag to false.

	

 If date present is true, and position is not beyond
 the end of input, and the character at position is
 either a "T" (U+0054) character or a U+0020 SPACE character, then advance
 position to the next character in input.

 Otherwise, if date present is true, and either position is beyond the end of input or the character at position is neither a "T" (U+0054) character nor a U+0020
 SPACE character, then set time present to false.

 Otherwise, if date present is false, set position
 back to the same position as start position.

 	If the time present flag is true, then parse a time
 component to obtain hour, minute, and second. If this returns nothing, then fail.

 	If the date present and time present flags are
 both true, but position is beyond the end of input, then
 fail.

 	If the date present and time present flags are
 both true, parse a time-zone offset component to obtain timezonehours and timezoneminutes. If this
 returns nothing, then fail.

	If position is not beyond the end of input, then fail.

 	

 If the date present flag is true and the time present
 flag is false, then let date be the date with year year,
 month month, and day day, and return date.

 Otherwise, if the time present flag is true and the date
 present flag is false, then let time be the time with hour hour, minute minute, and second second,
 and return time.

 Otherwise, let time be the moment in time at year year, month month, day day, hours hour, minute minute, second second,
 subtracting timezonehours hours and timezoneminutes minutes, that moment in time being a moment
 in the UTC time zone; let timezone be timezonehours hours and timezoneminutes
 minutes from UTC; and return time and timezone.

 Colors

 A simple color consists of three 8-bit numbers in the range 0..255, representing the
 red, green, and blue components of the color respectively, in the sRGB color space. [SRGB]

 A string is a valid simple color if it is exactly seven characters long, and the
 first character is a "#" (U+0023) character, and the remaining six characters are all
 ASCII hex digits, with the first two digits representing the red component, the
 middle two digits representing the green component, and the last two digits representing the blue
 component, in hexadecimal.

 A string is a valid lowercase simple color if it is a valid simple
 color and doesn't use any characters in the range U+0041 LATIN CAPITAL LETTER A to U+0046
 LATIN CAPITAL LETTER F.

 The rules for parsing simple color values are as given in the following algorithm.
 When invoked, the steps must be followed in the order given, aborting at the first step that
 returns a value. This algorithm will return either a simple color or an error.

 	Let input be the string being parsed.

 	If input is not exactly seven characters long, then return an
 error.

 	If the first character in input is not a U+0023 NUMBER SIGN character
 (#), then return an error.

 	If the last six characters of input are not all ASCII hex
 digits, then return an error.

 	Let result be a simple color.

	Interpret the second and third characters as a hexadecimal number and let the result be
 the red component of result.

	Interpret the fourth and fifth characters as a hexadecimal number and let the result be
 the green component of result.

	Interpret the sixth and seventh characters as a hexadecimal number and let the result be
 the blue component of result.

	Return result.

 The rules for serializing simple color values given a simple color are
 as given in the following algorithm:

 	Let result be a string consisting of a single "#" (U+0023) character.

 	Convert the red, green, and blue components in turn to two-digit hexadecimal numbers using
 lowercase ASCII hex digits, zero-padding if necessary, and append these numbers to
 result, in the order red, green, blue.

	Return result, which will be a valid lowercase simple
 color.

 Some obsolete legacy attributes parse colors in a more complicated manner, using the rules
 for parsing a legacy color value, which are given in the following algorithm. When invoked,
 the steps must be followed in the order given, aborting at the first step that returns a value.
 This algorithm will return either a simple color or an error.

 	Let input be the string being parsed.

 	If input is the empty string, then return an error.

 	Strip leading and trailing whitespace from input.

 	If input is an ASCII case-insensitive match for the
 string "transparent", then return an error.

 	

 If input is an ASCII case-insensitive match for one of the
 keywords listed in the SVG color
 keywords section of the CSS3 Color specification, then return the simple
 color corresponding to that keyword. [CSSCOLOR]

 CSS2 System
 Colors are not recognised.

 	

 If input is four characters long, and the first character in input is a "#" (U+0023) character, and the last three characters of
 input are all ASCII hex digits, then run these substeps:

 	Let result be a simple color.

	Interpret the second character of input as a hexadecimal digit; let
 the red component of result be the resulting number multiplied by 17.

	Interpret the third character of input as a hexadecimal digit; let
 the green component of result be the resulting number multiplied by 17.

	Interpret the fourth character of input as a hexadecimal digit; let
 the blue component of result be the resulting number multiplied by 17.

	Return result.

 	Replace any characters in input that have a Unicode code point greater
 than U+FFFF (i.e. any characters that are not in the basic multilingual plane) with the
 two-character string "00".

 	If input is longer than 128 characters, truncate input, leaving only the first 128 characters.

 	If the first character in input is a "#" (U+0023) character,
 remove it.

 	Replace any character in input that is not an ASCII hex digit with the character "0" (U+0030).

 	While input's length is zero or not a multiple of three, append a
 "0" (U+0030) character to input.

 	Split input into three strings of equal length, to obtain three
 components. Let length be the length of those components (one third the
 length of input).

 	If length is greater than 8, then remove the leading characters in each component, and let length be 8.

 	While length is greater than two and the first character in each
 component is a "0" (U+0030) character, remove that character and reduce length by one.

 	If length is still greater than two, truncate each component,
 leaving only the first two characters in each.

 	Let result be a simple color.

	Interpret the first component as a hexadecimal number; let the red component of result be the resulting number.

 	Interpret the second component as a hexadecimal number; let the green component of result be the resulting number.

 	Interpret the third component as a hexadecimal number; let the blue component of result be the resulting number.

 	Return result.

 Space-separated tokens

 A set of space-separated tokens is a string containing
 zero or more words (known as tokens) separated by one or more space characters, where words consist
 of any string of one or more characters, none of which are space characters.

 A string containing a set of space-separated tokens
 may have leading or trailing space
 characters.

 An unordered set of unique space-separated tokens is a
 set of space-separated tokens where none of the tokens
 are duplicated.

 An ordered set of unique space-separated tokens is a
 set of space-separated tokens where none of the tokens
 are duplicated but where the order of the tokens is meaningful.

 Sets of
 space-separated tokens sometimes have a defined set of
 allowed values. When a set of allowed values is defined, the tokens
 must all be from that list of allowed values; other values are
 non-conforming. If no such set of allowed values is provided, then
 all values are conforming.

 How tokens in a set of space-separated
 tokens are to be compared (e.g. case-sensitively or not) is
 defined on a per-set basis.

 When a user agent has to split a string on spaces, it
 must use the following algorithm:

 	Let input be the string being
 parsed.

 	Let position be a pointer into input, initially pointing at the start of the
 string.

 	Let tokens be an ordered list of tokens, initially empty.

 	Skip whitespace

 	While position is not past the end of
 input:

 	Collect a sequence of characters that are not
 space characters.

 	Append the string collected in the previous step to tokens.

 	Skip whitespace

 	Return tokens.

 Comma-separated tokens

 A set of comma-separated tokens is a string containing
 zero or more tokens each separated from the next by a single "," (U+002C) character, where tokens consist of any string of zero or
 more characters, neither beginning nor ending with space characters, nor containing any
 "," (U+002C) characters, and optionally surrounded by space characters.

 For instance, the string " a ,b,,d d " consists of four
 tokens: "a", "b", the empty string, and "d d". Leading and
 trailing whitespace around each token doesn't count as part of the
 token, and the empty string can be a token.

 Sets of
 comma-separated tokens sometimes have further restrictions on
 what consists a valid token. When such restrictions are defined, the
 tokens must all fit within those restrictions; other values are
 non-conforming. If no such restrictions are specified, then all
 values are conforming.

 When a user agent has to split a string on commas, it
 must use the following algorithm:

 	Let input be the string being
 parsed.

 	Let position be a pointer into input, initially pointing at the start of the
 string.

 	Let tokens be an ordered list of tokens, initially empty.

 	Token: If position is past the
 end of input, jump to the last step.

 	Collect a sequence of characters that are not
 "," (U+002C) characters. Let s be the resulting sequence (which might be the
 empty string).

 	Strip leading and trailing whitespace from s.

 	Append s to tokens.

 	If position is not past the end of input, then the character at position is a "," (U+002C) character; advance
 position past that character.

 	Jump back to the step labeled token.

 	Return tokens.

 References

 A valid hash-name reference to an element of type type is a string consisting of a "#" (U+0023) character followed by a string which exactly matches the value
 of the name attribute of an element with type
 type in the document.

 The rules for parsing a hash-name reference to an
 element of type type are as follows:

 	If the string being parsed does not contain a U+0023 NUMBER
 SIGN character, or if the first such character in the string is the
 last character in the string, then return null and abort these
 steps.

 	Let s be the string from the character
 immediately after the first U+0023 NUMBER SIGN character in the
 string being parsed up to the end of that string.

 	Return the first element of type type
 that has an id attribute whose value
 is a case-sensitive match for s or
 a name attribute whose value is a
 compatibility caseless match for s.

 Media queries

 A string is a valid media query if it matches the
 media_query_list production of the Media
 Queries specification. [MQ]

 A string matches the environment of the user if it is
 the empty string, a string consisting of only space characters, or is a media query that matches
 the user's environment according to the definitions given in the
 Media Queries specification. [MQ]

 URLs

 Terminology

 A URL is a valid URL if it conforms to the authoring conformance
 requirements in the URL standard. [URL]

 A string is a valid non-empty URL if it is a valid URL but it is not
 the empty string.

 A string is a valid URL potentially surrounded by spaces if, after stripping leading and trailing whitespace
 from it, it is a valid URL.

 A string is a valid non-empty URL potentially surrounded by spaces if, after stripping leading and trailing whitespace
 from it, it is a valid non-empty URL.

 This specification defines the URL about:legacy-compat as a reserved,
 though unresolvable, about: URL, for use in DOCTYPEs in HTML documents when needed for
 compatibility with XML tools. [ABOUT]

 This specification defines the URL about:srcdoc as a reserved, though
 unresolvable, about: URL, that is used as the document's
 address of iframe srcdoc documents. [ABOUT]

 The fallback base URL of a Document object is the absolute
 URL obtained by running these substeps:

 	If the Document is an iframe srcdoc document, then return the document base
 URL of the Document's browsing context's browsing context
 container's Document and abort these steps.

 	

 If the document's address is about:blank, and the
 Document's browsing context has a creator browsing
 context, then return the document base URL of the creator
 Document, and abort these steps.

 	Return the document's address.

 The document base URL of a Document object is the absolute
 URL obtained by running these substeps:

 	If there is no base element that has an href attribute in the Document, then the
 document base URL is the Document's fallback base URL;
 abort these steps.

 	Otherwise, the document base URL is the frozen base URL of the
 first base element in the Document that has an href attribute, in tree order.

 Resolving URLs

 Resolving a URL is the process of taking a relative URL and obtaining the
 absolute URL that it implies.

 To resolve a URL to an absolute URL relative to either another
 absolute URL or an element, the user agent must use the following steps. Resolving a
 URL can result in an error, in which case the URL is not resolvable.

 	Let url be the URL being resolved.

 	

 Let encoding be determined as follows:

 	If the URL had a character encoding defined when the URL was created or defined

 	The URL character encoding is as defined.

 	If the URL came from a script (e.g. as an argument to a method)

 	The URL character encoding is the script's URL character encoding.

 	If the URL came from a DOM node (e.g. from an element)

 	The node has a Document, and the URL character encoding is the
 document's character encoding.

 	If encoding is a UTF-16 encoding, then change the value
 of encoding to UTF-8.

 	

 If the algorithm was invoked with an absolute URL to use as the base URL, let
 base be that absolute URL.

 Otherwise, let base be the element's base URL.

 	Apply the URL parser to url, with base as the base URL, with encoding as the encoding.

 	If this results in a parse error, then abort
 these steps with an error.

 	Let parsed URL be the result of the URL parser.

 	Let serialized URL be the result of apply the URL
 serializer to parsed URL.

 	Return serialized URL as the resulting absolute URL and
 parsed URL as the resulting parsed URL.

 Given an element, the element's base URL is the base URI of the element, as
 defined by the XML Base specification, with the base URI of the document entity being
 defined as the document base URL of the Document that owns the element.
 [XMLBASE]

 For the purposes of the XML Base specification, user agents must act as if all
 Document objects represented XML documents.

 It is possible for xml:base attributes to be
 present even in HTML fragments, as such attributes can be added dynamically using script. (Such
 scripts would not be conforming, however, as xml:base
 attributes are not allowed in HTML documents.)

 Dynamic changes to base URLs

 When an xml:base attribute is set, changed, or removed, the
 attribute's element, and all descendant elements, are affected by a base URL
 change.

 When a document's document base URL changes, all elements in that document are
 affected by a base URL change.

 The following are base URL change steps, which run when an element is
 affected by a base URL change (as defined by the DOM specification):

 	If the element creates a hyperlink

 	

 If the absolute URL identified by the hyperlink is being shown to the user, or
 if any data derived from that URL is affecting the display, then the href attribute should be re-resolved relative to the element and the UI updated appropriately.

 For example, the CSS :link/:visited pseudo-classes might have been affected.

 	If the element is a q, blockquote, ins, or
 del element with a cite attribute

 	

 If the absolute URL identified by the cite attribute is
 being shown to the user, or if any data derived from that URL is affecting the display, then the
 URL should be re-resolved relative to the
 element and the UI updated appropriately.

 	Otherwise

 	

 The element is not directly affected.

 For instance, changing the base URL doesn't affect the image displayed by
 img elements, although subsequent accesses of the src IDL attribute from script will return a new absolute
 URL that might no longer correspond to the image being shown.

 Fetching resources

 Terminology

 User agents can implement a variety of transfer protocols, but
 this specification mostly defines behavior in terms of HTTP. [HTTP]

 The HTTP GET method is equivalent to the default
 retrieval action of the protocol. For example, RETR in FTP. Such actions are idempotent and safe,
 in HTTP terms.

 The HTTP response codes are equivalent to
 statuses in other protocols that have the same basic meanings. For example, a "file not found"
 error is equivalent to a 404 code, a server error is equivalent to a 5xx code, and so on.

 The HTTP headers are equivalent to fields in
 other protocols that have the same basic meaning. For example, the HTTP authentication headers are
 equivalent to the authentication aspects of the FTP protocol.

 A referrer source is either a Document or a URL.

 Processing model

 When a user agent is to fetch a resource or URL, optionally
 from an origin origin, optionally using a
 specific referrer source as an override referrer source, and optionally with
 any of a synchronous flag, a manual redirect flag, a force same-origin flag,
 and a block cookies flag, the following steps must be run. (When a URL is to be
 fetched, the URL identifies a resource to be obtained.)

 	If there is a specific override referrer source, and it is a URL, then
 let referrer be the override referrer source, and jump to the step
 labeled clean referrer.

 	

 Let document be the appropriate Document as given by the
 following list:

 	If there is a specific override referrer source

 	The override referrer source.

 	When navigating

 	The active document of the source browsing context.

 	When fetching resources for an element

 	The element's Document.

 	

 While document is an iframe srcdoc document, let document be
 document's browsing context's browsing context
 container's Document instead.

 	

 If the origin of Document is not a scheme/host/port tuple,
 then set referrer to the empty string and jump to the step labeled clean
 referrer.

 	

 Let referrer be the document's address of document.

 	

 Clean referrer: Apply the URL parser to referrer and let parsed referrer be the resulting parsed URL.

 	

 Let referrer be the result of applying the
 URL serializer to parsed referrer, with the exclude fragment
 flag set.

 	

 If referrer is not the empty string, is not a data: URL, is not a javascript: URL, and is not the URL
 "about:blank", then generate the address of the resource from which Request-URIs
 are obtained as required by HTTP for the Referer (sic)
 header from referrer. [HTTP]

 Otherwise, the Referer (sic) header must be omitted,
 regardless of its value.

 	If the algorithm was not invoked with the synchronous flag, perform the remaining
 steps asynchronously.

 	If the Document with which any tasks queued by this algorithm would be associated doesn't have an
 associated browsing context, then abort these steps.

 	

 This is the main step.

 If the resource is to be obtained from an application cache, then use the data
 from that application cache, as if it had been obtained in the manner appropriate
 given its URL.

 If the resource is identified by an absolute URL, and the resource is to be
 obtained using an idempotent action (such as an HTTP GET or equivalent), and it is already being downloaded
 for other reasons (e.g. another invocation of this algorithm), and this request would be
 identical to the previous one (e.g. same Accept and Origin headers), and the user agent is configured such that it is to
 reuse the data from the existing download instead of initiating a new one, then use the results
 of the existing download instead of starting a new one.

 Otherwise, if the resource is identified by an absolute URL with a scheme that
 does not define a mechanism to obtain the resource (e.g. it is a mailto:
 URL) or that the user agent does not support, then act as if the resource was an HTTP 204 No
 Content response with no other metadata.

 Otherwise, if the resource is identified by the URL
 about:blank, then the resource is immediately available and consists of
 the empty string, with no metadata.

 Otherwise, at a time convenient to the user and the user agent, download (or otherwise
 obtain) the resource, applying the semantics of the relevant specifications (e.g. performing an
 HTTP GET or POST operation, or reading the file from disk, dereferencing , etc).

 For the purposes of the Referer (sic) header, use the
 address of the resource from which Request-URIs are obtained generated in the earlier
 step.

 For the purposes of the Origin header, if the fetching algorithm was explicitly initiated from an origin,
 then the origin that initiated the HTTP request is origin.
 Otherwise, this is a request from a "privacy-sensitive" context. [ORIGIN]

 	

 If the algorithm was not invoked with the block cookies flag, and there are cookies to
 be set, then the user agent must run the following substeps:

 	Wait until ownership of the storage mutex can be taken by this instance of
 the fetching algorithm.

 	Take ownership of the storage mutex.

 	Update the cookies. [COOKIES]
 [image: (This is a fingerprinting vector.)]

 	Release the storage mutex so that it is once again free.

 	

 If the fetched resource is an HTTP redirect or
 equivalent, then:

 	If the force same-origin flag is set and the URL of the target of the
 redirect does not have the same origin as the URL for which the
 fetch algorithm was invoked

 	

 Abort these steps and return failure from this algorithm, as if the remote host could not
 be contacted.

 	If the manual redirect flag is set

 	

 Continue, using the fetched resource (the redirect) as the result of the algorithm. If the
 calling algorithm subsequently requires the user agent to transparently follow the
 redirect, then the user agent must resume this algorithm from the main step, but
 using the target of the redirect as the resource to fetch, rather than the original
 resource.

 	Otherwise

 	

 First, apply any relevant requirements for redirects (such as showing any appropriate
 prompts). Then, redo main step, but using the target of the redirect as the resource to
 fetch, rather than the original resource. For HTTP requests, the new request must include the
 same headers as the original request, except for headers for which other requirements are
 specified (such as the Host header). [HTTP]

 The HTTP specification requires that 301, 302, and 307 redirects, when applied
 to methods other than the safe methods, not be followed without user confirmation. That would
 be an appropriate prompt for the purposes of the requirement in the paragraph above. [HTTP]

 	

 If the algorithm was not invoked with the synchronous flag: When the resource is
 available, or if there is an error of some description, queue a task that uses the
 resource as appropriate. If the resource can be processed incrementally, as, for instance, with
 a progressively interlaced JPEG or an HTML file, additional tasks may be queued to process the
 data as it is downloaded. The task source for these tasks is the networking task source.

 Otherwise, return the resource or error information to the calling algorithm.

 If the user agent can determine the actual length of the resource being fetched for an instance of this algorithm, and if that length is finite, then
 that length is the file's size. Otherwise, the subject of
 the algorithm (that is, the resource being fetched) has no known size. (For example, the HTTP Content-Length header might provide this information.)

 The user agent must also keep track of the number of bytes
 downloaded for each instance of this algorithm. This number must exclude any out-of-band
 metadata, such as HTTP headers.

 The application cache processing model introduces some changes to the networking model to handle the returning of
 cached resources.

 The navigation processing model handles redirects
 itself, overriding the redirection handling that would be done by the fetching algorithm.

 Whether the type sniffing rules apply to the
 fetched resource depends on the algorithm that invokes the rules — they are not always
 applicable.

 Encrypted HTTP and related security concerns

 Anything in this specification that refers to HTTP also applies to HTTP-over-TLS, as
 represented by URLs representing the https scheme.
 [HTTPS]

 User agents should report certificate errors to the user and must either refuse
 to download resources sent with erroneous certificates or must act as if such resources were in
 fact served with no encryption.

 User agents should warn the user that there is a potential problem whenever the user visits a
 page that the user has previously visited, if the page uses less secure encryption on the second
 visit.

 Not doing so can result in users not noticing man-in-the-middle attacks.

 If a user connects to a server with a self-signed certificate, the user agent could allow the
 connection but just act as if there had been no encryption. If the user agent instead allowed the
 user to override the problem and then displayed the page as if it was fully and safely encrypted,
 the user could be easily tricked into accepting man-in-the-middle connections.

 If a user connects to a server with full encryption, but the page then refers to an external
 resource that has an expired certificate, then the user agent will act as if the resource was
 unavailable, possibly also reporting the problem to the user. If the user agent instead allowed
 the resource to be used, then an attacker could just look for "secure" sites that used resources
 from a different host and only apply man-in-the-middle attacks to that host, for example taking
 over scripts in the page.

 If a user bookmarks a site that uses a CA-signed certificate, and then later revisits that
 site directly but the site has started using a self-signed certificate, the user agent could warn
 the user that a man-in-the-middle attack is likely underway, instead of simply acting as if the
 page was not encrypted.

 Determining the type of a resource

 The Content-Type metadata of a resource must be obtained and
 interpreted in a manner consistent with the requirements of the MIME Sniffing specification. [MIMESNIFF]

 The sniffed type of a resource must be found in a
 manner consistent with the requirements given in the MIME Sniffing specification for finding the
 sniffed media type of the relevant sequence of octets. [MIMESNIFF]

 The rules for sniffing images specifically and
 the rules for distinguishing if a resource is
 text or binary are also defined in the MIME Sniffing specification. Both sets of rules
 return a MIME type as their result. [MIMESNIFF]

 It is imperative that the rules in the MIME Sniffing specification be followed
 exactly. When a user agent uses different heuristics for content type detection than the server
 expects, security problems can occur. For more details, see the MIME Sniffing specification. [MIMESNIFF]

 Extracting character encodings from meta elements

 The algorithm for extracting a character encoding from a meta element,
 given a string s, is as follows. It either returns a character encoding or
 nothing.

 	Let position be a pointer into s, initially
 pointing at the start of the string.

 	Loop: Find the first seven characters in s after position that are an ASCII case-insensitive match for the word "charset". If no such match is found, return nothing and abort these
 steps.

 	Skip any space characters that immediately follow the
 word "charset" (there might not be any).

 	If the next character is not a "=" (U+003D), then move position to point just before that next character, and jump back to the step
 labeled loop.

 	Skip any space characters that immediately follow the
 equals sign (there might not be any).

 	

 Process the next character as follows:

 	If it is a """ (U+0022) character and there is a later """ (U+0022) character in s

 	If it is a "'" (U+0027) character and there is a later "'" (U+0027) character in s

 	Return the result of getting an encoding from the substring that is between
 this character and the next earliest occurrence of this character.

 	If it is an unmatched """ (U+0022) character

 	If it is an unmatched "'" (U+0027) character

 	If there is no next character

 	Return nothing.

 	Otherwise

 	Return the result of getting an encoding from the substring that consists of
 this character up to but not including the first space character or ";" (U+003B) character, or the end of s, whichever comes first.

 This algorithm is distinct from those in the HTTP specification (for example, HTTP
 doesn't allow the use of single quotes and requires supporting a backslash-escape mechanism that
 is not supported by this algorithm). While the algorithm is used in
 contexts that, historically, were related to HTTP, the syntax as supported by implementations
 diverged some time ago. [HTTP]

 CORS settings attributes

 A CORS settings attribute is an enumerated
 attribute. The following table lists the keywords and states
 for the attribute — the keywords in the left column map to the
 states in the cell in the second column on the same row as the
 keyword.

 	 Keyword
 	 State
 	 Brief description

 	anonymous
 	Anonymous
 	Cross-origin CORS requests for the element will have the omit credentials flag set.

 	use-credentials
 	Use Credentials
 	Cross-origin CORS requests for the element will not have the omit credentials flag set.

 The empty string is also a valid keyword, and maps to the Anonymous state. The
 attribute's invalid value default is the Anonymous state. For the purposes of reflection, the canonical case for the Anonymous state is the anonymous keyword. The
 missing value default, used when the attribute is omitted, is
 the No CORS state.

 CORS-enabled fetch

 When the user agent is required to perform a potentially
 CORS-enabled fetch of an absolute URL URL with a mode mode that is
 either "No CORS", "Anonymous", or "Use Credentials",
 optionally using a referrer source referrer source, with an origin origin, and with a default origin behaviour default which is either "taint" or
 "fail", it must run the first applicable set of steps from
 the following list. The default origin behaviour is only used if
 mode is "No
 CORS". This algorithm wraps the fetch algorithm
 above, and labels the obtained resource as either
 CORS-same-origin or CORS-cross-origin, or
 blocks the resource entirely.

 	If the URL has the same origin as origin

 	If the URL is a data: URL

 	If the URL is a javascript: URL

 	If the URL is about:blank

 	

 Run these substeps:

 	Fetch URL,
 using referrer source if one was specified,
 with the manual redirect flag set.

 	Loop: Wait for the fetch algorithm
 to know if the result is a redirect or not.

 	

 Follow the first appropriate steps from the following list:

 	If the result of the fetch is a redirect, and
 the origin of the target URL of the redirect is
 not the same origin as origin

 	

 Set URL to the target URL of the
 redirect and return to the top of the potentially
 CORS-enabled fetch algorithm (this time, one of the
 other branches below might be taken, based on the value of
 mode).

 	If the result of the fetch is a redirect

 	

 The origin of the target URL of
 the redirect is the same origin as origin.

 Transparently follow the redirect and jump to
 the step labeled loop above.

 	Otherwise

 	

 The resource is available, it is not a
 redirect, and its origin is the same
 origin as origin.

 The tasks from the
 fetch algorithm are queued normally, and for the purposes of the
 calling algorithm, the obtained resource is
 CORS-same-origin.

 	If mode is "No CORS" and default is taint

 	

 The URL does not have the
 same origin as origin.

 Fetch URL, using
 referrer source if one was specified.

 The tasks from the
 fetch algorithm are queued normally, but for the purposes of the calling
 algorithm, the obtained resource is
 CORS-cross-origin. The user agent may report a
 cross-origin resource access failure to the user (e.g. in a
 debugging console).

 	If mode is "No CORS"

 	

 The URL does not have the
 same origin as origin, and default is fail.

 Discard any data fetched as part of this algorithm, and prevent
 any tasks from such invocations
 of the fetch algorithm from being queued.

 For the purposes of the calling algorithm, the user agent must act
 as if there was a fatal network error and no resource was
 obtained. The user agent may report a cross-origin resource access
 failure to the user (e.g. in a debugging console).

 	If mode is "Anonymous" or "Use
 Credentials"

 	

 The URL does not have the
 same origin as origin.

 Run these steps:

 	Perform a cross-origin request
 with the request URL set to URL, with
 the CORS referrer source set to referrer source if one was specified, the
 source origin set to origin, and with
 the omit credentials flag set if mode
 is "Anonymous"
 and not set otherwise. [CORS]

 	Wait for the CORS cross-origin request status
 to have a value.

 	

 Jump to the appropriate step from the following list:

 	If the CORS cross-origin request status is not success

 	

 Discard all fetched data and prevent any tasks from the fetch
 algorithm from being queued.
 For the purposes of the calling algorithm, the user agent must
 act as if there was a fatal network error and no resource was
 obtained. If a CORS resource sharing check
 failed, the user agent may report a cross-origin resource
 access failure to the user (e.g. in a debugging console).

 	If the CORS cross-origin request status is success

 	

 The tasks from the
 fetch algorithm are queued normally, and for the purposes of the
 calling algorithm, the obtained resource is
 CORS-same-origin.

 Common DOM interfaces

 Reflecting content attributes in IDL attributes

 Some IDL attributes are defined to reflect a particular content attribute. This
 means that on getting, the IDL attribute returns the current value of the content attribute, and
 on setting, the IDL attribute changes the value of the content attribute to the given value.

 In general, on getting, if the content attribute is not present, the IDL attribute must act as
 if the content attribute's value is the empty string; and on setting, if the content attribute is
 not present, it must first be added.

 If a reflecting IDL attribute is a DOMString attribute whose content attribute is
 defined to contain a URL, then on getting, the IDL attribute must resolve the value of the content attribute relative to the element
 and return the resulting absolute URL if that was successful, or the empty string
 otherwise; and on setting, must set the content attribute to the specified literal value. If the
 content attribute is absent, the IDL attribute must return the default value, if the content
 attribute has one, or else the empty string.

 If a reflecting IDL attribute is a DOMString attribute whose content attribute is
 defined to contain one or more URLs, then on getting, the IDL attribute
 must split the content attribute on spaces and
 return the concatenation of resolving each token URL to an
 absolute URL relative to the element, with a single U+0020 SPACE character between
 each URL, ignoring any tokens that did not resolve successfully. If the content attribute is
 absent, the IDL attribute must return the default value, if the content attribute has one, or else
 the empty string. On setting, the IDL attribute must set the content attribute to the specified
 literal value.

 If a reflecting IDL attribute is a DOMString attribute whose content attribute is
 an enumerated attribute, and the IDL attribute is limited to only known
 values, then, on getting, the IDL attribute must return the conforming value associated with
 the state the attribute is in (in its canonical case), if any, or the empty string if the
 attribute is in a state that has no associated keyword value or if the attribute is not in a defined state
 (e.g. the attribute is missing and there is no missing value default); and on setting, the
 content attribute must be set to the specified new value.

 If a reflecting IDL attribute is a DOMString attribute but doesn't fall into any
 of the above categories, then the getting and setting must be done in a transparent,
 case-preserving manner.

 If a reflecting IDL attribute is a boolean attribute, then on getting the
 IDL attribute must return true if the content attribute is set, and false if it is absent. On
 setting, the content attribute must be removed if the IDL attribute is set to false, and must be
 set to the empty string if the IDL attribute is set to true. (This corresponds to the rules for
 boolean content attributes.)

 If a reflecting IDL attribute has a signed integer type (long) then, on getting,
 the content attribute must be parsed according to the rules for parsing signed integers, and if that is successful, and the value is in
 the range of the IDL attribute's type, the resulting value must be returned. If, on the other
 hand, it fails or returns an out of range value, or if the attribute is absent, then the default
 value must be returned instead, or 0 if there is no default value. On setting, the given value
 must be converted to the shortest possible string representing the number as a valid
 integer and then that string must be used as the new content attribute value.

 If a reflecting IDL attribute has a signed integer type (long) that is
 limited to only non-negative numbers then, on getting, the content attribute must be
 parsed according to the rules for parsing non-negative integers, and if that is
 successful, and the value is in the range of the IDL attribute's type, the resulting value must be
 returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is
 absent, the default value must be returned instead, or −1 if there is no default value. On
 setting, if the value is negative, the user agent must throw an IndexSizeError
 exception. Otherwise, the given value must be converted to the shortest possible string
 representing the number as a valid non-negative integer and then that string must be
 used as the new content attribute value.

 If a reflecting IDL attribute has an unsigned integer type (unsigned
 long) then, on getting, the content attribute must be parsed according to the rules
 for parsing non-negative integers, and if that is successful, and the value is in the range
 0 to 2147483647 inclusive, the resulting value must be returned. If, on the other hand, it fails
 or returns an out of range value, or if the attribute is absent, the default value must be
 returned instead, or 0 if there is no default value. On setting, first, if the new value is in the
 range 0 to 2147483647, then let n be the new value, otherwise let n be the default value, or 0 if there is no default value; then, n must be converted to the shortest possible string representing the number as a
 valid non-negative integer and that string must be used as the new content attribute
 value.

 If a reflecting IDL attribute has an unsigned integer type (unsigned long) that is
 limited to only non-negative numbers greater than zero, then the behavior is similar to
 the previous case, but zero is not allowed. On getting, the content attribute must first be parsed
 according to the rules for parsing non-negative integers, and if that is successful,
 and the value is in the range 1 to 2147483647 inclusive, the resulting value must be returned. If,
 on the other hand, it fails or returns an out of range value, or if the attribute is absent, the
 default value must be returned instead, or 1 if there is no default value. On setting, if the
 value is zero, the user agent must throw an IndexSizeError exception. Otherwise,
 first, if the new value is in the range 1 to 2147483647, then let n be the new
 value, otherwise let n be the default value, or 1 if there is no default
 value; then, n must be converted to the shortest possible string representing
 the number as a valid non-negative integer and that string must be used as the new
 content attribute value.

 If a reflecting IDL attribute has a floating-point number type (double or
 unrestricted double), then, on getting, the content attribute must be parsed
 according to the rules for parsing floating-point number values, and if that is
 successful, the resulting value must be returned. If, on the other hand, it fails, or if the
 attribute is absent, the default value must be returned instead, or 0.0 if there is no default
 value. On setting, the given value must be converted to the best representation of the
 number as a floating-point number and then that string must be used as the new content
 attribute value.

 If a reflecting IDL attribute has a floating-point number type (double or
 unrestricted double) that is limited to numbers greater than zero, then
 the behavior is similar to the previous case, but zero and negative values are not allowed. On
 getting, the content attribute must be parsed according to the rules for parsing
 floating-point number values, and if that is successful and the value is greater than 0.0,
 the resulting value must be returned. If, on the other hand, it fails or returns an out of range
 value, or if the attribute is absent, the default value must be returned instead, or 0.0 if there
 is no default value. On setting, if the value is less than or equal to zero, then the value must
 be ignored. Otherwise, the given value must be converted to the best representation of the
 number as a floating-point number and then that string must be used as the new content
 attribute value.

 The values Infinity and Not-a-Number (NaN) values throw an exception on setting,
 as defined in the Web IDL specification. [WEBIDL]

 If a reflecting IDL attribute has the type DOMTokenList or
 DOMSettableTokenList, then on getting it must return a DOMTokenList or
 DOMSettableTokenList object (as appropriate) whose associated element is the element
 in question and whose associated attribute's local name is the name of the attribute in question.
 The same DOMTokenList or DOMSettableTokenList object must be returned
 every time for each attribute.

 If a reflecting IDL attribute has the type HTMLElement, or an interface that
 descends from HTMLElement, then, on getting, it must run the following algorithm
 (stopping at the first point where a value is returned):

 	If the corresponding content attribute is absent, then the IDL attribute must return
 null.

 	Let candidate be the element that the document.getElementById() method would find when
 called on the content attribute's document if it were passed as its argument the current value of
 the corresponding content attribute.

 	If candidate is null, or if it is not type-compatible with the IDL
 attribute, then the IDL attribute must return null.

 	Otherwise, it must return candidate.

 On setting, if the given element has an id attribute, and has the
 same home subtree as the element of the attribute being set, and the given element is
 the first element in that home subtree whose ID is
 the value of that id attribute, then the content attribute must be
 set to the value of that id attribute. Otherwise, the content
 attribute must be set to the empty string.

 Collections

 The HTMLAllCollection,
 HTMLFormControlsCollection,
 HTMLOptionsCollection,

 interfaces are collections derived from the
 HTMLCollection interface.

 HTMLAllCollection

 The HTMLAllCollection interface is used for generic collections of
 elements just like HTMLCollection, with the exception that its namedItem() method returns an
 HTMLCollection object when there are multiple matching elements, and that its item() method can be used as a synonym for its namedItem() method. It is intended only for the
 legacy document.all attribute.

 interface HTMLAllCollection : HTMLCollection {
 // inherits and item(unsigned long index)
 (HTMLCollection or Element)? item(DOMString name);
 legacycaller getter (HTMLCollection or Element)? namedItem(DOMString name); // shadows inherited namedItem()
 HTMLAllCollection tags(DOMString tagName);
};

 	collection . length

 	
 Returns the number of elements in the collection.

 	element = collection . item(index)

 	collection[index]

 	collection(index)

 	
 Returns the item with index index from the collection. The items are sorted in tree order.

 	element = collection . item(name)

 	collection = collection . item(name)

 	element = collection . namedItem(name)

 	collection = collection . namedItem(name)

 	collection[name]

 	collection(name)

 	
 Returns the item with ID or name name from the collection.

 If there are multiple matching items, then an HTMLCollection object containing all those elements is returned.

 Only a, applet, area, embed,
 form, frame, frameset, iframe,
 img, and object elements can have a name for the purpose of this
 method; their name is given by the value of their name attribute.

 	collection = collection . tags(tagName)

 	
 Returns a collection that is a filtered view of the current collection, containing only elements with the given tag name.

 The object's supported property indices are as defined for
 HTMLCollection objects.

 The supported property names consist of the non-empty values of all the id attributes of all the elements represented by the
 collection, and the non-empty values of all the name attributes of all the
 a, applet, area, embed, form,
 frame, frameset, iframe, img, and
 object elements represented by the collection, in tree
 order, ignoring later duplicates, with the id of an element
 preceding its name if it contributes both, they differ from each other, and neither
 is the duplicate of an earlier entry.

 The item(name) and namedItem(name)
 methods must act according to the following algorithm:

 	If name is the empty string, return null and stop the algorithm.

 	

 Let collection be an HTMLCollection object rooted at the
 same node as the HTMLAllCollection object on which the method was invoked, whose
 filter matches only elements that already match the filter of the HTMLAllCollection
 object on which the method was invoked and that are either:

 	a, applet, area, embed,
 form, frame, frameset, iframe,
 img, or object elements with a name attribute
 equal to name, or,

 	elements with an ID equal to name.

 	If, at the time the method is called, there is exactly one node in collection, then return that node and stop the algorithm.

 	Otherwise, if, at the time the method is called, collection is empty,
 return null and stop the algorithm.

 	Otherwise, return collection.

 The tags(tagName) method must return an HTMLAllCollection rooted
 at the same node as the HTMLAllCollection object on which the method was invoked,
 whose filter matches only HTML elements whose local name is the tagName argument and that already match the filter of the
 HTMLAllCollection object on which the method was invoked. In HTML
 documents, the argument must first be converted to ASCII lowercase.

 HTMLFormControlsCollection

 The HTMLFormControlsCollection interface is used for collections of
 listed elements in form and
 fieldset elements.

 interface HTMLFormControlsCollection : HTMLCollection {
 // inherits and item()
 legacycaller getter (RadioNodeList or Element)? namedItem(DOMString name); // shadows inherited namedItem()
};

interface RadioNodeList : NodeList {
 attribute DOMString value;
};

 	collection . length

 	
 Returns the number of elements in the collection.

 	element = collection . item(index)

 	collection[index]

 	collection(index)

 	
 Returns the item with index index from the collection. The items are sorted in tree order.

 	element = collection . namedItem(name)

 	radioNodeList = collection . namedItem(name)

 	collection[name]

 	collection(name)

 	
 Returns the item with ID or name name from the collection.

 If there are multiple matching items, then a RadioNodeList object containing all those elements is returned.

 	radioNodeList . value [= value]

 	
 Returns the value of the first checked radio button represented by the object.

 Can be set, to check the first radio button with the given value represented by the object.

 The object's supported property indices are as defined for
 HTMLCollection objects.

 The supported property names consist of the non-empty values of all the id and name attributes of all the
 elements represented by the collection, in tree order, ignoring later
 duplicates, with the id of an element preceding its name if it contributes both, they differ from each other, and neither is the
 duplicate of an earlier entry.

 The namedItem(name) method must act according to the following algorithm:

 	If name is the empty string, return null and stop the algorithm.

 	If, at the time the method is called, there is exactly one node in the collection that has
 either an id attribute or a name
 attribute equal to name, then return that node and stop the algorithm.

 	Otherwise, if there are no nodes in the collection that have either an id attribute or a name attribute equal
 to name, then return null and stop the algorithm.

 	Otherwise, create a new RadioNodeList object representing a live
 view of the HTMLFormControlsCollection object, further filtered so that the only
 nodes in the RadioNodeList object are those that have either an id attribute or a name attribute equal
 to name. The nodes in the RadioNodeList object must be sorted in
 tree order.

 	Return that RadioNodeList object.

 Members of the RadioNodeList interface inherited from the NodeList
 interface must behave as they would on a NodeList object.

 The value IDL attribute on the
 RadioNodeList object, on getting, must return the value returned by running the
 following steps:

 	Let element be the first element in tree order
 represented by the RadioNodeList object that is an input element whose
 type attribute is in the Radio Button state and whose checkedness is true. Otherwise, let it be null.

 	If element is null, or if it is an element with no value attribute, return the empty string.

 	Otherwise, return the value of element's value attribute.

 On setting, the value IDL attribute must run the
 following steps:

 	Let element be the first element in tree order
 represented by the RadioNodeList object that is an input element whose
 type attribute is in the Radio Button state and whose value content attribute is present and equal to the new value, if
 any. Otherwise, let it be null.

 	If element is not null, then set its checkedness to true.

 HTMLOptionsCollection

 The HTMLOptionsCollection interface is used for collections of
 option elements. It is always rooted on a select element and has
 attributes and methods that manipulate that element's descendants.

 interface HTMLOptionsCollection : HTMLCollection {
 // inherits item()
 attribute unsigned long length; // shadows inherited length
 legacycaller getter HTMLOptionElement? namedItem(DOMString name); // shadows inherited namedItem()
 setter creator void (unsigned long index, HTMLOptionElement? option);
 void add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement or long)? before = null);
 void remove(long index);
 attribute long selectedIndex;
};

 	collection . length [= value]

 	
 Returns the number of elements in the collection.

 When set to a smaller number, truncates the number of option elements in the corresponding container.

 When set to a greater number, adds new blank option elements to that container.

 	element = collection . item(index)

 	collection[index]

 	collection(index)

 	
 Returns the item with index index from the collection. The items are sorted in tree order.

 	element = collection . namedItem(name)

 	nodeList = collection . namedItem(name)

 	collection[name]

 	collection(name)

 	
 Returns the item with ID or name name from the collection.

 If there are multiple matching items, then the first is returned.

 	collection . add(element [, before])

 	
 Inserts element before the node given by before.

 The before argument can be a number, in which case element is inserted before the item with that number, or an element from the
 collection, in which case element is inserted before that element.

 If before is omitted, null, or a number out of range, then element will be added at the end of the list.

 This method will throw a HierarchyRequestError exception if element is an ancestor of the element into which it is to be inserted.

 	collection . selectedIndex [= value]

 	

 Returns the index of the first selected item, if any, or −1 if there is no selected
 item.

 Can be set, to change the selection.

 The object's supported property indices are as defined for
 HTMLCollection objects.

 On getting, the length
 attribute must return the number of nodes represented by the collection.

 On setting, the behavior depends on whether the new value is equal to, greater than, or less
 than the number of nodes represented by the collection at that time. If the number is
 the same, then setting the attribute must do nothing. If the new value is greater, then n new option elements with no attributes and no child nodes must be
 appended to the select element on which the HTMLOptionsCollection is
 rooted, where n is the difference between the two numbers (new value minus old
 value). Mutation events must be fired as if a DocumentFragment containing the new
 option elements had been inserted. If the new value is lower, then the last n nodes in the collection must be removed from their parent nodes, where n is the difference between the two numbers (old value minus new value).

 Setting length never removes
 or adds any optgroup elements, and never adds new children to existing
 optgroup elements (though it can remove children from them).

 The supported property names consist of the non-empty values of all the id and name attributes of all the
 elements represented by the collection, in tree order, ignoring later
 duplicates, with the id of an element preceding its name if it contributes both, they differ from each other, and neither is
 the duplicate of an earlier entry.

 The namedItem(name) method must return the first node in the collection that has
 either an id attribute or a name attribute equal to name, if there is one and if name is not the empty string;
 otherwise, it must return null.

 When the user agent is to set the value of a new
 indexed property for a given property index index to a new value value, it must run the following algorithm:

 	If value is null, invoke the steps for the remove method with index as
 the argument, and abort these steps.

 	Let length be the number of nodes represented by the
 collection.

 	Let n be index minus length.

 	If n is greater than zero, then append a DocumentFragment consisting of new option elements with no attributes and
 no child nodes to the select element on which the HTMLOptionsCollection
 is rooted.

 	If n is greater than or equal to zero, append value to the select
 element. Otherwise, replace the indexth element in the collection by value.

 The add(element, before) method must act according to the following algorithm:

 	If element is an ancestor of the select element on which
 the HTMLOptionsCollection is rooted, then throw a HierarchyRequestError
 exception and abort these steps.

 	If before is an element, but that element isn't a descendant of the
 select element on which the HTMLOptionsCollection is rooted, then throw
 a NotFoundError exception and abort these steps.

 	If element and before are the same element, then
 return and abort these steps.

 	If before is a node, then let reference be that
 node. Otherwise, if before is an integer, and there is a beforeth node in the collection, let reference be that node.
 Otherwise, let reference be null.

 	If reference is not null, let parent be the parent
 node of reference. Otherwise, let parent be the
 select element on which the HTMLOptionsCollection is rooted.

 	Act as if the DOM insertBefore() method was
 invoked on the parent node, with element as the first
 argument and reference as the second argument.

 The remove(index) method must act according to the following algorithm:

 	If the number of nodes represented by the collection is zero, abort these
 steps.

 	If index is not a number greater than or equal to 0 and less than the
 number of nodes represented by the collection, abort these steps.

 	Let element be the indexth element in the
 collection.

 	Remove element from its parent node.

 The selectedIndex IDL
 attribute must act like the identically named attribute on the select element on
 which the HTMLOptionsCollection is rooted

 DOMStringMap

 The DOMStringMap interface represents a set of name-value pairs. It exposes these
 using the scripting language's native mechanisms for property access.

 When a DOMStringMap object is instantiated, it is associated with three
 algorithms, one for getting the list of name-value pairs, one for setting names to certain values,
 and one for deleting names.

 [OverrideBuiltins]
interface DOMStringMap {
 getter DOMString (DOMString name);
 setter creator void (DOMString name, DOMString value);
 deleter void (DOMString name);
};

 The supported property names on a DOMStringMap object at any instant
 are the names of each pair returned from the algorithm for getting the list of name-value pairs at
 that instant, in the order returned.

 To determine the value of a named property name in a DOMStringMap, the user agent must return the value component
 of the name-value pair whose name component is name in the list returned by
 the algorithm for getting the list of name-value pairs.

 To set the value of a new or existing named property name to value
 value, the algorithm for setting names to certain values must be run, passing
 name as the name and the result of converting value to a
 DOMString as the value.

 To delete an existing named property name, the algorithm for deleting names must be run, passing name as the name.

 The DOMStringMap interface definition here is only intended for
 JavaScript environments. Other language bindings will need to define how DOMStringMap
 is to be implemented for those languages.

 The dataset attribute on elements exposes the data-* attributes on the element.

 Given the following fragment and elements with similar constructions:

 <img class="tower" id="tower5" data-x="12" data-y="5"
 data-ai="robotarget" data-hp="46" data-ability="flames"
 src="towers/rocket.png alt="Rocket Tower">

 ...one could imagine a function splashDamage() that takes some arguments, the first
 of which is the element to process:

 function splashDamage(node, x, y, damage) {
 if (node.classList.contains('tower') && // checking the 'class' attribute
 node.dataset.x == x && // reading the 'data-x' attribute
 node.dataset.y == y) { // reading the 'data-y' attribute
 var hp = parseInt(node.dataset.hp); // reading the 'data-hp' attribute
 hp = hp - damage;
 if (hp < 0) {
 hp = 0;
 node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
 delete node.dataset.ability; // removing the 'data-ability' attribute
 }
 node.dataset.hp = hp; // setting the 'data-hp' attribute
 }
}

 Transferable objects

 Some objects support being copied and closed in one operation.
 This is called transferring the object, and is used in
 particular to transfer ownership of unsharable or expensive
 resources across worker boundaries.

 The following Transferable types exist:

 	ArrayBuffer [TYPEDARRAY]

	MessagePort

 The following IDL block formalizes this:

 [NoInterfaceObject]
interface Transferable { };
ArrayBuffer implements Transferable;
 implements Transferable;

 To transfer a Transferable object to a
 new owner, the user agent must run the steps defined for the type of
 object in question. The steps will return a new object of the same
 type, and will permanently neuter the original
 object. (This is an irreversible and non-idempotent operation; once
 an object has been transferred, it cannot be transferred, or indeed
 used, again.)

 To transfer an
 ArrayBuffer object old to a new owner owner,
 a user agent must create a new ArrayBuffer object pointing at the same underlying
 data as old, thus obtaining new, must neuter the old object, and must
 finally return new. [TYPEDARRAY]

 Safe passing of structured data

 When a user agent is required to obtain a structured clone of a value, optionally
 with a transfer map, it must run the following algorithm, which either returns a separate
 value, or throws an exception. If a transfer map is provided, it consists of an association
 list of Transferable objects to placeholder objects.

 	Let input be the value being cloned.

 	Let transfer map be the transfer map passed to the algorithm,
 if any, or the empty list otherwise.

 	Let memory be an association list of pairs of objects, initially
 empty. This is used to handle duplicate references. In each pair of objects, one is called the
 source object and the other the destination object.

 	For each mapping in transfer map, add a mapping from the
 Transferable object (the source object) to the placeholder object (the destination
 object) to memory.

 	Let output be the value resulting from calling the internal
 structured cloning algorithm with input as the "input" argument, and memory as the "memory" argument.

 	Return output.

 The internal structured cloning algorithm is always called with two arguments, input and memory, and its behavior is as follows:

 	If input is the source object of a pair of objects in memory, then return the destination object in that pair of objects and abort these
 steps.

 	If input is a primitive value, then return that value and abort these
 steps.

 	Let deep clone be false.

 	

 The input value is an object. Jump to the appropriate step below:

 	If input is a Boolean object

 	Let output be a newly constructed Boolean object with the same value
 as input.

 	If input is a Number object

 	Let output be a newly constructed Number object with the same value
 as input.

 	If input is a String object

 	Let output be a newly constructed String object with the same value
 as input.

 	If input is a Date object

 	Let output be a newly constructed Date object with the
 same value as input.

 	If input is a RegExp object

 	

 Let output be a newly constructed RegExp object with the
 same pattern and flags as input.

 The value of the lastIndex property is not copied.

 	If input is a File object

 	Let output be a newly constructed File object
 corresponding to the same underlying data.

 	If input is a Blob object

 	Let output be a newly constructed Blob object
 corresponding to the same underlying data.

 	If input is a FileList object

 	Let output be a newly constructed FileList object
 containing a list of newly constructed File objects corresponding to the same
 underlying data as those in input, maintaining their relative
 order.

 	If input is an ImageData object

 	Let output be a newly constructed ImageData object
 whose width, height, and resolution attributes have values equal to the
 corresponding attributes on input, and whose data attribute has the value obtained from invoking the
 internal structured cloning algorithm recursively with the value of the data attribute on input as the new "input" argument and memory as the new "memory" argument.

 	If input is an ArrayBuffer object

 	If input has been neutered, throw a DataCloneError
 exception and abort the overall structured clone algorithm. Otherwise, let output be a newly constructed ArrayBuffer object whose contents are
 a copy of input's contents, with the same length.

 	If input is an ArrayBufferView object

 	

	

 Let output be a newly constructed object of the same class as input, with each IDL attribute defined for that class being set to the value
 obtained from invoking the internal structured cloning algorithm recursively with
 the value of the attribute on input as the new "input"
 argument and memory as the new "memory" argument.

 Only IDL attributes defined on the class (including the
 ArrayBufferView attributes) are cloned. Properties added by a script, for
 example, are not cloned.

 	If input is an Array object

 	

 Let output be a newly constructed empty Array object whose
 length is equal to the length of input, and set deep clone to true.

 This means that the length of sparse arrays is preserved.

 	If input is an Object object

 	Let output be a newly constructed empty Object
 object, and set deep clone to true.

 	If input is an object that another specification defines how to clone

 	Let output be a clone of the object as defined by the other
 specification.

 	If input is another native object type (e.g. Error, Function)

 	If input is a host object (e.g. a DOM node)

 	Throw a DataCloneError exception and abort the overall structured
 clone algorithm.

 For the purposes of the algorithm above, an object is a particular type of object class if its [[Class]] internal property is equal to class.

 For example, "input is an Object object" if
 input's [[Class]] internal property is equal to the string "Object".

 	Add a mapping from input (the source object) to output (the destination object) to memory.

 	

 If deep clone is set, then, for each enumerable own property in input, run the following steps:

 	Let name be the name of the property.

 	Let source value be the result of calling the [[Get]] internal
 method of input with the argument name. If the [[Get]]
 internal method of a property involved executing script, and that script threw an uncaught
 exception, then abort the overall structured clone algorithm, with that exception
 being passed through to the caller.

 	Let cloned value be the result of invoking the internal
 structured cloning algorithm recursively with source value as the
 "input" argument and memory as the "memory" argument. If this results in an exception, then abort the overall
 structured clone algorithm, with that exception being passed through to the
 caller.

 	Add a new property to output having the name name, and having the value cloned value.

 The order of the properties in the input and output
 objects must be the same, and any properties whose [[Get]] internal method involves running
 script must be processed in that same order.

 This does not walk the prototype chain.

 Property descriptors, setters, getters, and analogous features are not copied in
 this process. For example, the property in the input could be marked as read-only, but in the
 output it would just have the default state (typically read-write, though that could depend on
 the scripting environment).

 Properties of Array objects are not treated any differently than those of other
 Objects. In particular, this means that non-index properties of arrays are copied as well.

 	Return output.

 This algorithm preserves cycles and preserves the identity of duplicate objects in
 graphs.

 Callbacks

 The following callback function type is used in various APIs that interact with
 File objects:

 callback FileCallback = void (File file);

 Garbage collection

 There is an implied strong reference from any IDL
 attribute that returns a pre-existing object to that object.

 For example, the document.location attribute means
 that there is a strong reference from a Document
 object to its Location object. Similarly, there is
 always a strong reference from a Document to any
 descendant nodes, and from any node to its owner
 Document.

 Namespaces

 The HTML namespace is: http://www.w3.org/1999/xhtml

 The MathML namespace is: http://www.w3.org/1998/Math/MathML

 The SVG namespace is: http://www.w3.org/2000/svg

 The XLink namespace is: http://www.w3.org/1999/xlink

 The XML namespace is: http://www.w3.org/XML/1998/namespace

 The XMLNS namespace is: http://www.w3.org/2000/xmlns/

 Data mining tools and other user agents that perform operations
 on content without running scripts, evaluating CSS or XPath
 expressions, or otherwise exposing the resulting DOM to arbitrary
 content, may "support namespaces" by just asserting that their DOM
 node analogues are in certain namespaces, without actually exposing
 the above strings.

 In the HTML syntax, namespace prefixes
 and namespace declarations do not have the same effect as in XML.
 For instance, the colon has no special meaning in HTML element
 names.

Semantics, structure, and APIs of HTML documents

 Documents

 Every XML and HTML document in an HTML UA is represented by a Document object. [DOM]

 The document's address is an absolute URL that is initially set when
 the Document is created but that can change during the lifetime of the
 Document, for example when the user navigates to a
 fragment identifier on the page or when the pushState() method is called with a new URL.

 Interactive user agents typically expose the document's address in
 their user interface. This is the primary mechanism by which a user can tell if a site is
 attempting to impersonate another.

 When a Document is created by a script using
 the createDocument() or createHTMLDocument() APIs, the
 document's address is the same as the document's address of the script's
 document, and the Document is both ready for post-load tasks and
 completely loaded immediately.

 The document's referrer is an absolute URL that can be set when the
 Document is created. If it is not explicitly set, then its value is the empty
 string.

 Each Document object has a reload override flag that is originally
 unset. The flag is set by the document.open() and document.write() methods in certain situations. When the flag is
 set, the Document also has a reload override buffer which is a Unicode
 string that is used as the source of the document when it is reloaded.

 When the user agent is to perform an overridden reload, it must act as follows:

 	Let source be the value of the browsing context's
 active document's reload override buffer.

 	Let address be the browsing context's active
 document's address.

 	Navigate the browsing context
 to a resource whose source is source, with replacement enabled.
 When the navigate algorithm creates a Document object for this purpose,
 set that Document's reload override flag and set its reload
 override buffer to source.

 When it comes time to set the document's address in the navigation algorithm, use address as the
 override URL.

 The Document object

 The DOM specification defines a Document interface, which
 this specification extends significantly:

 enum DocumentReadyState { "loading", "interactive", "complete" };

[OverrideBuiltins]
partial /*sealed*/ interface Document {
 // resource metadata management
 [PutForwards=href, Unforgeable] readonly attribute Location? location;
 attribute DOMString domain;
 readonly attribute DOMString referrer;
 attribute DOMString cookie;
 readonly attribute DOMString lastModified;
 readonly attribute DocumentReadyState readyState;

 // DOM tree accessors
 getter object (DOMString name);
 attribute DOMString title;
 attribute DOMString dir;
 attribute HTMLElement? body;
 readonly attribute HTMLHeadElement? head;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection embeds;
 readonly attribute HTMLCollection plugins;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection scripts;
 NodeList getElementsByName(DOMString elementName);

 // dynamic markup insertion
 Document open(optional DOMString type = "text/html", optional DOMString replace = "");
 WindowProxy open(DOMString url, DOMString name, DOMString features, optional boolean replace = false);
 void close();
 void write(DOMString... text);
 void writeln(DOMString... text);

 // user interaction
 readonly attribute WindowProxy? defaultView;
 readonly attribute Element? activeElement;
 boolean hasFocus();
 attribute DOMString designMode;
 boolean execCommand(DOMString commandId, optional boolean showUI = false, optional DOMString value = "");
 boolean queryCommandEnabled(DOMString commandId);
 boolean queryCommandIndeterm(DOMString commandId);
 boolean queryCommandState(DOMString commandId);
 boolean queryCommandSupported(DOMString commandId);
 DOMString queryCommandValue(DOMString commandId);

 // special event handler IDL attributes that only apply to Document objects
 [LenientThis] attribute EventHandler onreadystatechange;
};
Document implements GlobalEventHandlers;

 Security

 User agents must throw a SecurityError exception whenever any
 properties of a Document object are accessed when the incumbent script
 has an effective script origin that is not the same
 as the Document's effective script origin.

 When the incumbent script's effective script origin is different than
 a Document object's effective script origin, the user agent must act as
 if all the properties of
 that Document object had their [[Enumerable]] attribute set to false.

 Resource metadata management

 	document . referrer

 	

 Returns the address of the Document
 from which the user navigated to this one, unless it was blocked or there was no such document,
 in which case it returns the empty string.

 The noreferrer link type can be used to block the
 referrer.

 The referrer attribute must return
 the document's referrer.

 In the case of HTTP, the referrer IDL
 attribute will match the Referer (sic) header that was sent when
 fetching the current page.

 Typically user agents are configured to not report referrers in the case where the
 referrer uses an encrypted protocol and the current page does not (e.g. when navigating from an
 https: page to an http: page).

 	document . cookie [= value]

 	

 Returns the HTTP cookies that apply to the Document. If there are no cookies or
 cookies can't be applied to this resource, the empty string will be returned.

 Can be set, to add a new cookie to the element's set of HTTP cookies.

 If the contents are sandboxed into a
 unique origin (e.g. in an iframe with the sandbox attribute), a SecurityError exception
 will be thrown on getting and setting.

 The cookie attribute represents the cookies
 of the resource identified by the document's address.

 A Document object that falls into one of the following conditions is a
 cookie-averse Document object:

 	A Document that has no browsing context.

 	A Document whose address does not
 use a server-based naming authority.

 On getting, if the document is a cookie-averse Document
 object, then the user agent must return the empty string. Otherwise, if the
 Document's origin is not a scheme/host/port tuple, the user agent must
 throw a SecurityError exception. Otherwise, the user agent must first obtain
 the storage mutex and then return the cookie-string for the document's address
 for a "non-HTTP" API, decoded using the UTF-8 decoder. [COOKIES]
 [image: (This is a fingerprinting vector.)]

 On setting, if the document is a cookie-averse Document object, then
 the user agent must do nothing. Otherwise, if the Document's origin is
 not a scheme/host/port tuple, the user agent must throw a SecurityError exception.
 Otherwise, the user agent must obtain the storage mutex and then act as it would when
 receiving a set-cookie-string for the
 document's address via a "non-HTTP" API, consisting of the new value encoded as UTF-8. [COOKIES] [RFC3629]

 Since the cookie attribute is accessible
 across frames, the path restrictions on cookies are only a tool to help manage which cookies are
 sent to which parts of the site, and are not in any way a security feature.

 	document . lastModified

 	
 Returns the date of the last modification to the document, as reported by the server, in the
 form "MM/DD/YYYY hh:mm:ss", in the user's local time zone.

 If the last modification date is not known, the current time is returned instead.

 The lastModified attribute, on
 getting, must return the date and time of the Document's source file's last
 modification, in the user's local time zone, in the following format:

 	 The month component of the date.

 	 A "/" (U+002F) character.

 	 The day component of the date.

 	 A "/" (U+002F) character.

 	 The year component of the date.

 	 A U+0020 SPACE character.

 	 The hours component of the time.

 	 A ":" (U+003A) character.

 	 The minutes component of the time.

 	 A ":" (U+003A) character.

 	 The seconds component of the time.

 All the numeric components above, other than the year, must be given as two ASCII
 digits representing the number in base ten, zero-padded if necessary. The year must be
 given as the shortest possible string of four or more ASCII digits representing the
 number in base ten, zero-padded if necessary.

 The Document's source file's last modification date and time must be derived from
 relevant features of the networking protocols used, e.g. from the value of the HTTP Last-Modified header of the document, or from metadata in the
 file system for local files. If the last modification date and time are not known, the attribute
 must return the current date and time in the above format.

 	document . readyState

 	
 Returns "loading" while the Document is loading, "interactive" once it is finished parsing but still loading sub-resources, and
 "complete" once it has loaded.

 The readystatechange event fires on the
 Document object when this value changes.

 Each document has a current document readiness. When a Document object
 is created, it must have its current document readiness set to the string "loading" if the document is associated with an HTML parser, an
 XML parser, or an XSLT processor, and to the string "complete"
 otherwise. Various algorithms during page loading affect this value. When the value is set, the
 user agent must fire a simple event named readystatechange at the Document
 object.

 A Document is said to have an active parser if it is associated with an
 HTML parser or an XML parser that has not yet been stopped or aborted.

 The readyState IDL attribute must, on
 getting, return the current document readiness.

 DOM tree accessors

 The html element of a document is the
 document's root element, if there is one and it's an
 html element, or null otherwise.

 	document . head

 	
 Returns the head element.

 The head element of a document is the
 first head element that is a child of the
 html element, if there is one, or null
 otherwise.

 The head
 attribute, on getting, must return the head
 element of the document (a head element or
 null).

 	document . title [= value]

 	
 Returns the document's title, as given by the
 title element.

 Can be set, to update the document's title. If there is no
 head element,
 the new value is ignored.

 In SVG documents, the SVGDocument interface's
 title attribute takes
 precedence.

 The title element of a document is the
 first title element in the document (in tree order), if
 there is one, or null otherwise.

 The title attribute must,
 on getting, run the following algorithm:

 	If the root element is an svg
 element in the "http://www.w3.org/2000/svg"
 namespace, and the user agent supports SVG, then return the value
 that would have been returned by the IDL attribute of the same name
 on the SVGDocument interface. [SVG]

 	Otherwise, let value be a concatenation
 of the data of all the child Text nodes of the
 title element, in tree order, or
 the empty string if the title element is
 null.

 	Strip and collapse whitespace in value.

 	Return value.

 On setting, the following algorithm must be run. Mutation events
 must be fired as appropriate.

 	If the root element is an svg
 element in the "http://www.w3.org/2000/svg"
 namespace, and the user agent supports SVG, then the setter must
 act as if it was the setter for the IDL attribute of the same name
 on the Document interface defined by the SVG
 specification. Stop the algorithm here. [SVG]

 	If the title element is null and
 the head element is null, then the
 attribute must do nothing. Stop the algorithm here.

 	If the title element is null, then a
 new title element must be created and appended to
 the head element. Let element be that element. Otherwise, let element be the title
 element.

 	The children of element (if any) must all
 be removed.

 	A single Text node whose data is the new value
 being assigned must be appended to element.

 The title IDL attribute
 defined above must replace the attribute of the same name on the
 Document interface defined by the SVG specification
 when the user agent supports both HTML and SVG. [SVG]

 	document . body [= value]

 	
 Returns the body element.

 Can be set, to replace the body element.

 If the new value is not a body or frameset element, this will throw a HierarchyRequestError exception.

 The body element of a document is the first child of
 the html element that is either a
 body element or a frameset element. If
 there is no such element, it is null.

 The body
 attribute, on getting, must return the body element of
 the document (either a body element, a
 frameset element, or null). On setting, the following
 algorithm must be run:

 	If the new value is not a body or
 frameset element, then throw a
 HierarchyRequestError exception and abort these
 steps.

 	Otherwise, if the new value is the same as the body
 element, do nothing. Abort these steps.

 	Otherwise, if the body element is not null, then
 replace that element with the new value in the DOM, as if the root
 element's replaceChild() method had been
 called with the new value and the
 incumbent body element as its two arguments respectively,
 then abort these steps.

 	Otherwise, if there is no root element, throw a HierarchyRequestError exception
 and abort these steps.

 	Otherwise, the body element is null, but there's a root element. Append
 the new value to the root element.

 	document . images

 	
 Returns an HTMLCollection of the img elements in the Document.

 	document . embeds

 	document . plugins

 	
 Return an HTMLCollection of the embed elements in the Document.

 	document . links

 	
 Returns an HTMLCollection of the a and area elements in the Document that have href attributes.

 	document . forms

 	
 Return an HTMLCollection of the form elements in the Document.

 	document . scripts

 	
 Return an HTMLCollection of the script elements in the Document.

 The images
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 img elements.

 The embeds
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 embed elements.

 The plugins
 attribute must return the same object as that returned by the embeds attribute.

 The links
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only a
 elements with href
 attributes and area elements with href attributes.

 The forms
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 form elements.

 The scripts
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 script elements.

 	collection = document . getElementsByName(name)

 	
 Returns a NodeList of elements in the
 Document that have a name
 attribute with the value name.

 The getElementsByName(name) method takes a string name, and must return a live
 NodeList containing all the HTML elements
 in that document that have a name attribute
 whose value is equal to the name argument (in a
 case-sensitive manner), in tree order.
 When the method is invoked on a Document object again
 with the same argument, the user agent may return the same as the
 object returned by the earlier call. In other cases, a new
 NodeList object must be returned.

 The Document interface supports named properties. The supported property names at
 any moment consist of the values of the name content attributes of
 all the
 applet,
 exposed embed,
 form,
 iframe,
 img, and
 exposed object
 elements in the Document that have non-empty name content
 attributes, and the values of the id content attributes of all the
 applet and
 exposed object
 elements in the Document that have non-empty id content
 attributes, and the values of the id content attributes of all the
 img
 elements in the Document that have both non-empty name content
 attributes and non-empty id content attributes. The supported property
 names must be in tree order, ignoring later duplicates, with values from id
 attributes coming before values from name attributes when the same element
 contributes both.

 To determine the value of a named property name when the Document object is indexed for property
 retrieval, the user agent must return the value obtained using the following steps:

 	

 Let elements be the list of named elements with the name name in the Document.

There will be at least one such element, by definition.

 	

 If elements has only one element, and that element is an
 iframe element, then return the WindowProxy object of the nested
 browsing context represented by that iframe element, and abort these
 steps.

 	

 Otherwise, if elements has only one element, return that element and
 abort these steps.

 	

 Otherwise return an HTMLCollection rooted at the Document node,
 whose filter matches only named elements with
 the name name.

 Named elements with the name name, for the purposes of the above algorithm, are those that are either:

 	applet, exposed embed, form,
 iframe, img, or exposed object elements that
 have a name content attribute whose value is name, or

 	applet or exposed object elements that have an id content attribute whose value is name, or

 	img elements that have an id content attribute
 whose value is name, and that have a non-empty name
 content attribute present also.

 An embed or object element is said to be exposed if it has
 no exposed object ancestor, and, for object elements, is
 additionally either not showing its fallback content or has no object or
 embed descendants.

 The dir attribute on the
 Document interface is defined along with the dir
 content attribute.

 Loading XML documents

 partial interface XMLDocument {
 boolean load(DOMString url);
};

 The load(url) method
 must run the following steps:

 	Let document be the XMLDocument object on which the
 method was invoked.

 	Resolve the method's first argument, relative to the
 entry script's base URL. If this is not
 successful, throw a SyntaxError exception and abort these steps. Otherwise, let url be the resulting absolute URL.

 	If the origin of url is not the same as the
 origin of document, throw a SecurityError exception
 and abort these steps.

 	Remove all child nodes of document, without firing any mutation
 events.

 	Set the current document readiness of document to "loading".

 	 Run the remainder of these steps asynchronously, and return true from the
 method.

 	Let result be a Document object.

 	Let success be false.

 	Fetch url from the origin of
 document, using the entry script's referrer source, with the synchronous flag set and the force same-origin flag set.

 	

 If the fetch attempt was successful, and the resource's Content-Type metadata is an XML MIME type, then run
 these substeps:

 	Create a new XML parser associated with the result
 document.

 	Pass this parser the fetched document.

 	If there is an XML well-formedness or XML namespace well-formedness error, then remove
 all child nodes from result. Otherwise let success be
 true.

 	

 Elements

 Semantics

 Elements, attributes, and attribute values in HTML are defined (by this specification) to have
 certain meanings (semantics). For example, the ol element represents an ordered list,
 and the lang attribute represents the language of the content.

 These definitions allow HTML processors, such as Web browsers or search engines, to present and
 use documents and applications in a wide variety of contexts that the author might not have
 considered.

 As a simple example, consider a Web page written by an author who only considered desktop
 computer Web browsers. Because HTML conveys meaning, rather than presentation, the same
 page can also be used by a small browser on a mobile phone, without any change to the page.
 Instead of headings being in large letters as on the desktop, for example, the browser on the
 mobile phone might use the same size text for the whole the page, but with the headings in
 bold.

 But it goes further than just differences in screen size: the same page could equally be used
 by a blind user using a browser based around speech synthesis, which instead of displaying the
 page on a screen, reads the page to the user, e.g. using headphones. Instead of large text for
 the headings, the speech browser might use a different volume or a slower voice.

 That's not all, either. Since the browsers know which parts of the page are the headings, they
 can create a document outline that the user can use to quickly navigate around the document,
 using keys for "jump to next heading" or "jump to previous heading". Such features are especially
 common with speech browsers, where users would otherwise find quickly navigating a page quite
 difficult.

 Even beyond browsers, software can make use of this information. Search engines can use the
 headings to more effectively index a page, or to provide quick links to subsections of the page
 from their results. Tools can use the headings to create a table of contents (that is in fact how
 this very specification's table of contents is generated).

 This example has focused on headings, but the same principle applies to all of the semantics
 in HTML.

 Authors must not use elements, attributes, or attribute values for purposes other than their
 appropriate intended semantic purpose, as doing so prevents software from correctly processing the
 page.

 For example, the following document is non-conforming, despite being syntactically
 correct:

 <!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <table>
 <tr> <td> My favourite animal is the cat. </td> </tr>
 <tr>
 <td>
 —<cite>Ernest</cite>,
 in an essay from 1992
 </td>
 </tr>
 </table>
 </body>
</html>

 ...because the data placed in the cells is clearly not tabular data (and the cite
 element mis-used). This would make software that relies on these semantics fail: for example, a
 speech browser that allowed a blind user to navigate tables in the document would report the
 quote above as a table, confusing the user; similarly, a tool that extracted titles of works from
 pages would extract "Ernest" as the title of a work, even though it's actually a person's name,
 not a title.

 A corrected version of this document might be:

 <!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <blockquote>
 <p> My favourite animal is the cat. </p>
 </blockquote>
 <p>
 —Ernest,
 in an essay from 1992
 </p>
 </body>
</html>

 Authors must not use elements, attributes, or attribute values that are not permitted by this
 specification or other applicable specifications, as doing so makes it significantly
 harder for the language to be extended in the future.

 In the next example, there is a non-conforming attribute value ("carpet") and a non-conforming
 attribute ("texture"), which is not permitted by this specification:

 <label>Carpet: <input type="carpet" name="c" texture="deep pile"></label>

 Here would be an alternative and correct way to mark this up:

 <label>Carpet: <input type="text" class="carpet" name="c" data-texture="deep pile"></label>

 Through scripting and using other mechanisms, the values of attributes, text, and indeed the
 entire structure of the document may change dynamically while a user agent is processing it. The
 semantics of a document at an instant in time are those represented by the state of the document
 at that instant in time, and the semantics of a document can therefore change over time. User
 agents update their presentation of the document as this
 occurs.

 HTML has a progress element that describes a progress bar. If its
 "value" attribute is dynamically updated by a script, the UA would update the rendering to show
 the progress changing.

 Elements in the DOM

 The nodes representing HTML elements in the DOM
 implement, and expose to scripts, the interfaces listed for them in the relevant sections of this
 specification. This includes HTML elements in XML documents, even when
 those documents are in another context (e.g. inside an XSLT transform).

 Elements in the DOM represent things; that is, they have
 intrinsic meaning, also known as semantics.

 For example, an ol element represents an ordered list.

 The basic interface, from which all the HTML elements' interfaces inherit, is
 the HTMLElement interface.

 interface HTMLElement : Element {
 // metadata attributes
 attribute DOMString title;
 attribute DOMString lang;
 attribute boolean translate;
 attribute DOMString dir;
 readonly attribute DOMStringMap dataset;

 // user interaction
 attribute boolean hidden;
 void click();
 attribute long tabIndex;
 void focus();
 void blur();
 attribute DOMString accessKey;
 readonly attribute DOMString accessKeyLabel;
 attribute boolean draggable;
 [PutForwards=] readonly attribute DOMSettableTokenList dropzone;
 attribute DOMString contentEditable;
 readonly attribute boolean isContentEditable;
 attribute boolean spellcheck;
};
HTMLElement implements GlobalEventHandlers;

interface HTMLUnknownElement : HTMLElement { };

 The HTMLElement interface holds methods and attributes related to a number of
 disparate features, and the members of this interface are therefore described in various different
 sections of this specification.

 The HTMLUnknownElement interface must be used for HTML elements that
 are not defined by this specification (or other applicable specifications).

 Global attributes

 The following attributes are common to and may be specified on all HTML
 elements:

 	accesskey

 	class

 	contenteditable

 	dir

 	draggable

 	dropzone

 	hidden

 	id

 	lang

 	spellcheck

 	style

 	tabindex

 	title

 	translate

 These attributes are only defined by this specification as attributes for HTML
 elements. When this specification refers to elements having these attributes, elements from
 namespaces that are not defined as having these attributes must not be considered as being
 elements with these attributes.

 For example, in the following XML fragment, the "bogus" element does not
 have a dir attribute as defined in this specification, despite
 having an attribute with the literal name "dir". Thus, the
 directionality of the inner-most span element is 'rtl', inherited from the div element indirectly through
 the "bogus" element.

 <div xmlns="http://www.w3.org/1999/html" dir="rtl">
 <bogus xmlns="http://example.net/ns" dir="ltr">

 </bogus>
</div>

 To enable assistive technology products to expose a more fine-grained interface than is
 otherwise possible with HTML elements and attributes, a set of annotations
 for assistive technology products can be specified (the ARIA role and aria-* attributes). [ARIA]

 The following event handler content attributes may be specified on any HTML element:

 	onabort

 	onblur*

 	oncancel

 	oncanplay

 	oncanplaythrough

 	onchange

 	onclick

 	onclose

 	oncuechange

 	ondblclick

 	ondrag

 	ondragend

 	ondragenter

 	ondragexit

 	ondragleave

 	ondragover

 	ondragstart

 	ondrop

 	ondurationchange

 	onemptied

 	onended

 	onerror*

 	onfocus*

 	oninput

 	oninvalid

 	onkeydown

 	onkeypress

 	onkeyup

 	onload*

 	onloadeddata

 	onloadedmetadata

 	onloadstart

 	onmousedown

 	onmouseenter

 	onmouseleave

 	onmousemove

 	onmouseout

 	onmouseover

 	onmouseup

 	onmousewheel

 	onpause

 	onplay

 	onplaying

 	onprogress

 	onratechange

 	onreset

 	onscroll*

 	onseeked

 	onseeking

 	onselect

 	onshow

 	onstalled

 	onsubmit

 	onsuspend

 	ontimeupdate

 	onvolumechange

 	onwaiting

 The attributes marked with an asterisk have a different meaning when specified on
 body elements as those elements expose event handlers of the
 Window object with the same names.

 While these attributes apply to all elements, they are not useful on all elements.
 For example, only media elements will ever receive a volumechange event fired by the user agent.

 Custom data attributes (e.g. data-foldername or data-msgid) can be specified on any HTML element, to store custom data specific to the page.

 In HTML documents, elements in the HTML namespace may have an xmlns attribute specified, if, and only if, it has the exact value
 "http://www.w3.org/1999/xhtml". This does not apply to XML
 documents.

 In HTML, the xmlns attribute has absolutely no effect. It is
 basically a talisman. It is allowed merely to make migration to and from XHTML mildly easier. When
 parsed by an HTML parser, the attribute ends up in no namespace, not the
 "http://www.w3.org/2000/xmlns/" namespace like namespace declaration attributes in
 XML do.

 In XML, an xmlns attribute is part of the namespace
 declaration mechanism, and an element cannot actually have an xmlns
 attribute in no namespace specified.

 The XML specification also allows the use of the xml:space
 attribute in the XML namespace on any element in an XML
 document. This attribute has no effect on HTML elements, as the default
 behavior in HTML is to preserve whitespace. [XML]

 There is no way to serialize the xml:space
 attribute on HTML elements in the text/html syntax.

 The id attribute

 The id attribute specifies its element's unique identifier (ID). [DOM]

 The value must be unique amongst all the IDs in the element's
 home subtree and must contain at least one character. The value must not contain any
 space characters.

 There are no other restrictions on what form an ID can take; in particular, IDs
 can consist of just digits, start with a digit, start with an underscore, consist of just
 punctuation, etc.

 An element's unique identifier can be used for a
 variety of purposes, most notably as a way to link to specific parts of a document using fragment
 identifiers, as a way to target an element when scripting, and as a way to style a specific
 element from CSS.

 Identifiers are opaque strings. Particular meanings should not be derived from the value of the
 id attribute.

 The title attribute

 The title attribute represents advisory
 information for the element, such as would be appropriate for a tooltip. On a link, this could be
 the title or a description of the target resource; on an image, it could be the image credit or a
 description of the image; on a paragraph, it could be a footnote or commentary on the text; on a
 citation, it could be further information about the source; on interactive content,
 it could be a label for, or instructions for, use of the element; and so forth. The value is
 text.

 Relying on the title attribute is currently
 discouraged as many user agents do not expose the attribute in an accessible manner as required by
 this specification (e.g. requiring a pointing device such as a mouse to cause a tooltip to appear,
 which excludes keyboard-only users and touch-only users, such as anyone with a modern phone or
 tablet).

 If this attribute is omitted from an element, then it implies that the title attribute of the nearest ancestor HTML
 element with a title attribute set is also relevant to this
 element. Setting the attribute overrides this, explicitly stating that the advisory information of
 any ancestors is not relevant to this element. Setting the attribute to the empty string indicates
 that the element has no advisory information.

 If the title attribute's value contains "LF" (U+000A)
 characters, the content is split into multiple lines. Each "LF" (U+000A) character
 represents a line break.

 Caution is advised with respect to the use of newlines in title attributes.

 For instance, the following snippet actually defines an abbreviation's expansion with a
 line break in it:

 <p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

 Some elements, such as link, abbr, and input, define
 additional semantics for the title attribute beyond the semantics
 described above.

 The advisory information of an element is the value that the following algorithm
 returns, with the algorithm being aborted once a value is returned. When the algorithm returns the
 empty string, then there is no advisory information.

 	If the element is a link, style, dfn,
 or abbr element, then: if the element has a title attribute, return the value of that attribute,
 otherwise, return the empty string.

 	Otherwise, if the element has a title attribute, then
 return its value.

 	Otherwise, if the element has a parent element, then return the parent element's
 advisory information.

 	Otherwise, return the empty string.

 User agents should inform the user when elements have advisory information,
 otherwise the information would not be discoverable.

 The title IDL attribute must reflect the
 title content attribute.

 The lang and xml:lang attributes

 The lang attribute (in no namespace) specifies the
 primary language for the element's contents and for any of the element's attributes that contain
 text. Its value must be a valid BCP 47 language tag, or the empty string. Setting the attribute to
 the empty string indicates that the primary language is unknown. [BCP47]

 The lang attribute in the XML
 namespace is defined in XML. [XML]

 If these attributes are omitted from an element, then the language of this element is the same
 as the language of its parent element, if any.

 The lang attribute in no namespace may be used on any HTML element.

 The lang attribute in the may be used on HTML elements in XML documents,
 as well as elements in other namespaces if the relevant specifications allow it (in particular,
 MathML and SVG allow lang attributes in the
 to be specified on their elements). If both the lang attribute in no namespace and the lang attribute in the are specified on the same
 element, they must have exactly the same value when compared in an ASCII
 case-insensitive manner.

 Authors must not use the lang attribute in
 the on HTML elements in HTML
 documents. To ease migration to and from XHTML, authors may specify an attribute in no
 namespace with no prefix and with the literal localname "xml:lang" on
 HTML elements in HTML documents, but such attributes must only be
 specified if a lang attribute in no namespace is also specified,
 and both attributes must have the same value when compared in an ASCII
 case-insensitive manner.

 The attribute in no namespace with no prefix and with the literal localname "xml:lang" has no effect on language processing.

 To determine the language of a node, user agents must look at the nearest ancestor
 element (including the element itself if the node is an element) that has a lang attribute in the set or is an HTML element and has a
 lang in no namespace attribute set. That attribute specifies the
 language of the node (regardless of its value).

 If both the lang attribute in no namespace and the lang attribute in the are set on an element, user agents must use the lang attribute in the , and the lang attribute in no namespace
 must be ignored for the purposes of determining the element's
 language.

 If both the lang attribute in no
 namespace and the lang attribute in the are set on an element, user agents must use
 the lang attribute
 in the , and the lang attribute in no namespace must be
 ignored for the purposes of determining
 the element's language.

 If neither the node nor any of the node's ancestors, including
 the root element, have either attribute set, but there
 is a pragma-set default language set, then that is the
 language of the node. If there is no pragma-set default
 language set, then language information from a higher-level
 protocol (such as HTTP), if any, must be used as the final fallback
 language instead. In the absence of any such language information,
 and in cases where the higher-level protocol reports multiple
 languages, the language of the node is unknown, and the
 corresponding language tag is the empty string.

 If the resulting value is not a recognized language tag, then it must be treated as an unknown
 language having the given language tag, distinct from all other languages. For the purposes of
 round-tripping or communicating with other services that expect language tags, user agents should
 pass unknown language tags through unmodified, and tagged as being BCP 47 language tags, so that
 subsequent services do not interpret the data as another type of language description. [BCP47]

 Thus, for instance, an element with lang="xyzzy" would be
 matched by the selector :lang(xyzzy) (e.g. in CSS), but it would not be
 matched by :lang(abcde), even though both are equally invalid. Similarly, if
 a Web browser and screen reader working in unison communicated about the language of the element,
 the browser would tell the screen reader that the language was "xyzzy", even if it knew it was
 invalid, just in case the screen reader actually supported a language with that tag after all.
 Even if the screen reader supported both BCP 47 and another syntax for encoding language names,
 and in that other syntax the string "xyzzy" was a way to denote the Belarusian language, it would
 be incorrect for the screen reader to then start treating text as Belarusian, because
 "xyzzy" is not how Belarusian is described in BCP 47 codes (BCP 47 uses the code "be" for
 Belarusian).

 If the resulting value is the empty string, then it must be interpreted as meaning that the
 language of the node is explicitly unknown.

 User agents may use the element's language to determine proper processing or rendering (e.g. in
 the selection of appropriate fonts or pronunciations, for dictionary selection, or for the user
 interfaces of form controls such as date pickers).

 The lang IDL attribute must reflect the
 lang content attribute in no namespace.

 The translate attribute

 The translate attribute is an enumerated
 attribute that is used to specify whether an element's attribute values and the values of
 its Text node children are to be translated when the page is localized, or whether to
 leave them unchanged.

 The attribute's keywords are the empty string, yes, and no. The empty string and the yes keyword map to the
 yes state. The no keyword maps to the no state. In addition,
 there is a third state, the inherit state, which is the missing value default (and
 the invalid value default).

 Each element (even non-HTML elements) has a translation mode, which is in either the
 translate-enabled state or the no-translate state. If an HTML element's translate
 attribute is in the yes state, then the element's translation mode is in the
 translate-enabled state; otherwise, if the element's translate attribute is in the no state, then the element's
 translation mode is in the no-translate state. Otherwise, either the
 element's translate attribute is in the inherit state,
 or the element is not an HTML element and thus does not have a
 translate attribute; in either case, the element's
 translation mode is in the same state as its parent element's, if any, or in the
 translate-enabled state, if the element is a root element.

 When an element is in the translate-enabled state, the element's translatable
 attributes and the values of its Text node children are to be translated when
 the page is localized.

 When an element is in the no-translate state, the element's attribute values and the
 values of its Text node children are to be left as-is when the page is localized,
 e.g. because the element contains a person's name or a the name of a computer program.

 The following attributes are translatable attributes:

 	abbr on th elements

 	alt on area,
 img, and
 input elements

 	content on meta elements, if the name attribute specifies a metadata name whose value is known to be translatable

 	download on a and
 area elements

 	label on
 optgroup,
 option, and
 track elements

 	lang on HTML elements; must be "translated" to match the language used in the translation

 	placeholder on input and
 textarea elements

 	srcdoc on iframe elements; must be parsed and recursively processed

 	style on HTML elements elements; must be parsed and recursively processed (e.g. for the values of 'content' properties)

 	title on all HTML elements elements

 The following ARIA [ARIA] attributes are translatable attributes:

 	aria-label on all HTML elements elements

	aria-valuetext on any element with an ARIA role or
 default implicit ARIA semantics of progressbar, scrollbar, slider or spinbutton.

 The translate IDL attribute must, on getting,
 return true if the element's translation mode is translate-enabled, and
 false otherwise. On setting, it must set the content attribute's value to "yes" if the new value is true, and set the content attribute's value to "no" otherwise.

 In this example, everything in the document is to be translated when the page is localized,
 except the sample keyboard input and sample program output:

 <!DOCTYPE HTML>
<html> <!-- default on the root element is translate=yes -->
 <head>
 <title>The Bee Game</title> <!-- implied translate=yes inherited from ancestors -->
 </head>
 <body>
 <p>The Bee Game is a text adventure game in English.</p>
 <p>When the game launches, the first thing you should do is type
 <kbd translate=no>eat honey</kbd>. The game will respond with:</p>
 <pre><samp translate=no>Yum yum! That was some good honey!</samp></pre>
 </body>
</html>

 The xml:base attribute (XML only)

 The xml:base attribute is defined in XML Base. [XMLBASE]

 The xml:base attribute may be used on HTML
 elements of XML documents. Authors must not use the xml:base attribute on HTML elements in HTML
 documents.

 The dir attribute

 The dir attribute specifies the element's text directionality.
 The attribute is an enumerated attribute with the following keywords and states:

 	The ltr keyword, which maps to the ltr state

 	

 Indicates that the contents of the element are explicitly
 directionally embedded left-to-right text.

 	The rtl keyword, which maps to the rtl state

 	

 Indicates that the contents of the element are explicitly
 directionally embedded right-to-left text.

 	The auto keyword, which maps to the auto state

 	

 Indicates that the contents of the element are explicitly embedded text, but that the
 direction is to be determined programmatically using the contents of the element (as described
 below).

 The heuristic used by this state is very crude (it just looks at the first
 character with a strong directionality, in a manner analogous to the Paragraph Level
 determination in the bidirectional algorithm). Authors are urged to only use this value as a
 last resort when the direction of the text is truly unknown and no better server-side heuristic
 can be applied. [BIDI]

 For textarea and pre elements, the heuristic is
 applied on a per-paragraph level.

 The attribute has no invalid value default and no missing value default.

 The directionality of an element (any element, not just an HTML element) is either 'ltr' or 'rtl', and is determined as per the first appropriate set of steps from
 the following list:

 	If the element's dir attribute is in the ltr state

 	If the element is a root element and the dir
 attribute is not in a defined state (i.e. it is not present or has an invalid value)

 	If the element is an input element whose type attribute is in the Telephone state, and the dir attribute is not in a defined state (i.e. it is not present or has an invalid value)

 	The directionality of the element is 'ltr'.

 	If the element's dir attribute is in the rtl state

 	The directionality of the element is 'rtl'.

 	If the element is an input element whose type attribute is in the Text, Search, Telephone, URL, or E-mail state, and the dir attribute is in the auto state

 	If the element is a textarea element and the dir
 attribute is in the auto state

 	

 If the element's value contains a character of
 bidirectional character type AL or R, and there is no character of bidirectional character type
 L anywhere before it in the element's value, then
 the directionality of the element is 'rtl'.
 [BIDI]

 Otherwise, if the element's value is not the empty
 string, or if the element is a root element, the directionality of the
 element is 'ltr'.

 Otherwise, the directionality of the element is the same as the element's parent
 element's directionality.

 	If the element's dir attribute is in the auto state

 	If the element is a bdi element and the dir
 attribute is not in a defined state (i.e. it is not present or has an invalid value)

 	

 Find the first character in tree order that matches the following criteria:

 	The character is from a Text node that is a descendant of the element whose
 directionality is being determined.

 	The character is of bidirectional character type L, AL, or R. [BIDI]

 	

 The character is not in a Text node that has an ancestor element that is a
 descendant of the element whose directionality is
 being determined and that is either:

 	A bdi element.

	A script element.

	A style element.

	A textarea element.

	An element with a dir attribute in a defined state.

 If such a character is found and it is of bidirectional character type AL or R, the
 directionality of the element is 'rtl'.

 If such a character is found and it is of bidirectional character type L, the
 directionality of the element is 'ltr'.

 Otherwise, if the element is empty and is not a root element, the
 directionality of the element is the same as the element's parent element's directionality.

 Otherwise, the directionality of the element is 'ltr'.

 	If the element has a parent element and the dir attribute is
 not in a defined state (i.e. it is not present or has an invalid value)

 	The directionality of the element is the same as the element's parent
 element's directionality.

 Since the dir attribute is only defined for
 HTML elements, it cannot be present on elements from other namespaces. Thus, elements
 from other namespaces always just inherit their directionality from their parent element, or, if they don't have one,
 default to 'ltr'.

 The directionality of an attribute of an
 HTML element, which is used when the text of that attribute is
 to be included in the rendering in some manner, is determined as per the first appropriate set of
 steps from the following list:

 	If the attribute is a directionality-capable attribute and the element's dir attribute is in the auto
 state

 	

 Find the first character (in logical order) of the attribute's value that is of bidirectional
 character type L, AL, or R. [BIDI]

 If such a character is found and it is of bidirectional character type AL or R, the
 directionality of the attribute is 'rtl'.

 Otherwise, the directionality of the attribute is 'ltr'.

 	Otherwise

 	The directionality of the attribute is the same as the element's directionality.

 The following attributes are directionality-capable attributes:

 	abbr on th elements

 	alt on area,
 img, and
 input elements

 	content on meta elements, if the name attribute specifies a metadata name whose value is primarily intended to be human-readable rather than machine-readable

 	label on
 optgroup,
 option, and
 track elements

 	placeholder on input and
 textarea elements

 	title on all HTML elements elements

 The effect of this attribute is primarily on the presentation layer. For example, the rendering
 section in this specification defines a mapping from this attribute to the CSS 'direction' and
 'unicode-bidi' properties, and CSS defines rendering in terms of those properties.

 	document . dir [= value]

 	
 Returns the html element's dir attribute's value, if any.

 Can be set, to either "ltr", "rtl", or "auto" to replace the html element's dir attribute's value.

 If there is no html element, returns the empty string and ignores new values.

 The dir IDL attribute on an element must
 reflect the dir content attribute of that element,
 limited to only known values.

 The dir IDL attribute on Document
 objects must reflect the dir content attribute of
 the html element, if any, limited to only known values. If
 there is no such element, then the attribute must return the empty string and do nothing on
 setting.

 Authors are strongly encouraged to use the dir
 attribute to indicate text direction rather than using CSS, since that way their documents will
 continue to render correctly even in the absence of CSS (e.g. as interpreted by search
 engines).

 This markup fragment is of an IM conversation.

 <p dir=auto class="u1"><bdi>Student</bdi>: How do you write "What's your name?" in Arabic?</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: ما اسمك؟</p>
<p dir=auto class="u1"><bdi>Student</bdi>: Thanks.</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: That's written "شكرًا".</p>
<p dir=auto class="u2"><bdi>Teacher</bdi>: Do you know how to write "Please"?</p>
<p dir=auto class="u1"><bdi>Student</bdi>: "من فضلك", right?</p>

 Given a suitable style sheet and the default alignment styles for the p element,
 namely to align the text to the start edge of the paragraph, the resulting rendering could
 be as follows:

 [image: Each paragraph rendered as a separate block, with the paragraphs left-aligned except the second paragraph and the last one, which would be right aligned, with the usernames ('Student' and 'Teacher' in this example) flush right, with a colon to their left, and the text first to the left of that.]

 As noted earlier, the auto value is not a panacea. The
 final paragraph in this example is misinterpreted as being right-to-left text, since it begins
 with an Arabic character, which causes the "right?" to be to the left of the Arabic text.

 The class attribute

 Every HTML element may have a class attribute specified.

 The attribute, if specified, must have a value that is a set of space-separated
 tokens representing the various classes that the element belongs to.

 The classes that an HTML element has assigned to it consists
 of all the classes returned when the value of the class attribute
 is split on spaces. (Duplicates are ignored.)

 Assigning classes to an element affects class matching in selectors in CSS, the
 getElementsByClassName() method in the
 DOM, and other such features.

 There are no additional restrictions on the tokens authors can use in the class attribute, but authors are encouraged to use values that describe
 the nature of the content, rather than values that describe the desired presentation of the
 content.

 The className and classList IDL attributes, defined in the DOM
 specification, reflect the class content attribute.
 [DOM]

 The style attribute

 All HTML elements may have the style content
 attribute set. This is a CSS styling attribute as defined by the CSS Styling
 Attribute Syntax specification. [CSSATTR]

 In user agents that support CSS, the attribute's value must be parsed when the attribute is
 added or has its value changed,
 according to the rules given for CSS styling
 attributes. [CSSATTR]

 Documents that use style attributes on any of their elements
 must still be comprehensible and usable if those attributes were removed.

 In particular, using the style attribute to hide
 and show content, or to convey meaning that is otherwise not included in the document, is
 non-conforming. (To hide and show content, use the hidden
 attribute.)

 	element . style

 	
 Returns a CSSStyleDeclaration object for the element's style attribute.

 The style IDL attribute is defined in the CSS Object
 Model (CSSOM) specification. [CSSOM]

 In the following example, the words that refer to colors are marked up using the
 span element and the style attribute to make those
 words show up in the relevant colors in visual media.

 <p>My sweat suit is <span style="color: green; background:
transparent">green and my eyes are <span style="color: blue;
background: transparent">blue.</p>

 Embedding custom non-visible data with the data-* attributes

 A custom data attribute is an attribute in no namespace whose name starts with the
 string "data-", has at least one character after the
 hyphen, is XML-compatible, and contains no uppercase ASCII letters.

 All attribute names on HTML elements in HTML documents
 get ASCII-lowercased automatically, so the restriction on ASCII uppercase letters doesn't affect
 such documents.

 Custom data attributes are intended to store custom
 data private to the page or application, for which there are no more appropriate attributes or
 elements.

 These attributes are not intended for use by software that is independent of the site that uses
 the attributes.

 For instance, a site about music could annotate list items representing tracks in an album
 with custom data attributes containing the length of each track. This information could then be
 used by the site itself to allow the user to sort the list by track length, or to filter the list
 for tracks of certain lengths.

 <li data-length="2m11s">Beyond The Sea
 ...

 It would be inappropriate, however, for the user to use generic software not associated with
 that music site to search for tracks of a certain length by looking at this data.

 This is because these attributes are intended for use by the site's own scripts, and are not a
 generic extension mechanism for publicly-usable metadata.

 Every HTML element may have any number of custom data attributes specified, with any value.

 	element . dataset

 	

 Returns a DOMStringMap object for the element's data-* attributes.

 Hyphenated names become camel-cased. For example, data-foo-bar=""
 becomes element.dataset.fooBar.

 The dataset IDL attribute provides convenient
 accessors for all the data-* attributes on an element. On
 getting, the dataset IDL attribute must return a
 DOMStringMap object, associated with the following algorithms, which expose these
 attributes on their element:

 	The algorithm for getting the list of name-value pairs

 	

 	Let list be an empty list of name-value
 pairs.

 	For each content attribute on the element whose first five characters are the string "data-" and whose remaining characters (if any) do not include any
 uppercase ASCII letters, in the order that those attributes are listed in the
 element's , add a name-value pair to list whose
 name is the attribute's name with the first five characters removed and whose value is the
 attribute's value.

 	For each name list, for each "-" (U+002D) character in the
 name that is followed by a lowercase ASCII letter,
 remove the "-" (U+002D) character and replace the character that followed it by the
 same character converted to ASCII uppercase.

 	Return list.

 	The algorithm for setting names to certain values

 	

 	Let name be the name passed to the algorithm.

 	Let value be the value passed to the algorithm.

 	If name contains a "-" (U+002D) character followed by a
 lowercase ASCII letter, throw a
 SyntaxError exception and abort these steps.

 	For each uppercase ASCII letter in name, insert a "-" (U+002D) character before the character and
 replace the character with the same character converted to ASCII lowercase.

 	Insert the string data- at the front of name.

 	Set the value of the attribute with the name name, to the value value, replacing any previous value if the attribute already existed. If setAttribute() would have thrown an exception when setting an attribute with
 the name name, then this must throw the same exception.

 	The algorithm for deleting names

 	

 	Let name be the name passed to the algorithm.

 	For each uppercase ASCII letter in name, insert a "-" (U+002D) character before the character and
 replace the character with the same character converted to ASCII lowercase.

 	Insert the string data- at the front of name.

 	Remove the attribute with the name name, if such an attribute exists.
 Do nothing otherwise.

 The same object must be returned each time.

 If a Web page wanted an element to represent a space ship, e.g. as part of a game, it would
 have to use the class attribute along with data-* attributes:

 <div class="spaceship" data-ship-id="92432"
 data-weapons="laser 2" data-shields="50%"
 data-x="30" data-y="10" data-z="90">
 <button class="fire"
 onclick="spaceships[this.parentNode.dataset.shipId].fire()">
 Fire
 </button>
</div>

 Notice how the hyphenated attribute name becomes camel-cased in the API.

 Authors should carefully design such extensions so that when the attributes are ignored and any
 associated CSS dropped, the page is still usable.

 User agents must not derive any implementation behavior from these attributes or values.
 Specifications intended for user agents must not define these attributes to have any meaningful
 values.

 JavaScript libraries may use the custom data
 attributes, as they are considered to be part of the page on which they are used. Authors
 of libraries that are reused by many authors are encouraged to include their name in the attribute
 names, to reduce the risk of clashes. Where it makes sense, library authors are also encouraged to
 make the exact name used in the attribute names customizable, so that libraries whose authors
 unknowingly picked the same name can be used on the same page, and so that multiple versions of a
 particular library can be used on the same page even when those versions are not mutually
 compatible.

 For example, a library called "DoQuery" could use attribute names like data-doquery-range, and a library called "jJo" could use attributes names like
 data-jjo-range. The jJo library could also provide an API to set which
 prefix to use (e.g. J.setDataPrefix('j2'), making the attributes have names
 like data-j2-range).

 Element definitions

 Each element in this specification has a definition that includes the following
 information:

 	Categories

 	A list of categories to which the element belongs.
 These are used when defining the content models for each element.

 	Contexts in which this element can be used

 	

 A non-normative description of where the element can be used. This information is
 redundant with the content models of elements that allow this one as a child, and is provided
 only as a convenience.

 For simplicity, only the most specific expectations are listed. For example, an
 element that is both flow content and phrasing content can be used
 anywhere that either flow content or phrasing content is expected, but
 since anywhere that flow content is expected, phrasing content is also
 expected (since all phrasing content is flow content), only "where
 phrasing content is expected" will be listed.

 	Content model

 	A normative description of what content must be included as children and descendants of
 the element.

 	Tag omission in text/html

 	A non-normative description of whether, in the text/html syntax, the
 start and end tags can
 be omitted. This information is redundant with the normative requirements given in the optional tags section, and is provided in the element
 definitions only as a convenience.

 	Content attributes

 	A normative list of attributes that may be specified on the element (except where
 otherwise disallowed), along with non-normative descriptions of those attributes. (The content to
 the left of the dash is normative, the content to the right of the dash is not.)

 	DOM interface

 	A normative definition of a DOM interface that such elements must implement.

 This is then followed by a description of what the element represents, along with
 any additional normative conformance criteria that may apply to authors. Examples are sometimes also included.

 Attributes

 Except where otherwise specified, attributes on HTML elements
 may have any string value, including the empty string. Except where explicitly stated, there is no
 restriction on what text can be specified in such attributes.

 Content models

 Each element defined in this specification has a content model: a description of the element's
 expected contents. An HTML element must have contents that
 match the requirements described in the element's content model. The contents of an element are
 its children in the DOM.

 The space characters are always allowed between elements.
 User agents represent these characters between elements in the source markup as Text
 nodes in the DOM. Empty
 Text nodes and Text nodes consisting of just sequences of those
 characters are considered inter-element whitespace.

 Inter-element whitespace, comment nodes, and processing instruction nodes must be
 ignored when establishing whether an element's contents match the element's content model or not,
 and must be ignored when following algorithms that define document and element semantics.

 Thus, an element A is said to be preceded or followed
 by a second element B if A and B have
 the same parent node and there are no other element nodes or Text nodes (other than
 inter-element whitespace) between them. Similarly, a node is the only child of
 an element if that element contains no other nodes other than inter-element
 whitespace, comment nodes, and processing instruction nodes.

 Authors must not use HTML elements anywhere except where they are explicitly
 allowed, as defined for each element, or as explicitly required by other specifications. For XML
 compound documents, these contexts could be inside elements from other namespaces, if those
 elements are defined as providing the relevant contexts.

 For example, the Atom specification defines a content element. When its
 type attribute has the value xhtml, the Atom
 specification requires that it contain a single HTML div element. Thus, a
 div element is allowed in that context, even though this is not explicitly
 normatively stated by this specification. [ATOM]

 In addition, HTML elements may be orphan nodes (i.e. without a parent node).

 For example, creating a td element and storing it in a global variable in a
 script is conforming, even though td elements are otherwise only supposed to be used
 inside tr elements.

 var data = {
 name: "Banana",
 cell: document.createElement('td'),
};

 Kinds of content

 Each element in HTML falls into zero or more categories
 that group elements with similar characteristics together. The following broad categories are used
 in this specification:

 	Metadata content

 	Flow content

 	Sectioning content

 	Heading content

 	Phrasing content

 	Embedded content

 	Interactive content

 Some elements also fall into other categories, which are defined in other parts of
 this specification.

 These categories are related as follows:

 Sectioning content, heading content, phrasing content, embedded content, and interactive
 content are all types of flow content. Metadata is sometimes flow content. Metadata and
 interactive content are sometimes phrasing content. Embedded content is also a type of phrasing
 content, and sometimes is interactive content.

 Other categories are also used for specific purposes, e.g. form controls are specified using a
 number of categories to define common requirements. Some elements have unique requirements and do
 not fit into any particular category.

 Metadata content

 Metadata content is content that sets up the presentation or behavior of the rest of
 the content, or that sets up the relationship of the document with other documents, or that
 conveys other "out of band" information.

 	base

 	link

 	meta

 	noscript

 	script

 	style

 	title

 Elements from other namespaces whose semantics are primarily metadata-related (e.g. RDF) are
 also metadata content.

 Thus, in the XML serialization, one can use RDF, like this:

 <html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <head>
 <title>Hedral's Home Page</title>
 <r:RDF>
 <Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"
 r:about="http://hedral.example.com/#">
 <fullName>Cat Hedral</fullName>
 <mailbox r:resource="mailto:hedral@damowmow.com"/>
 <personalTitle>Sir</personalTitle>
 </Person>
 </r:RDF>
 </head>
 <body>
 <h1>My home page</h1>
 <p>I like playing with string, I guess. Sister says squirrels are fun
 too so sometimes I follow her to play with them.</p>
 </body>
</html>

 This isn't possible in the HTML serialization, however.

 Flow content

 Most elements that are used in the body of documents and applications are categorized as
 flow content.

 	a

 	abbr

 	address

 	area (if it is a descendant of a map element)

 	article

 	aside

 	audio

 	b

 	bdi

 	bdo

 	blockquote

 	br

 	button

 	canvas

 	cite

 	code

 	data

 	datalist

 	del

 	details

 	dfn

 	dialog

 	div

 	dl

 	em

 	embed

 	fieldset

 	figure

 	footer

 	form

 	h1

 	h2

 	h3

 	h4

 	h5

 	h6

 	header

 	hr

 	i

 	iframe

 	img

 	input

 	ins

 	kbd

 	keygen

 	label

 	main

 	map

 	mark

 	math

 	meter

 	nav

 	noscript

 	object

 	ol

 	output

 	p

 	pre

 	progress

 	q

 	ruby

 	s

 	samp

 	script

 	section

 	select

 	small

 	span

 	strong

 	style (if the scoped attribute is present)

 	sub

 	sup

 	svg

 	table

 	textarea

 	time

 	u

 	ul

 	var

 	video

 	wbr

 	Text

 Sectioning content

 Sectioning content is content that defines the scope of headings and footers.

 	article

 	aside

 	nav

 	section

 Each sectioning content element potentially has a heading and an
 outline. See the section on headings and sections for further
 details.

 There are also certain elements that are sectioning
 roots. These are distinct from sectioning content, but they can also have an
 outline.

 Heading content

 Heading content defines the header of a section (whether explicitly marked up using
 sectioning content elements, or implied by the heading content itself).

 	h1

 	h2

 	h3

 	h4

 	h5

 	h6

 Phrasing content

 Phrasing content is the text of the document, as well as elements that mark up that
 text at the intra-paragraph level. Runs of phrasing content form paragraphs.

 	a

 	abbr

 	area (if it is a descendant of a map element)

 	audio

 	b

 	bdi

 	bdo

 	br

 	button

 	canvas

 	cite

 	code

 	data

 	datalist

 	del

 	dfn

 	em

 	embed

 	i

 	iframe

 	img

 	input

 	ins

 	kbd

 	keygen

 	label

 	map

 	mark

 	math

 	meter

 	noscript

 	object

 	output

 	progress

 	q

 	ruby

 	s

 	samp

 	script

 	select

 	small

 	span

 	strong

 	sub

 	sup

 	svg

 	textarea

 	time

 	u

 	var

 	video

 	wbr

 	Text

 Most elements that are categorized as phrasing content can only contain elements
 that are themselves categorized as phrasing content, not any flow content.

 Text, in the context of content models, means either nothing,
 or Text nodes. Text is sometimes used as a content
 model on its own, but is also phrasing content, and can be inter-element
 whitespace (if the Text nodes are empty or contain just space characters).

 Text nodes and attribute values must consist of Unicode characters, must not contain U+0000 characters, must not contain
 permanently undefined Unicode characters (noncharacters), and must not contain control characters
 other than space characters.

 This specification includes extra constraints on the exact value of Text nodes and
 attribute values depending on their precise context.

 Embedded content

 Embedded content is content that imports another
 resource into the document, or content from another vocabulary that
 is inserted into the document.

 	audio

 	canvas

 	embed

 	iframe

 	img

 	math

 	object

 	svg

 	video

 Elements that are from namespaces other than the HTML namespace and that convey
 content but not metadata, are embedded content for the purposes of the content models
 defined in this specification. (For example, MathML, or SVG.)

 Some embedded content elements can have fallback content: content that is to be used
 when the external resource cannot be used (e.g. because it is of an unsupported format). The
 element definitions state what the fallback is, if any.

 Interactive content

 Interactive content is content that is specifically
 intended for user interaction.

 	a

 	audio (if the controls attribute is present)

 	button

 	details

 	embed

 	iframe

 	img (if the usemap attribute is present)

 	input (if the type attribute is not in the Hidden state)

 	keygen

 	label

 	object (if the usemap attribute is present)

 	select

 	textarea

 	video (if the controls attribute is present)

 Certain elements in HTML have an activation behavior, which means that the user
 can activate them. This triggers a sequence of events dependent on the activation mechanism, and
 normally culminating in a click event.

 The user agent should allow the user to manually trigger elements that have an activation
 behavior, for instance using keyboard or voice input, or through mouse clicks. When the
 user triggers an element with a defined activation behavior in a manner other than
 clicking it, the default action of the interaction event must be to run synthetic click
 activation steps on the element.

 Each element has a click in progress flag, initially set to false.

 When a user agent is to run synthetic click activation steps on an element, the user
 agent must run the following steps:

 	If the element's click in progress flag is set to true, then abort
 these steps.

 	Set the click in progress flag on the element to true.

 	Run pre-click activation steps on the element.

 	Fire a click event at the element. If the
 run synthetic click activation steps algorithm was invoked because the click() method was invoked, then the isTrusted attribute must be initialized to false.

 	

 If this click event is not canceled, run post-click
 activation steps on the element.

 If the event is canceled, the user agent must run canceled activation
 steps on the element instead.

 	Set the click in progress flag on the element to false.

 When a pointing device is clicked, the user agent must run these steps:

 	If the element's click in progress flag is set to true, then abort
 these steps.

 	Set the click in progress flag on the element to true.

 	Let e be the nearest activatable element of the element
 designated by the user (defined below), if any.

 	If there is an element e, run pre-click activation steps
 on it.

 	

 Dispatch the required click event.

 If there is an element e and the click
 event is not canceled, run post-click activation steps on element e.

 If there is an element e and the event is canceled, run
 canceled activation steps on element e.

 	Set the click in progress flag on the element to false.

 The above doesn't happen for arbitrary synthetic events dispatched by author
 script. However, the click() method can be used to make it happen
 programmatically.

 Click-focusing behavior (e.g. the focusing of a text field when user clicks in
 one) typically happens before the click, when the mouse button is first depressed, and is
 therefore not discussed here.

 Given an element target, the nearest activatable element is the
 element returned by the following algorithm:

 	If target has a defined activation behavior, then return
 target and abort these steps.

 	If target has a parent element, then set target to
 that parent element and return to the first step.

 	Otherwise, there is no nearest activatable element.

 When a user agent is to run pre-click activation steps on an element, it must run
 the pre-click activation steps defined for that element, if any.

 When a user agent is to run canceled activation steps on an element, it must run the
 canceled activation steps defined for that element, if any.

 When a user agent is to run post-click activation steps on an element, it must run
 the activation behavior defined for that element, if any. Activation behaviors can
 refer to the click event that was fired by the steps above
 leading up to this point.

 Palpable content

 As a general rule, elements whose content model allows any flow content or
 phrasing content should have at least one node in its contents that is palpable
 content and that does not have the hidden attribute
 specified.

 This requirement is not a hard requirement, however, as there are many cases where an element
 can be empty legitimately, for example when it is used as a placeholder which will later be filled
 in by a script, or when the element is part of a template and would on most pages be filled in but
 on some pages is not relevant.

 Conformance checkers are encouraged to provide a mechanism for authors to find elements that
 fail to fulfill this requirement, as an authoring aid.

 The following elements are palpable content:

 	a

 	abbr

 	address

 	article

 	aside

 	audio (if the controls attribute is present)

 	b

 	bdi

 	bdo

 	blockquote

 	button

 	canvas

 	cite

 	code

 	data

 	details

 	dfn

 	div

 	dl (if the element's children include at least one name-value group)

 	em

 	embed

 	fieldset

 	figure

 	footer

 	form

 	h1

 	h2

 	h3

 	h4

 	h5

 	h6

 	header

 	i

 	iframe

 	img

 	input (if the type attribute is not in the Hidden state)

 	ins

 	kbd

 	keygen

 	label

 	main

 	map

 	mark

 	math

 	meter

 	nav

 	object

 	ol (if the element's children include at least one li element)

 	output

 	p

 	pre

 	progress

 	q

 	ruby

 	s

 	samp

 	section

 	select

 	small

 	span

 	strong

 	sub

 	sup

 	svg

 	table

 	textarea

 	time

 	u

 	ul (if the element's children include at least one li element)

 	var

 	video

 	Text that is not inter-element whitespace

 Script-supporting elements

 Script-supporting elements are those that do not represent anything themselves (i.e. they are not rendered), but are used
 to support scripts, e.g. to provide functionality for the user.

 The following element is a script-supporting element:

 	script

 Transparent content models

 Some elements are described as transparent; they have "transparent" in the
 description of their content model. The content model of a transparent element is
 derived from the content model of its parent element: the elements required in the part of the
 content model that is "transparent" are the same elements as required in the part of the content
 model of the parent of the transparent element in which the transparent element finds itself.

 For instance, an ins element inside a ruby element cannot contain an
 rt element, because the part of the ruby element's content model that
 allows ins elements is the part that allows phrasing content, and the
 rt element is not phrasing content.

 In some cases, where transparent elements are nested in each other, the process
 has to be applied iteratively.

 Consider the following markup fragment:

 <p><object><param><ins><map>Apples</map></ins></object></p>

 To check whether "Apples" is allowed inside the a element, the content models are
 examined. The a element's content model is transparent, as is the map
 element's, as is the ins element's, as is the part of the object
 element's in which the ins element is found. The object element is
 found in the p element, whose content model is phrasing content. Thus,
 "Apples" is allowed, as text is phrasing content.

 When a transparent element has no parent, then the part of its content model that is
 "transparent" must instead be treated as accepting any flow content.

 Paragraphs

 The term paragraph as defined in this section is used for more than
 just the definition of the p element. The paragraph concept defined here
 is used to describe how to interpret documents. The p element is merely one of
 several ways of marking up a paragraph.

 A paragraph is typically a run of phrasing content that forms a block
 of text with one or more sentences that discuss a particular topic, as in typography, but can also
 be used for more general thematic grouping. For instance, an address is also a paragraph, as is a
 part of a form, a byline, or a stanza in a poem.

 In the following example, there are two paragraphs in a section. There is also a heading,
 which contains phrasing content that is not a paragraph. Note how the comments and
 inter-element whitespace do not form paragraphs.

 <section>
 <h1>Example of paragraphs</h1>
 This is the first paragraph in this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

 Paragraphs in flow content are defined relative to what the document looks like
 without the a, ins, del, and map elements
 complicating matters, since those elements, with their hybrid content models, can straddle
 paragraph boundaries, as shown in the first two examples below.

 Generally, having elements straddle paragraph boundaries is best avoided.
 Maintaining such markup can be difficult.

 The following example takes the markup from the earlier example and puts ins and
 del elements around some of the markup to show that the text was changed (though in
 this case, the changes admittedly don't make much sense). Notice how this example has exactly the
 same paragraphs as the previous one, despite the ins and del elements
 — the ins element straddles the heading and the first paragraph, and the
 del element straddles the boundary between the two paragraphs.

 <section>
 <ins><h1>Example of paragraphs</h1>
 This is the first paragraph in</ins> this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

 Let view be a view of the DOM that replaces all a,
 ins, del, and map elements in the document with their
 contents. Then, in view, for each run of sibling phrasing content
 nodes uninterrupted by other types of content, in an element that accepts content other than
 phrasing content as well as phrasing content, let first be the first node of the run, and let last be the last
 node of the run. For each such run that consists of at least one node that is neither
 embedded content nor inter-element whitespace, a paragraph exists in the
 original DOM from immediately before first to immediately after last. (Paragraphs can thus span across a, ins,
 del, and map elements.)

 Conformance checkers may warn authors of cases where they have paragraphs that overlap each
 other (this can happen with object, video, audio, and
 canvas elements, and indirectly through elements in other namespaces that allow HTML
 to be further embedded therein, like svg or math).

 A paragraph is also formed explicitly by p elements.

 The p element can be used to wrap individual paragraphs when there
 would otherwise not be any content other than phrasing content to separate the paragraphs from
 each other.

 In the following example, the link spans half of the first paragraph, all of the heading
 separating the two paragraphs, and half of the second paragraph. It straddles the paragraphs and
 the heading.

 <header>
 Welcome!

 This is home of...
 <h1>The Falcons!</h1>
 The Lockheed Martin multirole jet fighter aircraft!

 This page discusses the F-16 Fighting Falcon's innermost secrets.
</header>

 Here is another way of marking this up, this time showing the paragraphs explicitly, and
 splitting the one link element into three:

 <header>
 <p>Welcome! This is home of...</p>
 <h1>The Falcons!</h1>
 <p>The Lockheed Martin multirole jet
 fighter aircraft! This page discusses the F-16 Fighting
 Falcon's innermost secrets.</p>
</header>

 It is possible for paragraphs to overlap when using certain elements that define fallback
 content. For example, in the following section:

 <section>
 <h1>My Cats</h1>
 You can play with my cat simulator.
 <object data="cats.sim">
 To see the cat simulator, use one of the following links:

 Download simulator file
 Use online simulator

 Alternatively, upgrade to the Mellblom Browser.
 </object>
 I'm quite proud of it.
</section>

 There are five paragraphs:

 	The paragraph that says "You can play with my cat simulator. object I'm
 quite proud of it.", where object is the object element.

 	The paragraph that says "To see the cat simulator, use one of the following links:".

 	The paragraph that says "Download simulator file".

 	The paragraph that says "Use online simulator".

 	The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

 The first paragraph is overlapped by the other four. A user agent that supports the "cats.sim"
 resource will only show the first one, but a user agent that shows the fallback will confusingly
 show the first sentence of the first paragraph as if it was in the same paragraph as the second
 one, and will show the last paragraph as if it was at the start of the second sentence of the
 first paragraph.

 To avoid this confusion, explicit p elements can be used. For example:

 <section>
 <h1>My Cats</h1>
 <p>You can play with my cat simulator.</p>
 <object data="cats.sim">
 <p>To see the cat simulator, use one of the following links:</p>

 Download simulator file
 Use online simulator

 <p>Alternatively, upgrade to the Mellblom Browser.</p>
 </object>
 <p>I'm quite proud of it.</p>
</section>

 Requirements relating to bidirectional-algorithm formatting characters

 Text content in HTML elements with Text nodes in their contents, and
 text in attributes of HTML elements that allow free-form text, may contain characters
 in the ranges U+202A to U+202E and U+2066 to U+2069 (the bidirectional-algorithm formatting
 characters). However, the use of these characters is restricted so that any embedding or overrides
 generated by these characters do not start and end with different parent elements, and so that all
 such embeddings and overrides are explicitly terminated by a U+202C POP DIRECTIONAL FORMATTING
 character. This helps reduce incidences of text being reused in a manner that has unforeseen
 effects on the bidirectional algorithm. [BIDI]

 The aforementioned restrictions are defined by specifying that certain parts of documents form
 bidirectional-algorithm formatting character ranges, and then imposing a requirement
 on such ranges.

 The strings resulting from applying the following algorithm to an HTML element element are bidirectional-algorithm
 formatting character ranges:

 	Let output be an empty list of strings.

 	Let string be an empty string.

 	Let node be the first child node of element, if
 any, or null otherwise.

 	Loop: If node is null, jump to the step labeled
 end.

 	

 Process node according to the first matching step from the following
 list:

 	If node is a Text node

 	Append the text data of node to string.

 	If node is a br element

 	If node is an HTML element that is flow content but that is not also phrasing content

 	If string is not the empty string, push string
 onto output, and let string be empty string.

 	Otherwise

 	Do nothing.

 	Let node be node's next sibling, if any, or null
 otherwise.

 	Jump to the step labeled loop.

 	End: If string is not the empty string, push string onto output.

 	Return output as the bidirectional-algorithm formatting
 character ranges.

 The value of a namespace-less attribute of an HTML element
 is a bidirectional-algorithm
 formatting character range.

 Any strings that, as described above, are bidirectional-algorithm formatting character
 ranges must match the string production in the following ABNF, the
 character set for which is Unicode. [ABNF]

 string = *(plaintext (embedding / override / isolation)) plaintext
embedding = (lre / rle) string pdf
override = (lro / rlo) string pdf
isolation = (lri / rli / fsi) string pdi
lre = %x202A ; U+202A LEFT-TO-RIGHT EMBEDDING
rle = %x202B ; U+202B RIGHT-TO-LEFT EMBEDDING
lro = %x202D ; U+202D LEFT-TO-RIGHT OVERRIDE
rlo = %x202E ; U+202E RIGHT-TO-LEFT OVERRIDE
pdf = %x202C ; U+202C POP DIRECTIONAL FORMATTING
lri = %x2066 ; U+2066 LEFT-TO-RIGHT ISOLATE
rli = %x2067 ; U+2067 RIGHT-TO-LEFT ISOLATE
fsi = %x2068 ; U+2068 FIRST STRONG ISOLATE
pdi = %x2069 ; U+2069 POP DIRECTIONAL ISOLATE
plaintext = *(%x0000-2029 / %x202F-2065 / %x206A-10FFFF)
 ; any string with no bidirectional-algorithm formatting characters

 While the U+2069 POP DIRECTIONAL ISOLATE character implicitly also ends open
 embeddings and overrides, text that relies on this implicit scope closure is not conforming to
 this specification. All strings of embeddings, overrides, and isolations need to be explicitly
 terminated to conform to this section's requirements.

 Authors are encouraged to use the dir attribute, the
 bdo element, and the bdi element, rather than maintaining the
 bidirectional-algorithm formatting characters manually. The bidirectional-algorithm formatting
 characters interact poorly with CSS.

 WAI-ARIA

 Authors are encouraged to make use of the following documents for guidance on using ARIA in
 HTML beyond that which is provided in this section:

 	Using WAI-ARIA in HTML
 - A practical guide for developers on how to to add accessibility information to HTML elements using
 the Accessible Rich Internet Applications specification [ARIA].
 In particular the
 Recommendations Table
 provides a complete reference for authors as to which ARIA roles, states and properties
 are appropriate to use on each HTML element.

 	WAI-ARIA 1.0 Authoring Practices - An
 author's guide to understanding and implementing Accessible Rich Internet Applications.

 Authors may use the ARIA role and aria-* attributes on HTML elements, in accordance with the
 requirements described in the ARIA specifications, except where these conflict with the
 strong native semantics

 described below. These exceptions are intended to prevent authors from making
 assistive technology products report nonsensical states that do not represent the actual state of
 the document. [ARIA]

 User agents are required to implement ARIA semantics on all HTML elements, as
 defined in the ARIA specifications. The default implicit ARIA semantics defined below
 must be recognized by implementations for the purposes of ARIA processing. [ARIAIMPL]

 The ARIA attributes defined in the ARIA specifications, and the strong
 native semantics and default implicit ARIA semantics defined below, do not
 have any effect on CSS pseudo-class matching, user interface modalities that don't use assistive
 technologies, or the default actions of user interaction events as described in this
 specification.

 ARIA Role Attribute

 Every HTML element may have an ARIA role attribute specified. This is an
 ARIA Role attribute as defined by [ARIA] Section
 5.4 Definition of Roles.

 The attribute, if specified, must have a value that is a set of
 space-separated tokens representing the various WAI-ARIA roles that
 the element belongs to.

 The WAI-ARIA role that an HTML element has assigned to it is the
 first non-abstract role found in the list of values generated when the
 role attribute is split on
 spaces.

 State and Property Attributes

 Every HTML element may have ARIA state and property attributes
 specified. These attributes are defined by [ARIA] in Section
 6.6, Definitions of States and Properties (all aria-*
 attributes).

 These attributes, if specified, must have a value that is the ARIA
 value type in the "Value" field of the definition for the state or
 property, mapped to the appropriate HTML value type according to [ARIA] Section
 10.2 Mapping WAI-ARIA Value types to languages using the HTML 5
 mapping.

 ARIA State and Property attributes can be used on any element. They
 are not always meaningful, however, and in such cases user agents
 might not perform any processing aside from including them in the DOM.
 State and property attributes are processed according to the
 requirements of the sections Strong Native Semantics and Implicit ARIA semantics, as
 well as [ARIA] and [ARIAIMPL].

 Strong Native Semantics

 The following table defines the strong native semantics and corresponding
 default implicit ARIA semantics that apply to HTML elements. Each
 language feature (element or attribute) in a cell in the first column implies the ARIA semantics
 (any role, states, and properties) given in the cell in the second column of the same row.

 Authors may remove the semantics of some elements with strong native
 semantics by using the presentation role. These elements are indicated with
 (presentation) next to their declared strong native
 semantics in column two.

 	Language feature
 	Strong native semantics and default implicit ARIA semantics

 	area element that creates a hyperlink
 	link role

 	base element
 	No role

 	datalist element
 	listbox role, with the aria-multiselectable property set to "false"

 	details element
 	aria-expanded state set to "true" if the element's open attribute is present, and set to "false" otherwise

 	dialog element without an open attribute
 	The aria-hidden state set to "true"

 	footer element that is not a descendant of an article or section element.
 	contentinfo role
 (presentation)

 	head element
 	No role, with the aria-hidden state set to "true"

 	header element that is not a descendant of an article or section element.
 	banner role
 (presentation)

 	hr element
 	separator role
 (presentation)

 	html element
 	No role

 	img element whose alt attribute's value is empty
 	presentation role

 	input element with a type attribute in the Checkbox state
 	aria-checked state set to "mixed" if the element's indeterminate IDL attribute is true, or "true" if the element's checkedness is true, or "false" otherwise

 	input element with a type attribute in the Color state
 	No role

 	input element with a type attribute in the Date state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Date and Time state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Local Date and Time state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the E-mail state with no suggestions source element
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the File Upload state
 	No role

 	input element with a type attribute in the Hidden state
 	No role

 	input element with a type attribute in the Month state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Number state
 	spinbutton role, with the aria-readonly property set to "true" if the element has a readonly attribute, the aria-valuemax property set to the element's maximum, the aria-valuemin property set to the element's minimum, and, if the result of applying the rules for parsing floating-point number values to the element's value is a number, with the aria-valuenow property set to that number

 	input element with a type attribute in the Password state
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Radio Button state
 	aria-checked state set to "true" if the element's checkedness is true, or "false" otherwise

 	input element with a type attribute in the Range state
 	slider role, with the aria-valuemax property set to the element's maximum, the aria-valuemin property set to the element's minimum, and the aria-valuenow property set to the result of applying the rules for parsing floating-point number values to the element's value, if that results in a number, or the default value otherwise

 	input element with a type attribute in the Reset Button state
 	button role

 	input element with a type attribute in the Search state with no suggestions source element
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Submit Button state
 	button role

 	input element with a type attribute in the Telephone state with no suggestions source element
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Text state with no suggestions source element
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Text, Search, Telephone, URL, or E-mail states with a suggestions source element
 	combobox role, with the aria-owns property set to the same value as the list attribute, and the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Time state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the URL state with no suggestions source element
 	textbox role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element with a type attribute in the Week state
 	No role, with the aria-readonly property set to "true" if the element has a readonly attribute

 	input element that is required
 	The aria-required state set to "true"

 	keygen element
 	No role

 	label element
 	No role

 	link element that creates a hyperlink
 	link role

 	main element
 	main role
 (presentation)

 	meta element
 	No role

 	meter element
 	No role

 	nav element
 	navigation role (presentation)

 	noscript element
 	No role, with the aria-hidden state set to "true"

 	optgroup element
 	No role

 	option element that is in a list of options or that represents a suggestion in a datalist element
 	option role, with the aria-selected state set to "true" if the element's selectedness is true, or "false" otherwise.

 	param element
 	No role

 	progress element
 	progressbar role, with, if the progress bar is determinate, the aria-valuemax property set to the maximum value of the progress bar, the aria-valuemin property set to zero, and the aria-valuenow property set to the current value of the progress bar

 	script element
 	No role, with the aria-hidden state set to "true"

 	select element with a multiple attribute
 	listbox role, with the aria-multiselectable property set to "true"

 	select element with no multiple attribute
 	listbox role, with the aria-multiselectable property set to "false"

 	select element with a required attribute
 	The aria-required state set to "true"

 	source element
 	No role

 	style element
 	No role, with the aria-hidden state set to "true"

 	summary element
 	No role

 	textarea element
 	textbox role, with the aria-multiline property set to "true", and the aria-readonly property set to "true" if the element has a readonly attribute

 	textarea element with a required attribute
 	The aria-required state set to "true"

 	title element
 	No role

 	Element that is disabled
 	The aria-disabled state set to "true"

 	Element that is inert
 	The aria-disabled state set to "true"

 	Element with a hidden attribute
 	The aria-hidden state set to "true"

 	Element that is a candidate for constraint validation but that does not satisfy its constraints
 	The aria-invalid state set to "true"

 Implicit ARIA Semantics

 Some HTML elements have native semantics that can be overridden. The following
 table lists these elements and their default implicit ARIA semantics, along with the
 restrictions that apply to those elements. Each language feature (element or attribute) in a cell
 in the first column implies, unless otherwise overridden, the ARIA semantic (role, state, or
 property) given in the cell in the second column of the same row, but this semantic may be
 overridden under the conditions listed in the cell in the third column of that row.

 	Language feature
 	Default implicit ARIA semantic
 	Restrictions

 	a element that creates a hyperlink
 	link role
 	Role must be either link, menuitem, tab, or treeitem

 	address element
 	No role
 	If specified, role must be contentinfo

 	article element
 	article role
 	Role must be either article, document, application, or main

 	aside element
 	complementary role
 	Role must be either complementary,
 note, search or presentation

 	audio element
 	No role
 	If specified, role must be application

 	button element
 	button role
 	Role must be either button, link,
 menuitem, menuitemcheckbox,
 menuitemradio or radio

 	details element
 	group role
 	Role must be a role that supports aria-expanded

 	dialog element
 	dialog role
 	Role must be either
 alert,
 alertdialog,
 application,
 contentinfo,
 dialog,
 document,
 log,
 main,
 marquee,
 region,
 search, or
 status

 	embed element
 	No role
 	If specified, role must be either application,
 document, or img

 	h1 element
 	heading role, with the
 aria-level property set to the element's outline depth
 	Role must be either heading, tab
 or presentation

 	h2 element
 	heading role, with the aria-level
 property set to the element's outline depth
 	Role must be heading, tab
 or presentation

 	h3 element
 	heading role, with the aria-level
 property set to the element's outline depth
 	Role must be heading, tab
 or presentation

 	h4 element
 	heading role, with the aria-level
 property set to the element's outline depth
 	Role must be heading, tab or presentation

 	h5 element
 	heading role, with the aria-level
 property set to the element's outline depth
 	Role must be heading, tab
 or presentation

 	h6 element
 	heading role, with the aria-level property set to the element's outline depth
 	Role must be heading, tab
 or presentation

 	iframe element
 	No role
 	If specified, role must be application, document, img, or presentation

 	img element whose alt attribute's value is absent
 	img role
 	No restrictions

 	img element whose alt attribute's value is present and not empty
 	img role
 	No restrictions

 	input element with a type attribute in the Button state
 	button role
 	Role must be either button, link,
 menuitem, menuitemcheckbox,
 menuitemradio or radio

 	input element with a type attribute in the Checkbox state
 	checkbox role
 	Role must be either checkbox or menuitemcheckbox

 	input element with a type attribute in the Image Button state
 	button role
 	Role must be either button, link,
 menuitem, menuitemcheckbox,
 menuitemradio or radio

 	input element with a type attribute in the Radio Button state
 	radio role
 	Role must be either radio or menuitemradio

 	li element whose parent is an ol or ul element
 	listitem role
 	Role must be either listitem, menuitem, menuitemcheckbox, menuitemradio, option, tab, treeitem or presentation

 	main element
 	main role
 	Role must be either document, application, or main

 	object element
 	No role
 	If specified, role must be either application, document, img, or presentation

 	ol element
 	list role
 	Role must be either directory, list, listbox, menu, menubar, tablist, toolbar, tree
 or presentation

 	output element
 	status role
 	No restrictions

 	section element
 	region role
 	Role must be either
 alert,
 alertdialog,
 application,
 contentinfo,
 dialog,
 document,
 log,
 main,
 marquee,
 region,
 search,
 status
 or presentation

 	ul element
 	list role
 	Role must be either directory, list, listbox, menu, menubar, tablist, toolbar, tree
 or presentation

 	video element
 	No role
 	If specified, role must be application

 	The body element
 	document role
 	Role must be either document or application

 The entry "no role", when used as a strong native semantic, means that no role can be used and that the
 user agent has no default mapping to ARIA roles. (However, it could have its own mappings to the
 accessibility layer.) When used as a default
 implicit ARIA semantic, it means the user agent has no default mapping to ARIA roles.
 (However, it could have its own mappings to the accessibility layer.)

 The WAI-ARIA specification neither requires or forbids user
 agents from enhancing native presentation and interaction behaviors
 on the basis of WAI- ARIA markup. Even mainstream user agents might
 choose to expose metadata or navigational features directly or via
 user-installed extensions; for example, exposing required form
 fields or landmark navigation. User agents are encouraged to
 maximize their usefulness to users, including users without
 disabilities.

 Conformance checkers are encouraged to phrase errors such that authors are encouraged to use
 more appropriate elements rather than remove accessibility annotations. For example, if an
 a element is marked as having the button
 role, a conformance checker could say "Use a more appropriate element to represent a button, for
 example a button element or an input element" rather than "The button role cannot be used with a elements".

 These features can be used to make accessibility tools render content to their users in more
 useful ways. For example, ASCII art, which is really an image, appears to be text, and in the
 absence of appropriate annotations would end up being rendered by screen readers as a very
 painful reading of lots of punctuation. Using the features described in this section, one can
 instead make the ATs skip the ASCII art and just read the caption:

 <figure role="img" aria-labelledby="fish-caption">
 <pre>
 o .'`/
 ' / (
 O .-'` ` `'-._ .')
 _/ (o) '. .' /
)))) >< <
 `\ |_\ _.' '. \
 '-._ _ .-' '.)
 jgs `__\
 </pre>
 <figcaption id="fish-caption">
 Joan G. Stark, "<cite>fish</cite>".
 October 1997. ASCII on electrons. 28×8.
 </figcaption>
</figure>

 Interactions with XPath and XSLT

 Implementations of XPath 1.0 that operate on HTML
 documents parsed or created in the manners described in this specification (e.g. as part of
 the document.evaluate() API) must act as if the following edit was applied
 to the XPath 1.0 specification.

 First, remove this paragraph:

 A QName in the node test is expanded
 into an expanded-name
 using the namespace declarations from the expression context. This is the same way expansion is
 done for element type names in start and end-tags except that the default namespace declared with
 xmlns is not used: if the QName does not have a prefix, then the
 namespace URI is null (this is the same way attribute names are expanded). It is an error if the
 QName has a prefix for which there is
 no namespace declaration in the expression context.

 Then, insert in its place the following:

 A QName in the node test is expanded into an expanded-name using the namespace declarations
 from the expression context. If the QName has a prefix, then there must be a namespace declaration for this prefix in
 the expression context, and the corresponding namespace URI is the one that is
 associated with this prefix. It is an error if the QName has a prefix for which there is no
 namespace declaration in the expression context.

 If the QName has no prefix and the principal node type of the axis is element, then the
 default element namespace is used. Otherwise if the QName has no prefix, the namespace URI is
 null. The default element namespace is a member of the context for the XPath expression. The
 value of the default element namespace when executing an XPath expression through the DOM3 XPath
 API is determined in the following way:

 	If the context node is from an HTML DOM, the default element namespace is
 "http://www.w3.org/1999/xhtml".

 	Otherwise, the default element namespace URI is null.

 This is equivalent to adding the default element namespace feature of XPath 2.0
 to XPath 1.0, and using the HTML namespace as the default element namespace for HTML documents.
 It is motivated by the desire to have implementations be compatible with legacy HTML content
 while still supporting the changes that this specification introduces to HTML regarding the
 namespace used for HTML elements, and by the desire to use XPath 1.0 rather than XPath 2.0.

 This change is a willful violation of the XPath 1.0 specification,
 motivated by desire to have implementations be compatible with legacy content while still
 supporting the changes that this specification introduces to HTML regarding which namespace is
 used for HTML elements. [XPATH10]

 XSLT 1.0 processors outputting to a DOM when the output
 method is "html" (either explicitly or via the defaulting rule in XSLT 1.0) are affected as
 follows:

 If the transformation program outputs an element in no namespace, the processor must, prior to
 constructing the corresponding DOM element node, change the namespace of the element to the
 HTML namespace, ASCII-lowercase the
 element's local name, and ASCII-lowercase the
 names of any non-namespaced attributes on the element.

 This requirement is a willful violation of the XSLT 1.0
 specification, required because this specification changes the namespaces and case-sensitivity
 rules of HTML in a manner that would otherwise be incompatible with DOM-based XSLT
 transformations. (Processors that serialize the output are unaffected.) [XSLT10]

 This specification does not specify precisely how XSLT processing interacts with the HTML
 parser infrastructure (for example, whether an XSLT processor acts as if it puts any
 elements into a stack of open elements). However, XSLT processors must stop
 parsing if they successfully complete, and must set the current document
 readiness first to "interactive" and then to "complete" if they are aborted.

 This specification does not specify how XSLT interacts with the navigation algorithm, how it fits in with the event loop, nor
 how error pages are to be handled (e.g. whether XSLT errors are to replace an incremental XSLT
 output, or are rendered inline, etc).

 There are also additional non-normative comments regarding the interaction of XSLT
 and HTML in the script element section.

 Dynamic markup insertion

 APIs for dynamically inserting markup into the document interact with the parser,
 and thus their behavior varies depending on whether they are used with HTML documents
 (and the HTML parser) or XHTML in XML documents (and the XML
 parser).

 Opening the input stream

 The open() method comes in several variants
 with different numbers of arguments.

 	document = document . open([type [, replace]])

 	

 Causes the Document to be replaced in-place, as if it was a new
 Document object, but reusing the previous object, which is then returned.

 If the type argument is omitted or has the value
 "text/html", then the resulting Document has an HTML parser associated
 with it, which can be given data to parse using document.write(). Otherwise, all content passed to document.write() will be parsed as plain text.

 If the replace argument is present and has the value "replace", the existing entries in the session history for the
 Document object are removed.

 The method has no effect if the Document is still being parsed.

 Throws an InvalidStateError exception if the Document is an XML document.

 	window = document . open(url, name, features [, replace])

 	

 Works like the window.open() method.

 Document objects have an ignore-opens-during-unload counter, which is
 used to prevent scripts from invoking the document.open()
 method (directly or indirectly) while the document is being
 unloaded. Initially, the counter must be set to zero.

 When called with two arguments, the document.open()
 method must act as follows:

 	If the Document object is not flagged as an HTML
 document, throw an InvalidStateError exception and abort these steps.

 	If the Document object is not an active document, then abort
 these steps.

 	Let type be the value of the first argument.

 	

 If the second argument is an ASCII case-insensitive match for the value
 "replace", then let replace be true.

 Otherwise, if the browsing context's session history contains only
 one Document, and that was the about:blank Document
 created when the browsing context was created, and that Document has
 never had the unload a document algorithm invoked on it (e.g. by a previous call to
 document.open()), then let replace be
 true.

 Otherwise, let replace be false.

 	

 If the Document has an active parser whose script nesting
 level is greater than zero, then the method does nothing. Abort these steps and return
 the Document object on which the method was invoked.

 This basically causes document.open() to
 be ignored when it's called in an inline script found during parsing, while still letting it
 have an effect when called asynchronously.

 	

 Similarly, if the Document's ignore-opens-during-unload counter is
 greater than zero, then the method does nothing. Abort these steps and return the
 Document object on which the method was invoked.

 This basically causes document.open() to
 be ignored when it's called from a beforeunload pagehide, or unload event
 handler while the Document is being unloaded.

 	Release the storage mutex.

 	Set the Document's salvageable state to false.

 	Prompt to unload the
 Document object. If the user refused to allow the document to be
 unloaded, then abort these steps and return the Document object on which the
 method was invoked.

 	Unload the Document object, with the
 recycle parameter set to true.

 	Abort the Document.

 	Unregister all event listeners registered on the Document node and its
 descendants.

	Remove any tasks associated with the
 Document in any task source.

 	Remove all child nodes of the document, without firing any mutation events.

 	Replace the Document's singleton objects with new instances of those objects.
 (This includes in particular the Window, Location,
 History, ApplicationCache, and Navigator, objects, the
 various BarProp objects, the two Storage objects, the various
 HTMLCollection objects, and objects defined by other specifications, like
 Selection and the document's UndoManager. It also includes all the Web
 IDL prototypes in the JavaScript binding, including the Document object's
 prototype.)

 	Change the document's character encoding to UTF-8.

 	If the Document is ready for post-load tasks, then set the
 Document object's reload override flag and set the
 Document's reload override buffer to the empty string.

 	Set the Document's salvageable state back to true.

 	Change the document's address to the entry script's document's address.

 	If the Document's iframe load in progress flag is set, set the
 Document's mute iframe load flag.

 	Create a new HTML parser and associate it with the document. This is a
 script-created parser (meaning that it can be closed by the document.open() and document.close() methods, and that the tokenizer will wait for
 an explicit call to document.close() before emitting an
 end-of-file token). The encoding confidence is
 irrelevant.

 	Set the current document readiness of the document to "loading".

 	

 If type is an ASCII case-insensitive match for the string
 "replace", then, for historical reasons, set it to the string "text/html".

 Otherwise:

 If the type string contains a ";" (U+003B) character, remove the
 first such character and all characters from it up to the end of the string.

 Strip leading and trailing whitespace from type.

 	

 If type is not now an ASCII case-insensitive match
 for the string "text/html", then act as if the tokenizer had emitted a start tag
 token with the tag name "pre" followed by a single "LF" (U+000A) character, then switch the
 HTML parser's tokenizer to the PLAINTEXT state.

 	

 Remove all the entries in the browsing context's session history
 after the current entry. If the current entry is the last entry in the
 session history, then no entries are removed.

 This doesn't necessarily have to affect the user
 agent's user interface.

 	Remove any tasks queued by the history traversal
 task source that are associated with any Document objects in the
 top-level browsing context's document family.

 	Remove any earlier entries that share the same Document.

 	If replace is false, then add a new entry, just before the last entry,
 and associate with the new entry the text that was parsed by the previous parser associated with
 the Document object, as well as the state of the document at the start of these
 steps. This allows the user to step backwards in the session history to see the page before it
 was blown away by the document.open() call. This new entry
 does not have a Document object, so a new one will be created if the session history
 is traversed to that entry.

 	Finally, set the insertion point to point at just before the end of the
 input stream (which at this point will be empty).

 	Return the Document on which the method was invoked.

 The document.open() method does not affect
 whether a Document is ready for post-load tasks or completely
 loaded.

 When called with four arguments, the open() method on
 the Document object must call the open() method on the
 Window object of the Document object, with the same arguments as the
 original call to the open() method, and return whatever
 that method returned. If the Document object has no Window object, then
 the method must throw an InvalidAccessError exception.

 Closing the input stream

 	document . close()

 	

 Closes the input stream that was opened by the document.open() method.

 Throws an InvalidStateError exception if the
 Document is an XML
 document.

 The close() method must run the following
 steps:

 	If the Document object is not flagged as an HTML
 document, throw an InvalidStateError exception and abort these
 steps.

 	If there is no script-created parser associated with the document, then abort
 these steps.

 	Insert an explicit "EOF" character at the end of the parser's input
 stream.

 	If there is a pending parsing-blocking script, then abort these
 steps.

 	Run the tokenizer, processing resulting tokens as they are emitted, and stopping when the
 tokenizer reaches the explicit "EOF" character or spins the event loop.

 document.write()

 	document . write(text...)

 	

 In general, adds the given string(s) to the Document's input stream.

 This method has very idiosyncratic behavior. In some cases, this method can
 affect the state of the HTML parser while the parser is running, resulting in a DOM
 that does not correspond to the source of the document (e.g. if the string written is the string
 "<plaintext>" or "<!--"). In other cases,
 the call can clear the current page first, as if document.open() had been called. In yet more cases, the method
 is simply ignored, or throws an exception. To make matters worse, the exact behavior of this
 method can in some cases be dependent on network latency, which can lead to failures that are very hard to debug. For all these reasons, use
 of this method is strongly discouraged.

 This method throws an InvalidStateError exception when invoked on XML
 documents.

 Document objects have an ignore-destructive-writes counter, which is
 used in conjunction with the processing of script elements to prevent external
 scripts from being able to use document.write() to blow
 away the document by implicitly calling document.open().
 Initially, the counter must be set to zero.

 The document.write(...) method must act as
 follows:

 	

 If the method was invoked on an XML document, throw an
 InvalidStateError exception and abort these steps.

 	If the Document object is not an active document, then abort
 these steps.

 	

 If the insertion point is undefined and either the Document's
 ignore-opens-during-unload counter is greater than zero or the
 Document's ignore-destructive-writes counter is greater than zero,
 abort these steps.

 	

 If the insertion point is undefined, call the open() method on the document
 object (with no arguments). If the user refused to allow the document to be
 unloaded, then abort these steps. Otherwise, the insertion point will point
 at just before the end of the (empty) input stream.

 	

 Insert the string consisting of the concatenation of all the arguments to the method into the
 input stream just before the insertion point.

 	

 If the Document object's reload override flag is set, then append
 the string consisting of the concatenation of all the arguments to the method to the
 Document's reload override buffer.

 	

 If there is no pending parsing-blocking script, have the HTML
 parser process the characters that were inserted, one at a time, processing resulting
 tokens as they are emitted, and stopping when the tokenizer reaches the insertion point or when
 the processing of the tokenizer is aborted by the tree construction stage (this can happen if a
 script end tag token is emitted by the tokenizer).

If the document.write() method was
 called from script executing inline (i.e. executing because the parser parsed a set of
 script tags), then this is a reentrant invocation of the
 parser.

 	

 Finally, return from the method.

 document.writeln()

 	document . writeln(text...)

 	

 Adds the given string(s) to the Document's input stream, followed by a newline
 character. If necessary, calls the open() method
 implicitly first.

 This method throws an InvalidStateError exception when invoked on XML
 documents.

 The document.writeln(...) method, when
 invoked, must act as if the document.write() method had
 been invoked with the same argument(s), plus an extra argument consisting of a string containing a
 single line feed character (U+000A).

The elements of HTML

 The root element

 The html element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the root element of a document.

 	Wherever a subdocument fragment is allowed in a compound document.

 	Content model:

 	A head element followed by a body element.

 	Content attributes:

 	Global attributes

 	manifest

 	DOM interface:

 	
 interface HTMLHtmlElement : HTMLElement {};

 The html element represents the root of an HTML document.

 Authors are encouraged to specify a lang attribute on the root
 html element, giving the document's language. This aids speech synthesis tools to
 determine what pronunciations to use, translation tools to determine what rules to use, and so
 forth.

 The manifest attribute gives the address of
 the document's application cache manifest, if there is one. If the attribute is present,
 the attribute's value must be a valid non-empty URL potentially surrounded by
 spaces.

 The manifest attribute only has an effect during the early stages of document load.
 Changing the attribute dynamically thus has no effect (and thus, no DOM API is provided for this
 attribute).

 For the purposes of application cache
 selection, later base elements cannot affect the resolving of relative URLs in manifest
 attributes, as the attributes are processed before those elements are seen.

 The window.applicationCache IDL
 attribute provides scripted access to the offline application cache mechanism.

 The html element in the following example declares that the document's language
 is English.

 <!DOCTYPE html>
<html lang="en">
<head>
<title>Swapping Songs</title>
</head>
<body>
<h1>Swapping Songs</h1>
<p>Tonight I swapped some of the songs I wrote with some friends, who
gave me some of the songs they wrote. I love sharing my music.</p>
</body>
</html>

 Document metadata

 The head element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the first element in an html element.

 	Content model:

 	If the document is an iframe srcdoc document or if title information is available from a higher-level protocol: Zero or more elements of metadata content, of which no more than one is a title element.

 	Otherwise: One or more elements of metadata content, of which exactly one is a title element.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLHeadElement : HTMLElement {};

 The head element represents a collection of metadata for the
 Document.

 The collection of metadata in a head element can be large or small. Here is an
 example of a very short one:

 <!doctype html>
<html>
 <head>
 <title>A document with a short head</title>
 </head>
 <body>
 ...

 Here is an example of a longer one:

 <!DOCTYPE HTML>
<HTML>
 <HEAD>
 <META CHARSET="UTF-8">
 <BASE HREF="http://www.example.com/">
 <TITLE>An application with a long head</TITLE>
 <LINK REL="STYLESHEET" HREF="default.css">
 <LINK REL="STYLESHEET ALTERNATE" HREF="big.css" TITLE="Big Text">
 <SCRIPT SRC="support.js"></SCRIPT>
 <META NAME="APPLICATION-NAME" CONTENT="Long headed application">
 </HEAD>
 <BODY>
 ...

 The title element is a required child in most situations, but when a
 higher-level protocol provides title information, e.g. in the Subject line of an e-mail when HTML
 is used as an e-mail authoring format, the title element can be omitted.

 The title element

 	Categories:

 	Metadata content.

 	Contexts in which this element can be used:

 	In a head element containing no other title elements.

 	Content model:

 	Text.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLTitleElement : HTMLElement {
 attribute DOMString text;
};

 The title element represents the
 document's title or name. Authors should use titles that identify
 their documents even when they are used out of context, for example
 in a user's history or bookmarks, or in search results. The
 document's title is often different from its first heading, since the
 first heading does not have to stand alone when taken out of
 context.

 There must be no more than one title element per
 document.

 The title element must not be empty.

 If it's reasonable for the Document to have no title, then the
 title element is probably not required. See the head element's content
 model for a description of when the element is required.

 	title . text [= value]

 	

 Returns the contents of the element, ignoring child nodes that
 aren't Text nodes.

 Can be set, to replace the element's children with the given
 value.

 The IDL attribute text must return a
 concatenation of the contents of all the Text nodes
 that are children of the title element (ignoring any
 other nodes such as comments or elements), in tree order. On
 setting, it must act the same way as the textContent
 IDL attribute.

 Here are some examples of appropriate titles, contrasted with
 the top-level headings that might be used on those same pages.

 <title>Introduction to The Mating Rituals of Bees</title>
 ...
 <h1>Introduction</h1>
 <p>This companion guide to the highly successful
 <cite>Introduction to Medieval Bee-Keeping</cite> book is...

 The next page might be a part of the same site. Note how the
 title describes the subject matter unambiguously, while the first
 heading assumes the reader knows what the context is and therefore
 won't wonder if the dances are Salsa or Waltz:

 <title>Dances used during bee mating rituals</title>
 ...
 <h1>The Dances</h1>

 The string to use as the document's title is given by the document.title IDL attribute.

 User agents should use the document's title when referring to the
 document in their user interface. When the contents of a
 title element are used in this way, the
 directionality of that title element should be
 used to set the directionality of the document's title in the user
 interface.

 The base element

 	Categories:

 	Metadata content.

 	Contexts in which this element can be used:

 	In a head element containing no other base elements.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	href

 	target

 	DOM interface:

 	
interface HTMLBaseElement : HTMLElement {
 attribute DOMString href;
 attribute DOMString target;
};

 The base element allows authors to specify the
 document base URL for the purposes of resolving relative URLs, and the name
 of the default browsing context for the purposes of
 following hyperlinks. The element does not represent any content beyond this
 information.

 There must be no more than one base element per
 document.

 A base element must have either an href attribute, a target attribute, or both.

 The href content
 attribute, if specified, must contain a valid URL potentially
 surrounded by spaces.

 A base element, if it has an href attribute, must come before any
 other elements in the tree that have attributes defined as taking
 URLs, except the html element
 (its manifest attribute
 isn't affected by base elements).

 If there are multiple base elements
 with href attributes, all but the
 first are ignored.

 The target
 attribute, if specified, must contain a valid browsing context
 name or keyword, which specifies which browsing
 context is to be used as the default when hyperlinks and forms in the Document cause navigation.

 A base element, if it has a target attribute, must come before
 any elements in the tree that represent hyperlinks.

 If there are multiple base elements
 with target attributes, all but
 the first are ignored.

 A base element that is the first base element with an href content attribute in a particular Document has a
 frozen base URL. The frozen base URL must be set, synchronously, whenever any of the following situations occur:

 	The base element becomes the first base element in tree
 order with an href content attribute in its
 Document.

 	The base element is the first base element in tree
 order with an href content attribute in its
 Document, and its href content attribute is
 changed.

 To set the , resolve
 the value of the element's href content attribute relative to
 the Document's fallback base URL; if this is successful, set the
 frozen base URL to the resulting absolute URL, otherwise, set the
 frozen base URL to the fallback base URL.

 The href IDL
 attribute, on getting, must return the result of running the
 following algorithm:

 	If the base element has no href content attribute, then return
 the document base URL and abort these steps.

 	Let fallback base url be the
 Document's fallback base URL.

 	Let url be the value of the href attribute of the
 base element.

 	Resolve url relative to fallback base
 url (thus, the base href attribute isn't affected by
 xml:base attributes or
 base elements).

 	If the previous step was successful, return the resulting
 absolute URL and abort these steps.

 	Otherwise, return the empty string.

 The href IDL attribute, on
 setting, must set the href
 content attribute to the given new value.

 The target IDL
 attribute must reflect the content attribute of the
 same name.

 In this example, a base element is used to set the
 document base URL:

 <!DOCTYPE html>
<html>
 <head>
 <title>This is an example for the <base> element</title>
 <base href="http://www.example.com/news/index.html">
 </head>
 <body>
 <p>Visit the archives.</p>
 </body>
</html>

 The link in the above example would be a link to "http://www.example.com/news/archives.html".

 The link element

 	Categories:

 	Contexts in which this element can be used:

 	Where metadata content is expected.

 	In a noscript element that is a child of a head element.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	href

 	crossorigin

 	rel

 	media

 	hreflang

 	type

 	sizes

 	Also, the title attribute has special semantics on this element.

 	DOM interface:

 	
interface HTMLLinkElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString href;
 attribute DOMString crossOrigin;
 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString media;
 attribute DOMString hreflang;
 attribute DOMString type;
 [PutForwards=] readonly attribute DOMSettableTokenList sizes;
};
HTMLLinkElement implements LinkStyle;

 The link element allows authors to link their document to other resources.

 The destination of the link(s) is given by the href attribute, which must be present and must contain a
 valid non-empty URL potentially surrounded by spaces.

 If the rel attribute is used, the element is
 restricted to the head element.

 The types of link indicated (the relationships) are given by the value of the rel attribute, which, if present, must have a value that
 is a set of space-separated tokens. The allowed keywords and
 their meanings are defined in a later section.

 Two categories of links can be created using the link element: Links to external resources and hyperlinks. The link types section defines
 whether a particular link type is an external resource or a hyperlink. One link
 element can create multiple links (of which some might be external resource links and some might
 be hyperlinks); exactly which and how many links are created depends on the keywords given in the
 rel attribute. User agents must process the links on a per-link
 basis, not a per-element basis.

 Each link created for a link element is handled separately. For
 instance, if there are two link elements with rel="stylesheet",
 they each count as a separate external resource, and each is affected by its own attributes
 independently. Similarly, if a single link element has a rel attribute with the value next stylesheet,
 it creates both a hyperlink (for the next keyword) and
 an external resource link (for the stylesheet
 keyword), and they are affected by other attributes (such as media or title)
 differently.

 For example, the following link element creates two hyperlinks (to the same
 page):

 <link rel="author license" href="/about">

 The two links created by this element are one whose semantic is that the target page has
 information about the current page's author, and one whose semantic is that the target page has
 information regarding the license under which the current page is provided.

 The crossorigin attribute is a CORS
 settings attribute. It is intended for use with external resource links.

 The exact behavior for links to external resources depends on the exact relationship, as
 defined for the relevant link type. Some of the attributes control whether or not the external
 resource is to be applied (as defined below).

 For external resources that are represented in the DOM (for example, style sheets), the DOM
 representation must be made available (modulo cross-origin restrictions) even if the resource is
 not applied. To obtain the resource, the user agent must
 run the following steps:

 	If the href attribute's value is the empty string,
 then abort these steps.

 	Resolve the URL given by the href attribute, relative to the element.

 	If the previous step fails, then abort these steps.

 	

 Do a potentially CORS-enabled fetch of the resulting absolute
 URL, with the mode being the state of the element's crossorigin content attribute, the origin
 being the origin of the link element's Document, and the
 default origin behaviour set to taint.

 The resource obtained in this fashion can be either CORS-same-origin or
 CORS-cross-origin.

 User agents may opt to only try to obtain such resources when they are needed, instead of
 pro-actively fetching all the external resources that are not
 applied.

 The semantics of the protocol used (e.g. HTTP) must be followed when fetching external
 resources. (For example, redirects will be followed and 404 responses will cause the external
 resource to not be applied.)

 Once the attempts to obtain the resource and its critical subresources are
 complete, the user agent must, if the loads were successful, queue a task to
 fire a simple event named load at the
 link element, or, if the resource or one of its critical subresources
 failed to completely load for any reason (e.g. DNS error, HTTP 404 response, a connection being
 prematurely closed, unsupported Content-Type), queue a task to fire a simple
 event named error at the link element.
 Non-network errors in processing the resource or its subresources (e.g. CSS parse errors, PNG
 decoding errors) are not failures for the purposes of this paragraph.

 The task source for these tasks is the DOM
 manipulation task source.

 The element must delay the load event of the element's document until all the
 attempts to obtain the resource and its critical subresources are complete.
 (Resources that the user agent has not yet attempted to obtain, e.g. because it is waiting for the
 resource to be needed, do not delay the load event.)

 Interactive user agents may provide users with a means to follow the hyperlinks created using the link element, somewhere
 within their user interface. The exact interface is not defined by this specification, but it
 could include the following information (obtained from the element's attributes, again as defined
 below), in some form or another (possibly simplified), for each hyperlink created with each
 link element in the document:

 	The relationship between this document and the resource (given by the rel attribute)

 	The title of the resource (given by the title
 attribute).

 	The address of the resource (given by the href
 attribute).

 	The language of the resource (given by the hreflang
 attribute).

 	The optimum media for the resource (given by the media
 attribute).

 User agents could also include other information, such as the type of the resource (as given by
 the type attribute).

 Hyperlinks created with the link element and its rel attribute apply to the whole page. This contrasts with the rel attribute of a and area elements,
 which indicates the type of a link whose context is given by the link's location within the
 document.

 The media attribute says which media the
 resource applies to. The value must be a valid media query.

 If the link is a hyperlink then the media
 attribute is purely advisory, and describes for which media the document in question was
 designed.

 However, if the link is an external resource link, then the media attribute is prescriptive. The user agent must apply the
 external resource when the media attribute's value
 matches the environment and the other relevant conditions apply, and must not apply
 it otherwise.

 The external resource might have further restrictions defined within that limit
 its applicability. For example, a CSS style sheet might have some @media
 blocks. This specification does not override such further restrictions or requirements.

 The default, if the media attribute is
 omitted, is "all", meaning that by default links apply to all media.

 The hreflang attribute on the
 link element has the same semantics as the hreflang attribute on a and
 area elements.

 The type attribute gives the MIME
 type of the linked resource. It is purely advisory. The value must be a valid MIME
 type.

 For external resource links, the type attribute is used as a hint to user agents so that they can
 avoid fetching resources they do not support.

 User agents must not consider the type attribute
 authoritative — upon fetching the resource, user agents must not use the type attribute to determine its actual type. Only the actual type
 (as defined in the next paragraph) is used to determine whether to apply the resource,
 not the aforementioned assumed type.

 If the external resource link type defines rules for processing
 the resource's Content-Type metadata, then those rules apply.
 Otherwise, if the resource is expected to be an image, user agents may apply the image sniffing rules, with the official
 type being the type determined from the resource's Content-Type
 metadata, and use the resulting sniffed type of the resource as if it was the actual type.
 Otherwise, if neither of these conditions apply or if the user agent opts not to apply the image
 sniffing rules, then the user agent must use the resource's Content-Type metadata to determine the type of the resource. If there
 is no type metadata, but the external resource link type has a default type defined, then the user
 agent must assume that the resource is of that type.

 The stylesheet link type defines rules for
 processing the resource's Content-Type metadata.

 Once the user agent has established the type of the resource, the user agent must apply the
 resource if it is of a supported type and the other relevant conditions apply, and must ignore the
 resource otherwise.

 If a document contains style sheet links labeled as follows:

 <link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

 ...then a compliant UA that supported only CSS style sheets would fetch the B and C files, and
 skip the A file (since text/plain is not the MIME type for CSS style
 sheets).

 For files B and C, it would then check the actual types returned by the server. For those that
 are sent as text/css, it would apply the styles, but for those labeled as
 text/plain, or any other type, it would not.

 If one of the two files was returned without a Content-Type metadata, or with a
 syntactically incorrect type like Content-Type: "null", then the
 default type for stylesheet links would kick in. Since that
 default type is text/css, the style sheet would nonetheless be
 applied.

 The title attribute gives the title of the
 link. With one exception, it is purely advisory. The value is text. The exception is for style
 sheet links, where the title attribute defines
 alternative style sheet sets.

 The title attribute on link
 elements differs from the global title attribute of most other
 elements in that a link without a title does not inherit the title of the parent element: it
 merely has no title.

 The sizes attribute is used with the icon link type. The attribute must not be specified on link
 elements that do not have a rel attribute that specifies the
 icon keyword.

 HTTP Link: header fields, if supported, must be assumed to come
 before any links in the document, in the order that they were given in the HTTP message. These
 header fields are to be processed according to the rules given in the relevant specifications. [HTTP] [WEBLINK]

 Registration of relation types in HTTP Link: header fields is distinct from HTML link types, and thus their semantics can be different from same-named
 HTML types.

 The IDL attributes href, rel, media,
 hreflang, type, and sizes each must reflect the respective
 content attributes of the same name.

 The crossOrigin IDL attribute must
 reflect the crossorigin content
 attribute, limited to only known values.

 The IDL attribute relList reflect the rel content attribute.

 The IDL attribute disabled only applies to
 style sheet links. When the link element defines a style sheet link, then the disabled attribute behaves as defined for the alternative style sheets DOM. For all other
 link elements it always return false and does nothing on setting.

 The LinkStyle interface is also implemented by this element; the styling
 processing model defines how. [CSSOM]

 Here, a set of link elements provide some style
 sheets:

 <!-- a persistent style sheet -->
<link rel="stylesheet" href="default.css">

<!-- the preferred alternate style sheet -->
<link rel="stylesheet" href="green.css" title="Green styles">

<!-- some alternate style sheets -->
<link rel="alternate stylesheet" href="contrast.css" title="High contrast">
<link rel="alternate stylesheet" href="big.css" title="Big fonts">
<link rel="alternate stylesheet" href="wide.css" title="Wide screen">

 The following example shows how you can specify versions of the page that use alternative
 formats, are aimed at other languages, and that are intended for other media:

 <link rel=alternate href="/en/html" hreflang=en type=text/html title="English HTML">
<link rel=alternate href="/fr/html" hreflang=fr type=text/html title="French HTML">
<link rel=alternate href="/en/html/print" hreflang=en type=text/html media=print title="English HTML (for printing)">
<link rel=alternate href="/fr/html/print" hreflang=fr type=text/html media=print title="French HTML (for printing)">
<link rel=alternate href="/en/pdf" hreflang=en type=application/pdf title="English PDF">
<link rel=alternate href="/fr/pdf" hreflang=fr type=application/pdf title="French PDF">

 The meta element

 	Categories:

 	Contexts in which this element can be used:

 	If the charset attribute is present, or if the element's http-equiv attribute is in the Encoding declaration state: in a head element.

 	If the http-equiv attribute is present but not in the Encoding declaration state: in a head element.

 	If the http-equiv attribute is present but not in the Encoding declaration state: in a noscript element that is a child of a head element.

 	If the name attribute is present: where metadata content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	name

 	http-equiv

 	content

 	charset

 	DOM interface:

 	
interface HTMLMetaElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString httpEquiv;
 attribute DOMString content;
};

 The meta element represents various kinds of metadata that cannot be
 expressed using the title, base, link, style,
 and script elements.

 The meta element can represent document-level metadata with the name attribute, pragma directives with the http-equiv attribute, and the file's character encoding
 declaration when an HTML document is serialized to string form (e.g. for transmission over
 the network or for disk storage) with the charset
 attribute.

 Exactly one of the name, http-equiv, charset
 attributes must be specified.

 If either name or http-equiv is
 specified, then the content attribute must also be
 specified. Otherwise, it must be omitted.

 The charset attribute specifies the character
 encoding used by the document. This is a character encoding declaration. If the
 attribute is present in an XML document, its value must be an
 ASCII case-insensitive match for the string "UTF-8" (and the
 document is therefore forced to use UTF-8 as its encoding).

 The charset attribute on the
 meta element has no effect in XML documents, and is only allowed in order to
 facilitate migration to and from XHTML.

 There must not be more than one meta element with a charset attribute per document.

 The content attribute gives the value of the
 document metadata or pragma directive when the element is used for those purposes. The allowed
 values depend on the exact context, as described in subsequent sections of this specification.

 If a meta element has a name
 attribute, it sets document metadata. Document metadata is expressed in terms of name-value pairs,
 the name attribute on the meta element giving the
 name, and the content attribute on the same element giving
 the value. The name specifies what aspect of metadata is being set; valid names and the meaning of
 their values are described in the following sections. If a meta element has no content attribute, then the value part of the metadata name-value
 pair is the empty string.

 The name and content IDL attributes must reflect the
 respective content attributes of the same name. The IDL attribute httpEquiv must reflect the content
 attribute http-equiv.

 Standard metadata names

 This specification defines a few names for the name attribute of the
 meta element.

 Names are case-insensitive.

 	application-name

 	The value must be a short free-form string giving the name
 of the Web application that the page represents. If the page is not
 a Web application, the application-name metadata name
 must not be used. There must not be more than one meta
 element with its name attribute
 set to the value application-name per
 document.

 	author

 	The value must be a free-form string giving the name of one
 of the page's authors.

 	description

 	The value must be a free-form string that describes the
 page. The value must be appropriate for use in a directory of
 pages, e.g. in a search engine. There must not be more than one
 meta element with its name attribute set to the value description per document.

 	generator

 	

 The value must be a free-form string that identifies one of the
 software packages used to generate the document. This value must
 not be used on pages whose markup is not generated by software,
 e.g. pages whose markup was written by a user in a text editor.

 Here is what a tool called "Frontweaver" could include in its
 output, in the page's head element, to identify
 itself as the tool used to generate the page:

 <meta name=generator content="Frontweaver 8.2">

 	keywords

 	

 The value must be a set of comma-separated tokens,
 each of which is a keyword relevant to the page.

 This page about typefaces on British motorways uses a
 meta element to specify some keywords that users
 might use to look for the page:

 <!DOCTYPE HTML>
<html>
 <head>
 <title>Typefaces on UK motorways</title>
 <meta name="keywords" content="british,type face,font,fonts,highway,highways">
 </head>
 <body>
 ...

 Many search engines do not consider such keywords,
 because this feature has historically been used unreliably and
 even misleadingly as a way to spam search engine results in a way
 that is not helpful for users.

 To obtain the list of keywords that the author has specified as
 applicable to the page, the user agent must run the following
 steps:

 	Let keywords be an empty
 list.

 	

 For each meta element with a name attribute and a content attribute and whose
 name attribute's value is
 keywords, run the following
 substeps:

 	Split the value
 of the element's content
 attribute on commas.

 	Add the resulting tokens, if any, to keywords.

 	Remove any duplicates from keywords.

 	Return keywords. This is the list of
 keywords that the author has specified as applicable to the
 page.

 User agents should not use this information when there is
 insufficient confidence in the reliability of the value.

 For instance, it would be reasonable for a
 content management system to use the keyword information of pages
 within the system to populate the index of a site-specific search
 engine, but a large-scale content aggregator that used this
 information would likely find that certain users would try to game
 its ranking mechanism through the use of inappropriate
 keywords.

 Other metadata names

 Extensions to the predefined
 set of metadata names may be registered in the WHATWG Wiki
 MetaExtensions page. [WHATWGWIKI]

 Anyone is free to edit the WHATWG Wiki MetaExtensions page at any
 time to add a type. These new names must be specified with the
 following information:

 	Keyword

 	The actual name being defined. The name should not be
 confusingly similar to any other defined name (e.g. differing only
 in case).

 	Brief description

 	A short non-normative description of what the metadata
 name's meaning is, including the format the value is required to be
 in.

 	Specification

 	A link to a more detailed description of the metadata name's
 semantics and requirements. It could be another page on the Wiki,
 or a link to an external page.

 	Synonyms

 	A list of other names that have exactly the same processing
 requirements. Authors should not use the names defined to be
 synonyms, they are only intended to allow user agents to support
 legacy content. Anyone may remove synonyms that are not used in
 practice; only names that need to be processed as synonyms for
 compatibility with legacy content are to be registered in this
 way.

 	Status

 	

 One of the following:

 	Proposed

 	The name has not received wide peer review and
 approval. Someone has proposed it and is, or soon will be, using
 it.

 	Ratified

 	The name has received wide peer review and approval. It has a
 specification that unambiguously defines how to handle pages that
 use the name, including when they use it in incorrect ways.

 	Discontinued

 	The metadata name has received wide peer review and it has
 been found wanting. Existing pages are using this metadata name,
 but new pages should avoid it. The "brief description" and
 "specification" entries will give details of what authors should
 use instead, if anything.

 If a metadata name is found to be redundant with existing
 values, it should be removed and listed as a synonym for the
 existing value.

 If a metadata name is registered in the "proposed" state for a
 period of a month or more without being used or specified, then it
 may be removed from the registry.

 If a metadata name is added with the "proposed" status and
 found to be redundant with existing values, it should be removed
 and listed as a synonym for the existing value. If a metadata name
 is added with the "proposed" status and found to be harmful, then
 it should be changed to "discontinued" status.

 Anyone can change the status at any time, but should only do so
 in accordance with the definitions above.

 Conformance checkers may use the information given on the WHATWG
 Wiki MetaExtensions page to establish if a value is allowed or not:
 values defined in this specification or marked as "proposed" or
 "ratified" must be accepted, whereas values marked as "discontinued"
 or not listed in either this specification or on the aforementioned
 page must be reported as invalid. Conformance checkers may cache
 this information (e.g. for performance reasons or to avoid the use
 of unreliable network connectivity).

 When an author uses a new metadata name not defined by either
 this specification or the Wiki page, conformance checkers may
 offer to add the value to the Wiki, with the details described
 above, with the "proposed" status.

 Metadata names whose values are to be URLs must not be proposed or accepted. Links must
 be represented using the link element, not the
 meta element.

 Pragma directives

 When the http-equiv attribute
 is specified on a meta element, the element is a pragma
 directive.

 The http-equiv
 attribute is an enumerated attribute. The following
 table lists the keywords defined for this attribute. The states
 given in the first cell of the rows with keywords give the states to
 which those keywords map.

 	State
 	Keyword
 	Notes

 	Content Language
 	content-language
 	Non-conforming

 	Encoding declaration
 	content-type
 	

 	Default style
 	default-style
 	

 	Refresh
 	refresh
 	

 	Cookie setter
 	set-cookie
 	Non-conforming

 When a meta element is inserted into the document, if its
 http-equiv attribute is
 present and represents one of the above states, then the user agent
 must run the algorithm appropriate for that state, as described in
 the following list:

 	Content language state (http-equiv="content-language")

	

 This feature is non-conforming. Authors are
 encouraged to use the lang
 attribute instead.

 This pragma sets the pragma-set default language.
 Until such a pragma is successfully processed, there is no
 pragma-set default language.

 	If the meta element has no content attribute, then abort these
 steps.

 	If the element's content attribute contains a
 "," (U+002C) character then abort these steps.

 	Let input be the value of the
 element's content
 attribute.

 	Let position point at the first
 character of input.

 	Skip whitespace.

 	Collect a sequence of characters that are not space characters.

 	Let candidate be the string that resulted from the previous
 step.

 	If candidate is the empty string, abort these steps.

 	Set the pragma-set default language to candidate.

 This pragma is not exactly equivalent to the HTTP
 Content-Language header. [HTTP]

 	Encoding declaration state (http-equiv="content-type")

	

 The encoding declaration state is just
 an alternative form of setting the charset attribute: it is a
 character encoding declaration.

 For meta elements with an http-equiv
 attribute in the encoding declaration
 state, the content attribute must have a value
 that is an ASCII case-insensitive match for a string that consists of: the literal
 string "text/html;", optionally followed by any number of space characters, followed by the literal string "charset=", followed by the name of the character encoding of the character encoding
 declaration.

 A document must not contain both a meta element with an http-equiv attribute in the encoding declaration state and a
 meta element with the charset attribute
 present.

 The encoding declaration state may be
 used in HTML documents and in XML Documents. If the
 encoding declaration state is used in
 XML Documents, the name of the character
 encoding must be an ASCII case-insensitive match for the string "UTF-8" (and	the document is therefore forced to use UTF-8 as its encoding).

 The encoding declaration state
 has no effect in XML documents, and is only allowed in order to facilitate migration to and from
 XHTML.

 	Default style state (http-equiv="default-style")

	

 This pragma sets the name of the default alternative style sheet
 set.

 	If the meta element has no content attribute, or if that
 attribute's value is the empty string, then abort these
 steps.

 	Set the preferred style sheet set to the
 value of the element's content attribute. [CSSOM]

 	Refresh state (http-equiv="refresh")

	

 This pragma acts as timed redirect.

 	If another meta element with an http-equiv attribute in the Refresh state has already been successfully
 processed (i.e. when it was inserted the user agent processed it and reached the last step of
 this list of steps), then abort these steps.

 	If the meta element has no content
 attribute, or if that attribute's value is the empty string, then abort these steps.

 	Let input be the value of the element's content attribute.

 	Let position point at the first character of input.

 	Skip whitespace.

 	Collect a sequence of characters that are ASCII digits, and
 parse the resulting string using the rules for parsing non-negative integers. If
 the sequence of characters collected is the empty string, then no number will have been parsed;
 abort these steps. Otherwise, let time be the parsed number.

 	Collect a sequence of characters that are ASCII digits and
 "." (U+002E) characters. Ignore any collected characters.

 	Skip whitespace.

 	Let url be the address of the current page.

 	If the character in input pointed to by position
 is a ";" (U+003B) character or a "," (U+002C) character, then advance position to the next character. Otherwise, jump to the last step.

 	Skip whitespace.

 	If the character in input pointed to by position
 is a "U" (U+0055) character or a U+0075 LATIN SMALL LETTER U character
 (u), then advance position to the next character. Otherwise, jump to the
 last step.

 	If the character in input pointed to by position
 is a "R" (U+0052) character or a U+0072 LATIN SMALL LETTER R character
 (r), then advance position to the next character. Otherwise, jump to the
 last step.

 	If the character in input pointed to by position
 is s "L" (U+004C) character or a U+006C LATIN SMALL LETTER L character
 (l), then advance position to the next character. Otherwise, jump to the
 last step.

 	Skip whitespace.

 	If the character in input pointed to by position
 is a "=" (U+003D), then advance position to the next character.
 Otherwise, jump to the last step.

 	Skip whitespace.

 	If the character in input pointed to by position
 is either a "'" (U+0027) character or """ (U+0022) character, then let
 quote be that character, and advance position to the
 next character. Otherwise, let quote be the empty string.

 	Let url be equal to the substring of input from
 the character at position to the end of the string.

 	If quote is not the empty string, and there is a character in url equal to quote, then truncate url at
 that character, so that it and all subsequent characters are removed.

	Strip any trailing space characters from the end of
 url.

 	Strip any "tab" (U+0009), "LF" (U+000A), and "CR" (U+000D) characters from url.

 	Resolve the url value to an
 absolute URL, relative to the meta element. If this fails, abort
 these steps.

 	

 Perform one or more of the following steps:

 	

 After the refresh has come due (as defined below), if the user has not canceled the
 redirect and if the meta element's Document's active
 sandboxing flag set does not have the sandboxed automatic features browsing
 context flag set, navigate the
 Document's browsing context to url, with
 replacement enabled, and with the Document's browsing
 context as the source browsing context.

 For the purposes of the previous paragraph, a refresh is said to have come due as soon as
 the later of the following two conditions occurs:

 	At least time seconds have elapsed since the document has
 completely loaded, adjusted to take into account user or user agent
 preferences.

 	At least time seconds have elapsed since the meta
 element was inserted into the
 Document, adjusted to take into account user or user agent
 preferences.

 	Provide the user with an interface that, when selected, navigates a browsing context to
 url, with the Document's browsing context as the source browsing
 context.

 	Do nothing.

 In addition, the user agent may, as with anything, inform the user of any and all aspects
 of its operation, including the state of any timers, the destinations of any timed redirects,
 and so forth.

 For meta elements with an http-equiv
 attribute in the Refresh state, the content attribute must have a value consisting either of:

 	just a valid non-negative integer, or

 	a valid non-negative integer, followed by a U+003B SEMICOLON character
 (;), followed by one or more space characters, followed
 by a substring that is an ASCII case-insensitive match for the string "URL", followed by a "=" (U+003D) character, followed by a valid
 URL that does not start with a literal "'" (U+0027) or """ (U+0022) character.

 In the former case, the integer represents a number of seconds before the page is to be
 reloaded; in the latter case the integer represents a number of seconds before the page is to be
 replaced by the page at the given URL.

 A news organization's front page could include the following markup in the page's
 head element, to ensure that the page automatically reloads from the server every
 five minutes:

 <meta http-equiv="Refresh" content="300">

 A sequence of pages could be used as an automated slide show by making each page refresh to
 the next page in the sequence, using markup such as the following:

 <meta http-equiv="Refresh" content="20; URL=page4.html">

 	Cookie setter (http-equiv="set-cookie")

	

 This pragma sets an HTTP cookie. [COOKIES]

 It is non-conforming. Real HTTP headers should be used instead.

 	If the meta element has no content
 attribute, or if that attribute's value is the empty string, then abort these steps.

 	Obtain the storage mutex.

 	Act as if receiving a
 set-cookie-string for the document's address via a "non-HTTP" API,
 consisting of the value of the element's content
 attribute encoded as UTF-8. [COOKIES] [RFC3629]

 There must not be more than one meta element with any particular state in the
 document at a time.

 Other pragma directives

 Extensions to the
 predefined set of pragma directives may, under certain
 conditions, be registered in the WHATWG Wiki
 PragmaExtensions page. [WHATWGWIKI]

 Such extensions must use a name that is identical to an HTTP
 header registered in the Permanent Message Header Field Registry,
 and must have behavior identical to that described for the HTTP
 header. [IANAPERMHEADERS]

 Pragma directives corresponding to headers describing metadata,
 or not requiring specific user agent processing, must not be
 registered; instead, use metadata names. Pragma
 directives corresponding to headers that affect the HTTP processing
 model (e.g. caching) must not be registered, as they would result in
 HTTP-level behavior being different for user agents that implement
 HTML than for user agents that do not.

 Anyone is free to edit the WHATWG Wiki PragmaExtensions page at
 any time to add a pragma directive satisfying these conditions. Such
 registrations must specify the following information:

 	Keyword

 	The actual name being defined. The name must match a
 previously-registered HTTP name with the same
 requirements.

 	Brief description

 	A short non-normative description of the purpose of the
 pragma directive.

 	Specification

 	A link to the specification defining the corresponding HTTP
 header.

 Conformance checkers may use the information given on the WHATWG
 Wiki PragmaExtensions page to establish if a value is allowed or
 not: values defined in this specification or listed on the
 aforementioned page must be accepted, whereas values not listed in
 either this specification or on the aforementioned page must be
 reported as invalid. Conformance checkers may cache this information
 (e.g. for performance reasons or to avoid the use of unreliable
 network connectivity).

 Specifying the document's character encoding

 A character encoding declaration is a mechanism by which the character encoding used to store or transmit a document is specified.

 The following restrictions apply to character
 encoding declarations:

 	The character encoding name given must be an ASCII case-insensitive match for
 the name of the character
 encoding used to serialize the file. [ENCODING]

 	The character encoding declaration must be serialized without the use of character references or character escapes of any kind.

 	

 In addition, due to a number of restrictions on meta elements, there can only be
 one meta-based character encoding declaration per document.

 If an HTML document does not start with a BOM, and its
 encoding is not explicitly given by Content-Type
 metadata, and the document is not an iframe srcdoc document, then the character encoding used must be
 an ASCII-compatible character encoding, and the encoding must be specified using a
 meta element with a charset attribute or a
 meta element with an http-equiv attribute
 in the Encoding declaration state.

 A character encoding declaration is required (either in the Content-Type metadata or explicitly in the file) even if the encoding
 is US-ASCII, because a character encoding is needed to process non-ASCII characters entered by the
 user in forms, in URLs generated by scripts, and so forth.

 If the document is an iframe srcdoc
 document, the document must not have a character encoding declaration. (In
 this case, the source is already decoded, since it is part of the document that contained the
 iframe.)

 If an HTML document contains a meta element
 with a charset attribute or a meta element
 with an http-equiv attribute in the Encoding declaration state, then the character
 encoding used must be an ASCII-compatible character encoding.

 Authors should use UTF-8. Conformance checkers may advise authors against using legacy
 encodings. [RFC3629]

 Authoring tools should default to using UTF-8 for newly-created documents. [RFC3629]

 Encodings in which a series of bytes in the range 0x20 to 0x7E can encode characters other than
 the corresponding characters in the range U+0020 to U+007E represent a potential security
 vulnerability: a user agent that does not support the encoding (or does not support the label used
 to declare the encoding, or does not use the same mechanism to detect the encoding of unlabeled
 content as another user agent) might end up interpreting technically benign plain text content as
 HTML tags and JavaScript. Authors should therefore not use these encodings. For example, this
 applies to encodings in which the bytes corresponding to "<script>" in
 ASCII can encode a different string. Authors should not use such encodings, which are known to
 include JIS_C6226-1983, JIS_X0212-1990,
 HZ-GB-2312, JOHAB (Windows code page 1361), encodings based on
 ISO-2022, and encodings
 based on EBCDIC. Furthermore, authors must not use the CESU-8, UTF-7, BOCU-1 and SCSU encodings,
 which also fall into this category; these encodings were never intended for use for Web content.
 [RFC1345]
 [RFC1842]
 [RFC1468]
 [RFC2237]
 [RFC1554]
 [CP50220]
 [RFC1922]
 [RFC1557]
 [CESU8]
 [UTF7]
 [BOCU1]
 [SCSU]

 Authors should not use UTF-32, as the encoding detection algorithms described in this
 specification intentionally do not distinguish it from UTF-16. [UNICODE]

 Using non-UTF-8 encodings can have unexpected results on form submission and URL
 encodings, which use the document's character encoding by default.

 In XHTML, the XML declaration should be used for inline character encoding information, if
 necessary.

 In HTML, to declare that the character encoding is UTF-8, the author could include the
 following markup near the top of the document (in the head element):

 <meta charset="utf-8">

 In XML, the XML declaration would be used instead, at the very top of the markup:

 <?xml version="1.0" encoding="utf-8"?>

 The style element

 	Categories:

 	Metadata content.

 	If the scoped attribute is present: flow content.

 	Contexts in which this element can be used:

 	If the scoped attribute is absent: where metadata content is expected.

 	If the scoped attribute is absent: in a noscript element that is a child of a head element.

 	If the scoped attribute is present: where flow content is expected, but before any other flow content other than inter-element whitespace and style elements, and not as the child of an element whose content model is transparent.

 	Content model:

 	Depends on the value of the type attribute, but must match requirements described in prose below.

 	Content attributes:

 	Global attributes

 	media

 	type

 	scoped

 	Also, the title attribute has special semantics on this element.

 	DOM interface:

 	
interface HTMLStyleElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString media;
 attribute DOMString type;
 attribute boolean scoped;
};
HTMLStyleElement implements LinkStyle;

 The style element allows authors to embed style
 information in their documents. The style element is
 one of several inputs to the styling processing
 model. The element does not represent content for the user.

 The type
 attribute gives the styling language. If the attribute is present,
 its value must be a valid MIME type that designates a
 styling language. The charset parameter must
 not be specified. The default value for the type attribute, which is used if the
 attribute is absent, is "text/css". [RFC2318]

 When examining types to determine if they support the language,
 user agents must not ignore unknown MIME parameters — types
 with unknown parameters must be assumed to be unsupported. The charset parameter must be treated as an unknown
 parameter for the purpose of comparing MIME
 types here.

 The media attribute says which media the
 styles apply to. The value must be a valid media query.

 The styles might be further limited in scope, e.g. in CSS with the use of @media blocks. This specification does not override such further restrictions or
 requirements.

 The default, if the media
 attribute is omitted, is "all", meaning that by default styles apply to all
 media.

 The scoped attribute is a boolean
 attribute. If present, it indicates that the styles are intended just for the subtree
 rooted at the style element's parent element, as opposed to the whole
 Document.

 If the scoped attribute is present and the element has a
 parent element, then the style element must precede any flow
 content in its parent element other than inter-element whitespace and other style elements, and the
 parent element's content model must not have a transparent component.

 This implies that scoped style elements
 cannot be children of, e.g., a or ins elements,
 even when those are used as flow content containers.

 A style element without a scoped attribute is restricted to appearing in the
 head of the document.

 If the scoped attribute is present, then the user agent
 must apply the specified style information only to the style element's parent element
 (if any), and that element's descendants. Otherwise, the specified styles must, if applied, be
 applied to the entire document.

 The following will eventually be moved to a CSS specification; it is specified
 here only on an interim basis until an editor can be found to own this.

 Within scoped CSS resources, authors may use an @global @-rule. The
 syntax of this rule is defined as follows.

 The following production is added to the grammar:

 global
 : GLOBAL_SYM S* ruleset
 ;

 The following rules are added to the Flex tokenizer:

 B b|\\0{0,4}(42|62)(\r\n|[\t\r\n\f])?
@{G}{L}{O}{B}{A}{L} {return GLOBAL_SYM;}

 Simple selectors in rule sets prefixed by the @global @-rule in scoped CSS resources must be
 processed in the same way as normal rule sets in non-scoped CSS
 resources.

 Simple selectors in scoped CSS resources that are not prefixed by
 an @global @-rule must only match the
 style element's parent element (if any), and that
 element's descendants.

 For scoped CSS resources, the effect of other @-rules must be
 scoped to either the scoped sheet and its subresources or to the
 subtree rooted at the style element's parent (if any),
 even if the @-rule in question would ordinarily apply to all style
 sheets that affect the Document, or to all nodes in the
 Document. Any '@page' rules in scoped CSS resources
 must be ignored.

 For example, an '@font-face' rule defined in a scoped style sheet would only
 define the font for the purposes of elements in the scoped section; the font would not be used for
 elements outside the subtree. However, rules outside the subtree that refer to font family names
 declared in '@font-face' rules in a scoped section, when those rules are inherited by nodes in the
 scoped section, would end up referring to the fonts declared in that section.

 The title attribute on
 style elements defines alternative style sheet
 sets. If the style element has no title attribute, then it has no
 title; the title attribute of
 ancestors does not apply to the style element. [CSSOM]

 The title
 attribute on style elements, like the title attribute on link
 elements, differs from the global title attribute in that a
 style block without a title does not inherit the title
 of the parent element: it merely has no title.

 The textContent of a style element must
 match the style production in the following
 ABNF, the character set for which is Unicode. [ABNF]

 style = no-c-start *(c-start no-c-end c-end no-c-start)
no-c-start = < any string that doesn't contain a substring that matches c-start >
c-start = "<!--"
no-c-end = < any string that doesn't contain a substring that matches c-end >
c-end = "-->"

 All descendant elements must be processed, according to their
 semantics, before the style element itself is
 evaluated. For styling languages that consist of pure text (as
 opposed to XML), user agents must evaluate style
 elements by passing the concatenation of the contents of all the
 Text nodes that are children of the
 style element (not any other nodes such as comments or
 elements), in tree order, to the style system. For
 XML-based styling languages, user agents must pass all the child
 nodes of the style element to the style system.

 All URLs found by the styling language's
 processor must be resolved,
 relative to the element (or as defined by the styling language),
 when the processor is invoked.

 Once the attempts to obtain the style sheet's critical
 subresources, if any, are complete, or, if the style sheet
 has no critical subresources, once the style sheet has
 been parsed and processed, the user agent must, if the loads were
 successful or there were none, queue a task to
 fire a simple event named load at the style element,
 or, if one of the style sheet's critical subresources
 failed to completely load for any reason (e.g. DNS error, HTTP 404
 response, a connection being prematurely closed, unsupported
 Content-Type), queue a task to fire a simple
 event named error at the
 style element. Non-network errors in processing the
 style sheet or its subresources (e.g. CSS parse errors, PNG decoding
 errors) are not failures for the purposes of this paragraph.

 The task source for these tasks is the DOM manipulation task
 source.

 The element must delay the load event of the
 element's document until all the attempts to obtain the style
 sheet's critical subresources, if any, are
 complete.

 This specification does not specify a style system,
 but CSS is expected to be supported by most Web browsers. [CSS]

 The media, type and scoped IDL attributes
 must reflect the respective content attributes of the
 same name.

 The disabled
 IDL attribute behaves as defined for the alternative style sheets
 DOM.

 The LinkStyle interface is also implemented by
 this element; the styling processing model defines
 how. [CSSOM]

 The following document has its stress emphasis styled as bright
 red text rather than italics text, while leaving titles of works
 and Latin words in their default italics. It shows how using
 appropriate elements enables easier restyling of documents.

 <!DOCTYPE html>
<html lang="en-US">
 <head>
 <title>My favorite book</title>
 <style>
 body { color: black; background: white; }
 em { font-style: normal; color: red; }
 </style>
 </head>
 <body>
 <p>My favorite book of all time has got to be
 <cite>A Cat's Life</cite>. It is a book by P. Rahmel that talks
 about the <i lang="la">Felis Catus</i> in modern human society.</p>
 </body>
</html>

 Styling

 The link and style elements can provide styling information for the
 user agent to use when rendering the document. The CSS and CSSOM specifications specify what
 styling information is to be used by the user agent and how it is to be used. [CSS] [CSSOM]

 The style and link elements implement the LinkStyle
 interface. [CSSOM]

 For style elements, if the user agent does not support the specified styling
 language, then the sheet attribute of the element's
 LinkStyle interface must return null. Similarly, link elements that do
 not represent external resource links that contribute to the styling
 processing model (i.e. that do not have a stylesheet
 keyword in their rel attribute), for which the link is an
 alternative stylesheet but whose title content attribute is
 absent or empty, or whose resource is CORS-cross-origin, must have their
 LinkStyle interface's sheet attribute return
 null.

 Otherwise, the LinkStyle interface's sheet attribute must return null if the corresponding element
 is not in a Document,

 and otherwise must return a StyleSheet object with the following properties: [CSSOM]

 	The style sheet type

 	The style sheet type must be the same as the style's specified type. For
 style elements, this is the same as the type
 content attribute's value, or text/css if that is omitted. For
 link elements, this is the Content-Type metadata of the
 specified resource.

 	The style sheet location

 	For link elements, the location must be the result of resolving the URL given by the element's href content attribute, relative to the element, or the empty
 string if that fails. For style elements, there is no location.

 	The style sheet media

 	The media must be the same as the value of the element's media
 content attribute, or the empty string, if the attribute is omitted.

 	The style sheet title

 	The title must be the same as the value of the element's title content attribute, if the attribute is present and has a non-empty
 value. If the attribute is absent or its value is the empty string, then the style sheet does not
 have a title (it is the empty string). The title is used for defining alternative style
 sheet sets.

 	The style sheet alternate flag

 	For link elements, true if the link is an alternative
 stylesheet. In all other cases, false.

 The same object must be returned each time.

 The disabled IDL attribute on
 link and style elements must return false and do nothing on setting, if
 the sheet attribute of their LinkStyle
 interface is null. Otherwise, it must return the value of the StyleSheet interface's
 disabled attribute on getting, and forward the new
 value to that same attribute on setting.

 The rules for handling alternative style sheets are defined in the
 CSS object model specification. [CSSOM]

 Style sheets, whether added by a link element, a style element, an
 <?xml-stylesheet> PI, an HTTP Link: header, or some
 other mechanism, have a style sheet ready flag, which is initially unset.

 When a style sheet is ready to be applied, its style sheet ready flag must be set.
 If the style sheet referenced no other resources (e.g. it was an internal style sheet given by a
 style element with no @import rules), then the style rules must
 be synchronously made available to script; otherwise, the style rules must only be made available
 to script once the event loop reaches its "update the rendering" step.

 A style sheet in the context of the Document of an HTML parser or
 XML parser is said to be a style sheet that is blocking scripts if the
 element was created by that Document's parser, and the element is either a
 style element or a link element that was an external resource link that contributes to the styling processing
 model when the element was created by the parser, and the element's style sheet was enabled
 when the element was created by the parser, and the element's style sheet ready flag
 is not yet set, and, the last time the event loop reached step 1, the element was
 in that Document, and the user agent hasn't given
 up on that particular style sheet yet. A user agent may give up on a style sheet at any time.

 Giving up on a style sheet before the style sheet loads, if the style sheet
 eventually does still load, means that the script might end up operating with incorrect
 information. For example, if a style sheet sets the color of an element to green, but a script
 that inspects the resulting style is executed before the sheet is loaded, the script will find
 that the element is black (or whatever the default color is), and might thus make poor choices
 (e.g. deciding to use black as the color elsewhere on the page, instead of green). Implementors
 have to balance the likelihood of a script using incorrect information with the performance impact
 of doing nothing while waiting for a slow network request to finish.

 A Document has a style sheet that is blocking scripts if there is
 either a style sheet that is blocking scripts in the context of that
 Document, or if that Document is in a browsing context that
 has a parent browsing context, and the active document of that
 parent browsing context itself has a style sheet that is blocking
 scripts.

 A Document has no style sheet that is blocking scripts if it does not
 have a style sheet that is blocking
 scripts as defined in the previous paragraph.

 Scripting

 Scripts allow authors to add interactivity to their documents.

 Authors are encouraged to use declarative alternatives to
 scripting where possible, as declarative mechanisms are often more
 maintainable, and many users disable scripting.

 For example, instead of using script to show or hide a section
 to show more details, the details element could be
 used.

 Authors are also encouraged to make their applications degrade
 gracefully in the absence of scripting support.

 For example, if an author provides a link in a table header to
 dynamically resort the table, the link could also be made to
 function without scripts by requesting the sorted table from the
 server.

 The script element

 	Categories:

 	Metadata content.

 	Flow content.

 	Phrasing content.

 	Script-supporting element.

 	Contexts in which this element can be used:

 	Where metadata content is expected.

 	Where phrasing content is expected.

 	Where script-supporting elements are expected.

 	Content model:

 	If there is no src
 attribute, depends on the value of the type attribute, but must match
 script content restrictions.

 	If there is a src
 attribute, the element must be either empty or contain only
 script documentation that also matches script
 content restrictions.

 	Content attributes:

 	Global attributes

 	src

 	type

 	charset

 	async

 	defer

 	crossorigin

 	DOM interface:

 	
interface HTMLScriptElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute DOMString charset;
 attribute boolean async;
 attribute boolean defer;
 attribute DOMString crossOrigin;
 attribute DOMString text;
};

 The script element allows authors to include dynamic script and data blocks in
 their documents. The element does not represent content for the
 user.

 When used to include dynamic scripts, the scripts may either be embedded inline or may be
 imported from an external file using the src attribute. If
 the language is not that described by "text/javascript", then the type attribute must be present, as described below. Whatever
 language is used, the contents of the script element must conform with the
 requirements of that language's specification.

 When used to include data blocks (as opposed to scripts), the data must be embedded inline, the
 format of the data must be given using the type attribute,
 the src attribute must not be specified, and the contents of
 the script element must conform to the requirements defined for the format used.

 The type attribute gives the language of the
 script or format of the data. If the attribute is present, its value must be a valid MIME
 type. The charset parameter must not be specified. The default, which
 is used if the attribute is absent, is "text/javascript".

 The src attribute, if specified, gives the
 address of the external script resource to use. The value of the attribute must be a valid
 non-empty URL potentially surrounded by spaces identifying a script resource of the type
 given by the type attribute, if the attribute is present, or
 of the type "text/javascript", if the attribute is absent. A resource is a
 script resource of a given type if that type identifies a scripting language and the resource
 conforms with the requirements of that language's specification.

 The charset attribute gives the character
 encoding of the external script resource. The attribute must not be specified if the src attribute is not present. If the attribute is set, its value
 must be an ASCII case-insensitive match for the name of an encoding, and must specify the same encoding as
 the charset parameter of the Content-Type
 metadata of the external file, if any. [ENCODING]

 The async and defer attributes are boolean attributes that indicate how the script should be executed. The defer and async attributes
 must not be specified if the src attribute is not
 present.

 There are three possible modes that can be selected using these attributes. If the async attribute is present, then the script will be executed
 asynchronously, as soon as it is available. If the async
 attribute is not present but the defer attribute is
 present, then the script is executed when the page has finished parsing. If neither attribute is
 present, then the script is fetched and executed immediately, before the user agent continues
 parsing the page.

 The exact processing details for these attributes are, for mostly historical
 reasons, somewhat non-trivial, involving a number of aspects of HTML. The implementation
 requirements are therefore by necessity scattered throughout the specification. The algorithms
 below (in this section) describe the core of this processing, but these algorithms reference and
 are referenced by the parsing rules for script start and end tags in HTML, in foreign content,
 and in XML, the rules for the document.write() method, the handling of scripting, etc.

 The defer attribute may be specified even if the async attribute is specified, to cause legacy Web browsers that
 only support defer (and not async) to fall back to the defer behavior instead of the synchronous blocking behavior that
 is the default.

 The crossorigin attribute is a
 CORS settings attribute. It controls, for scripts that are obtained from other origins, whether error information will be exposed.

 Changing the src, type, charset, async, defer, and crossorigin attributes dynamically has no direct effect;
 these attribute are only used at specific times described below.

 A script element has several associated pieces of state.

 The first is a flag indicating whether or not the script block has been "already
 started". Initially, script elements must have this flag unset (script blocks,
 when created, are not "already started"). The cloning
 steps for script elements must set the "already started" flag on the copy if
 it is set on the element being cloned.

 The second is a flag indicating whether the element was "parser-inserted".
 Initially, script elements must have this flag unset. It is set by the HTML
 parser and the XML parser on script elements they insert and
 affects the processing of those elements.

 The third is a flag indicating whether the element will "force-async". Initially,
 script elements must have this flag set. It is unset by the HTML parser
 and the XML parser on script elements they insert. In addition, whenever
 a script element whose "force-async" flag is set has a async content attribute added, the element's
 "force-async" flag must be unset.

 The fourth is a flag indicating whether or not the script block is "ready to be
 parser-executed". Initially, script elements must have this flag unset (script
 blocks, when created, are not "ready to be parser-executed"). This flag is used only for elements
 that are also "parser-inserted", to let the parser know when to execute the
 script.

 The last few pieces of state are the script block's type, the
 script block's character encoding, and the script block's fallback character
 encoding. They are determined when the script is prepared, based on the attributes on
 the element at that time, and the Document of the script element.

 When a script element that is not marked as being "parser-inserted"
 experiences one of the events listed in the following list, the user agent must synchronously
 prepare the script element:

 	The script element gets inserted
 into a document, at the time the node is inserted
 according to the DOM, after any other script elements inserted at the same time that
 are earlier in the Document in tree order.

 	The script element is in a Document and a node or
 document fragment is inserted into the
 script element, after any script elements inserted at that time.

 	The script element is in a Document and has a src attribute set where previously the element had no such
 attribute.

 To prepare a script, the user agent must act as
 follows:

 	

 If the script element is marked as having "already started", then
 the user agent must abort these steps at this point. The script is not executed.

 	

 If the element has its "parser-inserted" flag set, then set was-parser-inserted to true and unset the element's
 "parser-inserted" flag. Otherwise, set was-parser-inserted to
 false.

 This is done so that if parser-inserted script elements fail to run
 when the parser tries to run them, e.g. because they are empty or specify an unsupported
 scripting language, another script can later mutate them and cause them to run again.

 	

 If was-parser-inserted is true and the element does not have an async attribute, then set the element's
 "force-async" flag to true.

 This is done so that if a parser-inserted script element fails to
 run when the parser tries to run it, but it is later executed after a script dynamically updates
 it, it will execute asynchronously even if the async
 attribute isn't set.

 	

 If the element has no src attribute, and its child
 nodes, if any, consist only of comment nodes and empty Text nodes, then the user
 agent must abort these steps at this point. The script is not executed.

 	

 If the element is not in a Document, then the user agent must abort
 these steps at this point. The script is not executed.

 	

 If either:

 	the script element has a type attribute
 and its value is the empty string, or

 	the script element has no type attribute
 but it has a language attribute and that
 attribute's value is the empty string, or

 	the script element has neither a type
 attribute nor a language attribute, then

 ...let the script block's type for this script element be "text/javascript".

 Otherwise, if the script element has a type attribute, let the script block's type for this
 script element be the value of that attribute with any leading or trailing
 sequences of space characters removed.

 Otherwise, the element has a non-empty language
 attribute; let the script block's type for this script element be the
 concatenation of the string "text/" followed by the value of the language attribute.

 The language attribute is never
 conforming, and is always ignored if there is a type
 attribute present.

 	

 If the user agent does not support the scripting language given by the
 script block's type for this script element, then the user agent must abort
 these steps at this point. The script is not executed.

 	

 If was-parser-inserted is true, then flag the element as
 "parser-inserted" again, and set the element's "force-async" flag to
 false.

 	

 The user agent must set the element's "already started" flag.

 The state of the element at this moment is later used to determine the script source.

 	

 If the element is flagged as "parser-inserted", but the element's
 Document is not the Document of the parser that created the element,
 then abort these steps.

 	

 If scripting is disabled for the script
 element, then the user agent must abort these steps at this point. The script is not
 executed.

 The definition of scripting is disabled
 means that, amongst others, the following scripts will not execute: scripts in
 XMLHttpRequest's responseXML
 documents, scripts in DOMParser-created documents, scripts in documents created by
 XSLTProcessor's transformToDocument feature, and scripts
 that are first inserted by a script into a Document that was created using the
 createDocument() API. [XHR] [DOMPARSING] [DOM]

 	

 If the script element has an event
 attribute and a for attribute, then run these substeps:

 	Let for be the value of the for
 attribute.

 	Let event be the value of the event attribute.

 	Strip leading and trailing whitespace from event and
 for.

 	If for is not an ASCII case-insensitive match for the
 string "window", then the user agent must abort these steps at this
 point. The script is not executed.

 	If event is not an ASCII case-insensitive match for
 either the string "onload" or the string "onload()", then the user agent must abort these steps at this point. The script
 is not executed.

 	

 If the script element has a charset
 attribute, then let the script block's character encoding for this
 script element be the result of getting an encoding from the value of
 the charset attribute.

 Otherwise, let the script block's fallback character encoding for this
 script element be the same as the
 encoding of the document itself.

 Only one of these two pieces of state is set.

 	

 If the element has a src content attribute, run these
 substeps:

 	Let src be the value of the element's src attribute.

 	If src is the empty string, queue a task to fire
 a simple event named error at the element, and abort
 these steps.

 	Resolve src relative to the
 element.

 	If the previous step failed, queue a task to fire a simple
 event named error at the element, and abort these
 steps.

 	

 Do a potentially CORS-enabled fetch of the resulting
 absolute URL, with the mode being the state of the element's crossorigin content attribute, the origin being the origin of the script element's
 Document, and the default origin behaviour set to taint.

 The resource obtained in this fashion can be either CORS-same-origin or
 CORS-cross-origin. This only affects how error reporting happens.

 For historical reasons, if the URL is a javascript: URL, then the user agent must not, despite
 the requirements in the definition of the fetching algorithm,
 actually execute the script in the URL; instead the user agent must act as if it had received
 an empty HTTP 400 response.

 For performance reasons, user agents may start fetching the script (as defined above) as
 soon as the src attribute is set, instead, in the hope
 that the element will be inserted into the document (and that the crossorigin attribute won't change value in the
 meantime). Either way, once the element is inserted into the document, the load must have started as described in this
 step. If the UA performs such prefetching, but the element is never inserted in the document,
 or the src attribute is dynamically changed, or the crossorigin attribute is dynamically changed, then the
 user agent will not execute the script so obtained, and the fetching process will have been
 effectively wasted.

 	

 Then, the first of the following options that describes the situation must be followed:

 	If the element has a src
 attribute, and the element has a defer attribute, and
 the element has been flagged as "parser-inserted", and the element does not have
 an async attribute

 	

 The element must be added to the end of the list of scripts that will execute when the
 document has finished parsing associated with the Document of the parser
 that created the element.

 The task that the networking task source
 places on the task queue once the fetching algorithm
 has completed must set the element's "ready to be parser-executed" flag. The
 parser will handle executing the script.

 	If the element has a src attribute, and the element has been flagged as
 "parser-inserted", and the element does not have an async attribute

 	

 The element is the pending parsing-blocking script of the
 Document of the parser that created the element. (There can only be one such
 script per Document at a time.)

 The task that the networking task source
 places on the task queue once the fetching algorithm
 has completed must set the element's "ready to be parser-executed" flag. The
 parser will handle executing the script.

 	If the element does not have a src attribute, and the element has been flagged as
 "parser-inserted", and either the parser that created the script is
 an XML parser or it's an HTML parser whose script nesting
 level is not greater than one, and the Document of the HTML
 parser or XML parser that created the script element has
 a style sheet that is blocking scripts

 	

 The element is the pending parsing-blocking script of the
 Document of the parser that created the element. (There can only be one such
 script per Document at a time.)

 Set the element's "ready to be parser-executed" flag. The parser will handle
 executing the script.

 	If the element has a src attribute, does not have an async attribute, and does not have the
 "force-async" flag set

 	

 The element must be added to the end of the list of scripts that will execute in order
 as soon as possible associated with the Document of the script
 element at the time the prepare a script algorithm started.

 The task that the networking task source
 places on the task queue once the fetching algorithm
 has completed must run the following steps:

 	If the element is not now the first element in the list of scripts that will
 execute in order as soon as possible to which it was added above, then mark the
 element as ready but abort these steps without executing the script yet.

 	Execution: Execute the script block corresponding to the first
 script element in this list of scripts that will execute in order as soon as
 possible.

 	Remove the first element from this list of scripts that will execute in order as
 soon as possible.

 	If this list of scripts that will execute in order as soon as possible is
 still not empty and the first entry has already been marked as ready, then jump back to the
 step labeled execution.

 	If the element has a src
 attribute

 	

 The element must be added to the set of scripts that will execute as soon as
 possible of the Document of the script element at the time the
 prepare a script algorithm started.

 The task that the networking task source
 places on the task queue once the fetching algorithm
 has completed must execute the script block and then remove the element from the
 set of scripts that will execute as soon as possible.

 	Otherwise

 	The user agent must immediately execute the script block, even if other
 scripts are already executing.

 Fetching an external script must delay the load event of the element's document
 until the task that is queued
 by the networking task source once the resource has been fetched (defined above) has been run.

 The pending parsing-blocking script of a Document is used by the
 Document's parser(s).

 If a script element that blocks a parser gets moved to another
 Document before it would normally have stopped blocking that parser, it nonetheless
 continues blocking that parser until the condition that causes it to be blocking the parser no
 longer applies (e.g. if the script is a pending parsing-blocking script because there
 was a style sheet that is blocking scripts when it was parsed, but then the script is
 moved to another Document before the style sheet loads, the script still blocks the
 parser until the style sheets are all loaded, at which time the script executes and the parser is
 unblocked).

 When the user agent is required to execute a script
 block, it must run the following steps:

 	

 If the element is flagged as "parser-inserted", but the element's
 Document is not the Document of the parser that created the element,
 then abort these steps.

 	

 Jump to the appropriate set of steps from the list below:

 	If the load resulted in an error (for example a DNS error, or an HTTP 404 error)

 	Executing the script block must just consist of firing
 a simple event named error at the element.

 	If the load was successful

 	

 Executing the script block must consist of running the following steps. For the purposes of
 these steps, the script is considered to be from an external file if, while the
 prepare a script algorithm above was running for this script, the
 script element had a src attribute
 specified.

 	

 Initialize the script block's source as follows:

 	If the script is from an external file and the script block's type is a
 text-based language

 	

 The contents of that file, interpreted as a Unicode string, are the script source.

 To obtain the Unicode string, the user agent run the following steps:

 	If the resource's Content Type metadata, if any,
 specifies a character encoding, and the user agent supports that encoding, then let character encoding be that encoding, and jump to the bottom step in this
 series of steps.

 	If the algorithm above set the script block's character encoding, then
 let character encoding be that encoding, and jump to the bottom step
 in this series of steps.

 	Let character encoding be the script block's fallback
 character encoding.

 	

 If the specification for the script block's type gives specific rules for
 decoding files in that format to Unicode, follow them, using character
 encoding as the character encoding specified by higher-level protocols, if
 necessary.

 Otherwise, decode the file to Unicode, using character
 encoding as the fallback encoding.

 The decode algorithm overrides character
 encoding if the file contains a BOM.

 	If the script is from an external file and the script block's type is an
 XML-based language

 	

 The external file is the script source. When it is later executed, it must be
 interpreted in a manner consistent with the specification defining the language given by
 the script block's type.

 	If the script is inline and the script block's type is a text-based
 language

 	

 The value of the text IDL attribute at the time
 the element's "already started" flag was last set is the script source.

 	If the script is inline and the script block's type is an XML-based
 language

 	

 The child nodes of the script element at the time the element's
 "already started" flag was last set are the script source.

 	

 Fire a simple event named beforescriptexecute that bubbles and is cancelable
 at the script element.

 If the event is canceled, then abort these steps.

 	

 If the script is from an external file, then increment the
 ignore-destructive-writes counter of the script element's
 Document. Let neutralized doc be that
 Document.

 	

 Create a script from the
 script element node, using the script block's source, the
 URL from which the script was obtained, and the script block's
 type.

 If the script came from a resource that was fetched in the
 steps above, and the resource was CORS-cross-origin, then pass the muted errors flag to the create a script from a node
 algorithm.

 This is where the script is compiled and actually executed.

 	

 Decrement the ignore-destructive-writes counter of neutralized
 doc, if it was incremented in the earlier step.

 	

 Fire a simple event named afterscriptexecute that bubbles (but is not
 cancelable) at the script element.

 	

 If the script is from an external file, fire a simple event named load at the script element.

 Otherwise, the script is internal; queue a task to fire a simple
 event named load at the script
 element.

 The IDL attributes src, type, charset, defer, each must reflect the respective
 content attributes of the same name.

 The crossOrigin IDL attribute must
 reflect the crossorigin content
 attribute, limited to only known values.

 The async IDL attribute controls whether the
 element will execute asynchronously or not. If the element's "force-async" flag is
 set, then, on getting, the async IDL attribute must return
 true, and on setting, the "force-async" flag must first be unset, and then the
 content attribute must be removed if the IDL attribute's new value is false, and must be set to
 the empty string if the IDL attribute's new value is true. If the element's
 "force-async" flag is not set, the IDL attribute must reflect
 the async content attribute.

 	script . text [= value]

 	

 Returns the contents of the element, ignoring child nodes that aren't Text
 nodes.

 Can be set, to replace the element's children with the given value.

 The IDL attribute text must return a
 concatenation of the contents of all the Text nodes that are children of the
 script element (ignoring any other nodes such as comments or elements), in tree
 order. On setting, it must act the same way as the textContent IDL attribute.

 When inserted using the document.write()
 method, script elements execute (typically synchronously), but when inserted using
 innerHTML and outerHTML
 attributes, they do not execute at all.

 In this example, two script elements are used. One embeds an external script, and
 the other includes some data.

 <script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

 The data in this case might be used by the script to generate the map of a video game. The
 data doesn't have to be used that way, though; maybe the map data is actually embedded in other
 parts of the page's markup, and the data block here is just used by the site's search engine to
 help users who are looking for particular features in their game maps.

 The following sample shows how a script element can be used to define a function that is then
 used by other parts of the document. It also shows how a script element can be used
 to invoke script while the document is being parsed, in this case to initialize the form's
 output.

 <script>
 function calculate(form) {
 var price = 52000;
 if (form.elements.brakes.checked)
 price += 1000;
 if (form.elements.radio.checked)
 price += 2500;
 if (form.elements.turbo.checked)
 price += 5000;
 if (form.elements.sticker.checked)
 price += 250;
 form.elements.result.value = price;
 }
</script>
<form name="pricecalc" onsubmit="return false" onchange="calculate(this)">
 <fieldset>
 <legend>Work out the price of your car</legend>
 <p>Base cost: £52000.</p>
 <p>Select additional options:</p>

 <label><input type=checkbox name=brakes> Ceramic brakes (£1000)</label>
 <label><input type=checkbox name=radio> Satellite radio (£2500)</label>
 <label><input type=checkbox name=turbo> Turbo charger (£5000)</label>
 <label><input type=checkbox name=sticker> "XZ" sticker (£250)</label>

 <p>Total: £<output name=result></output></p>
 </fieldset>
 <script>
 calculate(document.forms.pricecalc);
 </script>
</form>

 Scripting languages

 A user agent is said to support the scripting language if each component of the
 script block's type is an ASCII case-insensitive match for the corresponding
 component in the MIME type string of a scripting language that the user agent
 implements.

 The following lists the MIME type strings that user agents must recognize, and the
 languages to which they refer:

 	"application/ecmascript"

 	"application/javascript"

 	"application/x-ecmascript"

 	"application/x-javascript"

 	"text/ecmascript"

 	"text/javascript"

 	"text/javascript1.0"

 	"text/javascript1.1"

 	"text/javascript1.2"

 	"text/javascript1.3"

 	"text/javascript1.4"

 	"text/javascript1.5"

 	"text/jscript"

 	"text/livescript"

 	"text/x-ecmascript"

 	"text/x-javascript"

 	JavaScript. [ECMA262]

 User agents may support other MIME types for other languages,
 but must not support other MIME types for the languages in the list
 above. User agents are not required to support the languages listed above.

 The following MIME types (with or without parameters) must not
 be interpreted as scripting languages:

 	"text/plain"

	"text/xml"

	"application/octet-stream"

	"application/xml"

 These types are explicitly listed here because they are poorly-defined types that
 are nonetheless likely to be used as formats for data blocks, and it would be problematic if they
 were suddenly to be interpreted as script by a user agent.

 When examining types to determine if they represent supported languages, user agents must not
 ignore MIME parameters. Types are to be compared including all parameters.

 For example, types that include the charset parameter will
 not be recognized as referencing any of the scripting languages listed above.

 Restrictions for contents of script elements

 The textContent of a script element must match the script production in the following ABNF, the character set for which is Unicode.
 [ABNF]

 script = data1 *(escape [script-start data3] "-->" data1) [escape]
escape = "<!--" data2 *(script-start data3 script-end data2)

data1 = < any string that doesn't contain a substring that matches not-data1 >
not-data1 = "<!--"

data2 = < any string that doesn't contain a substring that matches not-data2 >
not-data2 = script-start / "-->"

data3 = < any string that doesn't contain a substring that matches not-data3 >
not-data3 = script-end / "-->"

script-start = lt s c r i p t tag-end
script-end = lt slash s c r i p t tag-end

lt = %x003C ; "<" (U+003C) character
slash = %x002F ; "/" (U+002F) character

s = %x0053 ; U+0053 LATIN CAPITAL LETTER S
s =/ %x0073 ; U+0073 LATIN SMALL LETTER S
c = %x0043 ; U+0043 LATIN CAPITAL LETTER C
c =/ %x0063 ; U+0063 LATIN SMALL LETTER C
r = %x0052 ; U+0052 LATIN CAPITAL LETTER R
r =/ %x0072 ; U+0072 LATIN SMALL LETTER R
i = %x0049 ; U+0049 LATIN CAPITAL LETTER I
i =/ %x0069 ; U+0069 LATIN SMALL LETTER I
p = %x0050 ; U+0050 LATIN CAPITAL LETTER P
p =/ %x0070 ; U+0070 LATIN SMALL LETTER P
t = %x0054 ; U+0054 LATIN CAPITAL LETTER T
t =/ %x0074 ; U+0074 LATIN SMALL LETTER T

tag-end = %x0009 ; "tab" (U+0009)
tag-end =/ %x000A ; "LF" (U+000A)
tag-end =/ %x000C ; "FF" (U+000C)
tag-end =/ %x0020 ; U+0020 SPACE
tag-end =/ %x002F ; "/" (U+002F)
tag-end =/ %x003E ; ">" (U+003E)

 When a script element contains script documentation, there are
 further restrictions on the contents of the element, as described in the section below.

 Inline documentation for external scripts

 If a script element's src attribute is
 specified, then the contents of the script element, if any, must be such that the
 value of the text IDL attribute, which is derived from the
 element's contents, matches the documentation production in the following
 ABNF, the character set for which is Unicode. [ABNF]

 documentation = *(*(space / tab / comment) [line-comment] newline)
comment = slash star *(not-star / star not-slash) 1*star slash
line-comment = slash slash *not-newline

; characters
tab = %x0009 ; "tab" (U+0009)
newline = %x000A ; "LF" (U+000A)
space = %x0020 ; U+0020 SPACE
star = %x002A ; "*" (U+002A)
slash = %x002F ; "/" (U+002F)
not-newline = %x0000-0009 / %x000B-10FFFF
 ; a Unicode character other than "LF" (U+000A)
not-star = %x0000-0029 / %x002B-10FFFF
 ; a Unicode character other than "*" (U+002A)
not-slash = %x0000-002E / %x0030-10FFFF
 ; a Unicode character other than "/" (U+002F)

 This corresponds to putting the contents of the element in JavaScript
 comments.

 This requirement is in addition to the earlier restrictions on the syntax of
 contents of script elements.

 This allows authors to include documentation, such as license information or API information,
 inside their documents while still referring to external script files. The syntax is constrained
 so that authors don't accidentally include what looks like valid script while also providing a
 src attribute.

 <script src="cool-effects.js">
 // create new instances using:
 // var e = new Effect();
 // start the effect using .play, stop using .stop:
 // e.play();
 // e.stop();
</script>

 Interaction of script elements and XSLT

 This section is non-normative.

 This specification does not define how XSLT interacts with the
 script element. However, in the absence of another
 specification actually defining this, here are some guidelines for
 implementors, based on existing implementations:

 	When an XSLT transformation program is triggered by an <?xml-stylesheet?> processing instruction and
 the browser implements a direct-to-DOM transformation,
 script elements created by the XSLT processor need to
 be marked "parser-inserted" and run in document order
 (modulo scripts marked defer
 or async), asynchronously
 while the transformation is occurring.

 	The XSLTProcessor.transformToDocument()
 method adds elements to a Document that is not in a
 browsing context, and, accordingly, any
 script elements they create need to have their
 "already started" flag set in the prepare a
 script algorithm and never get executed (scripting is disabled). Such
 script elements still need to be marked
 "parser-inserted", though, such that their async IDL attribute will return
 false in the absence of an async content attribute.

 	The XSLTProcessor.transformToFragment()
 method needs to create a fragment that is equivalent to one built
 manually by creating the elements using document.createElementNS().
 For instance, it needs to create script elements that
 aren't "parser-inserted" and that don't have their
 "already started" flag set, so that they will execute
 when the fragment is inserted into a document.

 The main distinction between the first two cases and the last
 case is that the first two operate on Documents and the
 last operates on a fragment.

 The noscript element

 	Categories:

 	Metadata content.

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	In a head element of an HTML document, if there are no ancestor noscript elements.

 	Where phrasing content is expected in HTML documents, if there are no ancestor noscript elements.

 	Content model:

 	When scripting is disabled, in a head element: in any order, zero or more link elements, zero or more style elements, and zero or more meta elements.

 	When scripting is disabled, not in a head element: transparent, but there must be no noscript element descendants.

 	Otherwise: text that conforms to the requirements given in the prose.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The noscript element represents nothing
 if scripting is enabled, and
 represents its children if scripting is disabled. It is used
 to present different markup to user agents that support scripting
 and those that don't support scripting, by affecting how the
 document is parsed.

 When used in HTML documents, the allowed content
 model is as follows:

 	In a head element, if scripting is disabled for the
 noscript element

 	The noscript element must contain only
 link, style, and meta
 elements.

 	In a head element, if scripting is enabled for the
 noscript element

 	The noscript element must contain only text,
 except that invoking the HTML fragment parsing
 algorithm with
 the noscript element as the context element and the
 text contents as the input must result in a
 list of nodes that consists only of link,
 style, and meta elements that would be
 conforming if they were children of the noscript
 element, and no parse
 errors.

 	Outside of head elements, if scripting is disabled for the
 noscript element

 	The noscript element's content model is
 transparent, with the additional restriction that a
 noscript element must not have a noscript
 element as an ancestor (that is, noscript can't be
 nested).

 	Outside of head elements, if scripting is enabled for the
 noscript element

 	

 The noscript element must contain only text,
 except that the text must be such that running the following
 algorithm results in a conforming document with no
 noscript elements and no script
 elements, and such that no step in the algorithm causes an
 HTML parser to flag a parse error:

 	Remove every script element from the
 document.

 	Make a list of every noscript element in the
 document. For every noscript element in that list,
 perform the following steps:

 	Let the parent element be the parent
 element of the noscript element.

 	Take all the children of the parent element
 that come before the noscript element, and call these
 elements the before children.

 	Take all the children of the parent element
 that come after the noscript element, and
 call these elements the after children.

 	Let s be the concatenation of all the
 Text node children of the noscript
 element.

 	Set the innerHTML
 attribute of the parent element to the value
 of s. (This, as a side-effect, causes the
 noscript element to be removed from the
 document.)

 	Insert the before children at the start of
 the parent element, preserving their original
 relative order.

 	Insert the after children at the end of the
 parent element, preserving their original
 relative order.

 All these contortions are required because, for
 historical reasons, the noscript element is handled
 differently by the HTML parser based on whether scripting was enabled or not when the
 parser was invoked.

 The noscript element must not be used in XML
 documents.

 The noscript element is only effective
 in the HTML syntax, it has no effect in the XHTML
 syntax. This is because the way it works is by essentially
 "turning off" the parser when scripts are enabled, so that the
 contents of the element are treated as pure text and not as real
 elements. XML does not define a mechanism by which to do this.

 The noscript element has no other requirements. In
 particular, children of the noscript element are not
 exempt from form submission, scripting, and so forth,
 even when scripting is enabled
 for the element.

 In the following example, a noscript element is
 used to provide fallback for a script.

 <form action="calcSquare.php">
 <p>
 <label for=x>Number</label>:
 <input id="x" name="x" type="number">
 </p>
 <script>
 var x = document.getElementById('x');
 var output = document.createElement('p');
 output.textContent = 'Type a number; it will be squared right then!';
 x.form.appendChild(output);
 x.form.onsubmit = function () { return false; }
 x.oninput = function () {
 var v = x.valueAsNumber;
 output.textContent = v + ' squared is ' + v * v;
 };
 </script>
 <noscript>
 <input type=submit value="Calculate Square">
 </noscript>
</form>

 When script is disabled, a button appears to do the calculation
 on the server side. When script is enabled, the value is computed
 on-the-fly instead.

 The noscript element is a blunt
 instrument. Sometimes, scripts might be enabled, but for some
 reason the page's script might fail. For this reason, it's
 generally better to avoid using noscript, and to
 instead design the script to change the page from being a
 scriptless page to a scripted page on the fly, as in the next
 example:

 <form action="calcSquare.php">
 <p>
 <label for=x>Number</label>:
 <input id="x" name="x" type="number">
 </p>
 <input id="submit" type=submit value="Calculate Square">
 <script>
 var x = document.getElementById('x');
 var output = document.createElement('p');
 output.textContent = 'Type a number; it will be squared right then!';
 x.form.appendChild(output);
 x.form.onsubmit = function () { return false; }
 x.oninput = function () {
 var v = x.valueAsNumber;
 output.textContent = v + ' squared is ' + v * v;
 };
 var submit = document.getElementById('submit');
 submit.parentNode.removeChild(submit);
 </script>
</form>

 The above technique is also useful in XHTML, since
 noscript is not supported in the XHTML
 syntax.

 Sections

 The body element

 	Categories:

 	Sectioning root.

 	Contexts in which this element can be used:

 	As the second element in an html element.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	onafterprint

 	onbeforeprint

 	onbeforeunload

 	onhashchange

 	onmessage

 	onoffline

 	ononline

 	onpagehide

 	onpageshow

 	onpopstate

 	onresize

 	onstorage

 	onunload

 	DOM interface:

 	
interface HTMLBodyElement : HTMLElement {
};
HTMLBodyElement implements WindowEventHandlers;

 The body element represents the
 content of the document.

 In conforming documents, there is only one body
 element. The document.body
 IDL attribute provides scripts with easy access to a document's
 body element.

 Some DOM operations (for example, parts of the
 drag and drop model) are defined in terms of "the
 body element". This refers to a particular element in the
 DOM, as per the definition of the term, and not any arbitrary
 body element.

 The body element exposes as event handler
 content attributes a number of the event
 handlers of the Window object. It also mirrors
 their event handler IDL attributes.

 The onblur, onerror, onfocus, onload,
 and onscroll event handlers of the
 Window object, exposed on the body element, replace the generic
 event handlers with the same names normally supported by HTML elements.

 Thus, for example, a bubbling error event dispatched on a child of
 the body element of a Document would first
 trigger the onerror event
 handler content attributes of that element, then that of the
 root html element, and only then would it
 trigger the onerror
 event handler content
 attribute on the body element. This is because
 the event would bubble from the target, to the body, to
 the html, to the Document, to the
 Window, and the event
 handler on the body is watching the
 Window not the body. A regular event
 listener attached to the body using addEventListener(), however, would be run when the
 event bubbled through the body and not when it reaches
 the Window object.

 This page updates an indicator to show whether or not the user
 is online:

 <!DOCTYPE HTML>
<html>
 <head>
 <title>Online or offline?</title>
 <script>
 function update(online) {
 document.getElementById('status').textContent =
 online ? 'Online' : 'Offline';
 }
 </script>
 </head>
 <body ononline="update(true)"
 onoffline="update(false)"
 onload="update(navigator.onLine)">
 <p>You are: (Unknown)</p>
 </body>
</html>

 The article element

 	Categories:

 	Flow content, but with no main element descendants.

 	Sectioning content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The article element represents a complete, or self-contained,
 composition in a document, page, application, or site and that is, in principle, independently
 distributable or reusable, e.g. in syndication. This could be a forum post, a magazine or
 newspaper article, a blog entry, a user-submitted comment, an interactive widget or gadget, or any
 other independent item of content.

 When article elements are nested, the inner article elements
 represent articles that are in principle related to the contents of the outer article. For
 instance, a blog entry on a site that accepts user-submitted comments could represent the comments
 as article elements nested within the article element for the blog
 entry.

 Author information associated with an article element (q.v. the
 address element) does not apply to nested article elements.

 When used specifically with content to be redistributed in syndication, the
 article element is similar in purpose to the entry element in
 Atom. [ATOM]

 This example shows a blog post using the article element.

 When the main content of the page (i.e. excluding footers, headers, navigation blocks, and
 sidebars) is all one single self-contained composition, the content should be marked up with a
 main element and the content may also be marked with an article, but
 it is technically redundant in this case (since it's self-evident that the page is a single
 composition, as it is a single document).

 <article>
 <header>
 <h1>The Very First Rule of Life</h1>
 <p><time datetime="2009-10-09">3 days ago</time></p>
 <link href="?comments=0">
 </header>
 <p>If there's a microphone anywhere near you, assume it's hot and
 sending whatever you're saying to the world. Seriously.</p>
 <p>...</p>
 <footer>
 Show comments...
 </footer>
</article>

 Here is that same blog post, but showing some of the comments:

 <article>
 <header>
 <h1>The Very First Rule of Life</h1>
 <p><time datetime="2009-10-09">3 days ago</time></p>
 <link href="?comments=0">
 </header>
 <p>If there's a microphone anywhere near you, assume it's hot and
 sending whatever you're saying to the world. Seriously.</p>
 <p>...</p>
 <section>
 <h1>Comments</h1>
 <article id="c1">
 <link href="#c1">
 <footer>
 <p>Posted by:
 George Washington
 </p>
 <p><time datetime="2009-10-10">15 minutes ago</time></p>
 </footer>
 <p>Yeah! Especially when talking about your lobbyist friends!</p>
 </article>
 <article id="c2">
 <link href="#c2">
 <footer>
 <p>Posted by:
 George Hammond
 </p>
 <p><time datetime="2009-10-10">5 minutes ago</time></p>
 </footer>
 <p>Hey, you have the same first name as me.</p>
 </article>
 </section>
</article>

 Notice the use of footer to give the information for each comment (such as who
 wrote it and when): the footer element can appear at the start of its
 section when appropriate, such as in this case. (Using header in this case wouldn't
 be wrong either; it's mostly a matter of authoring preference.)

 The section element

 	Categories:

 	Flow content.

 	Sectioning content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The section element represents a generic section of a document or
 application. A section, in this context, is a thematic grouping of content, typically with a
 heading.

 Examples of sections would be chapters, the various tabbed pages in a tabbed
 dialog box, or the numbered sections of a thesis. A Web site's home page could be split into
 sections for an introduction, news items, and contact information.

 Authors are encouraged to use the article element instead of the
 section element when it would make sense to syndicate the contents of the
 element.

 The section element is not a generic
 container element. When an element is needed only for styling purposes or as a convenience for
 scripting, authors are encouraged to use the div element instead. A general rule is
 that the section element is appropriate only if the element's contents would be
 listed explicitly in the document's outline.

 In the following example, we see an article (part of a larger Web page) about apples,
 containing two short sections.

 <article>
 <header>
 <h1>Apples</h1>
 <p>Tasty, delicious fruit!</p>
 </header>
 <p>The apple is the pomaceous fruit of the apple tree.</p>
 <section>
 <h1>Red Delicious</h1>
 <p>These bright red apples are the most common found in many
 supermarkets.</p>
 </section>
 <section>
 <h1>Granny Smith</h1>
 <p>These juicy, green apples make a great filling for
 apple pies.</p>
 </section>
</article>

 Notice how the use of section means that the author can use h1
 elements throughout, without having to worry about whether a particular section is at the top
 level, the second level, the third level, and so on.

 Here is a graduation programme with two sections, one for the list of people graduating, and
 one for the description of the ceremony. (The markup in this example features an uncommon style
 sometimes used to minimize the amount of inter-element whitespace.)

 <!DOCTYPE Html>
<Html
 ><Head
 ><Title
 >Graduation Ceremony Summer 2022</Title
 ></Head
 ><Body
 ><H1
 >Graduation</H1
 ><Section
 ><H1
 >Ceremony</H1
 ><P
 >Opening Procession</P
 ><P
 >Speech by Validactorian</P
 ><P
 >Speech by Class President</P
 ><P
 >Presentation of Diplomas</P
 ><P
 >Closing Speech by Headmaster</P
 ></Section
 ><Section
 ><H1
 >Graduates</H1
 >Molly CarpenterAnastasia LuccioEbenezar McCoyKarrin MurphyThomas RaithSusan Rodriguez</Section
 ></Body
></Html>

 In this example, a book author has marked up some sections as chapters and some as appendices,
 and uses CSS to style the headers in these two classes of section differently. The whole book is
 wrapped in an article element as part of an even larger document containing other
 books.

 <article class="book">
 <style>
 section { border: double medium; margin: 2em; }
 section.chapter h1 { font: 2em Roboto, Helvetica Neue, sans-serif; }
 section.appendix h1 { font: small-caps 2em Roboto, Helvetica Neue, sans-serif; }
 </style>
 <header>
 <h1>My Book</h1>
 <p>A sample with not much content</p>
 <p><small>Published by Dummy Publicorp Ltd.</small></p>
 </header>

 <section class="chapter">
 <h1>My First Chapter</h1>
 <p>This is the first of my chapters. It doesn't say much.</p>
 <p>But it has two paragraphs!</p>
 </section>
 <section class="chapter">
 <h1>It Continutes: The Second Chapter</h1>
 <p>Bla dee bla, dee bla dee bla. Boom.</p>
 </section>
 <section class="chapter">
 <h1>Chapter Three: A Further Example</h1>
 <p>It's not like a battle between brightness and earthtones would go
 unnoticed.</p>
 <p>But it might ruin my story.</p>
 </section>
 <section class="appendix">
 <h1>Appendix A: Overview of Examples</h1>
 <p>These are demonstrations.</p>
 </section>
 <section class="appendix">
 <h1>Appendix B: Some Closing Remarks</h1>
 <p>Hopefully this long example shows that you can style
 sections, so long as they are used to indicate actual sections.</p>
 </section>
</article>

 The nav element

 	Categories:

 	Flow content.

 	Sectioning content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no main element descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The nav element represents a section of a page that links to other
 pages or to parts within the page: a section with navigation links.

 In cases where the content of a nav element represents a list of items,
 use list markup to aid understanding and navigation.

 Not all groups of links on a page need to be in a nav element —
 the element is primarily intended for sections that consist of major navigation blocks. In
 particular, it is common for footers to have a short list of links to various pages of a site,
 such as the terms of service, the home page, and a copyright page. The footer element
 alone is sufficient for such cases; while a nav element can be used in such cases, it
 is usually unnecessary.

 User agents (such as screen readers) that are targeted at users who can benefit
 from navigation information being omitted in the initial rendering, or who can benefit from
 navigation information being immediately available, can use this element as a way to determine
 what content on the page to initially skip or provide on request (or both).

 In the following example, the page has several places where links are present, but only one of
 those places is considered a navigation section.

 <body>
 <header>
 <h1>Wake up sheeple!</h1>
 <p>News -
 Blog -
 Forums</p>
 <p>Last Modified: 2009-04-01</p>
 <nav>
 <h1>Navigation</h1>

 Index of all articles
 Things sheeple need to wake up for today
 Sheeple we have managed to wake

 </nav>
 </header>
 <main>
 <article>
 <header>
 <h1>My Day at the Beach</h1>
 </header>
 <div>
 <p>Today I went to the beach and had a lot of fun.</p>
 ...more content...
 </div>
 <footer>
 <p>Posted <time datetime="2009-10-10">Thursday</time>.</p>
 </footer>
 </article>
 ...more blog posts...
 </main>
 <footer>
 <p>Copyright ©
 2010
 The Example Company
 </p>
 <p>About -
 Privacy Policy -
 Contact Us</p>
 </footer>
</body>

 Notice the main element being used to wrap the
 main content of the page. In this case, all content other than
 the page header and footer.

 In the following example, there are two nav elements, one for primary navigation
 around the site, and one for secondary navigation around the page itself.

 <body>
 <h1>The Wiki Center Of Exampland</h1>
 <nav>

 Home
 Current Events
 ...more...

 </nav>
 <main>
 <header>
 <h1>Demos in Exampland</h1>
 <p>Written by A. N. Other.</p>
 </header>
 <nav>

 Public demonstrations
 Demolitions
 ...more...

 </nav>
 <div>
 <section id="public">
 <h1>Public demonstrations</h1>
 <p>...more...</p>
 </section>
 <section id="destroy">
 <h1>Demolitions</h1>
 <p>...more...</p>
 </section>
 ...more...
 </div>
 <footer>
 <p>Edit | Delete | Rename</p>
 </footer>
 </main>
 <footer>
 <p><small>© copyright 1998 Exampland Emperor</small></p>
 </footer>
</body>

 A nav element doesn't have to contain a list, it can contain other kinds of
 content as well. In this navigation block, links are provided in prose:

 <nav>
 <h1>Navigation</h1>
 <p>You are on my home page. To the north lies my
 blog, from whence the sounds of battle can be heard. To the east
 you can see a large mountain, upon which many school papers are littered. Far up thus mountain
 you can spy a little figure who appears to be me, desperately
 scribbling a thesis.</p>
 <p>To the west are several exits. One fun-looking exit is labeled "games". Another more
 boring-looking exit is labeled ISP™.</p>
 <p>To the south lies a dark and dank contacts
 page. Cobwebs cover its disused entrance, and at one point you
 see a rat run quickly out of the page.</p>
</nav>

 The aside element

 	Categories:

 	Flow content.

 	Sectioning content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no main element descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The aside element represents a section of a page that consists of
 content that is tangentially related to the content around the aside element, and
 which could be considered separate from that content. Such sections are often represented as
 sidebars in printed typography.

 The element can be used for typographical effects like pull quotes or sidebars, for
 advertising, for groups of nav elements, and for other content that is considered
 separate from the main content of the page.

 It's not appropriate to use the aside element just for
 parentheticals, since those are part of the main flow of the document.

 The following example shows how an aside is used to mark up background material on Switzerland
 in a much longer news story on Europe.

 <aside>
 <h1>Switzerland</h1>
 <p>Switzerland, a land-locked country in the middle of geographic
 Europe, has not joined the geopolitical European Union, though it is
 a signatory to a number of European treaties.</p>
</aside>

 The following example shows how an aside is used to mark up a pull quote in a longer
 article.

 ...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at
work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do now.</q></p>

<aside>
 <q> People ask me what I do for fun when I'm not at work. But I'm
 paid to do my hobby, so I never know what to answer. </q>
</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

 The following extract shows how aside can be used for blogrolls and other side
 content on a blog:

 <body>
 <header>
 <h1>My wonderful blog</h1>
 <p>My tagline</p>
 </header>
 <aside>
 <!-- this aside contains two sections that are tangentially related
 to the page, namely, links to other blogs, and links to blog posts
 from this blog -->
 <nav>
 <h1>My blogroll</h1>

 Example Blog

 </nav>
 <nav>
 <h1>Archives</h1>
 <ol reversed>
 My last post
 My first post

 </nav>
 </aside>
 <aside>
 <!-- this aside is tangentially related to the page also, it
 contains twitter messages from the blog author -->
 <h1>Twitter Feed</h1>
 <blockquote cite="http://twitter.example.net/t31351234">
 I'm on vacation, writing my blog.
 </blockquote>
 <blockquote cite="http://twitter.example.net/t31219752">
 I'm going to go on vacation soon.
 </blockquote>
 </aside>
 <article>
 <!-- this is a blog post -->
 <h1>My last post</h1>
 <p>This is my last post.</p>
 <footer>
 <p>Permalink
 </footer>
 </article>
 <article>
 <!-- this is also a blog post -->
 <h1>My first post</h1>
 <p>This is my first post.</p>
 <aside>
 <!-- this aside is about the blog post, since it's inside the
 <article> element; it would be wrong, for instance, to put the
 blogroll here, since the blogroll isn't really related to this post
 specifically, only to the page as a whole -->
 <h1>Posting</h1>
 <p>While I'm thinking about it, I wanted to say something about
 posting. Posting is fun!</p>
 </aside>
 <footer>
 <p>Permalink
 </footer>
 </article>
 <footer>
 <nav>
 Archives —
 About me —
 Copyright
 </nav>
 </footer>
</body>

 The h1, h2, h3, h4, h5, and h6 elements

 	Categories:

 	Flow content.

 	Heading content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLHeadingElement : HTMLElement {};

 These elements represent headings for their sections.

 The semantics and meaning of these elements are defined in the section on headings and
 sections.

 These elements have a rank given by the number in their name. The h1
 element is said to have the highest rank, the h6 element has the lowest rank, and two
 elements with the same name have equal rank.

 h1–h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection. Instead use the markup patterns in the Common idioms without dedicated elements section of the specification.

 As far as their respective document outlines (their heading and section structures) are
 concerned, these two snippets are semantically equivalent:

 <body>
<h1>Let's call it a draw(ing surface)</h1>
<h2>Diving in</h2>
<h2>Simple shapes</h2>
<h2>Canvas coordinates</h2>
<h3>Canvas coordinates diagram</h3>
<h2>Paths</h2>
</body>

 <body>
 <h1>Let's call it a draw(ing surface)</h1>
 <section>
 <h1>Diving in</h1>
 </section>
 <section>
 <h1>Simple shapes</h1>
 </section>
 <section>
 <h1>Canvas coordinates</h1>
 <section>
 <h1>Canvas coordinates diagram</h1>
 </section>
 </section>
 <section>
 <h1>Paths</h1>
 </section>
</body>

 Authors might prefer the former style for its terseness, or the latter style for its
 convenience in the face of heavy editing; which is best is purely an issue of preferred authoring
 style.

 The header element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no header, footer, or main element descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The header element represents introductory content
 for its nearest ancestor sectioning content or
 sectioning root element. A header typically contains a group of introductory or navigational
 aids.

 When the nearest ancestor sectioning content or
 sectioning root element is the body
 element, then it applies to the whole page.

 A header element is intended to usually contain the section's heading
 (an h1–h6 element), but this is
 not required. The header element can also be used to wrap a section's table of
 contents, a search form, or any relevant logos.

 Here are some sample headers. This first one is for a game:

 <header>
 <p>Welcome to...</p>
 <h1>Voidwars!</h1>
</header>

 The following snippet shows how the element can be used to mark
 up a specification's header:

 <header>
 <h1>Scalable Vector Graphics (SVG) 1.2</h1>
 <p>W3C Working Draft 27 October 2004</p>
 <dl>
 <dt>This version:</dt>
 <dd>http://www.w3.org/TR/2004/WD-SVG12-20041027/</dd>
 <dt>Previous version:</dt>
 <dd>http://www.w3.org/TR/2004/WD-SVG12-20040510/</dd>
 <dt>Latest version of SVG 1.2:</dt>
 <dd>http://www.w3.org/TR/SVG12/</dd>
 <dt>Latest SVG Recommendation:</dt>
 <dd>http://www.w3.org/TR/SVG/</dd>
 <dt>Editor:</dt>
 <dd>Dean Jackson, W3C, dean@w3.org</dd>
 <dt>Authors:</dt>
 <dd>See Author List</dd>
 </dl>
 <p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-notic ...
</header>

 The header element is not sectioning content; it doesn't
 introduce a new section.

 In this example, the page has a page heading given by the h1 element, and two
 subsections whose headings are given by h2 elements. The content after the
 header element is still part of the last subsection started in the
 header element, because the header element doesn't take part in the
 outline algorithm.

 <body>
 <header>
 <h1>Little Green Guys With Guns</h1>
 <nav>

 Games
 Forum
 Download

 </nav>
 <h2>Important News</h2> <!-- this starts a second subsection -->
 <!-- this is part of the subsection entitled "Important News" -->
 <p>To play today's games you will need to update your client.</p>
 <h2>Games</h2> <!-- this starts a third subsection -->
 </header>
 <p>You have three active games:</p>
 <!-- this is still part of the subsection entitled "Games" -->
 ...

 The footer element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no header, footer, or main element descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The footer element represents a footer
 for its nearest ancestor sectioning content or
 sectioning root element. A footer typically contains
 information about its section such as who wrote it, links to related
 documents, copyright data, and the like.

 When the footer element contains entire sections,
 they represent appendices, indexes,
 long colophons, verbose license agreements, and other such
 content.

 Contact information for the author or editor of a
 section belongs in an address element, possibly itself
 inside a footer. Bylines and other information that
 could be suitable for both a header or a
 footer can be placed in either (or neither). The
 primary purpose of these elements is merely to help the author write
 self-explanatory markup that is easy to maintain and style; they are
 not intended to impose specific structures on authors.

 Footers don't necessarily have to appear at the end of a
 section, though they usually do.

 When the nearest ancestor sectioning content or
 sectioning root element is the body
 element, then it applies to the whole page.

 The footer element is not
 sectioning content; it doesn't introduce a new
 section.

 Here is a page with two footers, one at the top and one at the
 bottom, with the same content:

 <body>
 <footer>Back to index...</footer>
 <div>
 <h1>Lorem ipsum</h1>
 <p>The ipsum of all lorems</p>
 </div>
 <p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
 veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
 ea commodo consequat. Duis aute irure dolor in reprehenderit in
 voluptate velit esse cillum dolore eu fugiat nulla
 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
 culpa qui officia deserunt mollit anim id est laborum.</p>
 <footer>Back to index...</footer>
</body>

 Here is an example which shows the footer element
 being used both for a site-wide footer and for a section
 footer.

 <!DOCTYPE HTML>
<HTML><HEAD>
<TITLE>The Ramblings of a Scientist</TITLE>
<BODY>
<H1>The Ramblings of a Scientist</H1>
<MAIN>
 <ARTICLE>
 <H1>Episode 15</H1>
 <VIDEO SRC="/fm/015.ogv" CONTROLS PRELOAD>
 <P>Download video.</P>
 </VIDEO>
 <FOOTER> <!-- footer for article -->
 <P>Published <TIME DATETIME="2009-10-21T18:26-07:00">on 2009/10/21 at 6:26pm</TIME></P>
 </FOOTER>
</ARTICLE>
<ARTICLE>
 <H1>My Favorite Trains</H1>
 <P>I love my trains. My favorite train of all time is a Köf.</P>
 <P>It is fun to see them pull some coal cars because they look so
 dwarfed in comparison.</P>
 <FOOTER> <!-- footer for article -->
 <P>Published <TIME DATETIME="2009-09-15T14:54-07:00">on 2009/09/15 at 2:54pm</TIME></P>
 </FOOTER>
 </ARTICLE>
</MAIN>
<FOOTER> <!-- site wide footer -->
 <NAV>
 <P>Credits —
 Terms of Service —
 Blog Index</P>
 </NAV>
 <P>Copyright © 2009 Gordon Freeman</P>
</FOOTER>
</BODY>
</HTML>

 Some site designs have what is sometimes referred to as "fat
 footers" — footers that contain a lot of material, including
 images, links to other articles, links to pages for sending
 feedback, special offers... in some ways, a whole "front page" in
 the footer.

 This fragment shows the bottom of a page on a site with a "fat
 footer":

 ...
 <footer>
 <nav>
 <section>
 <h1>Articles</h1>
 <p> Go to the gym with
 our somersaults class! Our teacher Jim takes you through the paces
 in this two-part article. Part
 1 · Part 2</p>
 <p> Tired of walking on the edge of
 a clif<!-- sic -->? Our guest writer Lara shows you how to bumble
 your way through the bars. Read
 more...</p>
 <p> The chips are down, now all
 that's left is a potato. What can you do with it? Read more...</p>
 </section>

 About us...
 Send feedback!
 Sitemap

 </nav>
 <p><small>Copyright © 2015 The Snacker —
 Terms of Service</small></p>
 </footer>
</body>

 The address element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no heading
 content descendants, no sectioning content
 descendants, and no header, footer, or
 address element descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The address element represents the
 contact information for its nearest article or
 body element ancestor. If that is the body
 element, then the contact information applies to the document
 as a whole.

 For example, a page at the W3C Web site related to HTML might
 include the following contact information:

 <ADDRESS>
 Dave Raggett,
 Arnaud Le Hors,
 contact persons for the W3C HTML Activity
</ADDRESS>

 The address element must not be used to represent
 arbitrary addresses (e.g. postal addresses), unless those addresses
 are in fact the relevant contact information. (The p
 element is the appropriate element for marking up postal addresses
 in general.)

 The address element must not contain information
 other than contact information.

 For example, the following is non-conforming use of the
 address element:

 <ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

 Typically, the address element would be included
 along with other information in a footer element.

 The contact information for a node node is a
 collection of address elements defined by the first
 applicable entry from the following list:

 	If node is an article element

 	If node is a body element

 	

 The contact information consists of all the
 address elements that have node
 as an ancestor and do not have another body or
 article element ancestor that is a descendant of node.

 	If node has an ancestor element that is an article element

 	If node has an ancestor element that is a body element

 	

 The contact information of node is the same
 as the contact information of the nearest article or
 body element ancestor, whichever is nearest.

 	If node's Document has a body element

 	

 The contact information of node is the same
 as the contact information of the body element of the
 Document.

 	Otherwise

 	

 There is no contact information for node.

 User agents may expose the contact information of a node to the
 user, or use it for other purposes, such as indexing sections based
 on the sections' contact information.

 In this example the footer contains contact information and a
 copyright notice.

 <footer>
 <address>
 For more details, contact
 John Smith.
 </address>
 <p><small>© copyright 2038 Example Corp.</small></p>
</footer>

 Headings and sections

 The h1–h6 elements are headings.

 The first element of heading content in an element
 of sectioning content represents the
 heading for that section. Subsequent headings of equal or higher
 rank start new (implied) sections, headings of lower
 rank start implied subsections that are part of the
 previous one. In both cases, the element represents the
 heading of the implied section.

 h1–h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection. Instead use the markup patterns in the Common idioms without dedicated elements section of the specification.

 Certain elements are said to be sectioning roots, including blockquote and
 td elements. These elements can have their own
 outlines, but the sections and headings inside these elements do not
 contribute to the outlines of their ancestors.

 	blockquote

 	body

 	details

 	dialog

 	fieldset

 	figure

 	td

 Sectioning content elements are always considered
 subsections of their nearest ancestor sectioning root
 or their nearest ancestor element of sectioning
 content, whichever is nearest, regardless of what implied
 sections other headings may have created.

 For the following fragment:

 <body>
 <h1>Foo</h1>
 <h2>Bar</h2>
 <blockquote>
 <h3>Bla</h3>
 </blockquote>
 <p>Baz</p>
 <h2>Quux</h2>
 <section>
 <h3>Thud</h3>
 </section>
 <p>Grunt</p>
</body>

 ...the structure would be:

 	
 Foo (heading of explicit body section, containing the "Grunt" paragraph)

 	
 Bar (heading starting implied section, containing a block quote and the "Baz" paragraph)

 	
 Quux (heading starting implied section with no content other than the heading itself)

 	
 Thud (heading of explicit section section)

 Notice how the section ends the earlier implicit
 section so that a later paragraph ("Grunt") is back at the top
 level.

 Sections may contain headings of any rank, and
 authors are strongly encouraged to use headings of the appropriate rank
 for the section's nesting level.

 Authors are also encouraged to explicitly wrap sections in
 elements of sectioning content, instead of relying on
 the implicit sections generated by having multiple headings in one
 element of sectioning content.

 For example, the following is correct:

 <body>
 <h4>Apples</h4>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>
 <p>They taste lovely.</p>
 <h6>Sweet</h6>
 <p>Red apples are sweeter than green ones.</p>
 <h1>Color</h1>
 <p>Apples come in various colors.</p>
 </section>
</body>

 However, the same document would be more clearly expressed
 as:

 <body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>
 <p>They taste lovely.</p>
 <section>
 <h3>Sweet</h3>
 <p>Red apples are sweeter than green ones.</p>
 </section>
 </section>
 <section>
 <h2>Color</h2>
 <p>Apples come in various colors.</p>
 </section>
</body>

 Both of the documents above are semantically identical and would
 produce the same outline in compliant user agents.

 This third example is also semantically identical, and might be
 easier to maintain (e.g. if sections are often moved around in
 editing):

 <body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
 <h1>Taste</h1>
 <p>They taste lovely.</p>
 <section>
 <h1>Sweet</h1>
 <p>Red apples are sweeter than green ones.</p>
 </section>
 </section>
 <section>
 <h1>Color</h1>
 <p>Apples come in various colors.</p>
 </section>
</body>

 This final example would need explicit style rules to be
 rendered well in legacy browsers. Legacy browsers without CSS
 support would render all the headings as top-level headings.

 Creating an outline

 This section defines an algorithm for creating an outline for a
 sectioning content element or a sectioning
 root element. It is defined in terms of a walk over the nodes
 of a DOM tree, in tree order, with each node being visited when it
 is entered and when it is exited during the walk.

 The outline for a sectioning content
 element or a sectioning root element consists of a list
 of one or more potentially nested sections. A section is a container that
 corresponds to some nodes in the original DOM tree. Each section can
 have one heading associated with it, and can contain any number of
 further nested sections. (The sections in the
 outline aren't section elements, though some may
 correspond to such elements — they are merely conceptual
 sections.)

 The following markup fragment:

 <body>
 <h1>A</h1>
 <p>B</p>
 <h2>C</h2>
 <p>D</p>
 <h2>E</h2>
 <p>F</p>
</body>

 ...results in the following outline being created for the
 body node (and thus the entire document):

 	
 Section created for body node.

 Associated with heading "A".

 Also associated with paragraph "B".

 Nested sections:

 	
 Section implied for first h2 element.

 Associated with heading "C".

 Also associated with paragraph "D".

 No nested sections.

 	
 Section implied for second h2 element.

 Associated with heading "E".

 Also associated with paragraph "F".

 No nested sections.

 The algorithm that must be followed during a walk of a DOM
 subtree rooted at a sectioning content element or a
 sectioning root element to determine that element's
 outline is as follows:

 	Let current outline target be null. (It holds
 the element whose outline is being created.)

 	Let current section be null. (It holds a
 pointer to a section, so that
 elements in the DOM can all be associated with a section.)

 	Create a stack to hold elements, which is used to handle
 nesting. Initialize this stack to empty.

 	

 Walk over the DOM in tree order, starting with the
 sectioning content element or sectioning
 root element at the root of the subtree for which an
 outline is to be created, and trigger the first relevant step
 below for each element as the walk enters and exits it.

 	When exiting an element, if that element is the element at
 the top of the stack

 	

 The element being exited is a heading
 content element or an element with a hidden attribute.

 Pop that element from the stack.

 	If the top of the stack is a heading content
 element or an element with a hidden attribute

 	Do nothing.

 	When entering an element with a hidden attribute

 	

 Push the element being entered onto the stack. (This causes
 the algorithm to skip that element and any descendants of the
 element.)

 	When entering a sectioning content element or a
 sectioning root element

 	

 If current outline target is not null, and the
 current section has no heading, create an
 implied heading and let that be the heading for the current section.

 If current outline target is not null, push
 current outline target onto the stack.

 Let current outline target be the element
 that is being entered.

 Let current section be a newly created
 section for the current outline target element.

 Associate current outline target with current section.

 Let there be a new outline for the new current outline target, initialized with just the new
 current section as the only section in the outline.

 	When exiting a sectioning content element, if
 the stack is not empty

 	

 If the current section has no heading,
 create an implied heading and let that be the heading for the
 current section.

 Pop the top element from the stack, and let the current outline target be that element.

 Let current section be the last section
 in the outline of the current
 outline target element.

 Append the outline of the sectioning
 content element being exited to the current
 section. (This does not change which section is the last
 section in the outline.)

 	When exiting a sectioning root element, if the
 stack is not empty

 	

 Run these steps:

 	If the current section has no
 heading, create an implied heading and let that be the heading
 for the current section.

 	Pop the top element from the stack, and let the current outline target be that element.

 	Let current section be the last
 section in the outline of the current
 outline target element.

 	Finding the deepest child: If current section has no child sections, stop
 these steps.

 	Let current section be the last
 child section of the
 current current section.

 	Go back to the substep labeled finding the deepest
 child.

 	When exiting a sectioning content element or a
 sectioning root element

 	

 The current outline target is the
 element being exited, and it is the sectioning
 content element or a sectioning root element
 at the root of the subtree for which an outline is being
 generated.

 If the current section has no heading,
 create an implied heading and let that be the heading for the
 current section.

 Skip to the next step in the overall set of steps. (The walk
 is over.)

 	When entering a heading content element

 	

 If the current section has no heading,
 let the element being entered be the heading for the current section.

 Otherwise, if the element being entered has a
 rank equal to or higher than the heading of the
 last section of the outline of the current outline target, or if the heading of the last
 section of the outline of the current
 outline target is an implied heading, then create a new section and append it to the
 outline of the current outline target
 element, so that this new section is the new last section of
 that outline. Let current section be that
 new section. Let the element being entered be the new heading
 for the current section.

 Otherwise, run these substeps:

 	Let candidate section be current section.

 	Heading loop: If the element being entered has a
 rank lower than the rank of the
 heading of the candidate section, then create a new section, and append it to candidate section. (This does not change which
 section is the last section in the outline.) Let current section be this new section. Let the
 element being entered be the new heading for the current section. Abort these substeps.

	Let new candidate section be the
 section that contains candidate section in the outline of
 current outline target.

 	Let candidate section be new candidate section.

 	Return to the step labeled heading loop.

 Push the element being entered onto the stack. (This causes
 the algorithm to skip any descendants of the element.)

 Recall that h1 has the
 highest rank, and h6 has the lowest
 rank.

 	Otherwise

 	Do nothing.

 In addition, whenever the walk exits a
 node, after doing the steps above, if the node is not associated
 with a section yet, associate
 the node with the section
 current section.

 	Associate all nodes with the heading of the section with which they are
 associated, if any.

 The tree of sections created by the algorithm above, or a proper
 subset thereof, must be used when generating document outlines, for
 example when generating tables of contents.

 The outline created for the body element of a
 Document is the outline of the entire
 document.

 When creating an interactive table of contents, entries should
 jump the user to the relevant sectioning content
 element, if the section was
 created for a real element in the original document, or to the
 relevant heading content element, if the section in the tree was generated for
 a heading in the above process.

 Selecting the first section of the document therefore
 always takes the user to the top of the document, regardless of
 where the first heading in the body is to be found.

 The outline depth of a heading content
 element associated with a section section
 is the number of sections that
 are ancestors of section in the outermost
 outline that section finds itself
 in when the outlines of its
 Document's elements are created, plus 1. The
 outline depth of a heading content element
 not associated with a section
 is 1.

 User agents should provide default headings for sections that do
 not have explicit section headings.

 Consider the following snippet:

 <body>
 <nav>
 <p>Home</p>
 </nav>
 <p>Hello world.</p>
 <aside>
 <p>My cat is cute.</p>
 </aside>
</body>

 Although it contains no headings, this snippet has three
 sections: a document (the body) with two subsections
 (a nav and an aside). A user agent could
 present the outline as follows:

 	Untitled document

 	Navigation

 	Sidebar

 These default headings ("Untitled document", "Navigation",
 "Sidebar") are not specified by this specification, and might vary
 with the user's language, the page's language, the user's
 preferences, the user agent implementor's preferences, etc.

 The following JavaScript function shows how the tree walk could
 be implemented. The root argument is the root
 of the tree to walk (either a sectioning content
 element or a sectioning root element), and the enter and exit arguments are
 callbacks that are called with the nodes as they are entered and
 exited. [ECMA262]

 function (root, enter, exit) {
 var node = root;
 start: while (node) {
 enter(node);
 if (node.firstChild) {
 node = node.firstChild;
 continue start;
 }
 while (node) {
 exit(node);
 if (node == root) {
 node = null;
 } else if (node.nextSibling) {
 node = node.nextSibling;
 continue start;
 } else {
 node = node.parentNode;
 }
 }
 }
}

 Sample outlines

 This section is non-normative.

 The following document shows a straight-forward application of the outline
 algorithm. First, here is the document, which is a book with very short chapters and
 subsections:

 <!DOCTYPE HTML>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<h2>Earning money</h2>
<p>Earning money is good.</p>
<h3>Getting a job</h3>
<p>To earn money you typically need a job.</p>
<h2>Spending money</h2>
<p>Spending is what money is mainly used for.</p>
<h3>Cheap things</h3>
<p>Buying cheap things often not cost-effective.</p>
<h3>Expensive things</h3>
<p>The most expensive thing is often not the most cost-effective either.</p>
<h2>Investing money</h2>
<p>You can lend your money to other people.</p>
<h2>Losing money</h2>
<p>If you spend money or invest money, sooner or later you will lose money.
<h3>Poor judgement</h3>
<p>Usually if you lose money it's because you made a mistake.</p>

 This book would form the following outline:

 	 The Tax Book

 	 Earning money

 	 Getting a job

	 Spending money

 	 Cheap things

	 Expensive things

	 Investing money

	 Losing money

 	 Poor judgement

 Notice that the title element does not participate in the outline.

 Here is a similar document, but this time using section elements to get the same
 effect:

 <!DOCTYPE HTML>
<title>The Tax Book (all in one page)</title>
<h1>The Tax Book</h1>
<section>
 <h1>Earning money</h1>
 <p>Earning money is good.</p>
 <section>
 <h1>Getting a job</h1>
 <p>To earn money you typically need a job.</p>
 </section>
</section>
<section>
 <h1>Spending money</h1>
 <p>Spending is what money is mainly used for.</p>
 <section>
 <h1>Cheap things</h1>
 <p>Buying cheap things often not cost-effective.</p>
 </section>
 <section>
 <h1>Expensive things</h1>
 <p>The most expensive thing is often not the most cost-effective either.</p>
 </section>
</section>
<section>
 <h1>Investing money</h1>
 <p>You can lend your money to other people.</p>
</section>
<section>
 <h1>Losing money</h1>
 <p>If you spend money or invest money, sooner or later you will lose money.
 <section>
 <h1>Poor judgement</h1>
 <p>Usually if you lose money it's because you made a mistake.</p>
 </section>
</section>

 This book would form the same outline:

 	 The Tax Book

 	 Earning money

 	 Getting a job

	 Spending money

 	 Cheap things

	 Expensive things

	 Investing money

	 Losing money

 	 Poor judgement

 A document can contain multiple top-level headings:

 <!DOCTYPE HTML>
<title>Alphabetic Fruit</title>
<h1>Apples</h1>
<p>Pomaceous.</p>
<h1>Bananas</h1>
<p>Edible.</p>
<h1>Carambola</h1>
<p>Star.</p>

 This would form the following simple outline consisting of three top-level sections:

 	 Apples

	 Bananas

	 Carambola

 Effectively, the body element is split into three.

 Mixing both the h1–h6 model and the
 section/h1 model can lead to some unintuitive results.

 Consider for example the following, which is just the previous example but with the contents
 of the (implied) body wrapped in a section:

 <!DOCTYPE HTML>
<title>Alphabetic Fruit</title>
<section>
 <h1>Apples</h1>
 <p>Pomaceous.</p>
 <h1>Bananas</h1>
 <p>Edible.</p>
 <h1>Carambola</h1>
 <p>Star.</p>
</section>

 The resulting outline would be:

 	 (untitled page)

 	 Apples

	 Bananas

	 Carambola

 This result is described as unintuitive because it results in three subsections even
 though there's only one section element. Effectively, the section is
 split into three, just like the implied body element in the previous example.

 (In this example, "(untitled page)" is the implied heading for the body
 element, since it has no explicit heading.)

 Headings never rise above other sections. Thus, in the following example, the first
 h1 does not actually describe the page header; it describes the header for the
 second half of the page:

 <!DOCTYPE HTML>
<title>Feathers on The Site of Encyclopedic Knowledge</title>
<section>
 <h1>A plea from our caretakers</h1>
 <p>Please, we beg of you, send help! We're stuck in the server room!</p>
</section>
<h1>Feathers</h1>
<p>Epidermal growths.</p>

 The resulting outline would be:

 	 (untitled page)

 	 A plea from our caretakers

	 Feathers

 Thus, when an article element starts with a nav block and only later
 has its heading, the result is that the nav block is not part of the same section as
 the rest of the article in the outline. For instance, take this document:

 <!DOCTYPE HTML>
<title>We're adopting a child! — Ray's blog</title>
<h1>Ray's blog</h1>
<main>
 <article>
 <header>
 <nav>
 Yesterday;
 Last week;
 Last month
 </nav>
 <h1>We're adopting a child!</h1>
 </header>

 <p>As of today, Janine and I have signed the papers to become
 the proud parents of baby Diane! We've been looking forward to
 this day for weeks.</p>
 </article>
</main>

 The resulting outline would be:

 	 Ray's blog

 	 Untitled article

 	 Untitled navigation section

	 We're adopting a child!

 Also worthy of note in this example is that the header and main
 elements have no effect whatsoever on the document outline.

 Usage summary

 This section is non-normative.

 	Element
 	Purpose

 	Example

 	body
 	

 	<!DOCTYPE HTML>
<html>
 <head> <title>Steve Hill's Home Page</title> </head>
 <body> <p>Hard Trance is My Life.</p> </body>
</html>

 	article
 	

 	<article>

 <p>My fave Masif tee so far!</p>
 <footer>Posted 2 days ago</footer>
</article>
<article>

 <p>Happy 2nd birthday Masif Saturdays!!!</p>
 <footer>Posted 3 weeks ago</footer>
</article>

 	section
 	

 	<h1>Biography</h1>
<section>
 <h1>The facts</h1>
 <p>1500+ shows, 14+ countries</p>
</section>
<section>
 <h1>2010/2011 figures per year</h1>
 <p>100+ shows, 8+ countries</p>
</section>

 	nav
 	

 	<nav>
 <p>Home
 <p>Bio
 <p>Discog
</nav>

 	aside
 	

 	<h1>Music</h1>
<p>As any burner can tell you, the event has a lot of trance.</p>
<aside>You can buy the music we played at our playlist page.</aside>
<p>This year we played a kind of trance that originated in Belgium, Germany, and the Netherlands in the mid 90s.</p>

 	h1–h6
 	A section heading

 	<h1>The Guide To Music On The Playa</h1>
<h2>The Main Stage</h2>
<p>If you want to play on a stage, you should bring one.</p>
<h2>Amplified Music</h2>
<p>Amplifiers up to 300W or 90dB are welcome.</p>

 	header
 	

 	<article>
 <header>
 <h1>Hard Trance is My Life</h1>
 <p>By DJ Steve Hill and Technikal</p>
 </header>
 <p>The album with the amusing punctuation has red artwork.</p>
</article>

 	footer
 	

 	<article>
 <h1>Hard Trance is My Life</h1>
 <p>The album with the amusing punctuation has red artwork.</p>
 <footer>
 <p>Artists: DJ Steve Hill and Technikal</p>
 </footer>
</article>

 Article or section?

 This section is non-normative.

 A section forms part of something else. An article is its own thing.
 But how does one know which is which? Mostly the real answer is "it depends on author intent".

 For example, one could imagine a book with a "Granny Smith" chapter that just said "These
 juicy, green apples make a great filling for apple pies."; that would be a section
 because there'd be lots of other chapters on (maybe) other kinds of apples.

 On the other hand, one could imagine a tweet or reddit comment or tumblr post or newspaper
 classified ad that just said "Granny Smith. These juicy, green apples make a great filling for
 apple pies."; it would then be articles because that was the whole thing.

 A comment on an article is not part of the article on which it is commenting,
 therefore it is its own article.

 Grouping content

 The p element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLParagraphElement : HTMLElement {};

 The p element represents a paragraph.

 While paragraphs are usually represented in visual media by blocks of text that
 are physically separated from adjacent blocks through blank lines, a style sheet or user agent
 would be equally justified in presenting paragraph breaks in a different manner, for instance
 using inline pilcrows (¶).

 The following examples are conforming HTML fragments:

 <p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time the
cat sat on the mat.</p>

 <fieldset>
 <legend>Personal information</legend>
 <p>
 <label>Name: <input name="n"></label>
 <label><input name="anon" type="checkbox"> Hide from other users</label>
 </p>
 <p><label>Address: <textarea name="a"></textarea></label></p>
</fieldset>

 <p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

 The p element should not be used when a more specific element is more
 appropriate.

 The following example is technically correct:

<section>
 <!-- ... -->
 <p>Last modified: 2001-04-23</p>
 <p>Author: fred@example.com</p>
</section>

 However, it would be better marked-up as:

<section>
 <!-- ... -->
 <footer>Last modified: 2001-04-23</footer>
 <address>Author: fred@example.com</address>
</section>

 Or:

<section>
 <!-- ... -->
 <footer>
 <p>Last modified: 2001-04-23</p>
 <address>Author: fred@example.com</address>
 </footer>
</section>

 List elements (in particular, ol and ul elements) cannot be children
 of p elements. When a sentence contains a bulleted list, therefore, one might wonder
 how it should be marked up.

 For instance, this fantastic sentence has bullets relating to

 	wizards,

	faster-than-light travel, and

	telepathy,

 and is further discussed below.

 The solution is to realise that a paragraph, in HTML terms, is not a logical concept,
 but a structural one. In the fantastic example above, there are actually five paragraphs as defined by this specification: one before the list, one
 for each bullet, and one after the list.

 The markup for the above example could therefore be:

 <p>For instance, this fantastic sentence has bullets relating to</p>

 wizards,
 faster-than-light travel, and
 telepathy,

<p>and is further discussed below.</p>

 Authors wishing to conveniently style such "logical" paragraphs consisting of multiple
 "structural" paragraphs can use the div element instead of the p
 element.

 Thus for instance the above example could become the following:

 <div>For instance, this fantastic sentence has bullets relating to

 wizards,
 faster-than-light travel, and
 telepathy,

and is further discussed below.</div>

 This example still has five structural paragraphs, but now the author can style just the
 div instead of having to consider each part of the example separately.

 The hr element

 	Categories:

 	Flow content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLHRElement : HTMLElement {};

 The hr element represents a
 paragraph-level thematic break, e.g. a scene change in
 a story, or a transition to another topic within a section of a
 reference book.

 The following fictional extract from a project manual shows two
 sections that use the hr element to separate topics
 within the section.

 <section>
 <h1>Communication</h1>
 <p>There are various methods of communication. This section
 covers a few of the important ones used by the project.</p>
 <hr>
 <p>Communication stones seem to come in pairs and have mysterious
 properties:</p>

 They can transfer thoughts in two directions once activated
 if used alone.
 If used with another device, they can transfer one's
 consciousness to another body.
 If both stones are used with another device, the
 consciousnesses switch bodies.

 <hr>
 <p>Radios use the electromagnetic spectrum in the meter range and
 longer.</p>
 <hr>
 <p>Signal flares use the electromagnetic spectrum in the
 nanometer range.</p>
</section>
<section>
 <h1>Food</h1>
 <p>All food at the project is rationed:</p>
 <dl>
 <dt>Potatoes</dt>
 <dd>Two per day</dd>
 <dt>Soup</dt>
 <dd>One bowl per day</dd>
 </dl>
 <hr>
 <p>Cooking is done by the chefs on a set rotation.</p>
</section>

 There is no need for an hr element between the
 sections themselves, since the section elements and
 the h1 elements imply thematic changes themselves.

 The following extract from Pandora's Star by Peter
 F. Hamilton shows two paragraphs that precede a scene change and
 the paragraph that follows it. The scene change, represented in the
 printed book by a gap containing a solitary centered star between
 the second and third paragraphs, is here represented using the
 hr element.

 <p>Dudley was ninety-two, in his second life, and fast approaching
time for another rejuvenation. Despite his body having the physical
age of a standard fifty-year-old, the prospect of a long degrading
campaign within academia was one he regarded with dread. For a
supposedly advanced civilization, the Intersolar Commonwealth could be
appallingly backward at times, not to mention cruel.</p>
<p><i>Maybe it won't be that bad</i>, he told himself. The lie was
comforting enough to get him through the rest of the night's
shift.</p>
<hr>
<p>The Carlton AllLander drove Dudley home just after dawn. Like the
astronomer, the vehicle was old and worn, but perfectly capable of
doing its job. It had a cheap diesel engine, common enough on a
semi-frontier world like Gralmond, although its drive array was a
thoroughly modern photoneural processor. With its high suspension and
deep-tread tyres it could plough along the dirt track to the
observatory in all weather and seasons, including the metre-deep snow
of Gralmond's winters.</p>

 The hr element does not affect the
 document's outline.

 The pre element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLPreElement : HTMLElement {};

 The pre element represents a block of
 preformatted text, in which structure is represented by typographic
 conventions rather than by elements.

 In the HTML syntax, a leading
 newline character immediately following the pre element
 start tag is stripped.

 Some examples of cases where the pre element could
 be used:

 	Including an e-mail, with paragraphs indicated by blank lines,
 lists indicated by lines prefixed with a bullet, and so on.

 	Including fragments of computer code, with structure indicated
 according to the conventions of that language.

 	Displaying ASCII art.

 Authors are encouraged to consider how preformatted
 text will be experienced when the formatting is lost, as will be the
 case for users of speech synthesizers, braille displays, and the
 like. For cases like ASCII art, it is likely that an alternative
 presentation, such as a textual description, would be more
 universally accessible to the readers of the document.

 To represent a block of computer code, the pre
 element can be used with a code element; to represent a
 block of computer output the pre element can be used
 with a samp element. Similarly, the kbd
 element can be used within a pre element to indicate
 text that the user is to enter.

 A newline in a pre element should separate
 paragraphs for the purposes of the Unicode bidirectional algorithm.
 This requirement may be implemented indirectly through the style
 layer. For example, an HTML+CSS user agent could implement these
 requirements by implementing the CSS 'unicode-bidi' property. [BIDI] [CSS]

 In the following snippet, a sample of computer code is
 presented.

 <p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {
 this.element = element;
 this.canClose = canClose;
 this.closeHandler = function () { if (closeHandler) closeHandler() };
}</code></pre>

 In the following snippet, samp and kbd
 elements are mixed in the contents of a pre element to
 show a session of Zork I.

 <pre><samp>You are in an open field west of a big white house with a boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

 The following shows a contemporary poem that uses the
 pre element to preserve its unusual formatting, which
 forms an intrinsic part of the poem itself.

 <pre> maxling

it is with a heart
 heavy

that i admit loss of a feline
 so loved

a friend lost to the
 unknown
 (night)

~cdr 11dec07</pre>

 The blockquote element

 	Categories:

 	Flow content.

 	Sectioning root.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	cite

 	DOM interface:

 	
interface HTMLQuoteElement : HTMLElement {
 attribute DOMString cite;
};

 The HTMLQuoteElement interface is
 also used by the q element.

 The blockquote element represents a
 section that is quoted from another source.

 Content inside a blockquote must be quoted from
 another source, whose address, if it has one, may be cited in the
 cite
 attribute.

 If the cite attribute is present, it must be a
 valid URL potentially surrounded by spaces. User agents may allow users to follow such
 citation links, but they are primarily intended for private use (e.g. by server-side scripts
 collecting statistics about a site's use of quotations), not for readers.

 The content of a blockquote may be abbreviated or
 may have context added in the conventional manner for the text's
 language.

 For example, in English this is traditionally done using square
 brackets. Consider a page with the sentence "Fred ate the cracker.
 He then said he liked apples and fish."; it could be quoted as
 follows:

 <blockquote>
 <p>[Fred] then said he liked [...] fish.</p>
</blockquote>

 Attribution for the quotation, if any, must be placed outside the
 blockquote element.

 For example, here the attribution is given in a paragraph after
 the quote:

 <blockquote>
 <p>I contend that we are both atheists. I just believe in one fewer
 god than you do. When you understand why you dismiss all the other
 possible gods, you will understand why I dismiss yours.</p>
</blockquote>
<p>— Stephen Roberts</p>

 The other examples below show other ways of showing
 attribution.

 The cite IDL
 attribute must reflect the element's cite content attribute.

 Here a blockquote element is used in conjunction
 with a figure element and its figcaption
 to clearly relate a quote to its attribution (which is not part of
 the quote and therefore doesn't belong inside the
 blockquote itself):

 <figure>
 <blockquote>
 <p>The truth may be puzzling. It may take some work to grapple with.
 It may be counterintuitive. It may contradict deeply held
 prejudices. It may not be consonant with what we desperately want to
 be true. But our preferences do not determine what's true. We have a
 method, and that method helps us to reach not absolute truth, only
 asymptotic approaches to the truth — never there, just closer
 and closer, always finding vast new oceans of undiscovered
 possibilities. Cleverly designed experiments are the key.</p>
 </blockquote>
 <figcaption>Carl Sagan, in "<cite>Wonder and Skepticism</cite>", from
 the <cite>Skeptical Enquirer</cite> Volume 19, Issue 1 (January-February
 1995)</figcaption>
</figure>

 This next example shows the use of cite alongside
 blockquote:

 <p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="http://quotes.example.org/s/sonnet130.html">
 <p>My mistress' eyes are nothing like the sun,

 Coral is far more red, than her lips red,

 ...

 This example shows how a forum post could use
 blockquote to show what post a user is replying
 to. The article element is used for each post, to mark
 up the threading.

 <article>
 <h1>Bacon on a crowbar</h1>
 <article>
 <header>t3yw 12 points 1 hour ago</header>
 <p>I bet a narwhal would love that.</p>
 <footer>permalink</footer>
 <article>
 <header>greg 8 points 1 hour ago</header>
 <blockquote><p>I bet a narwhal would love that.</p></blockquote>
 <p>Dude narwhals don't eat bacon.</p>
 <footer>permalink</footer>
 <article>
 <header>t3yw 15 points 1 hour ago</header>
 <blockquote>
 <blockquote><p>I bet a narwhal would love that.</p></blockquote>
 <p>Dude narwhals don't eat bacon.</p>
 </blockquote>
 <p>Next thing you'll be saying they don't get capes and wizard
 hats either!</p>
 <footer>permalink</footer>
 <article>
 <article>
 <header>boing -5 points 1 hour ago</header>
 <p>narwhals are worse than ceiling cat</p>
 <footer>permalink</footer>
 </article>
 </article>
 </article>
 </article>
 <article>
 <header>fred 1 points 23 minutes ago</header>
 <blockquote><p>I bet a narwhal would love that.</p></blockquote>
 <p>I bet they'd love to peel a banana too.</p>
 <footer>permalink</footer>
 </article>
 </article>
</article>

 This example shows the use of a blockquote for
 short snippets, demonstrating that one does not have to use
 p elements inside blockquote
 elements:

 <p>He began his list of "lessons" with the following:</p>
<blockquote>One should never assume that his side of
the issue will be recognized, let alone that it will
be conceded to have merits.</blockquote>
<p>He continued with a number of similar points, ending with:</p>
<blockquote>Finally, one should be prepared for the threat
of breakdown in negotiations at any given moment and not
be cowed by the possibility.</blockquote>
<p>We shall now discuss these points...

 Examples of how to
 represent a conversation are shown in a later section; it is not
 appropriate to use the cite and blockquote
 elements for this purpose.

 The ol element

 	Categories:

 	Flow content.

 	If the element's children include at least one li element: Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Zero or more li and script-supporting elements.

 	Content attributes:

 	Global attributes

 	reversed

 	start

 	type

 	DOM interface:

 	
interface HTMLOListElement : HTMLElement {
 attribute boolean reversed;
 attribute long start;
 attribute DOMString type;
};

 The ol element represents a list of
 items, where the items have been intentionally ordered, such that
 changing the order would change the meaning of the document.

 The items of the list are the li element child nodes
 of the ol element, in tree order.

 The reversed
 attribute is a boolean attribute. If present, it
 indicates that the list is a descending list (..., 3, 2, 1). If the
 attribute is omitted, the list is an ascending list (1, 2, 3,
 ...).

 The start
 attribute, if present, must be a valid integer giving
 the ordinal value of the first list item.

 If the start attribute is
 present, user agents must parse it as an integer, in order to determine the
 attribute's value. The default value, used if the attribute is
 missing or if the value cannot be converted to a number according to
 the referenced algorithm, is 1 if the element has no reversed attribute, and is the
 number of child li elements otherwise.

 The first item in the list has the ordinal value
 given by the ol element's start attribute, unless that
 li element has a value attribute with a value that can
 be successfully parsed, in which case it has the ordinal
 value given by that value
 attribute.

 Each subsequent item in the list has the ordinal
 value given by its value
 attribute, if it has one, or, if it doesn't, the ordinal
 value of the previous item, plus one if the reversed is absent, or minus one if
 it is present.

 The type attribute
 can be used to specify the kind of marker to use in the list, in the
 cases where that matters (e.g. because items are to be referenced by
 their number/letter). The attribute, if specified, must have a value
 that is a case-sensitive match for one of the
 characters given in the first cell of one of the rows of the
 following table.

 	Keyword
 	State
 	Description
 	Examples for values 1-3 and 3999-4001

 	1 (U+0031)
 	decimal
 	Decimal numbers
 	1. 	2. 	3. 	... 	3999. 	4000. 	4001. 	...

 	a (U+0061)
 	lower-alpha
 	Lowercase latin alphabet
 	a. 	b. 	c. 	... 	ewu. 	ewv. 	eww. 	...

 	A (U+0041)
 	upper-alpha
 	Uppercase latin alphabet
 	A. 	B. 	C. 	... 	EWU. 	EWV. 	EWW. 	...

 	i (U+0069)
 	lower-roman
 	Lowercase roman numerals
 	i. 	ii. 	iii. 	... 	mmmcmxcix. 	i̅v̅. 	i̅v̅i. 	...

 	I (U+0049)
 	upper-roman
 	Uppercase roman numerals
 	I. 	II. 	III. 	... 	MMMCMXCIX. 	I̅V̅. 	I̅V̅I. 	...

 User agents should render the items of the list in a manner
 consistent with the state of the type attribute of the ol
 element. Numbers less than or equal to zero should always use the
 decimal system regardless of the type attribute.

 For CSS user agents, a mapping for this attribute to
 the 'list-style-type' CSS property is given in
 the rendering section (the mapping is straightforward: the
 states above have the same names as their corresponding CSS
 values).

 The reversed,
 start, and type IDL attributes must
 reflect the respective content attributes of the same
 name. The start IDL attribute has
 the same default as its content attribute.

 The following markup shows a list where the order matters, and
 where the ol element is therefore appropriate. Compare
 this list to the equivalent list in the ul section to
 see an example of the same items using the ul
 element.

 <p>I have lived in the following countries (given in the order of when
I first lived there):</p>

 Switzerland
 United Kingdom
 United States
 Norway

 Note how changing the order of the list changes the meaning of
 the document. In the following example, changing the relative order
 of the first two items has changed the birthplace of the
 author:

 <p>I have lived in the following countries (given in the order of when
I first lived there):</p>

 United Kingdom
 Switzerland
 United States
 Norway

 The ul element

 	Categories:

 	Flow content.

 	If the element's children include at least one li element: Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Zero or more li and script-supporting elements.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLUListElement : HTMLElement {};

 The ul element represents a list of
 items, where the order of the items is not important — that
 is, where changing the order would not materially change the meaning
 of the document.

 The items of the list are the li element child nodes
 of the ul element.

 The following markup shows a list where the order does not
 matter, and where the ul element is therefore
 appropriate. Compare this list to the equivalent list in the
 ol section to see an example of the same items using
 the ol element.

 <p>I have lived in the following countries:</p>

 Norway
 Switzerland
 United Kingdom
 United States

 Note that changing the order of the list does not change the
 meaning of the document. The items in the snippet above are given
 in alphabetical order, but in the snippet below they are given in
 order of the size of their current account balance in 2007, without
 changing the meaning of the document whatsoever:

 <p>I have lived in the following countries:</p>

 Switzerland
 Norway
 United Kingdom
 United States

 The li element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	Inside ol elements.

 	Inside ul elements.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	If the element is a child of an ol element: value

 	DOM interface:

 	
interface HTMLLIElement : HTMLElement {
 attribute long value;
};

 The li element represents a list
 item. If its parent element is an ol, or ul,
 then the element is an item of the
 parent element's list, as defined for those elements. Otherwise, the
 list item has no defined list-related relationship to any other
 li element.

 If the parent element is an ol element, then the
 li element has an ordinal value.

 The value
 attribute, if present, must be a valid integer giving
 the ordinal value of the list item.

 If the value attribute is
 present, user agents must parse it as an integer, in order to determine the
 attribute's value. If the attribute's value cannot be converted to a
 number, the attribute must be treated as if it was absent. The
 attribute has no default value.

 The value attribute is
 processed relative to the element's parent ol element
 (q.v.), if there is one. If there is not, the attribute has no
 effect.

 The value IDL
 attribute must reflect the value of the value content attribute.

 The following example, the top ten movies are listed (in reverse
 order). Note the way the list is given a title by using a
 figure element and its figcaption
 element.

 <figure>
 <figcaption>The top 10 movies of all time</figcaption>

 <li value="10"><cite>Josie and the Pussycats</cite>, 2001
 <li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998
 <li value="8"><cite>A Bug's Life</cite>, 1998
 <li value="7"><cite>Toy Story</cite>, 1995
 <li value="6"><cite>Monsters, Inc</cite>, 2001
 <li value="5"><cite>Cars</cite>, 2006
 <li value="4"><cite>Toy Story 2</cite>, 1999
 <li value="3"><cite>Finding Nemo</cite>, 2003
 <li value="2"><cite>The Incredibles</cite>, 2004
 <li value="1"><cite>Ratatouille</cite>, 2007

</figure>

 The markup could also be written as follows, using the reversed attribute on the
 ol element:

 <figure>
 <figcaption>The top 10 movies of all time</figcaption>
 <ol reversed>
 <cite>Josie and the Pussycats</cite>, 2001
 <cite lang="sh">Црна мачка, бели мачор</cite>, 1998
 <cite>A Bug's Life</cite>, 1998
 <cite>Toy Story</cite>, 1995
 <cite>Monsters, Inc</cite>, 2001
 <cite>Cars</cite>, 2006
 <cite>Toy Story 2</cite>, 1999
 <cite>Finding Nemo</cite>, 2003
 <cite>The Incredibles</cite>, 2004
 <cite>Ratatouille</cite>, 2007

</figure>

 While it is conforming to include heading elements
 (e.g. h1) inside li elements, it likely
 does not convey the semantics that the author intended. A heading
 starts a new section, so a heading in a list implicitly splits the
 list into spanning multiple sections.

 The dl element

 	Categories:

 	Flow content.

 	If the element's children include at least one name-value group: Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Zero or more groups each consisting of one or more dt elements followed by one or more dd elements, optionally intermixed with script-supporting elements.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLDListElement : HTMLElement {};

 The dl element represents an
 association list consisting of zero or more name-value groups (a
 description list). A name-value group consists of one or more names
 (dt elements) followed by one or more values
 (dd elements), ignoring any nodes other than dt and dd elements. Within a single dl element,
 there should not be more than one dt element for each
 name.

 Name-value groups may be terms and definitions, metadata topics
 and values, questions and answers, or any other groups of name-value
 data.

 The values within a group are alternatives; multiple paragraphs
 forming part of the same value must all be given within the same
 dd element.

 The order of the list of groups, and of the names and values
 within each group, may be significant.

 If a dl element is empty, it contains no groups.

 If a dl element has one or more non-whitespace Text
 node children, or has child elements that are neither
 dt nor dd elements, all such
 Text nodes and elements, as well as their descendants
 (including any dt or dd elements), do not
 form part of any groups in that dl.

 If a dl element has one or more dt
 element children but no dd element children, then it
 consists of one group with names but no values.

 If a dl element has one or more dd
 element children but no dt element children, then it
 consists of one group with values but no names.

 If a dl element's first dt or
 dd element child is a dd element, then the
 first group has no associated name.

 If a dl element's last dt or
 dd element child is a dt element, then the
 last group has no associated value.

 When a dl element doesn't match its
 content model, it is often due to accidentally using dd
 elements in the place of dt elements and vice
 versa. Conformance checkers can spot such mistakes and might be able
 to advise authors how to correctly use the markup.

 In the following example, one entry ("Authors") is linked to two
 values ("John" and "Luke").

 <dl>
 <dt> Authors
 <dd> John
 <dd> Luke
 <dt> Editor
 <dd> Frank
</dl>

 In the following example, one definition is linked to two
 terms.

 <dl>
 <dt lang="en-US"> <dfn>color</dfn> </dt>
 <dt lang="en-GB"> <dfn>colour</dfn> </dt>
 <dd> A sensation which (in humans) derives from the ability of
 the fine structure of the eye to distinguish three differently
 filtered analyses of a view. </dd>
</dl>

 The following example illustrates the use of the dl
 element to mark up metadata of sorts. At the end of the example,
 one group has two metadata labels ("Authors" and "Editors") and two
 values ("Robert Rothman" and "Daniel Jackson").

 <dl>
 <dt> Last modified time </dt>
 <dd> 2004-12-23T23:33Z </dd>
 <dt> Recommended update interval </dt>
 <dd> 60s </dd>
 <dt> Authors </dt>
 <dt> Editors </dt>
 <dd> Robert Rothman </dd>
 <dd> Daniel Jackson </dd>
</dl>

 The following example shows the dl element used to
 give a set of instructions. The order of the instructions here is
 important (in the other examples, the order of the blocks was not
 important).

 <p>Determine the victory points as follows (use the
first matching case):</p>
<dl>
 <dt> If you have exactly five gold coins </dt>
 <dd> You get five victory points </dd>
 <dt> If you have one or more gold coins, and you have one or more silver coins </dt>
 <dd> You get two victory points </dd>
 <dt> If you have one or more silver coins </dt>
 <dd> You get one victory point </dd>
 <dt> Otherwise </dt>
 <dd> You get no victory points </dd>
</dl>

 The following snippet shows a dl element being used
 as a glossary. Note the use of dfn to indicate the
 word being defined.

 <dl>
 <dt><dfn>Apartment</dfn>, n.</dt>
 <dd>An execution context grouping one or more threads with one or
 more COM objects.</dd>
 <dt><dfn>Flat</dfn>, n.</dt>
 <dd>A deflated tire.</dd>
 <dt><dfn>Home</dfn>, n.</dt>
 <dd>The user's login directory.</dd>
</dl>

 The dl element is inappropriate for
 marking up dialogue. Examples of how to
 mark up dialogue are shown below.

 The dt element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	Before dd or dt elements inside dl elements.

 	Content model:

 	Flow content, but with no header, footer, sectioning content, or heading content descendants.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The dt element represents the term, or
 name, part of a term-description group in a description list
 (dl element).

 The dt element itself, when used in a
 dl element, does not indicate that its contents are a
 term being defined, but this can be indicated using the
 dfn element.

 This example shows a list of frequently asked questions (a FAQ)
 marked up using the dt element for questions and the
 dd element for answers.

 <article>
 <h1>FAQ</h1>
 <dl>
 <dt>What do we want?</dt>
 <dd>Our data.</dd>
 <dt>When do we want it?</dt>
 <dd>Now.</dd>
 <dt>Where is it?</dt>
 <dd>We are not sure.</dd>
 </dl>
</article>

 The dd element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	After dt or dd elements inside dl elements.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The dd element represents the
 description, definition, or value, part of a term-description group
 in a description list (dl element).

 A dl can be used to define a vocabulary list, like
 in a dictionary. In the following example, each entry, given by a
 dt with a dfn, has several
 dds, showing the various parts of the definition.

 <dl>
 <dt><dfn>happiness</dfn></dt>
 <dd class="pronunciation">/'hæ p. nes/</dd>
 <dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
 <dd>The state of being happy.</dd>
 <dd>Good fortune; success. <q>Oh happiness! It worked!</q></dd>
 <dt><dfn>rejoice</dfn></dt>
 <dd class="pronunciation">/ri jois'/</dd>
 <dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted oneself.</dd>
 <dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be delighted.</dd>
</dl>

 The figure element

 	Categories:

 	Flow content.

 	Sectioning root.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Either: One figcaption element followed by flow content.

 	Or: Flow content followed by one figcaption element.

 	Or: Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The figure element represents some flow content,
 optionally with a caption, that is self-contained (like a complete sentence) and is typically
 referenced as a single unit from the main flow of the document.

 Self-contained in this context does not necessarily mean independent. For example,
 each sentence in a paragraph is self-contained; an image that is part of a sentence would be
 inappropriate for figure, but an entire sentence made of images would be fitting.

 When a figure is referred to from the main content of the document by identifying
 it by its caption (e.g. by figure number), it enables such content to be easily moved away from
 that primary content, e.g. to the side of the page, to dedicated pages, or to an appendix, without
 affecting the flow of the document.

 If a figure element is referenced by its relative position, e.g. "in the
 photograph above" or "as the next figure shows", then moving the figure would disrupt the page's
 meaning. Authors are encouraged to consider using labels to refer to figures, rather than using
 such relative references, so that the page can easily be restyled without affecting the page's
 meaning.

 The figcaption element child of the element, if
 any, represents the caption of the figure element's contents. If there is no child
 figcaption element, then there is no caption.

 A figure element's contents are part of the surrounding flow. If the purpose of
 the page is to display the figure, for example a photograph on an image sharing site, the
 figure and figcaption elements can be used to explicitly provide a
 caption for that figure. For content that is only tangentially related, or that serves a separate
 purpose than the surrounding flow, the aside element should be used (and can itself
 wrap a figure). For example, a pull quote that repeats content from an
 article would be more appropriate in an aside than in a
 figure, because it isn't part of the content, it's a repetition of the content for
 the purposes of enticing readers or highlighting key topics.

 This example shows the figure element to mark up a code listing.

 <p>In listing 4 we see the primary core interface
API declaration.</p>
<figure id="l4">
 <figcaption>Listing 4. The primary core interface API declaration.</figcaption>
 <pre><code>interface PrimaryCore {
 boolean verifyDataLine();
 void sendData(in sequence<byte> data);
 void initSelfDestruct();
}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

 Here we see a figure element to mark up a photo.

 <figure>
 <img src="bubbles-work.jpeg"
 alt="Bubbles, sitting in his office chair, works on his
 latest project intently.">
 <figcaption>Bubbles at work</figcaption>
</figure>

 In this example, we see an image that is not a figure, as well as an image and a
 video that are. The first image is literally part of the example's second sentence, so it's not a
 self-contained unit, and thus figure would be inappropriate.

 <h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:

<blockquote>

</blockquote>

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.

<figure>

 <figcaption>Exhibit A. The alleged <cite>rough copy</cite> comic.</figcaption>
</figure>

<figure>
 <video src="ex-b.mov"></video>
 <figcaption>Exhibit B. The <cite>Rough Copy</cite> trailer.</figcaption>
</figure>

<p>The case was resolved out of court.

 Here, a part of a poem is marked up using figure.

 <figure>
 <p>'Twas brillig, and the slithy toves

 Did gyre and gimble in the wabe;

 All mimsy were the borogoves,

 And the mome raths outgrabe.</p>
 <figcaption><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-98</figcaption>
</figure>

 In this example, which could be part of a much larger work discussing a castle, nested
 figure elements are used to provide both a group caption and individual captions for
 each figure in the group:

 <figure>
 <figcaption>The castle through the ages: 1423, 1858, and 1999 respectively.</figcaption>
 <figure>
 <figcaption>Etching. Anonymous, ca. 1423.</figcaption>

 </figure>
 <figure>
 <figcaption>Oil-based paint on canvas. Maria Towle, 1858.</figcaption>

 </figure>
 <figure>
 <figcaption>Film photograph. Peter Jankle, 1999.</figcaption>

 </figure>
</figure>

 The figcaption element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the first or last child of a figure element.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The figcaption element represents a caption or legend for the rest of
 the contents of the figcaption element's parent figure element.

 The div element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLDivElement : HTMLElement {};

 The div element has no special meaning at all. It
 represents its children. It can be used with the class, lang, and title attributes to mark up semantics
 common to a group of consecutive elements.

 Authors are strongly encouraged to view the
 div element as an element of last resort, for when no
 other element is suitable. Use of more appropriate elements instead
 of the div element leads to better accessibility for
 readers and easier maintainability for authors.

 For example, a blog post would be marked up using
 article, a chapter using section, a
 page's navigation aids using nav, and a group of form
 controls using fieldset.

 On the other hand, div elements can be useful for
 stylistic purposes or to wrap multiple paragraphs within a section
 that are all to be annotated in a similar way. In the following
 example, we see div elements used as a way to set the
 language of two paragraphs at once, instead of setting the language
 on the two paragraph elements separately:

 <article lang="en-US">
 <h1>My use of language and my cats</h1>
 <p>My cat's behavior hasn't changed much since her absence, except
 that she plays her new physique to the neighbors regularly, in an
 attempt to get pets.</p>
 <div lang="en-GB">
 <p>My other cat, coloured black and white, is a sweetie. He followed
 us to the pool today, walking down the pavement with us. Yesterday
 he apparently visited our neighbours. I wonder if he recognises that
 their flat is a mirror image of ours.</p>
 <p>Hm, I just noticed that in the last paragraph I used British
 English. But I'm supposed to write in American English. So I
 shouldn't say "pavement" or "flat" or "colour"...</p>
 </div>
 <p>I should say "sidewalk" and "apartment" and "color"!</p>
</article>

 The main element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected, but with no article, aside,
 footer, header or nav element ancestors.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 Uses HTMLElement

 The main element represents the main content of the body
 of a document or application. The main content area consists of content that is directly related to or expands upon
 the central topic of a document or central functionality of an application.

 The main element is not sectioning content and has no effect
 on the document outline

 The main content area of a document includes content that is unique to that document and
 excludes content that is repeated across a set of documents such as site navigation links,
 copyright information, site logos and banners and search forms (unless the document or
 applications main function is that of a search form).

 User agents that support keyboard navigation of content are strongly encouraged to provide
 a method to navigate to the main element and once navigated to, ensure the next
 element in the focus order is the first focusable element within the main element.
 This will provide a simple method for keyboard users to bypass blocks of content such as navigation links.

 Authors must not include more than one main element in a document.

 Authors must not include the main element as a descendant of an article,
 aside, footer, header or nav element.

 The main element is not suitable for use to identify the main content areas of sub sections of a
 document or application. The simplest solution is to not mark up the main content of a sub section at all, and just leave it
 as implicit, but an author could use a or sectioning content element as appropriate.

 Authors are advised to use ARIA role="main" attribute on the
 main element until user agents implement the required role mapping.

 <main role="main">
 ...
 </main>

 In the following example, we see 2 articles about skateboards (the main topic of a
 Web page) the main topic content is identified by the use of the main element.

 <!-- other content -->

<main>

 <h1>Skateboards</h1>
 <p>The skateboard is the way cool kids get around</p>

 <article>
 <h2>Longboards</h2>
 <p>Longboards are a type of skateboard with a longer
 wheelbase and larger, softer wheels.</p>
 <p>... </p>
 <p>... </p>
 </article>

 <article>
 <h2>Electric Skateboards</h2>
 <p>These no longer require the propelling of the skateboard
 by means of the feet; rather an electric motor propels the board,
 fed by an electric battery.</p>
 <p>... </p>
 <p>... </p>
 </article>

</main>

 <!-- other content -->

 Here is a graduation programme the main content section is defined by the use of the main element.
 Note in this example the main element contains a nav element consisting of links to
 sub sections of the main content.

 <!DOCTYPE html>
 <html>
 <head>
<title>Graduation Ceremony Summer 2022</title>
 </head>
 <body>

 <header>The Lawson Academy:
 <nav>

 Courses
 Fees
 <a>Graduation
 </nav>
 </header>

<main>

 <h1>Graduation</h1>

 <nav>

 Ceremony
 Graduates
 Awards
 </nav>

 <H2 id="ceremony">Ceremony</H2>
 <p>Opening Procession</p>
 <p>Speech by Valedictorian</p>
 <p>Speech by Class President</p>
 <p>Presentation of Diplomas</p>
 <p>Closing Speech by Headmaster</p>

 <h2 id="graduates">Graduates</h2>

 Eileen Williams
 Andy Maseyk
 Blanca Sainz Garcia
 Clara Faulkner
 Gez Lemon
 Eloisa Faulkner

 <h2 id="awards">Awards</h2>

 Clara Faulkner
 Eloisa Faulkner
 Blanca Sainz Garcia

</main>

 <footer> Copyright 2012 B.lawson</footer>

 </body>
 </html>

 Text-level semantics

 The a element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Transparent, but there must be no interactive content descendant.

 	Content attributes:

 	Global attributes

 	href

 	target

 	download

 	rel

 	hreflang

 	type

 	DOM interface:

 	
interface HTMLAnchorElement : HTMLElement {
 attribute DOMString target;
 attribute DOMString download;

 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString hreflang;
 attribute DOMString type;

 attribute DOMString text;
};
HTMLAnchorElement implements URLUtils;

 If the a element has an href attribute,
 then it represents a hyperlink (a hypertext anchor) labeled by its
 contents.

 If the a element has no href attribute,
 then the element represents a placeholder for where a link might otherwise have been
 placed, if it had been relevant, consisting of just the element's contents.

 The target,
 download,

 rel,
 hreflang, and
 type
 attributes must be omitted if the href attribute is not
 present.

 If a site uses a consistent navigation toolbar on every page, then the link that would
 normally link to the page itself could be marked up using an a element:

 <nav>

 Home
 News
 <a>Examples
 Legal

</nav>

 The href, target, download, and

 attributes affect what happens when users follow
 hyperlinks or download hyperlinks created using
 the a element. The rel, hreflang, and type
 attributes may be used to indicate to the user the likely nature of the target resource before the
 user follows the link.

 The activation behavior of a elements that create hyperlinks is to run the following steps:

 	If the a element's Document is not in a browsing
 context, then abort these steps.

 	

 If either the a element has a download attribute and the algorithm is not allowed
 to show a popup, or the element's target
 attribute is present and applying the rules for choosing a browsing context given a
 browsing context name, using the value of the target attribute as the browsing context name, would result
 in there not being a chosen browsing context, then run these substeps:

 	If there is an entry script, throw an InvalidAccessError exception.

 	Abort these steps without following the hyperlink.

 	If the target of the click event is an img
 element with an ismap attribute specified, then server-side
 image map processing must be performed, as follows:

 	If the click event was a real pointing-device-triggered
 click event on the img element, then let x be the distance in CSS pixels from the left edge of the image's left border,
 if it has one, or the left edge of the image otherwise, to the location of the click, and let
 y be the distance in CSS pixels from the top edge of the image's top
 border, if it has one, or the top edge of the image otherwise, to the location of the click.
 Otherwise, let x and y be zero.

 	Let the hyperlink suffix be a U+003F QUESTION MARK character, the
 value of x expressed as a base-ten integer using ASCII digits,
 a "," (U+002C) character, and the value of y expressed as a base-ten
 integer using ASCII digits.

 	Finally, the user agent must follow the
 hyperlink or download the hyperlink created by
 the a element, as determined by the download attribute and any expressed user preference. If
 the steps above defined a hyperlink suffix, then take that into account when following
 or downloading the hyperlink.

 	a . text

 	

 Same as textContent.

 The IDL attributes download,

 target,
 rel, hreflang, and type, must reflect the respective content
 attributes of the same name.

 The IDL attribute relList must
 reflect the rel content attribute.

 The text IDL attribute, on getting, must return the
 same value as the textContent IDL attribute on the element, and on setting, must act
 as if the textContent IDL attribute on the element had been set to the new value.

 The a element also supports the URLUtils interface. [URL]

 When the element is created, and whenever the element's href content attribute is set, changed, or removed, the user
 agent must invoke the element's URLUtils interface's set the input algorithm with the value of the href content attribute, if any, or the empty string otherwise,
 as the given value.

 The element's URLUtils interface's get the
 base algorithm must simply return the element's base URL.

 The element's URLUtils interface's query
 encoding is the document's character encoding.

 When the element's URLUtils interface invokes its update steps with a string value, the user
 agent must set the element's href content attribute to
 the string value.

 The a element may be wrapped around entire paragraphs, lists, tables, and so
 forth, even entire sections, so long as there is no interactive content within (e.g. buttons or
 other links). This example shows how this can be used to make an entire advertising block into a
 link:

 <aside class="advertising">
 <h1>Advertising</h1>

 <section>
 <h1>Mellblomatic 9000!</h1>
 <p>Turn all your widgets into mellbloms!</p>
 <p>Only $9.99 plus shipping and handling.</p>
 </section>

 <section>
 <h1>The Mellblom Browser</h1>
 <p>Web browsing at the speed of light.</p>
 <p>No other browser goes faster!</p>
 </section>

</aside>

 The em element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The em element represents stress
 emphasis of its contents.

 The level of stress that a particular piece of content has is
 given by its number of ancestor em elements.

 The placement of stress emphasis changes the meaning of the
 sentence. The element thus forms an integral part of the content.
 The precise way in which stress is used in this way depends on the
 language.

 These examples show how changing the stress emphasis changes the
 meaning. First, a general statement of fact, with no stress:

 <p>Cats are cute animals.</p>

 By emphasizing the first word, the statement implies that the
 kind of animal under discussion is in question (maybe someone is
 asserting that dogs are cute):

 <p>Cats are cute animals.</p>

 Moving the stress to the verb, one highlights that the truth of
 the entire sentence is in question (maybe someone is saying cats
 are not cute):

 <p>Cats are cute animals.</p>

 By moving it to the adjective, the exact nature of the cats
 is reasserted (maybe someone suggested cats were mean
 animals):

 <p>Cats are cute animals.</p>

 Similarly, if someone asserted that cats were vegetables,
 someone correcting this might emphasize the last word:

 <p>Cats are cute animals.</p>

 By emphasizing the entire sentence, it becomes clear that the
 speaker is fighting hard to get the point across. This kind of
 stress emphasis also typically affects the punctuation, hence the
 exclamation mark here.

 <p>Cats are cute animals!</p>

 Anger mixed with emphasizing the cuteness could lead to markup
 such as:

 <p>Cats are cute animals!</p>

 The em element isn't a generic "italics"
 element. Sometimes, text is intended to stand out from the rest of
 the paragraph, as if it was in a different mood or voice. For this,
 the i element is more appropriate.

 The em element also isn't intended to convey
 importance; for that purpose, the strong element is
 more appropriate.

 The strong element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The strong element represents strong
 importance for its contents.

 The relative level of importance of a piece of content is given
 by its number of ancestor strong elements; each
 strong element increases the importance of its
 contents.

 Changing the importance of a piece of text with the
 strong element does not change the meaning of the
 sentence.

 Here is an example of a warning notice in a game, with the
 various parts marked up according to how important they are:

 <p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

 The small element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The small element represents side
 comments such as small print.

 Small print typically features disclaimers, caveats,
 legal restrictions, or copyrights. Small print is also sometimes
 used for attribution, or for satisfying licensing requirements.

 The small element does not
 "de-emphasize" or lower the importance of text emphasized by the
 em element or marked as important with the
 strong element. To mark text as not emphasized or
 important, simply do not mark it up with the em or
 strong elements respectively.

 The small element should not be used for extended
 spans of text, such as multiple paragraphs, lists, or sections of
 text. It is only intended for short runs of text. The text of a page
 listing terms of use, for instance, would not be a suitable
 candidate for the small element: in such a case, the
 text is not a side comment, it is the main content of the page.

 In this example, the small element is used to
 indicate that value-added tax is not included in a price of a hotel
 room:

 <dl>
 <dt>Single room
 <dd>199 € <small>breakfast included, VAT not included</small>
 <dt>Double room
 <dd>239 € <small>breakfast included, VAT not included</small>
</dl>

 In this second example, the small element is used
 for a side comment in an article.

 <p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

 This is distinct from a sidebar, which might be multiple
 paragraphs long and is removed from the main flow of text. In the
 following example, we see a sidebar from the same article. This
 sidebar also has small print, indicating the source of the
 information in the sidebar.

 <aside>
 <h1>Example Corp</h1>
 <p>This company mostly creates small software and Web
 sites.</p>
 <p>The Example Corp company mission is "To provide entertainment
 and news on a sample basis".</p>
 <p><small>Information obtained from example.com home
 page.</small></p>
</aside>

 In this last example, the small element is marked
 as being important small print.

 <p><small>Continued use of this service will result in a kiss.</small></p>

 The s element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The s element represents contents that
 are no longer accurate or no longer relevant.

 The s element is not appropriate when
 indicating document edits; to mark a span of text as having been
 removed from a document, use the del element.

 In this example a recommended retail price has been marked as no
 longer relevant as the product in question has a new sale
 price.

 <p>Buy our Iced Tea and Lemonade!</p>
<p><s>Recommended retail price: $3.99 per bottle</s></p>
<p>Now selling for just $2.99 a bottle!</p>

 The cite element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The cite element represents the title
 of a work (e.g.
 a book,
 a paper,
 an essay,
 a poem,
 a score,
 a song,
 a script,
 a film,
 a TV show,
 a game,
 a sculpture,
 a painting,
 a theatre production,
 a play,
 an opera,
 a musical,
 an exhibition,
 a legal case report,
 etc). This can be a work that is being quoted or
 referenced in detail (i.e. a citation), or it can just be a work
 that is mentioned in passing.

 A person's name is not the title of a work — even if people
 call that person a piece of work — and the element must
 therefore not be used to mark up people's names. (In some cases, the
 b element might be appropriate for names; e.g. in a
 gossip article where the names of famous people are keywords
 rendered with a different style to draw attention to them. In other
 cases, if an element is really needed, the
 span element can be used.)

 This next example shows a typical use of the cite
 element:

 <p>My favorite book is <cite>The Reality Dysfunction</cite> by
Peter F. Hamilton. My favorite comic is <cite>Pearls Before
Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive
Samba</cite> by the Cannonball Adderley Sextet.</p>

 This is correct usage:

 <p>According to the Wikipedia article <cite>HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

 The following, however, is incorrect usage, as the
 cite element here is containing far more than the
 title of the work:

 <!-- do not copy this example, it is an example of bad usage! -->
<p>According to <cite>the Wikipedia article on HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

 The cite element is obviously a key part of any
 citation in a bibliography, but it is only used to mark the
 title:

 <p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

 A citation is not a quote (for
 which the q element is appropriate).

 This is incorrect usage, because cite is not for
 quotes:

 <p><cite>This is wrong!</cite>, said Ian.</p>

 This is also incorrect usage, because a person is not a
 work:

 <p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>

 The correct usage does not use a cite element:

 <p><q>This is correct</q>, said Ian.</p>

 As mentioned above, the b element might be relevant
 for marking names as being keywords in certain kinds of
 documents:

 <p>And then Ian said <q>this might be right, in a
gossip column, maybe!</q>.</p>

 The q element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	cite

 	DOM interface:

 	Uses HTMLQuoteElement.

 The q element represents some phrasing content quoted from another
 source.

 Quotation punctuation (such as quotation marks) that is quoting
 the contents of the element must not appear immediately before,
 after, or inside q elements; they will be inserted into
 the rendering by the user agent.

 Content inside a q element must be quoted from
 another source, whose address, if it has one, may be cited in the
 cite attribute. The
 source may be fictional, as when quoting characters in a novel or
 screenplay.

 If the cite attribute is present, it must be a valid URL
 potentially surrounded by spaces. User agents may allow users to follow such citation links, but they are
 primarily intended for private use (e.g. by server-side scripts collecting statistics about a
 site's use of quotations), not for readers.

 The q element must not be used in place of quotation
 marks that do not represent quotes; for example, it is inappropriate
 to use the q element for marking up sarcastic
 statements.

 The use of q elements to mark up quotations is
 entirely optional; using explicit quotation punctuation without
 q elements is just as correct.

 Here is a simple example of the use of the q
 element:

 <p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

 Here is an example with both an explicit citation link in the
 q element, and an explicit citation outside:

 <p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="http://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

 In the following example, the quotation itself contains a
 quotation:

 <p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

 In the following example, quotation marks are used instead of
 the q element:

 <p>His best argument was ❝I disagree❞, which
I thought was laughable.</p>

 In the following example, there is no quote — the
 quotation marks are used to name a word. Use of the q
 element in this case would be inappropriate.

 <p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

 The dfn element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content, but there must be no dfn element descendants.

 	Content attributes:

 	Global attributes

 	Also, the title attribute has special semantics on this element.

 	DOM interface:

 	Uses HTMLElement.

 The dfn element represents the defining
 instance of a term. The paragraph,
 description list group, or section that is the nearest
 ancestor of the dfn element must also contain the
 definition(s) for the term given
 by the dfn element.

 Defining term: If the dfn element has a
 title attribute, then
 the exact value of that attribute is the term being defined.
 Otherwise, if it contains exactly one element child node and no
 child Text nodes, and that child
 element is an abbr element with a title attribute, then the exact value
 of that attribute is the term being defined. Otherwise, it
 is the exact textContent of the dfn
 element that gives the term being defined.

 If the title attribute of the
 dfn element is present, then it must contain only the
 term being defined.

 The title attribute
 of ancestor elements does not affect dfn elements.

 An a element that links to a dfn
 element represents an instance of the term defined by the
 dfn element.

 In the following fragment, the term "Garage Door Opener" is
 first defined in the first paragraph, then used in the second. In
 both cases, its abbreviation is what is actually displayed.

 <p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

 With the addition of an a element, the reference
 can be made explicit:

 <p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

 The abbr element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	Also, the title attribute has special semantics on this element.

 	DOM interface:

 	Uses HTMLElement.

 The abbr element represents an
 abbreviation or acronym, optionally with its expansion. The title attribute may be
 used to provide an expansion of the abbreviation. The attribute, if
 specified, must contain an expansion of the abbreviation, and
 nothing else.

 The paragraph below contains an abbreviation marked up with the
 abbr element. This paragraph defines the term "Web Hypertext Application Technology
 Working Group".

 <p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

 An alternative way to write this would be:

 <p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>)
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

 This paragraph has two abbreviations. Notice how only one is
 defined; the other, with no expansion associated with it, does not
 use the abbr element.

 <p>The
<abbr title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
started working on HTML5 in 2004.</p>

 This paragraph links an abbreviation to its definition.

 <p>The <abbr
title="Web Hypertext Application Technology Working Group">WHATWG</abbr>
community does not have much representation from Asia.</p>

 This paragraph marks up an abbreviation without giving an
 expansion, possibly as a hook to apply styles for abbreviations
 (e.g. smallcaps).

 <p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

 If an abbreviation is pluralized, the expansion's grammatical
 number (plural vs singular) must match the grammatical number of the
 contents of the element.

 Here the plural is outside the element, so the expansion is in
 the singular:

 <p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

 Here the plural is inside the element, so the expansion is in
 the plural:

 <p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

 Abbreviations do not have to be marked up using this element. It
 is expected to be useful in the following cases:

 	Abbreviations for which the author wants to give expansions,
 where using the abbr element with a title attribute is an alternative to
 including the expansion inline (e.g. in parentheses).

 	Abbreviations that are likely to be unfamiliar to the
 document's readers, for which authors are encouraged to either mark
 up the abbreviation using an abbr element with a title attribute or include the expansion
 inline in the text the first time the abbreviation is used.

 	Abbreviations whose presence needs to be semantically
 annotated, e.g. so that they can be identified from a style sheet
 and given specific styles, for which the abbr element
 can be used without a title
 attribute.

 Providing an expansion in a title attribute once will not necessarily
 cause other abbr elements in the same document with the
 same contents but without a title
 attribute to behave as if they had the same expansion. Every
 abbr element is independent.

 The data element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	value

 	DOM interface:

 	
interface HTMLDataElement : HTMLElement {
 attribute DOMString value;
};

 The data element represents its
 contents, along with a machine-readable form of those contents in
 the value attribute.

 The value
 attribute must be present. Its value must be a representation of the
 element's contents in a machine-readable format.

 When the value is date- or time-related, the more
 specific time element can be used instead.

 The element can be used for several purposes.

 When combined with microformats or

 microdata,

 the element serves to provide both a machine-readable
 value for the purposes of data processors, and a human-readable value
 for the purposes of rendering in a Web browser. In this case, the
 format to be used in the value
 attribute is determined by the microformats or microdata
 vocabulary in use.

 The element can also, however, be used in conjunction with
 scripts in the page, for when a script has a literal value to store
 alongside a human-readable value. In such cases, the format to be
 used depends only on the needs of the script. (The data-* attributes can also be useful in
 such situations.)

 The value IDL
 attribute must reflect the content attribute of the
 same name.

 The time element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	datetime

 	DOM interface:

 	
interface HTMLTimeElement : HTMLElement {
 attribute DOMString dateTime;
};

 The time element represents its contents, along with a
 machine-readable form of those contents in the datetime
 attribute. The kind of content is limited to various kinds of dates, times, time-zone offsets, and
 durations, as described below.

 The datetime attribute may be present. If
 present, its value must be a representation of the element's contents in a machine-readable
 format.

 A time element that does not have a datetime content attribute must not have any element
 descendants.

 The datetime value of a time element is the value of the element's
 datetime content attribute, if it has one, or the
 element's textContent, if it does not.

 The datetime value of a time element must match one of the following
 syntaxes.

 	A valid month string

 	

 <time>2011-11</time>

 	A valid date string

 	

 <time>2011-11-12</time>

 	A valid yearless date string

 	

 <time>11-12</time>

 	A valid time string

 	

 <time>14:54</time>

 <time>14:54:39</time>

 <time>14:54:39.929</time>

 	A valid local date and time string

 	

 <time>2011-11-12T14:54</time>

 <time>2011-11-12T14:54:39</time>

 <time>2011-11-12T14:54:39.929</time>

 <time>2011-11-12 14:54</time>

 <time>2011-11-12 14:54:39</time>

 <time>2011-11-12 14:54:39.929</time>

 Times with dates but without a time zone offset are useful for specifying events
 that are observed at the same specific time in each time zone, throughout a day. For example,
 the 2020 new year is celebrated at 2020-01-01 00:00 in each time zone, not at the same precise
 moment across all time zones. For events that occur at the same time across all time zones, for
 example a videoconference meeting, a valid global date and time string is likely
 more useful.

 	A valid time-zone offset string

 	

 <time>Z</time>

 <time>+0000</time>

 <time>+00:00</time>

 <time>-0800</time>

 <time>-08:00</time>

 For times without dates (or times referring to events that recur on multiple
 dates), specifying the geographic location that controls the time is usually more useful than
 specifying a time zone offset, because geographic locations change time zone offsets with
 daylight savings time. In some cases, geographic locations even change time zone, e.g. when the
 boundaries of those time zones are redrawn, as happened with Samoa at the end of 2011. There
 exists a time zone database that describes the boundaries of time zones and what rules apply
 within each such zone, known as the time zone database. [TZDATABASE]

 	A valid global date and time string

 	

 <time>2011-11-12T14:54Z</time>

 <time>2011-11-12T14:54:39Z</time>

 <time>2011-11-12T14:54:39.929Z</time>

 <time>2011-11-12T14:54+0000</time>

 <time>2011-11-12T14:54:39+0000</time>

 <time>2011-11-12T14:54:39.929+0000</time>

 <time>2011-11-12T14:54+00:00</time>

 <time>2011-11-12T14:54:39+00:00</time>

 <time>2011-11-12T14:54:39.929+00:00</time>

 <time>2011-11-12T06:54-0800</time>

 <time>2011-11-12T06:54:39-0800</time>

 <time>2011-11-12T06:54:39.929-0800</time>

 <time>2011-11-12T06:54-08:00</time>

 <time>2011-11-12T06:54:39-08:00</time>

 <time>2011-11-12T06:54:39.929-08:00</time>

 <time>2011-11-12 14:54Z</time>

 <time>2011-11-12 14:54:39Z</time>

 <time>2011-11-12 14:54:39.929Z</time>

 <time>2011-11-12 14:54+0000</time>

 <time>2011-11-12 14:54:39+0000</time>

 <time>2011-11-12 14:54:39.929+0000</time>

 <time>2011-11-12 14:54+00:00</time>

 <time>2011-11-12 14:54:39+00:00</time>

 <time>2011-11-12 14:54:39.929+00:00</time>

 <time>2011-11-12 06:54-0800</time>

 <time>2011-11-12 06:54:39-0800</time>

 <time>2011-11-12 06:54:39.929-0800</time>

 <time>2011-11-12 06:54-08:00</time>

 <time>2011-11-12 06:54:39-08:00</time>

 <time>2011-11-12 06:54:39.929-08:00</time>

 Times with dates and a time zone offset are useful for specifying specific
 events, or recurring virtual events where the time is not anchored to a specific geographic
 location. For example, the precise time of an asteroid impact, or a particular meeting in a
 series of meetings held at 1400 UTC every day, regardless of whether any particular part of the
 world is observing daylight savings time or not. For events where the precise time varies by the
 local time zone offset of a specific geographic location, a valid local date and time
 string combined with that geographic location is likely more useful.

 	A valid week string

 	

 <time>2011-W46</time>

 	Four or more ASCII digits, at least one of which is not "0" (U+0030)

 	

 <time>2011</time>

 <time>0001</time>

 	A valid duration string

 	

 <time>PT4H18M3S</time>

 <time>4h 18m 3s</time>

 The machine-readable equivalent of the element's contents must be obtained from the
 element's datetime value by using the following algorithm:

 	If parsing a month string from the element's
 datetime value returns a month, that is the
 machine-readable equivalent; abort these steps.

 	If parsing a date string from the element's
 datetime value returns a date, that is the
 machine-readable equivalent; abort these steps.

 	If parsing a yearless date string from
 the element's datetime value returns a yearless
 date, that is the machine-readable equivalent; abort these steps.

 	If parsing a time string from the element's
 datetime value returns a time, that is the
 machine-readable equivalent; abort these steps.

 	If parsing a local date and time
 string from the element's datetime value returns a local date and time, that is the machine-readable
 equivalent; abort these steps.

 	If parsing a time-zone offset string
 from the element's datetime value returns a time-zone
 offset, that is the machine-readable equivalent; abort these steps.

 	If parsing a global date and time
 string from the element's datetime value returns a global date and time, that is the machine-readable equivalent;
 abort these steps.

 	If parsing a week string from the element's
 datetime value returns a week, that is the
 machine-readable equivalent; abort these steps.

 	If the element's datetime value consists of only ASCII digits,
 at least one of which is not "0" (U+0030), then the machine-readable equivalent is the
 base-ten interpretation of those digits, representing a year; abort these steps.

 	If parsing a duration string from the
 element's datetime value returns a duration,
 that is the machine-readable equivalent; abort these steps.

 	There is no machine-readable equivalent.

 The algorithms referenced above are intended to be designed such that for any
 arbitrary string s, only one of the algorithms returns a value. A more
 efficient approach might be to create a single algorithm that parses all these data types in one
 pass; developing such an algorithm is left as an exercise to the reader.

 The dateTime IDL attribute must
 reflect the element's datetime content
 attribute.

 The time element can be used to encode dates, for example in microformats. The
 following shows a hypothetical way of encoding an event using a variant on hCalendar that uses
 the time element:

 <div class="vevent">
 http://www.web2con.com/
 Web 2.0 Conference:
 <time class="dtstart" datetime="2005-10-05">October 5</time> -
 <time class="dtend" datetime="2005-10-07">7</time>,
 at the Argent Hotel, San Francisco, CA
 </div>

 Here, a fictional microdata vocabulary based on the Atom vocabulary is used with the
 time element to mark up a blog post's publication date.

 <article itemscope itemtype="http://n.example.org/rfc4287">
 <h1 itemprop="title">Big tasks</h1>
 <footer>Published <time itemprop="published" datetime="2009-08-29">two days ago</time>.</footer>
 <p itemprop="content">Today, I went out and bought a bike for my kid.</p>
</article>

 In this example, another article's publication date is marked up using time, this
 time using the schema.org microdata vocabulary:

 <article itemscope itemtype="http://schema.org/BlogPosting">
 <h1 itemprop="headline">Small tasks</h1>
 <footer>Published <time itemprop="datePublished" datetime="2009-08-30">yesterday</time>.</footer>
 <p itemprop="articleBody">I put a bike bell on his bike.</p>
</article>

 In the following snippet, the time element is used to encode a date in the
 ISO8601 format, for later processing by a script:

 <p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

 In this second snippet, the value includes a time:

 <p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the next morning</time>.</p>

 A script loaded by the page (and thus privy to the page's internal convention of marking up
 dates and times using the time element) could scan through the page and look at all
 the time elements therein to create an index of dates and times.

 For example, this element conveys the string "Tuesday" with the additional semantic that the
 12th of November 2011 is the meaning that corresponds to "Tuesday":

 Today is <time datetime="2011-11-12">Tuesday</time>.

 In this example, a specific time in the Pacific Standard Time timezone is specified:

 Your next meeting is at <time datetime="2011-11-12T15:00-08:00">3pm</time>.

 The code element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The code element represents a fragment
 of computer code. This could be an XML element name, a file name, a
 computer program, or any other string that a computer would
 recognize.

 There is no formal way to indicate the language of computer code being marked up. Authors who
 wish to mark code elements with the language used, e.g. so that syntax highlighting
 scripts can use the right rules, can use the class attribute, e.g.
 by adding a class prefixed with "language-" to the element.

 The following example shows how the element can be used in a
 paragraph to mark up element names and computer code, including
 punctuation.

 <p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

 The following example shows how a block of code could be marked
 up using the pre and code elements.

 <pre><code class="language-pascal">var i: Integer;
begin
 i := 1;
end.</code></pre>

 A class is used in that example to indicate the language
 used.

 See the pre element for more details.

 The var element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The var element represents a variable.
 This could be an actual variable in a mathematical expression or
 programming context, an identifier representing a constant, a symbol
 identifying a physical quantity, a function parameter, or just be a
 term used as a placeholder in prose.

 In the paragraph below, the letter "n" is being used as a
 variable in prose:

 <p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavors of ice cream to be available for purchase!</p>

 For mathematics, in particular for anything beyond the simplest
 of expressions, MathML is more appropriate. However, the
 var element can still be used to refer to specific
 variables that are then mentioned in MathML expressions.

 In this example, an equation is shown, with a legend that
 references the variables in the equation. The expression itself is
 marked up with MathML, but the variables are mentioned in the
 figure's legend using var.

 <figure>
 <math>
 <mi>a</mi>
 <mo>=</mo>
 <msqrt>
 <msup><mi>b</mi><mn>2</mn></msup>
 <mi>+</mi>
 <msup><mi>c</mi><mn>2</mn></msup>
 </msqrt>
 </math>
 <figcaption>
 Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
 a triangle with sides <var>b</var> and <var>c</var>
 </figcaption>
</figure>

 Here, the equation describing mass-energy equivalence is used in
 a sentence, and the var element is used to mark the
 variables and constants in that equation:

 <p>Then he turned to the blackboard and picked up the chalk. After a few moment's
thought, he wrote <var>E</var> = <var>m</var> <var>c</var>². The teacher
looked pleased.</p>

 The samp element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The samp element represents (sample)
 output from a program or computing system.

 See the pre and kbd
 elements for more details.

 This example shows the samp element being used
 inline:

 <p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

 This second example shows a block of sample output. Nested
 samp and kbd elements allow for the
 styling of specific elements of the sample output using a
 style sheet. There are also a few parts of the samp
 that are annotated with even more detailed markup, to enable
 very precise styling. To achieve this, span elements
 are used.

 <pre><samp>jdoe@mowmow:~$ <kbd>ssh demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189 #1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown

jdoe@demo:~$ _</samp></pre>

 The kbd element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The kbd element represents user input
 (typically keyboard input, although it may also be used to represent
 other input, such as voice commands).

 When the kbd element is nested inside a
 samp element, it represents the input as it was echoed
 by the system.

 When the kbd element contains a
 samp element, it represents input based on system
 output, for example invoking a menu item.

 When the kbd element is nested inside another
 kbd element, it represents an actual key or other
 single unit of input as appropriate for the input mechanism.

 Here the kbd element is used to indicate keys to press:

 <p>To make George eat an apple, press <kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

 In this second example, the user is told to pick a particular
 menu item. The outer kbd element marks up a block of
 input, with the inner kbd elements representing each
 individual step of the input, and the samp elements
 inside them indicating that the steps are input based on something
 being displayed by the system, in this case menu labels:

 <p>To make George eat an apple, select
 <kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat Apple...</samp></kbd></kbd>
</p>

 Such precision isn't necessary; the following is equally fine:

 <p>To make George eat an apple, select <kbd>File | Eat Apple...</kbd></p>

 The sub and sup elements

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Use HTMLElement.

 The sup element represents a
 superscript and the sub element represents
 a subscript.

 These elements must be used only to mark up typographical
 conventions with specific meanings, not for typographical
 presentation for presentation's sake. For example, it would be
 inappropriate for the sub and sup elements
 to be used in the name of the LaTeX document preparation system. In
 general, authors should use these elements only if the
 absence of those elements would change the meaning of the
 content.

 In certain languages, superscripts are part of the typographical
 conventions for some abbreviations.

 <p>The most beautiful women are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

 The sub element can be used inside a
 var element, for variables that have subscripts.

 Here, the sub element is used to represents the
 subscript that identifies the variable in a family of
 variables:

 <p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>, <var>y_{<var>i</var>}</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

 Mathematical expressions often use subscripts and superscripts.
 Authors are encouraged to use MathML for marking up mathematics, but
 authors may opt to use sub and sup if
 detailed mathematical markup is not desired. [MATHML]

 <var>E</var>=<var>m</var><var>c</var>²

 f(<var>x</var>, <var>n</var>) = log₄<var>x</var>^{<var>n</var>}

 The i element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The i element represents a span of text in an alternate voice or
 mood, or otherwise offset from the normal prose in a manner indicating a different quality of
 text, such as a taxonomic designation, a technical term, an idiomatic phrase from another
 language, transliteration, a thought, or a ship name in Western texts.

 Terms in languages different from the main text should be
 annotated with lang attributes (or,
 in XML, lang
 attributes in the).

 The examples below show uses of the i element:

 <p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

 In the following example, a dream sequence is marked up using
 i elements.

 <p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

 Authors can use the class
 attribute on the i element to identify why the element
 is being used, so that if the style of a particular use (e.g. dream
 sequences as opposed to taxonomic terms) is to be changed at a later
 date, the author doesn't have to go through the entire document (or
 series of related documents) annotating each use.

 Authors are encouraged to consider whether other elements might
 be more applicable than the i element, for instance the
 em element for marking up stress emphasis, or the
 dfn element to mark up the defining instance of a
 term.

 Style sheets can be used to format i
 elements, just like any other element can be restyled. Thus, it is
 not the case that content in i elements will
 necessarily be italicized.

 The b element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The b element represents a span of text
 to which attention is being drawn for utilitarian purposes without
 conveying any extra importance and with no implication of an
 alternate voice or mood, such as key words in a document abstract,
 product names in a review, actionable words in interactive
 text-driven software, or an article lede.

 The following example shows a use of the b element
 to highlight key words without marking them up as important:

 <p>The frobonitor and barbinator components are fried.</p>

 In the following example, objects in a text adventure are
 highlighted as being special by use of the b
 element.

 <p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

 Another case where the b element is appropriate is
 in marking up the lede (or lead) sentence or paragraph. The
 following example shows how a BBC
 article about kittens adopting a rabbit as their own could be
 marked up:

 <article>
 <h2>Kittens 'adopted' by pet rabbit</h2>
 <p><b class="lede">Six abandoned kittens have found an
 unexpected new mother figure — a pet rabbit.</p>
 <p>Veterinary nurse Melanie Humble took the three-week-old
 kittens to her Aberdeen home.</p>
[...]

 As with the i element, authors can use the class attribute on the b
 element to identify why the element is being used, so that if the
 style of a particular use is to be changed at a later date, the
 author doesn't have to go through annotating each use.

 The b element should be used as a last resort when
 no other element is more appropriate. In particular, headings should
 use the h1 to h6 elements, stress emphasis
 should use the em element, importance should be denoted
 with the strong element, and text marked or highlighted
 should use the mark element.

 The following would be incorrect usage:

 <p>WARNING! Do not frob the barbinator!</p>

 In the previous example, the correct element to use would have
 been strong, not b.

 Style sheets can be used to format b
 elements, just like any other element can be restyled. Thus, it is
 not the case that content in b elements will
 necessarily be boldened.

 The u element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The u element represents a span of text
 with an unarticulated, though explicitly rendered, non-textual
 annotation, such as labeling the text as being a proper name in
 Chinese text (a Chinese proper name mark), or labeling the text as
 being misspelt.

 In most cases, another element is likely to be more appropriate:
 for marking stress emphasis, the em element should be
 used; for marking key words or phrases either the b
 element or the mark element should be used, depending
 on the context; for marking book titles, the cite
 element should be used; for labeling text with explicit textual
 annotations, the ruby element should be used; for
 labeling ship names in Western texts, the i element
 should be used.

 The default rendering of the u element
 in visual presentations clashes with the conventional rendering of
 hyperlinks (underlining). Authors are encouraged to avoid using the
 u element where it could be confused for a
 hyperlink.

 The mark element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The mark element represents a run of text in one document marked or
 highlighted for reference purposes, due to its relevance in another context. When used in a
 quotation or other block of text referred to from the prose, it indicates a highlight that was not
 originally present but which has been added to bring the reader's attention to a part of the text
 that might not have been considered important by the original author when the block was originally
 written, but which is now under previously unexpected scrutiny. When used in the main prose of a
 document, it indicates a part of the document that has been highlighted due to its likely
 relevance to the user's current activity.

 This example shows how the mark element can be used
 to bring attention to a particular part of a quotation:

 <p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
 <p>Look around and you will find, no-one's really
 <mark>colour</mark> blind.</p>
</blockquote>
<p lang="en-US">As we can tell from the spelling of the word,
the person writing this quote is clearly not American.</p>

 (If the goal was to mark the element as misspelt, however, the
 u element, possibly with a class, would be more
 appropriate.)

 Another example of the mark element is highlighting parts of a document that are
 matching some search string. If someone looked at a document, and the server knew that the user
 was searching for the word "kitten", then the server might return the document with one paragraph
 modified as follows:

 <p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

 In the following snippet, a paragraph of text refers to a specific part of a code
 fragment.

 <p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin
 i := <mark>1.1</mark>;
end.</code></pre>

 This is separate from syntax highlighting, for which span is more
 appropriate. Combining both, one would get:

 <p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin
 i := <mark>1.1</mark>;
end.</code></pre>

 This is another example showing the use of mark to highlight a part of quoted
 text that was originally not emphasized. In this example, common typographic conventions have led
 the author to explicitly style mark elements in quotes to render in italics.

 <article>
 <style scoped>
 blockquote mark, q mark {
 font: inherit; font-style: italic;
 text-decoration: none;
 background: transparent; color: inherit;
 }
 .bubble em {
 font: inherit; font-size: larger;
 text-decoration: underline;
 }
 </style>
 <h1>She knew</h1>
 <p>Did you notice the subtle joke in the joke on panel 4?</p>
 <blockquote>
 <p class="bubble">I didn't want to believe. <mark>Of course
 on some level I realized it was a known-plaintext attack.</mark> But I
 couldn't admit it until I saw for myself.</p>
 </blockquote>
 <p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
 explains everything neatly.</p>
</article>

 Note, incidentally, the distinction between the em element in this example, which
 is part of the original text being quoted, and the mark element, which is
 highlighting a part for comment.

 The following example shows the difference between denoting the importance of a span
 of text (strong) as opposed to denoting the relevance of a span of text
 (mark). It is an extract from a textbook, where the extract has had the parts
 relevant to the exam highlighted. The safety warnings, important though they may be, are
 apparently not relevant to the exam.

 <h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

<p>When a wormhole is created, a vortex normally forms.
Warning: The vortex caused by the wormhole opening will
annihilate anything in its path. Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

 The ruby element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	See prose.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The ruby element allows one or more spans of phrasing content to be marked with
 ruby annotations. Ruby annotations are short runs of text presented alongside base text, primarily
 used in East Asian typography as a guide for pronunciation or to include other annotations. In
 Japanese, this form of typography is also known as furigana.

 The content model of ruby elements consists of one or more of the following
 sequences:

 	One or the other of the following:

 	Phrasing content, but with no ruby elements and with no ruby element descendants

	A single ruby element that itself has no ruby element descendants

	One or the other of the following:

 	One or more rt elements

	An rp element followed by one or more rt elements, each of which is itself followed by an rp element

 The ruby and rt elements can be used for a variety of kinds of
 annotations, including in particular (though by no means limited to) those described below. For
 more details on Japanese Ruby in particular, and how to render Ruby for Japanese, see
 Requirements for Japanese Text Layout. [JLREQ]

 At the time of writing, CSS does not yet provide a way to fully control the
 rendering of the HTML ruby element. It is hoped that CSS will be extended to support
 the styles described below in due course.

 	Mono-ruby for individual base characters in Japanese

	

 One or more hiragana or katakana characters (the ruby
 annotation) are placed with each ideographic character (the base
 text). This is used to provide readings of kanji characters.

 <ruby>B<rt>annotation</ruby>

 In this example, notice how each annotation corresponds to a single base character.

<ruby>君<rt>くん</ruby><ruby>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

 君くん子しは和わして同どうぜず。

This example can also be written as follows, using one ruby element with two
 segments of base text and two annotations (one for each) rather than two back-to-back
 ruby elements each with one base text segment and annotation (as in the markup
 above):

<ruby>君<rt>くん</rt>子<rt>し</ruby>は<ruby>和<rt>わ</ruby>して<ruby>同<rt>どう</ruby>ぜず。

 	Mono-ruby for compound words (jukugo)

	

 This is similar to the previous case: each ideographic character in the compound word (the
 base text) has its reading given in hiragana or katakana characters (the ruby annotation). The
 difference is that the base text segments form a compound word rather than being separate from
 each other.

 <ruby>B<rt>annotation</rt>B<rt>annotation</ruby>

 In this example, notice again how each annotation corresponds to a single base character. In this example, each compound word (jukugo) corresponds to a single ruby element.

 The rendering here is expected to be that each annotation be placed over (or next to, in vertical text) the corresponding base character, with the annotations not overhanging any of the adjacent characters.

 <ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎょう</rt>視<rt>し</rt></ruby>する

 鬼き門もんの方ほう角がくを凝ぎょう視しする

 	Jukugo-ruby

	

 This is semantically identical to the previous case (each individual ideographic character in
 the base compound word has its reading given in an annotation in hiragana or katakana
 characters), but the rendering is the more complicated Jukugo Ruby rendering.

 This is the same example as above for mono-ruby for compound words. The different rendering is expected to be achieved using different styling (e.g. in CSS), and is not shown here.

 <ruby>鬼<rt>き</rt>門<rt>もん</rt></ruby>の<ruby>方<rt>ほう</rt>角<rt>がく</rt></ruby>を<ruby>凝<rt>ぎょう</rt>視<rt>し</rt></ruby>する

 For more details on Jukugo Ruby rendering, see
 Appendix F in the Requirements for Japanese Text Layout. [JLREQ]

 	Group ruby for describing meanings

	

 The annotation describes the meaning of the base text, rather than (or in addition to) the
 pronunciation. As such, both the base text and the annotation can be multiple characters long.

 <ruby>BASE<rt>annotation</ruby>

 Here a compound ideographic word has its corresponding katakana given as an annotation.

<ruby>境界面<rt>インターフェース</ruby>

 境界面インターフェース

 Here a compound ideographic word has its translation in English provided as an annotation.

<ruby lang="ja">編集者<rt lang="en">editor</ruby>

 編集者editor

 	Group ruby for Jukuji readings

	

 A phonetic reading that corresponds to multiple base characters, because a one-to-one mapping
 would be difficult. (In English, the words "Colonel" and "Lieutenant" are examples of words
 where a direct mapping of pronunciation to individual letters is, in some dialects, rather
 unclear.)

 In this example, the name of a species of flowers has a phonetic reading provided using group ruby:

<ruby>紫陽花<rt>あじさい</ruby>

 紫陽花あじさい

 	Text with both phonetic and semantic annotations (double-sided ruby)

	

 Sometimes, ruby styles described above are combined.

If this results in two annotations covering the same single base segment, then the
 annotations can just be placed back to back.

 <ruby>BASE<rt>annotation 1<rt>annotation 2</ruby>

 <ruby>B<rt>a<rt>a</ruby><ruby>A<rt>a<rt>a</ruby><ruby>S<rt>a<rt>a</ruby><ruby>E<rt>a<rt>a</ruby>

 In this contrived example, some symbols are given names in English and French.

<ruby>
 ♥ <rt> Heart <rt lang=fr> Cœur
 ☘ <rt> Shamrock <rt lang=fr> Trèfle
 ✶ <rt> Star <rt lang=fr> Étoile
</ruby>

 In more complication situations such as following examples, a nested ruby
 element is used to give the inner annotations, and then that whole ruby is then
 given an annotation at the "outer" level.

 <ruby><ruby>B<rt>a</rt>A<rt>n</rt>S<rt>t</rt>E<rt>n</rt></ruby><rt>annotation</ruby>

 Here both a phonetic reading and the meaning are given in ruby annotations. The annotation on the nested ruby element gives a mono-ruby phonetic annotation for each base character, while the annotation in the rt element that is a child of the outer ruby element gives the meaning using hiragana.

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt>たつみ</rt></ruby>の方角

 東とう南なんたつみの方角

 This is the same example, but the meaning is given in English instead of Japanese:

<ruby><ruby>東<rt>とう</rt>南<rt>なん</rt></ruby><rt lang=en>Southeast</rt></ruby>の方角

 東とう南なんSoutheastの方角

 Within a ruby element that does not have a ruby element ancestor,
 content is segmented and segments are placed into three categories: base text segments, annotation
 segments, and ignored segments. Ignored segments do not form part of the document's semantics
 (they consist of some inter-element whitespace and rp elements, the
 latter of which are used for legacy user agents that do not support ruby at all). Base text
 segments can overlap (with a limit of two segments overlapping any one position in the DOM, and
 with any segment having an earlier start point than an overlapping segment also having an equal or
 later end point, and any segment have a later end point than an overlapping segment also having an
 equal or earlier start point). Annotation segments correspond to rt elements. Each annotation
 segment can be associated with a base text segment, and each base text segment can have annotation
 segments associated with it. (In a conforming document, each base text segment is associated with
 at least one annotation segment, and each annotation segment is associated with one base text
 segment.) A ruby element represents the union of the segments of base
 text it contains, along with the mapping from those base text segments to annotation segments.
 Segments are described in terms of DOM ranges; annotation segment ranges always consist of exactly
 one element. [DOM]

 At any particular time, the segmentation and categorisation of content of a ruby
 element is the result that would be obtained from running the following algorithm:

 	Let base text segments be an empty list of base text segments, each
 potentially with a list of base text subsegments.

 	Let annotation segments be an empty list of annotation segments, each
 potentially being associated with a base text segment or subsegment.

 	Let root be the ruby element for which the algorithm is
 being run.

 	If root has a ruby element ancestor, then jump to the
 step labeled end.

 	Let current parent be root.

 	Let index be 0.

 	Let start index be null.

 	Let parent start index be null.

 	Let current base text be null.

 	Start mode: If index is equal to or greater than the number of
 child nodes in current parent, then jump to the step labeled end
 mode.

	If the indexth node in current parent is an
 rt or rp element, jump to the step labeled annotation
 mode.

 	Set start index to the value of index.

 	Base mode: If the indexth node in current
 parent is a ruby element, and if current parent is the
 same element as root, then push a ruby level and then jump to
 the step labeled start mode.

 	If the indexth node in current parent is an
 rt or rp element, then set the current base text and then
 jump to the step labeled annotation mode.

 	Increment index by one.

 	Base mode post-increment: If index is equal to or greater than
 the number of child nodes in current parent, then jump to the step labeled
 end mode.

 	Jump back to the step labeled base mode.

 	Annotation mode: If the indexth node in current
 parent is an rt element, then push a ruby annotation and jump to
 the step labeled annotation mode increment.

 	If the indexth node in current parent is an
 rp element, jump to the step labeled annotation mode increment.

 	If the indexth node in current parent is not a
 Text node, or is a Text node that is not inter-element
 whitespace, then jump to the step labeled base mode.

 	Annotation mode increment: Let lookahead index be index plus one.

 	Annotation mode white-space skipper: If lookahead index is
 equal to the number of child nodes in current parent then jump to the step
 labeled end mode.

 	If the lookahead indexth node in current parent is
 an rt element or an rp element, then set index to
 lookahead index and jump to the step labeled annotation mode.

 	If the lookahead indexth node in current parent is
 not a Text node, or is a Text node that is not inter-element
 whitespace, then jump to the step labeled base mode (without further incrementing
 index, so the inter-element whitespace seen so far becomes part
 of the next base text segment).

 	Increment lookahead index by one.

 	Jump to the step labeled annotation mode white-space skipper.

 	End mode: If current parent is not the same element as root, then pop a ruby level and jump to the step labeled base mode
 post-increment.

 	End: Return base text segments and annotation
 segments. Any content of the ruby element not described by segments in either
 of those lists is implicitly in an ignored segment.

 When the steps above say to set the current base text, it means to run the following
 steps at that point in the algorithm:

 	Let text range be a DOM range whose start is the boundary
 point (current parent, start index) and whose
 end is the boundary
 point (current parent, index).

 	Let new text segment be a base text segment described by the range
 annotation range.

	Add new text segment to base text
 segments.

 	Let current base text be new text
 segment.

 	Let start index be null.

 When the steps above say to push a ruby level, it means to run the following steps
 at that point in the algorithm:

 	Let current parent be the indexth node in current parent.

 	Let index be 0.

 	Set saved start index to the value of start
 index.

 	Let start index be null.

 When the steps above say to pop a ruby level, it means to run the following steps at
 that point in the algorithm:

 	Let index be the position of current parent in
 root.

 	Let current parent be root.

 	Increment index by one.

 	Set start index to the value of saved start
 index.

 	Let saved start index be null.

 When the steps above say to push a ruby annotation, it means to run the following
 steps at that point in the algorithm:

 	Let rt be the rt element that is the indexth node of current parent.

 	Let annotation range be a DOM range whose start is the boundary
 point (current parent, index) and whose end is the boundary point
 (current parent, index plus one) (i.e. that contains only
 rt).

 	Let new annotation segment be an annotation segment described by the
 range annotation range.

 	If current base text is not null, associate new
 annotation segment with current base text.

 	Add new annotation segment to annotation
 segments.

 In this example, each ideograph in the Japanese text is annotated with its reading in hiragana.

 ...
<ruby>漢<rt>かん</rt>字<rt>じ</rt></ruby>
...

 This might be rendered as:

 [image: The two main ideographs, each with its annotation in hiragana rendered in a smaller font above it.]

 In this example, each ideograph in the traditional Chinese text is annotated with its bopomofo reading.

 <ruby>漢<rt>ㄏㄢˋ</rt>字<rt>ㄗˋ</rt></ruby>

 This might be rendered as:

 [image: The two main ideographs, each with its bopomofo annotation rendered in a smaller font next to it.]

 In this example, each ideograph in the simplified Chinese text is annotated with its pinyin reading.

 ...<ruby>汉<rt>hàn</rt>字<rt>zì</rt></ruby>...

 This might be rendered as:

 [image: The two main ideographs, each with its pinyin annotation rendered in a smaller font above it.]

 In this more contrived example, the acronym "HTML" has four annotations: one for the whole
 acronym, briefly describing what it is, one for the letters "HT" expanding them to "Hypertext",
 one for the letter "M" expanding it to "Markup", and one for the letter "L" expanding it to
 "Language".

 <ruby>
 <ruby>HT<rt>Hypertext</rt>M<rt>Markup</rt>L<rt>Language</rt></ruby>
 <rt>An abstract language for describing documents and applications
</ruby>

 The rt element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a ruby element.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The rt element marks the ruby text component of a ruby annotation. When it is the
 child of a ruby element, it doesn't represent
 anything itself, but the ruby element uses it as part of determining what it
 represents.

 An rt element that is not a child of a ruby element
 represents the same thing as its children.

 The rp element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a ruby element, either immediately before or immediately after an rt element.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The rp element can be used to provide parentheses around a ruby text component of
 a ruby annotation, to be shown by user agents that don't support ruby annotations.

 An rp element represents nothing.

 The example above, in which each ideograph in the text is annotated with its
 phonetic reading, could be expanded to use rp so that in
 legacy user agents the readings are in parentheses:

 ...
<ruby>漢<rp> (</rp><rt>かん</rt><rp>) </rp>字<rp> (</rp><rt>じ</rt><rp>) </rp></ruby>
...

 In conforming user agents the rendering would be as above, but
 in user agents that do not support ruby, the rendering would
 be:

 ... 漢 (かん) 字 (じ) ...

 When there are multiple annotations for a segment, rp elements can also be placed
 between the annotations. Here is another copy of an earlier contrived example showing some
 symbols with names given in English and French, but this time with rp elements as
 well:

<ruby>
♥<rp>: </rp><rt>Heart</rt><rp>, </rp><rt lang=fr>Cœur</rt><rp>.</rp>
☘<rp>: </rp><rt>Shamrock</rt><rp>, </rp><rt lang=fr>Trèfle</rt><rp>.</rp>
✶<rp>: </rp><rt>Star</rt><rp>, </rp><rt lang=fr>Étoile</rt><rp>.</rp>
</ruby>

 This would make the example render as follows in non-ruby-capable user agents:

♥: Heart, . ☘: Shamrock, . ✶: Star, .

 The bdi element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	Also, the dir global attribute has special semantics on this element.

 	DOM interface:

 	Uses HTMLElement.

 The bdi element represents a span of text that is to be isolated from
 its surroundings for the purposes of bidirectional text formatting. [BIDI]

 The dir global attribute defaults to auto on this element (it never inherits from the parent element like
 with other elements).

 For the purposes of applying the bidirectional algorithm to the contents of a bdi
 element, user agents must treat the element as an independent and isolated segment.

 For the purposes of applying the bidirectional algorithm to the paragraph-level container that
 a bdi element finds itself within, the bdi element must be treated like
 a U+FFFC OBJECT REPLACEMENT CHARACTER (in the same manner that an image or other inline object is
 handled).

 The requirements on handling the bdi element for the bidirectional algorithm may
 be implemented indirectly through the style layer. For example, an HTML+CSS user agent could
 implement these requirements by implementing the CSS 'unicode-bidi' property. [CSS]

 This element is especially useful when embedding user-generated content with an unknown
 directionality.

 In this example, usernames are shown along with the number of posts that the user has
 submitted. If the bdi element were not used, the username of the Arabic user would
 end up confusing the text (the bidirectional algorithm would put the colon and the number "3"
 next to the word "User" rather than next to the word "posts").

 User <bdi>jcranmer</bdi>: 12 posts.
 User <bdi>hober</bdi>: 5 posts.
 User <bdi>إيان</bdi>: 3 posts.

 The bdo element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	Also, the dir global attribute has special semantics on this element.

 	DOM interface:

 	Uses HTMLElement.

 The bdo element represents explicit text directionality formatting
 control for its children. It allows authors to override the Unicode bidirectional algorithm by
 explicitly specifying a direction override. [BIDI]

 Authors must specify the dir attribute on this element, with the
 value ltr to specify a left-to-right override and with the value rtl to
 specify a right-to-left override.

 If the element's dir attribute is in the rtl state, then for the purposes of the bidirectional algorithm,
 the user agent must act as if there was a U+202D LEFT-TO-RIGHT OVERRIDE character at the start of
 the element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the element.

 If the element's dir attribute is in the ltr, then for the purposes of the bidirectional algorithm, the user
 agent must act as if there was a U+202E RIGHT-TO-LEFT OVERRIDE character at the start of the
 element, and a U+202C POP DIRECTIONAL FORMATTING at the end of the element.

 The requirements on handling the bdo element for the bidirectional algorithm may
 be implemented indirectly through the style layer. For example, an HTML+CSS user agent could
 implement these requirements by implementing the CSS 'unicode-bidi' property. [CSS]

 The span element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLSpanElement : HTMLElement {};

 The span element doesn't mean anything on its own,
 but can be useful when used together with the global
 attributes, e.g. class, lang, or dir.
 It represents its children.

 In this example, a code fragment is marked up using
 span elements and class attributes so that its keywords and
 identifiers can be color-coded from CSS:

 <pre><code class="lang-c">for (j = 0; j < 256; j++) {
 i_t3 = (i_t3 & 0x1ffff) | (j << 17);
 i_t6 = (((((((i_t3 >> 3) ^ i_t3) >> 1) ^ i_t3) >> 8) ^ i_t3) >> 5) & 0xff;
 if (i_t6 == i_t1)
 break;
}</code></pre>

 The br element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLBRElement : HTMLElement {};

 The br element represents a line
 break.

 While line breaks are usually represented in visual
 media by physically moving subsequent text to a new line, a style
 sheet or user agent would be equally justified in causing line
 breaks to be rendered in a different manner, for instance as green
 dots, or as extra spacing.

 br elements must be used only for line breaks that
 are actually part of the content, as in poems or addresses.

 The following example is correct usage of the br
 element:

 <p>P. Sherman

42 Wallaby Way

Sydney</p>

 br elements must not be used for separating thematic
 groups in a paragraph.

 The following examples are non-conforming, as they abuse the
 br element:

 <p><a ...>34 comments.

<a ...>Add a comment.</p>

 <p><label>Name: <input name="name"></label>

<label>Address: <input name="address"></label></p>

 Here are alternatives to the above, which are correct:

 <p><a ...>34 comments.</p>
<p><a ...>Add a comment.</p>

 <p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

 If a paragraph consists of nothing but a single
 br element, it represents a placeholder blank line
 (e.g. as in a template). Such blank lines must not be used for
 presentation purposes.

 Any content inside br elements must not be
 considered part of the surrounding text.

 A br element should separate paragraphs for the
 purposes of the Unicode bidirectional algorithm. This requirement
 may be implemented indirectly through the style layer. For example,
 an HTML+CSS user agent could implement these requirements by
 implementing the CSS 'unicode-bidi' property. [BIDI] [CSS]

 The wbr element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The wbr element represents a line break
 opportunity.

 For the purposes of applying the bidirectional algorithm to the paragraph-level container that
 a wbr element finds itself within, the wbr element must be treated like
 a U+200B ZERO WIDTH SPACE (i.e. it has no effect).

 The requirements on handling the wbr element for the bidirectional algorithm may
 be implemented indirectly through the style layer, e.g. by implementing the suggestions in the rendering section.

 In the following example, someone is quoted as saying something
 which, for effect, is written as one long word. However, to ensure
 that the text can be wrapped in a readable fashion, the individual
 words in the quote are separated using a wbr
 element.

 <p>So then he pointed at the tiger and screamed
"there<wbr>is<wbr>no<wbr>way<wbr>you<wbr>are<wbr>ever<wbr>going<wbr>to<wbr>catch<wbr>me"!</p>

 Here, especially long lines of code in a program listing have
 suggested wrapping points given using wbr
 elements.

 <pre>...
Heading heading = Helm.HeadingFactory(HeadingCoordinates[1], <wbr>HeadingCoordinates[2], <wbr>HeadingCoordinates[3], <wbr>HeadingCoordinates[4]);
Course course = Helm.CourseFactory(Heading, <wbr>Maps.MapFactoryFromHeading(heading), <wbr>Speeds.GetMaximumSpeed().ConvertToWarp());
...</pre>

 Any content inside wbr elements must not be
 considered part of the surrounding text.

 Usage summary

 This section is non-normative.

 	Element
 	Purpose
 	Example

 	a
 	Hyperlinks
 	Visit my drinks page.

 	em
 	Stress emphasis
 	I must say I adore lemonade.

 	strong
 	Importance
 	This tea is very hot.

 	small
 	Side comments
 	These grapes are made into wine. <small>Alcohol is addictive.</small>

 	s
 	Inaccurate text
 	Price: <s>£4.50</s> £2.00!

 	cite
 	Titles of works
 	The case <cite>Hugo v. Danielle</cite> is relevant here.

 	q
 	Quotations
 	The judge said <q>You can drink water from the fish tank</q> but advised against it.

 	dfn
 	Defining instance
 	The term <dfn>organic food</dfn> refers to food produced without synthetic chemicals.

 	abbr
 	Abbreviations
 	Organic food in Ireland is certified by the <abbr title="Irish Organic Farmers and Growers Association">IOFGA</abbr>.

 	data
 	Machine-readable equivalent
 	Available starting today! <data value="UPC:022014640201">North Coast Organic Apple Cider</data>

 	time
 	Machine-readable equivalent of date- or time-related data
 	Available starting on <time datetime="2011-11-12">November 12th</time>!

 	code
 	Computer code
 	The <code>fruitdb</code> program can be used for tracking fruit production.

 	var
 	Variables
 	If there are <var>n</var> fruit in the bowl, at least <var>n</var>÷2 will be ripe.

 	samp
 	Computer output
 	The computer said <samp>Unknown error -3</samp>.

 	kbd
 	User input
 	Hit <kbd>F1</kbd> to continue.

 	sub
 	Subscripts
 	Water is H₂O.

 	sup
 	Superscripts
 	The Hydrogen in heavy water is usually ²H.

 	i
 	Alternative voice
 	Lemonade consists primarily of <i>Citrus limon</i>.

 	b
 	Keywords
 	Take a lemon and squeeze it with a juicer.

 	u
 	Annotations
 	The mixture of apple juice and <u class="spelling">eldeflower</u> juice is very pleasant.

 	mark
 	Highlight
 	Elderflower cordial, with one <mark>part</mark> cordial to ten <mark>part</mark>s water, stands a<mark>part</mark> from the rest.

 	ruby, rt, rp
 	Ruby annotations
 	<ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

 	bdi
 	Text directionality isolation
 	The recommended restaurant is <bdi lang="">My Juice Café (At The Beach)</bdi>.

 	bdo
 	Text directionality formatting
 	The proposal is to write English, but in reverse order. "Juice" would become "<bdo dir=rtl>Juice</bdo>"

 	span
 	Other
 	In French we call it sirop de sureau.

 	br
 	Line break
 	Simply Orange Juice Company
Apopka, FL 32703
U.S.A.

 	wbr
 	Line breaking opportunity
 	www.simply<wbr>orange<wbr>juice.com

 Edits

 The ins and del elements represent
 edits to the document.

 The ins element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Transparent.

 	Content attributes:

 	Global attributes

 	cite

 	datetime

 	DOM interface:

 	Uses the HTMLModElement interface.

 The ins element represents an addition
 to the document.

 The following represents the addition of a single paragraph:

 <aside>
 <ins>
 <p> I like fruit. </p>
 </ins>
</aside>

 As does the following, because everything in the
 aside element here counts as phrasing
 content and therefore there is just one
 paragraph:

 <aside>
 <ins>
 Apples are tasty.
 </ins>
 <ins>
 So are pears.
 </ins>
</aside>

 ins elements should not cross implied paragraph boundaries.

 The following example represents the addition of two paragraphs,
 the second of which was inserted in two parts. The first
 ins element in this example thus crosses a paragraph
 boundary, which is considered poor form.

 <aside>
 <!-- don't do this -->
 <ins datetime="2005-03-16 00:00Z">
 <p> I like fruit. </p>
 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19 00:00Z">
 So are pears.
 </ins>
</aside>

 Here is a better way of marking this up. It uses more elements,
 but none of the elements cross implied paragraph boundaries.

 <aside>
 <ins datetime="2005-03-16 00:00Z">
 <p> I like fruit. </p>
 </ins>
 <ins datetime="2005-03-16 00:00Z">
 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19 00:00Z">
 So are pears.
 </ins>
</aside>

 The del element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Transparent.

 	Content attributes:

 	Global attributes

 	cite

 	datetime

 	DOM interface:

 	Uses the HTMLModElement interface.

 The del element represents a removal from the document.

 del elements should not cross implied paragraph
 boundaries.

 The following shows a "to do" list where items that have been done are crossed-off with the
 date and time of their completion.

 <h1>To Do</h1>

 Empty the dishwasher
 <del datetime="2009-10-11T01:25-07:00">Watch Walter Lewin's lectures
 <del datetime="2009-10-10T23:38-07:00">Download more tracks
 Buy a printer

 Attributes common to ins and del elements

 The cite attribute may be used to specify the
 address of a document that explains the change. When that document is long, for instance the
 minutes of a meeting, authors are encouraged to include a fragment identifier pointing to the
 specific part of that document that discusses the change.

 If the cite attribute is present, it must be a valid
 URL potentially surrounded by spaces that explains the change. User agents may allow users to follow such
 citation links, but they are primarily intended for private use (e.g. by server-side scripts
 collecting statistics about a site's edits), not for readers.

 The datetime attribute may be used to specify
 the time and date of the change.

 If present, the datetime attribute's value must be a
 valid date string with optional time.

 User agents must parse the datetime attribute according
 to the parse a date or time string algorithm. If that doesn't return a date or a global date and time,
 then the modification has no associated timestamp (the value is non-conforming; it is not a
 valid date string with optional time). Otherwise, the modification is marked as
 having been made at the given date or global date and time. If the given value is a global date and time then user agents should use the associated
 time-zone offset information to determine which time zone to present the given datetime in.

 This value is primarily intended for
 private use.

 The ins and del elements implement the
 HTMLModElement interface:

 interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

 The cite IDL attribute must reflect
 the element's cite content attribute. The dateTime IDL attribute must reflect the
 element's datetime content attribute.

 Edits and paragraphs

 This section is non-normative.

 Since the ins and del elements do not
 affect paragraphing, it is possible,
 in some cases where paragraphs are implied (without explicit p
 elements), for an ins or del element to
 span both an entire paragraph or other non-phrasing
 content elements and part of another paragraph. For
 example:

 <section>
 <ins>
 <p>
 This is a paragraph that was inserted.
 </p>
 This is another paragraph whose first sentence was inserted
 at the same time as the paragraph above.
 </ins>
 This is a second sentence, which was there all along.
</section>

 By only wrapping some paragraphs in p elements, one
 can even get the end of one paragraph, a whole second paragraph,
 and the start of a third paragraph to be covered by the same
 ins or del element (though this is very
 confusing, and not considered good practice):

 <section>
 This is the first paragraph. <ins>This sentence was
 inserted.
 <p>This second paragraph was inserted.</p>
 This sentence was inserted too.</ins> This is the
 third paragraph in this example.
 <!-- (don't do this) -->
</section>

 However, due to the way implied
 paragraphs are defined, it is not possible to mark up the
 end of one paragraph and the start of the very next one using the
 same ins or del element. You instead have
 to use one (or two) p element(s) and two
 ins or del elements, as for example:

 <section>
 <p>This is the first paragraph. This sentence was
 deleted.</p>
 <p>This sentence was deleted too. That
 sentence needed a separate element.</p>
</section>

 Partly because of the confusion described above, authors are
 strongly encouraged to always mark up all paragraphs with the
 p element, instead of having ins or
 del elements that cross implied
 paragraphs boundaries.

 Edits and lists

 This section is non-normative.

 The content models of the ol and ul
 elements do not allow ins and del elements
 as children. Lists always represent all their items, including items
 that would otherwise have been marked as deleted.

 To indicate that an item is inserted or deleted, an
 ins or del element can be wrapped around
 the contents of the li element. To indicate that an
 item has been replaced by another, a single li element
 can have one or more del elements followed by one or
 more ins elements.

 In the following example, a list that started empty had items
 added and removed from it over time. The bits in the example that
 have been emphasized show the parts that are the "current" state of
 the list. The list item numbers don't take into account the edits,
 though.

 <h1>Stop-ship bugs</h1>

 <ins datetime="2008-02-12T15:20Z">Bug 225:
 Rain detector doesn't work in snow</ins>
 <del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-14T12:02Z">Bug 228:
 Water buffer overflows in April</ins>
 <ins datetime="2008-02-16T13:50Z">Bug 230:
 Water heater doesn't use renewable fuels</ins>
 <del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-16T14:25Z">Bug 232:
 Carbon dioxide emissions detected after startup</ins>

 In the following example, a list that started with just fruit
 was replaced by a list with just colors.

 <h1>List of fruits<ins>colors</ins></h1>

 Lime<ins>Green</ins>
 Apple
 Orange
 Pear
 <ins>Teal</ins>
 Lemon<ins>Yellow</ins>
 Olive
 <ins>Purple</ins>

 Edits and tables

 This section is non-normative.

 The elements that form part of the table model have complicated
 content model requirements that do not allow for the
 ins and del elements, so indicating edits
 to a table can be difficult.

 To indicate that an entire row or an entire column has been added
 or removed, the entire contents of each cell in that row or column
 can be wrapped in ins or del elements
 (respectively).

 Here, a table's row has been added:

 <table>
 <thead>
 <tr> <th> Game name <th> Game publisher <th> Verdict
 <tbody>
 <tr> <td> Diablo 2 <td> Blizzard <td> 8/10
 <tr> <td> Portal <td> Valve <td> 10/10
 <tr> <td> <ins>Portal 2</ins> <td> <ins>Valve</ins> <td> <ins>10/10</ins>
</table>

 Here, a column has been removed (the time at which it was removed is given also, as is a link to the page explaining why):

 <table>
 <thead>
 <tr> <th> Game name <th> Game publisher <th> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">Verdict
 <tbody>
 <tr> <td> Diablo 2 <td> Blizzard <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">8/10
 <tr> <td> Portal <td> Valve <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">10/10
 <tr> <td> Portal 2 <td> Valve <td> <del cite="/edits/r192" datetime="2011-05-02 14:23Z">10/10
</table>

 Generally speaking, there is no good way to indicate more
 complicated edits (e.g. that a cell was removed, moving all
 subsequent cells up or to the left).

 Embedded content

 The img element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	Form-associated element.

 	If the element has a usemap attribute: Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	alt

 	src

 	crossorigin

 	usemap

 	ismap

 	width

 	height

 	DOM interface:

 	
[NamedConstructor=Image(optional unsigned long width, optional unsigned long height)]
interface HTMLImageElement : HTMLElement {
 attribute DOMString alt;
 attribute DOMString src;

 attribute DOMString crossOrigin;
 attribute DOMString useMap;
 attribute boolean isMap;
 attribute unsigned long width;
 attribute unsigned long height;
 readonly attribute unsigned long naturalWidth;
 readonly attribute unsigned long naturalHeight;
 readonly attribute boolean complete;
};

 An img element represents an image.

 The image given by the src

 attributes is the embedded content; the value of
 the alt attribute provides equivalent content for
 those who cannot process images or who have image loading disabled.

 The requirements on the alt attribute's value are described
 in the next section.

 The src attribute must be present, and must contain a
 valid non-empty URL potentially surrounded by spaces referencing a non-interactive,
 optionally animated, image resource that is neither paged nor scripted.

 The requirements above imply that images can be static bitmaps (e.g. PNGs, GIFs,
 JPEGs), single-page vector documents (single-page PDFs, XML files with an SVG root element),
 animated bitmaps (APNGs, animated GIFs), animated vector graphics (XML files with an SVG root
 element that use declarative SMIL animation), and so forth. However, these definitions preclude
 SVG files with script, multipage PDF files, interactive MNG files, HTML documents, plain text
 documents, and so forth. [PNG] [GIF] [JPEG] [PDF] [XML] [APNG] [SVG]
 [MNG]

 The img element must not be used as a layout tool. In particular, img
 elements should not be used to display transparent images, as they rarely convey meaning and
 rarely add anything useful to the document.

 The crossorigin attribute is a CORS
 settings attribute. Its purpose is to allow images from third-party sites that allow
 cross-origin access to be used with canvas.

 An img is always in one of the following states:

 	Unavailable

 	The user agent hasn't obtained any image data.

 	Partially available

 	The user agent has obtained some of the image data.

 	Completely available

 	The user agent has obtained all of the image data and at least
 the image dimensions are available.

 	Broken

 	The user agent has obtained all of the image data that it can,
 but it cannot even decode the image enough to get the image
 dimensions (e.g. the image is corrupted, or the format is not
 supported, or no data could be obtained).

 When an img element is either in the partially
 available state or in the completely available state, it is
 said to be available.

 An img element is initially unavailable.

 When an img element is available, it
 provides a paint source whose width is the image's intrinsic width, whose height is
 the image's intrinsic height, and whose appearance is the intrinsic appearance of the image.

 In a browsing context where scripting is
 disabled, user agents may obtain images immediately or on demand. In a browsing
 context where scripting is enabled, user agents
 must obtain images immediately.

 A user agent that obtains images immediately must synchronously update the image
 data of an img element whenever that element is created with a src attribute.
 A user agent that obtains images immediately must also synchronously
 update the image data of an img element whenever that element has its
 src or crossorigin attribute set, changed, or removed.

 A user agent that obtains images on demand must update the image data of an
 img element whenever it needs the image data (i.e. on demand), but only if the
 img element has a src

 attribute, and only if the img element is in the
 unavailable state. When an img element's src or crossorigin attribute set, changed, or removed, if the user
 agent only obtains images on demand, the img element must return to the unavailable state.

 Each img element has a last selected source, which must initially be
 null, and a current pixel density, which must initially be undefined.

 When an img element has a current pixel density that is not 1.0, the
 element's image data must be treated as if its resolution, in device pixels per CSS pixels, was
 the current pixel density.

 For example, if the current pixel density is 3.125, that means
 that there are 300 device pixels per CSS inch, and thus if the image data is 300x600, it has an
 intrinsic dimension of 96 CSS pixels by 192 CSS pixels.

 Each Document object must have a list of available images. Each image
 in this list is identified by a tuple consisting of an absolute URL, a CORS
 settings attribute mode, and, if the mode is not No
 CORS, an origin. User agents may copy entries from one Document
 object's list of available images to another at any time (e.g. when the
 Document is created, user agents can add to it all the images that are loaded in
 other Documents), but must not change the keys of entries copied in this way when
 doing so. User agents may also remove images from such lists at any time (e.g. to save
 memory).

 When the user agent is to update the image data of an img element, it
 must run the following steps:

 	Return the img element to the unavailable
 state.

	If an instance of the fetching algorithm is still running for
 this element, then abort that algorithm, discarding any pending tasks generated by that algorithm.

 	Forget the img element's current image data, if any.

 	If the user agent cannot support images, or its support for images has been disabled, then
 abort these steps.

 	

 Otherwise, if the element has a src attribute specified and
 its value is not the empty string, let selected source be the value of the
 element's src attribute, and selected pixel
 density be 1.0. Otherwise, let selected source be null and selected pixel density be undefined.

 	Let the img element's last selected source be selected source and the img element's current pixel
 density be selected pixel density.

 	Resolve selected source, relative
 to the element. If that is not successful, abort these steps.

 	Let key be a tuple consisting of the resulting absolute
 URL, the img element's crossorigin
 attribute's mode, and, if that mode is not No CORS,
 the Document object's origin.

 	If the list of available images contains an entry for key, then set the img element to the completely
 available state, update the presentation of the image appropriately, queue a
 task to fire a simple event named load at the
 img element, and abort these steps.

 	Asynchronously await a stable state, allowing the task that invoked this algorithm to continue. The synchronous
 section consists of all the remaining steps of this algorithm until the algorithm says the
 synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

 	

 ⌛ If another instance of this algorithm for this img element was started
 after this instance (even if it aborted and is no longer running), then abort these steps.

 Only the last instance takes effect, to avoid multiple requests when, for
 example, the src
 and crossorigin attributes are all set in
 succession.

 	

 ⌛ If selected source is null, then set the element to the broken state, queue a task to fire a simple
 event named error at the img element, and
 abort these steps.

 	

 Fire a progress event named loadstart at
 the img element.

 	

 Do a potentially CORS-enabled fetch of the absolute URL
 that resulted from the earlier step, with the mode being the state of the element's crossorigin content attribute, the origin
 being the origin of the img element's Document, and the
 default origin behaviour set to taint.

 The resource obtained in this fashion, if any, is the img element's image data.
 It can be either CORS-same-origin or CORS-cross-origin; this affects
 the origin of the image itself (e.g. when used on a canvas).

 Fetching the image must delay the load event of the element's document until the
 task that is queued by the
 networking task source once the resource has been fetched (defined below) has been run.

 This, unfortunately, can be used to perform a rudimentary port scan of the
 user's local network (especially in conjunction with scripting, though scripting isn't actually
 necessary to carry out such an attack). User agents may implement cross-origin access control policies that are stricter than those
 described above to mitigate this attack, but unfortunately such policies are typically not
 compatible with existing Web content.

 The first task that is queued by the networking task source while the image is being fetched must set the img element's state to partially available.

 If the resource is in a supported image format, then each task that is queued by the
 networking task source while the image is being fetched
 must update the presentation of the image appropriately (e.g. if the image is a progressive
 JPEG, each packet can improve the resolution of the image). In addition, if the resource is
 CORS-same-origin, each such task must fire
 a progress event named progress at the
 img element.

 Furthermore, the last task that is queued by the networking task source once the resource has been fetched must additionally run the steps for the matching entry in the
 following list:

 	If the download was successful and the user agent was able to determine the image's width and height

 	

 	Set the img element to the completely
 available state.

	Add the image to the list of available images using the key key.

 	

 If the resource is CORS-same-origin: fire a progress event
 named load at the img element.

 If the resource is CORS-cross-origin: fire a simple event named
 load at the img element.

 	

 If the resource is CORS-same-origin: fire a progress event
 named loadend at the img element.

 If the resource is CORS-cross-origin: fire a simple event named
 loadend at the img element.

 	Otherwise

 	

 	Set the img element to the broken
 state.

 	

 If the resource is CORS-same-origin: fire a progress event
 named load at the img element.

 If the resource is CORS-cross-origin: fire a simple event named
 load at the img element.

 	

 If the resource is CORS-same-origin: fire a progress event
 named loadend at the img element.

 If the resource is CORS-cross-origin: fire a simple event named
 loadend at the img element.

 On the other hand, if the resource type is multipart/x-mixed-replace, then each
 task that is queued by the
 networking task source while the image is being fetched
 must also update the presentation of the image, but as each new body part comes in, it must
 replace the previous image. Once one body part has been completely decoded, the user agent must
 set the img element to the completely available state
 and queue a task to fire a simple event named load at the img element.

 The progress and loadend events are not fired for
 multipart/x-mixed-replace image streams.

 Otherwise, either the image data is corrupted in some fatal way such that the image
 dimensions cannot be obtained, or the image data is not in a supported file format; the user
 agent must set the img element to the broken state,
 abort the fetching algorithm, discarding any pending tasks generated by that algorithm, and then queue a
 task to first fire a simple event named error at the img element and then fire a simple
 event named loadend at the img
 element.

 While a user agent is running the above algorithm for an element x, there
 must be a strong reference from the element's Document to the element x, even if that element is not in its
 Document.

 When an img element is in the completely available
 state and the user agent can decode the media data without errors, then the
 img element is said to be fully decodable.

 Whether the image is fetched successfully or not (e.g. whether the response code was a 2xx code
 or equivalent) must be ignored when determining
 the image's type and whether it is a valid image.

 This allows servers to return images with error responses, and have them
 displayed.

 The user agent should apply the image sniffing
 rules to determine the type of the image, with the image's associated Content-Type headers giving the official
 type. If these rules are not applied, then the type of the image must be the type given by
 the image's associated Content-Type headers.

 User agents must not support non-image resources with the img element (e.g. XML
 files whose root element is an HTML element). User agents must not run executable code (e.g.
 scripts) embedded in the image resource. User agents must only display the first page of a
 multipage resource (e.g. a PDF file). User agents must not allow the resource to act in an
 interactive fashion, but should honor any animation in the resource.

 This specification does not specify which image types are to be supported.

 What an img element represents depends on the src attribute and the alt
 attribute.

 	If the src attribute is set and the alt attribute is set to the empty string

 	

 The image is either decorative or supplemental to the rest of the content, redundant with
 some other information in the document.

 If the image is available and the user agent is configured
 to display that image, then the element represents the element's image data.

 Otherwise, the element represents nothing, and may be omitted completely from
 the rendering. User agents may provide the user with a notification that an image is present but
 has been omitted from the rendering.

 	If the src attribute is set and the alt attribute is set to a value that isn't empty

 	

 The image is a key part of the content; the alt attribute
 gives a textual equivalent or replacement for the image.

 If the image is available and the user agent is configured
 to display that image, then the element represents the element's image data.

 Otherwise, the element represents the text given by the alt attribute. User agents may provide the user with a notification
 that an image is present but has been omitted from the rendering.

 	If the src attribute is set and the alt attribute is not

 	

 There is no textual equivalent of the image available.

 If the image is available and the user agent is configured
 to display that image, then the element represents the element's image data.

 Otherwise, the user agent should display some sort of indicator that there is an image that
 is not being rendered, and may, if requested by the user, or if so configured, or when required
 to provide contextual information in response to navigation, provide caption information for the
 image, derived as follows:

 	If the image is a descendant of a figure element that has a child
 figcaption element, and, ignoring the figcaption element and its
 descendants, the figure element has no Text node descendants other
 than inter-element whitespace, and no embedded content descendant
 other than the img element, then the contents of the first such
 figcaption element are the caption information; abort these steps.

 	There is no caption information.

 	If the src attribute is not set and either the alt attribute is set to the empty string or the alt attribute is not set at all

 	

 The element represents nothing.

 	Otherwise

 	

 The element represents the text given by the alt attribute.

 The alt attribute does not represent advisory information.
 User agents must not present the contents of the alt attribute
 in the same way as content of the title attribute.

 While user agents are encouraged to repair cases of missing alt attributes, authors must not rely on such behavior. Requirements for providing text to act as an alternative for images are described
 in detail below.

 The contents of img elements, if any, are ignored for the purposes of
 rendering.

 The usemap attribute,
 if present, can indicate that the image has an associated
 image map.

 The ismap
 attribute, when used on an element that is a descendant of an
 a element with an href attribute, indicates by its
 presence that the element provides access to a server-side image
 map. This affects how events are handled on the corresponding
 a element.

 The ismap attribute is a
 boolean attribute. The attribute must not be specified
 on an element that does not have an ancestor a element
 with an href attribute.

 The img element supports dimension
 attributes.

 The alt, src
 IDL attributes must reflect the
 respective content attributes of the same name.

 The crossOrigin IDL attribute must
 reflect the crossorigin content attribute,
 limited to only known values.

 The useMap IDL attribute must
 reflect the usemap content attribute.

 The isMap IDL attribute must reflect
 the ismap content attribute.

 	image . width [= value]

 	image . height [= value]

 	

 These attributes return the actual rendered dimensions of the
 image, or zero if the dimensions are not known.

 They can be set, to change the corresponding content
 attributes.

 	image . naturalWidth

 	image . naturalHeight

 	

 These attributes return the intrinsic dimensions of the image,
 or zero if the dimensions are not known.

 	image . complete

 	

 Returns true if the image has been completely downloaded or if
 no image is specified; otherwise, returns false.

 	image = new Image([width [, height]])

 	

 Returns a new img element, with the width and height attributes set to the values
 passed in the relevant arguments, if applicable.

 The IDL attributes width and height must return the
 rendered width and height of the image, in CSS pixels, if the image
 is being rendered, and is being rendered to a visual
 medium; or else the intrinsic width and height of the image, in CSS
 pixels, if the image is available but
 not being rendered to a visual medium; or else 0, if the image is
 not available. [CSS]

 On setting, they must act as if they reflected the respective content attributes
 of the same name.

 The IDL attributes naturalWidth and
 naturalHeight
 must return the intrinsic width and height of the image, in CSS
 pixels, if the image is available, or
 else 0. [CSS]

 The IDL attribute complete must return
 true if any of the following conditions is true:

 	The src attribute is omitted.

	The src attribute's value is the empty string.

	The final task that is queued by the networking task source once the resource has been fetched has been queued, but has not yet been run, and the img element is not in the broken state.

	The img element is completely available.

 Otherwise, the attribute must return false.

 The value of complete can thus change while
 a script is executing.

 A constructor is provided for creating HTMLImageElement objects (in addition to
 the factory methods from DOM such as createElement()): Image(width, height).
 When invoked as a constructor, this must return a new HTMLImageElement object (a new
 img element). If the width argument is present, the new object's
 width content attribute must be set to width. If the height argument is also present, the new object's
 height content attribute must be set to height. The element's document must be the active document of the
 browsing context of the Window object on which the interface object of
 the invoked constructor is found.

 Requirements for providing text to act as an alternative for images

 General guidelines

 Except where otherwise specified, the alt attribute must be specified and its
 value must not be empty; the value must be an appropriate
 replacement for the image. The specific requirements for the alt attribute depend on what the image
 is intended to represent, as described in the following
 sections.

 The most general rule to consider when writing alternative text
 is the following: the intent is that replacing every image
 with the text of its alt attribute
 not change the meaning of the page.

 So, in general, alternative text can be written by considering
 what one would have written had one not been able to include the
 image.

 A corollary to this is that the alt attribute's value should never
 contain text that could be considered the image's caption,
 title, or legend. It is supposed to contain
 replacement text that could be used by users instead of the
 image; it is not meant to supplement the image. The title attribute can be used for
 supplemental information.

 Another corollary is that the alt attribute's value should not repeat
 information that is already provided in the prose next to the
 image.

 One way to think of alternative text is to think
 about how you would read the page containing the image to someone
 over the phone, without mentioning that there is an image
 present. Whatever you say instead of the image is typically a good
 start for writing the alternative text.

 A link or button containing nothing but an image

 When an a element that is a hyperlink, or a button element, has no text content
 but contains one or more images, include text in the alt attribute(s) that together convey the purpose of the link or button.

 In this example, a user is asked to pick her preferred color
 from a list of three. Each color is given by an image, but for
 users who cannot view the images,
 the color names are included within the alt attributes of the images:

 [image: The example HTML code as displayed in a browser. 3 links each containing a rectangular image: 1 is blue with the text 'blue', 2 red with the text 'red' and 3 is green with the text 'green'.]

 In this example, a link contains a logo. The link points to the W3C web site from an external site. The text alternative is
 a brief description of the link target.

 [image: W3C]

	
	
 This example is the same as the previous example, except that the link is on the W3C web site. The text alternative is
 a brief description of the link target.

 [image: W3C home]

 In this example, a link contains a print preview icon. The link points to a version of the page with a
 print stylesheet applied. The text alternative is a brief description of the link target.

 [image: Preview the printed page.]

 In this example, a button contains a search icon. The button submits a search form. The text alternative is a
 brief description of what the button does.

 [image: Search]

 <button>

 </button>

 In this example, a picture representing a company logo for the PIP Corporation has been split into two images,
 the first containing the word PIP and the second with the abbreviated word CO. The images are the sole content of a
 link to the PIPCO home page. In this case a brief description of the link target is provided. As the images are presented to
 the user as a single entity the text alternative PIP CO home is in the alt attribute of the first image.

 [image: text 'PIP'.][image: text 'CO']

 Graphical Representations: Charts, diagrams, graphs, maps, illustrations

 Users can benefit when content is presented in graphical form, for example as a
 flowchart, a diagram, a graph, or a map showing directions. Users also benefit when
 content presented in a graphical form is also provided in a textual format, these users include
 those who are unable to view the image (e.g. because they have a very slow connection,
 or because they are using a text-only browser, or because they are listening to the page
 being read out by a hands-free automobile voice Web browser, or because they have a
 visual impairment and use an assistive technology to render the text to speech).

 In the following example we have an image of a pie chart, with text in the alt attribute
 representing the data shown in the pie chart:

 [image: Browser Share: Internet Explorer 25%, Firefox 40%, Chrome 25%, Safari 6% and Opera 4%.]

 In the case where an image repeats repeats the previous paragraph in graphical form. The alt attribute content labels the image.

 <p>According to a recent study Firefox has a 40% browser share, Internet Explorer has 25%, Chrome has 25%, Safari has 6% and Opera has 4%.</p>
 <p></p>

 It can bee seen that when the image is not available, for example because the src attribute value is incorrect, the text alternative provides the user with a brief description of the image content:

 [image: Representation of the code snippet above.]

 In cases where the text alternative is lengthy, more than a sentence or two, or would benefit from
 the use of structured markup, provide a brief description or label using the alt
 attribute, and an associated text alternative.

 Here's an example of a flowchart image, with a short text alternative
 included in the alt attribute, in this case the text alternative is a description of the link target
 as the image is the sole content of a link. The link points to a description, within the same document, of the
 process represented in the flowchart.

 [image: Flowchart: Dealing with a broken lamp.]

 ...

 ...

 <div id="desc">
 <h2>Dealing with a broken lamp</h2>

 Check if it's plugged in, if not, plug it in.
 If it still doesn't work; check if the bulb is burned out. If it is, replace the bulb.
 If it still doesn't work; buy a new lamp.

 </div>

 In this example, there is an image of a chart. It would be inappropriate to provide the information depicted in
 the chart as a plain text alternative in an alt attribute as the information is a data set. Instead a
 structured text alternative is provided below the image in the form of a data table using the data that is represented
 in the chart image.

 [image: Bar Chart showing average rainfall in millimetres by Country and Season.]

 Indications of the highest and lowest rainfall for each season have been included in the
 table, so trends easily identified in the chart are also available in the data table.

 Average rainfall in millimetres by country and season.
 		United Kingdom	Japan	Australia

 	Spring	5.3 (highest)	2.4	2 (lowest)

 	Summer	4.5 (highest)	3.4	2 (lowest)

 	Autumn	3.5 (highest)	1.8	1.5 (lowest)

 	Winter	1.5 (highest)	1.2	1 (lowest)

 <table>
 <caption>Rainfall in millimetres by Country and Season.</caption>
 <tr><td><th scope="col">UK <th scope="col">Japan<th scope="col">Australia</tr>
 <tr><th scope="row">Spring <td>5.5 (highest)<td>2.4 <td>2 (lowest)</tr>
 <tr><th scope="row">Summer <td>4.5 (highest)<td>3.4<td>2 (lowest)</tr>
 <tr><th scope="row">Autumn <td>3.5 (highest) <td>1.8 <td>1.5 (lowest)</tr>
 <tr><th scope="row">Winter <td>1.5 (highest) <td>1.2 <td>1 lowest</tr>
 </table>

 Images of text

 Sometimes, an image only contains text, and the purpose of the image
 is to display text using visual effects and /or fonts. It is strongly
 recommended that text styled using CSS be used, but if this is not possible, provide
 the same text in the alt attribute as is in the image.

 This example shows an image of the text "Get Happy!" written in a fancy multi colored freehand style.
 The image makes up the content of a heading. In this case the text alternative for the image is "Get Happy!".

 [image: Get Happy!]

<h1></h1>

 In this example we have an advertising image consisting of text, the phrase "The BIG sale" is
 repeated 3 times, each time the text gets smaller and fainter, the last line reads "...ends Friday"
 In the context of use, as an advertisement, it is recommended that the image's text alternative only include the text "The BIG sale"
 once as the repetition is for visual effect and the repetition of the text for users who cannot view
 the image is unnecessary and could be confusing.

 [image: The big sale ...ends Friday.]

 <p></p>

 In situations where there is also a photo or other graphic along with the image of text,
 ensure that the words in the image text are included in the text alternative, along with any other description
 of the image that conveys meaning to users who can view the image, so the information is also
 available to users who cannot view the image.

Images that include text

 Sometimes, an image consists of a graphics such as a chart and associated text.
 In this case it is recommended that the text in the image is included in the text alternative.

 Consider an image containing a pie chart and associated text. It is recommended wherever
 possible to provide any associated text as text, not an image of text.
 If this is not possible include the text in the text alternative along with the pertinent information
 conveyed in the image.

 [image: Figure 1. Distribution of Articles by Journal
 Category. Pie chart: Language=68%, Education=14% and Science=18%.]

 <p><img src="figure1.gif" alt="Figure 1. Distribution of Articles by Journal Category.
 Pie chart: Language=68%, Education=14% and Science=18%."></p>

 Here's another example of the same pie chart image,
 showing a short text alternative included in the alt attribute
 and a longer text alternative in text. The figure and figcaption
 elements are used to associate the longer text alternative with the image. The alt attribute is used
 to label the image.

 <figure>

 <figcaption>Figure 1. Distribution of Articles by Journal Category.
 Pie chart: Language=68%, Education=14% and Science=18%.</figcaption>
 </figure>

 The advantage of this method over the previous example is that the text alternative
 is available to all users at all times. It also allows structured mark up to be used in the text
 alternative, where as a text alternative provided using the alt attribute does not.

 Images that enhance the themes or subject matter of the page content

 An image that isn't discussed directly by the surrounding text but still has
 some relevance can be included in a page using the img element. Such images
 are more than mere decoration, they may augment the themes or subject matter of the page
 content and so still form part of the content. In these cases, it is recommeneded that a
 text alternative be provided.

 Here is an example of an image closely related to the subject matter of the page content
 but not directly discussed. An image of a painting inspired by a poem, on a page reciting that poem.
 The following snippet shows an example. The image is a painting titled the "Lady of Shallot", it is
 inspired by the poem and its subject matter is derived from the poem. Therefore it is strongly
 recommended that a text alternative is provided. There is a short description of the content of
 the image in the alt attribute and
 a link below the image to a longer description located at the bottom of the document. At the end
 of the longer description there is also a link to further information about the painting.

 [image: A painting inspired by Alfred Tennyson's poem The Lady of Shalott]

 <header>
 <h1>The Lady of Shalott</h1>
 <p>A poem by Alfred Lord Tennyson</p>
 </header>

 <p>Description of the painting.</p>

 <!-- Full Recitation of Alfred, Lord Tennyson's Poem. -->

 ...
 ...
 ...
 <p id="des">The woman in the painting is wearing a flowing white dress. A large piece of intricately
 patterned fabric is draped over the side. In her right hand she holds the chain mooring the boat. Her expression
 is mournful. She stares at a crucifix lying in front of her. Beside it are three candles. Two have blown out.
 Further information about the painting.</p>

 It is not always easy to write a useful text alternative for an image, another option is to provide a link to a
 description or further information about the image when one is available.

 In this example of the same image, there is a short text alternative included in the alt attribute, and
 there is a link after the image. The link points to a page containing
 information about the painting.

 The Lady of Shalott
A poem by Alfred Lord Tennyson.

 [image: Painting of a woman in a white flowing dress, sitting in a small boat.]

 About this painting.

 Full recitation of Alfred, Lord Tennyson's poem.

 <header><h1>The Lady of Shalott</h1>
 <p>A poem by Alfred Lord Tennyson</p></header>
 <figure>

 <p>About this painting.</p>
 </figure>
 <!-- Full Recitation of Alfred, Lord Tennyson's Poem. -->

 A purely decorative image that doesn't add any information

 Purely decorative images are visual enhancements, decorations or embellishments that provide no
 function or information beyond aesthetics to users who can view the images.

 Mark up purely decorative images so they can be ignored by assistive technology by using an empty alt
 attribute (alt=""). While it is not unacceptable to include decorative images inline,
 it is recommended if they are purely decorative to include the image using CSS.

 Here's an example of an image being used as a decorative banner for a person's blog, the image offers no information
 and so an empty alt attribute is used.

 [image:]

 Clara's Blog

 Welcome to my blog...

 <header>
 <p></p>
 <h1>Clara's Blog</h1>
 </header>
 <p>Welcome to my blog...</p>

 Inline images

 When images are used inline as part of the flow of text in a sentence, provide a word or phrase as a text
 alternative which makes sense in the context of the sentence it is apart of.

 I [image: love] you.

 I you.

 My [image: heart] breaks.

 My breaks.

 A group of images that form a single larger picture with no links

 When a picture has been sliced into smaller image files that are then displayed
 together to form the complete picture again, include a text alternative for one
 of the images using the alt attribute as per the relevant relevant
 guidance for the picture as a whole, and then include an empty alt
 attribute on the other images.

 In this example, a picture representing a company logo for the PIP Corporation
 has been split into two pieces, the first containing the letters "PIP" and the second with the word "CO".
 The text alternatve PIP CO is in the alt attribute of the first image.

 [image: text 'PIP'.][image: text 'CO'.]

 In the following example, a rating is shown as three filled
 stars and two empty stars. While the text alternative could have
 been "★★★☆☆", the author has
 instead decided to more helpfully give the rating in the form "3
 out of 5". That is the text alternative of the first image, and the
 rest have empty alt attributes.

 [image: 3 out of 5.]

 <p>Rating: <meter max=5 value=3>

 </meter></p>

 A group of images that form a single larger picture with links

 Generally, image maps should be
 used instead of slicing an image for links.

 Sometimes, when you create a composite picture from multiple images, you may wish to
 link one or more of the images. Provide an alt attribute
 for each linked image to describe the purpose of the link.

 In the following example, a composite picture is used to represent a "crocoduck"; a fictional creature which
 defies evolutionary principles by being part crocodile and part duck. You are asked to interact with the
 crocoduck, but you need to exercise caution...

 [image: crocodile's angry, chomping head][image: duck's soft, feathery body]

 <h1>The crocoduck</h1>
 <p>You encounter a strange creature called a "crocoduck".
 The creature seems angry! Perhaps some friendly stroking will help to calm
 it, but be careful not to stroke any crocodile parts. This would just enrage
 the beast further.</p>

 Images of Pictures

 Images of pictures or graphics include visual representations of objects, people, scenes, abstractions, etc.
 This non-text content can convey a significant amount of
 information visually or provide a specific sensory experience to
 a sighted person. Examples include photographs, paintings, drawings and artwork.

 An appropriate text alternative for a picture is a brief description, or name [WCAG]. As in all text alternative authoring decisions, writing suitable text alternatives for pictures requires
 human judgment. The text value is subjective to the context where the image is used and the page author's writing style. Therefore,
 there is no single 'right' or 'correct' piece of alt text for any particular image. In addition to providing a short text
 alternative that gives a brief description of the non-text content, also providing supplemental content through another means when
 appropriate may be useful.

 This first example shows an image uploaded to a photo-sharing site. The photo is of a cat, sitting in the bath. The image has a
 text alternative provided using the img element's alt attribute. It also has a caption provided by including
 the img element in a figure element and using a figcaption element to identify the caption text.

 [image: Lola the cat sitting under an umbrella in the bath tub.]

 Lola prefers a bath to a shower.

 <figure>

 <figcaption>Lola prefers a bath to a shower.</figcaption>
 </figure>

 This example is of an image that defies a complete description, as the subject of the image is open to interpretation.
 The image has a text alternative in the alt attribute which gives users who cannot view the image a sense
 of what the image is. It also has a caption provided by including the img element in a figure
 element and using a figcaption element to identify the caption text.

 [image: An abstract, freeform vertically symmetrical black inkblot on a light background.]

 The first of the ten cards in the Rorschach test.

 <figure>

 <figcaption>The first of the ten cards in the Rorschach test.</figcaption>
 </figure>

 Webcam images

 Webcam images are static images that are automatically updated periodically. Typically the images are
 from a fixed viewpoint, the images may update on the page automatically as each new image is uploaded from
 the camera or the user may be required to refresh the page to view an updated image. Examples include traffic
 and weather cameras.

 This example is fairly typical; the title and a time stamp are included in the image, automatically generated
 by the webcam software. It would be better if the text information was not included in the image, but as it is part
 of the image, include it part of the text alternative. A caption is also provided using the figure
 and figcaption elements. As the image is provided to give a visual indication of the current weather near a building,
 a link to a local weather forecast is provided, as with automatically generated and uploaded webcam images it may be impractical to
 provide such information as a text alternative.

 The text of the alt attribute includes a prose version of the timestamp, designed to make the text more
 understandable when announced by text to speech software. The text alternative also includes a description of some aspects
 of what can be seen in the image which are unchanging, although weather conditions and time of day change.

 [image: Sopwith house weather cam. Taken on the 21/04/10 at 11:51 and 34 seconds. In the foreground are the safety
 rails on the flat part of the roof. Nearby ther are low rise industrial buildings, beyond those are block of flats. In the distance there's a
 church steeple.]

 View from the top of Sopwith house, looking towards North Kingston. This image is updated every hour.

 View the latest weather details for Kingston upon Thames.

 <figure>
 <img src="webcam1.jpg" alt="Sopwith house weather cam. Taken on the 21/04/10 at 11:51 and 34 seconds.
 In the foreground are the safety rails on the flat part of the roof. Nearby there are low rise industrial buildings,
 beyond are blocks of flats. In the distance there's a church steeple.">
 <figcaption>View from Sopwith house, looking towards north Kingston. This image is updated every hour.</figcaption>
 </figure>
 <p>View the latest weather details for Kingston upon Thames.</p>

	
 An image not intended for the user

 Generally authors should avoid using img elements
 for purposes other than showing images.

 If an img element is being used for purposes other
 than showing an image, e.g. as part of a service to count page
 views, use an empty alt attribute.

 In such cases, the width and
 height attributes should both
 be set to zero.

 An example of an img element used to collect web page statistics.
 The alt attribute is empty as the image has no meaning.

 It is recommended for the example use above the width and
 height attributes be set to zero.

 Another example use is when an image such as a spacer.gif is used to aid positioning of content.
 The alt attribute is empty as the image has no meaning.

 It is recommended that that CSS be used to position content instead of img elements.

 Icon Images

 An icon is usually a simple picture representing a program, action, data file or a concept.
 Icons are intended to help users of visual browsers to recognize features at a glance.

 Use an empty alt attribute when an icon is supplemental to
 text conveying the same meaning.

 In this example, we have a link pointing to a site's home page, the link contains a
 house icon image and the text "home". The image has an empty alt text.
 Where images are used in this way, it would also appropriate to add the image using CSS

 [image: A house icon next to the word 'home'.]

 Home

 #home:before
 {
 content: url(home.png);
 }

 Home

 In this example, there is a warning message, with a warning icon. The word "Warning!" is in emphasized
 text next to the icon. As the information conveyed by the icon is redundant the img element is given an an empty alt attribute.

 [image: Warning!] Warning! Your session is about to expire.

 <p>
 Warning!
 Your session is about to expire</p>

 When an icon conveys additional information not available in text, provide a text alternative.

 In this example, there is a warning message, with a warning icon. The icon emphasizes the
 importance of the message and identifies it as a particular type of content.

 [image: Warning!] Your session is about to expire.

 <p>
 Your session is about to expire</p>

 CAPTCHA Images

 CAPTCHA stands for "Completely Automated Public Turing test to tell Computers and Humans Apart".
 CAPTCHA images are used for security purposes to confirm that content is being accessed by a person
 rather than a computer. This authentication is done through visual verification of an image. CAPTCHA
 typically presents an image with characters or words in it that the user is to re-type. The image is
 usually distorted and has some noise applied to it to make the characters difficult to read.

 To improve the accessibility of CAPTCHA provide text alternatives that identify and describe the purpose of the image, and provide alternative
 forms of the CAPTCHA using output modes for different types of sensory perception. For instance provide
 an audio alternative along with the visual image. Place the audio option right next to the visual one.
 This helps but is still problematic for people without sound cards, the deaf-blind, and some people with limited hearing.
 Another method is to include a form that asks a question along with the visual image. This helps but can be
 problematic for people with cognitive impairments.

 It is strongly recommended that alternatives to CAPTCHA be used, as all forms of CAPTCHA introduce
 unacceptable barriers to entry for users with disabilities. Further information is available in
 Inaccessibility of CAPTCHA.

 This example shows a CAPTCHA test which uses a distorted image of text. The text alternative in the
 alt attribute provides instructions for a user in the case where she cannot access the image content.

 Example Image:

 [image: captcha containing the words 'aides' and 'sprucest'. The letters are distorted and the color of the letters and background is partially inverted,]

 Example code:

 <!-- audio CAPTCHA option that allows the user to listen and type the word -->
 <!-- form that asks a question -->

 Guidance for markup generators

 Markup generators (such as WYSIWYG authoring tools) should,
 wherever possible, obtain alternative text from their
 users. However, it is recognized that in many cases, this will not
 be possible.

 For images that are the sole contents of links, markup generators
 should examine the link target to determine the title of the target,
 or the URL of the target, and use information obtained in this
 manner as the alternative text.

 For images that have captions, markup generators should use the
 figure and figcaption elements to provide the
 image's caption.

 As a last resort, implementors should either set the alt attribute to the empty string, under
 the assumption that the image is a purely decorative image that
 doesn't add any information but is still specific to the surrounding
 content, or omit the alt attribute
 altogether, under the assumption that the image is a key part of the
 content.

 Markup generators may specify a generator-unable-to-provide-required-alt
 attribute on img elements for which they have been
 unable to obtain alternative text and for which they have therefore
 omitted the alt attribute. The
 value of this attribute must be the empty string. Documents
 containing such attributes are not conforming, but conformance
 checkers will silently
 ignore this error.

 This is intended to avoid markup generators from
 being pressured into replacing the error of omitting the alt attribute with the even more
 egregious error of providing phony alternative text, because
 state-of-the-art automated conformance checkers cannot distinguish
 phony alternative text from correct alternative text.

 Markup generators should generally avoid using the image's own
 file name as the alternative text. Similarly, markup generators
 should avoid generating alternative text from any content that will
 be equally available to presentation user agents (e.g. Web
 browsers).

 This is because once a page is generated, it will
 typically not be updated, whereas the browsers that later read the
 page can be updated by the user, therefore the browser is likely to
 have more up-to-date and finely-tuned heuristics than the markup
 generator did when generating the page.

 Guidance for conformance checkers

 A conformance checker must report the lack of an alt attribute as an error unless one of
 the conditions listed below applies:

 	The img element is in a figure
 element that satisfies the
 conditions described above.

 	The img element has a (non-conforming) generator-unable-to-provide-required-alt
 attribute whose value is the empty string. A conformance checker
 that is not reporting the lack of an alt attribute as an error must also not
 report the presence of the empty generator-unable-to-provide-required-alt
 attribute as an error. (This case does not represent a case where
 the document is conforming, only that the generator could not
 determine appropriate alternative text — validators are not
 required to show an error in this case, because such an error might
 encourage markup generators to include bogus alternative text
 purely in an attempt to silence validators. Naturally, conformance
 checkers may report the lack of an alt attribute as an error even in the
 presence of the generator-unable-to-provide-required-alt
 attribute; for example, there could be a user option to report
 all conformance errors even those that might be the more
 or less inevitable result of using a markup generator.)

 The iframe element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	Text that conforms to the requirements given in the prose.

 	Content attributes:

 	Global attributes

 	src

 	srcdoc

 	name

 	sandbox

 	seamless

 	width

 	height

 	DOM interface:

 	
interface HTMLIFrameElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString srcdoc;
 attribute DOMString name;
 [PutForwards=] readonly attribute DOMSettableTokenList sandbox;
 attribute boolean seamless;
 attribute DOMString width;
 attribute DOMString height;
 readonly attribute Document? contentDocument;
 readonly attribute WindowProxy? contentWindow;
};

 The iframe element represents a nested browsing
 context.

 The src attribute gives the address of a page
 that the nested browsing context is to contain. The attribute, if present, must be a
 valid non-empty URL potentially surrounded by spaces.

 The srcdoc attribute gives the content of
 the page that the nested browsing context is to contain. The value of the attribute
 is the source of an iframe srcdoc
 document.

 For iframe elements in HTML documents, the srcdoc attribute, if present, must have a value using the
 HTML syntax that consists of the following syntactic components, in the given order:

 	Any number of comments and space characters.

 	Optionally, a DOCTYPE.

	Any number of comments and space characters.

 	The root element, in the form of an html element.

 	Any number of comments and space characters.

 For iframe elements in XML documents, the srcdoc attribute, if present, must have a value that matches the
 production labeled document in the XML specification. [XML]

 Here a blog uses the srcdoc attribute in conjunction
 with the sandbox and seamless attributes described below to provide users of user
 agents that support this feature with an extra layer of protection from script injection in the
 blog post comments:

 <article>
 <h1>I got my own magazine!</h1>
 <p>After much effort, I've finally found a publisher, and so now I
 have my own magazine! Isn't that awesome?! The first issue will come
 out in September, and we have articles about getting food, and about
 getting in boxes, it's going to be great!</p>
 <footer>
 <p>Written by cap, 1 hour ago.
 </footer>
 <article>
 <footer> Thirteen minutes ago, ch wrote: </footer>
 <iframe seamless sandbox srcdoc="<p>did you get a cover picture yet?"></iframe>
 </article>
 <article>
 <footer> Nine minutes ago, cap wrote: </footer>
 <iframe seamless sandbox srcdoc="<p>Yeah, you can see it in my gallery."></iframe>
 </article>
 <article>
 <footer> Five minutes ago, ch wrote: </footer>
 <iframe seamless sandbox srcdoc="<p>hey that's earl's table.
<p>you should get earl&amp;me on the next cover."></iframe>
 </article>

 Notice the way that quotes have to be escaped (otherwise the srcdoc attribute would end prematurely), and the way raw
 ampersands (e.g. in URLs or in prose) mentioned in the sandboxed content have to be
 doubly escaped — once so that the ampersand is preserved when originally parsing
 the srcdoc attribute, and once more to prevent the
 ampersand from being misinterpreted when parsing the sandboxed content.

 Furthermore, notice that since the DOCTYPE is optional in
 iframe srcdoc documents, and the html,
 head, and body elements have optional
 start and tags, and the title element is also optional in iframe srcdoc
 documents, the markup in a srcdoc attribute can be
 relatively succint despite representing an entire document, since only the contents of the
 body element need appear literally in the syntax. The other elements are still
 present, but only by implication.

 In the HTML syntax, authors need only remember to use """ (U+0022) characters to wrap the attribute contents and then to escape all """ (U+0022) and U+0026 AMPERSAND (&) characters, and to specify the sandbox attribute, to ensure safe embedding of content.

 Due to restrictions of the XHTML syntax, in XML the "<" (U+003C) character needs to be escaped as well. In order to prevent attribute-value normalization, some of XML's
 whitespace characters — specifically "tab" (U+0009), "LF" (U+000A), and "CR" (U+000D) — also need to be escaped. [XML]

 If the src attribute and the srcdoc attribute are both specified together, the srcdoc attribute takes priority. This allows authors to provide
 a fallback URL for legacy user agents that do not support the srcdoc attribute.

 When an iframe element is inserted
 into a document, the user agent must create a nested browsing context, and
 then process the iframe attributes for the first time.

 When an iframe element is removed
 from a document, the user agent must discard the nested browsing context.

 This happens without any unload events firing
 (the nested browsing context and its Document are discarded, not unloaded).

 Whenever an iframe element with a nested browsing context has its
 srcdoc attribute set, changed, or removed, the user agent
 must process the iframe attributes.

 Similarly, whenever an iframe element with a nested browsing context
 but with no srcdoc attribute specified has its src attribute set, changed, or removed, the user agent must
 process the iframe attributes.

 When the user agent is to process the iframe attributes, it must run
 the first appropriate steps from the following list:

 	If the srcdoc attribute is specified

 	Navigate the element's child browsing context
 to a resource whose Content-Type is text/html, whose URL
 is about:srcdoc, and whose data consists of the value of the attribute. The
 resulting Document must be considered an iframe srcdoc document.

 	Otherwise, if the element has no src attribute
 specified, and the user agent is processing the iframe's attributes for the first
 time

 	

 Queue a task to run the iframe load event steps.

 	Otherwise

 	

 	

 If the value of the src attribute is the empty string,
 let url be the string "about:blank".

 Otherwise, resolve the value of the src attribute, relative to the iframe element.

 If that is not successful, then let url be the string
 "about:blank". Otherwise, let url be the resulting
 absolute URL.

 	

 If there exists an ancestor browsing context whose active
 document's address, ignoring fragment
 identifiers, is equal to url, then abort these steps.

 	

 Navigate the element's child browsing context
 to url.

 Any navigation required of the user agent in the process
 the iframe attributes algorithm must be completed as an explicit
 self-navigation override and with the iframe element's document's
 browsing context as the source browsing context.

 Furthermore, if the active document of the element's child browsing
 context before such a navigation was not completely
 loaded at the time of the new navigation, then the navigation must be completed with replacement enabled.

 Similarly, if the child browsing context's session history contained
 only one Document when the process the iframe attributes
 algorithm was invoked, and that was the about:blank Document created
 when the child browsing context was created, then any navigation required of the user agent in that algorithm must be completed
 with replacement enabled.

 When a Document in an iframe is marked as completely
 loaded, the user agent must synchronously run the iframe load event steps.

 When content whose URL has the same origin as the iframe
 element's Document fails to load (e.g. due to a DNS error, network error, or if the
 server returned a 4xx or 5xx status code or
 equivalent), then the user agent must queue a task to fire a simple
 event named error at the element instead. (This event does
 not fire for parse errors, script errors, or any errors for
 cross-origin resources.)

 The task source for these tasks is the DOM
 manipulation task source.

 A load event is also fired at the
 iframe element when it is created if no other data is loaded in it.

 Each Document has an iframe load in progress flag and a mute
 iframe load flag. When a Document is created, these flags must be unset for
 that Document.

 The iframe load event steps are as follows:

 	Let child document be the active document of the
 iframe element's nested browsing context.

 	If child document has its mute iframe load flag set,
 abort these steps.

 	Set child document's iframe load in progress
 flag.

 	Fire a simple event named load at the
 iframe element.

 	Unset child document's iframe load in progress
 flag.

 This, in conjunction with scripting, can be used to probe the URL space of the
 local network's HTTP servers. User agents may implement cross-origin
 access control policies that are stricter than those described above to mitigate this attack, but
 unfortunately such policies are typically not compatible with existing Web content.

 When the iframe's browsing context's active document is
 not ready for post-load tasks, and when anything in the iframe is delaying the load event of the iframe's
 browsing context's active document, and when the iframe's
 browsing context is in the delaying load events
 mode, the iframe must delay the load event of its document.

 If, during the handling of the load event, the
 browsing context in the iframe is again navigated, that will further delay the load event.

 If, when the element is created, the srcdoc attribute is not set, and the src attribute is either also not set or set but its value cannot be
 resolved, the browsing context will remain at the initial
 about:blank page.

 If the user navigates away from this page, the
 iframe's corresponding WindowProxy object will proxy new
 Window objects for new Document objects, but the src attribute will not change.

 The name attribute, if present, must be a
 valid browsing context name. The given value is used to name the nested
 browsing context.

 Whenever the name attribute is set, the nested
 browsing context's name must be changed to
 the new value. If the attribute is removed, the browsing context name must be set to
 the empty string.

 The sandbox attribute, when specified,
 enables a set of extra restrictions on any content hosted by the iframe. Its value
 must be an unordered set of unique space-separated tokens that are ASCII
 case-insensitive. The allowed values are allow-forms, allow-pointer-lock, allow-popups, allow-same-origin, allow-scripts, and allow-top-navigation.

 When the attribute is set, the content is treated as being from a unique origin,
 forms, scripts, and various potentially annoying APIs are disabled, links are prevented from
 targeting other browsing contexts, and plugins are secured.
 The allow-same-origin keyword causes
 the content to be treated as being from its real origin instead of forcing it into a unique
 origin; the allow-top-navigation
 keyword allows the content to navigate its top-level browsing context;
 and the allow-forms, allow-pointer-lock, allow-popups and allow-scripts keywords re-enable forms, the
 pointer lock API, popups, and scripts respectively. [POINTERLOCK]

 Setting both the allow-scripts and allow-same-origin keywords together when the
 embedded page has the same origin as the page containing the iframe
 allows the embedded page to simply remove the sandbox
 attribute and then reload itself, effectively breaking out of the sandbox altogether.

 These flags only take effect when the nested browsing context of
 the iframe is navigated. Removing them, or removing the
 entire sandbox attribute, has no effect on an
 already-loaded page.

 Potentially hostile files should not be served from the same server as the file
 containing the iframe element. Sandboxing hostile content is of minimal help if an
 attacker can convince the user to just visit the hostile content directly, rather than in the
 iframe. To limit the damage that can be caused by hostile HTML content, it should be
 served from a separate dedicated domain. Using a different domain ensures that scripts in the
 files are unable to attack the site, even if the user is tricked into visiting those pages
 directly, without the protection of the sandbox
 attribute.

 When an iframe element with a sandbox
 attribute has its nested browsing context created (before the initial
 about:blank Document is created), and when an iframe
 element's sandbox attribute is set or changed while it
 has a nested browsing context, the user agent must parse the sandboxing directive using the attribute's value as the input, and the iframe element's nested browsing context's
 iframe sandboxing flag set as the output.

 When an iframe element's sandbox
 attribute is removed while it has a nested browsing context, the user agent must
 empty the iframe element's nested browsing context's
 iframe sandboxing flag set as the output.

 In this example, some completely-unknown, potentially hostile, user-provided HTML content is
 embedded in a page. Because it is served from a separate domain, it is affected by all the normal
 cross-site restrictions. In addition, the embedded page has scripting disabled, plugins disabled,
 forms disabled, and it cannot navigate any frames or windows other than itself (or any frames or
 windows it itself embeds).

 <p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="http://usercontent.example.net/getusercontent.cgi?id=12193"></iframe>

 It is important to use a separate domain so that if the attacker convinces the
 user to visit that page directly, the page doesn't run in the context of the site's origin, which
 would make the user vulnerable to any attack found in the page.

 In this example, a gadget from another site is embedded. The gadget has scripting and forms
 enabled, and the origin sandbox restrictions are lifted, allowing the gadget to communicate with
 its originating server. The sandbox is still useful, however, as it disables plugins and popups,
 thus reducing the risk of the user being exposed to malware and other annoyances.

 <iframe sandbox="allow-same-origin allow-forms allow-scripts"
 src="http://maps.example.com/embedded.html"></iframe>

 Suppose a file A contained the following fragment:

 <iframe sandbox="allow-same-origin allow-forms" src=B></iframe>

 Suppose that file B contained an iframe also:

 <iframe sandbox="allow-scripts" src=C></iframe>

 Further, suppose that file C contained a link:

 Link

 For this example, suppose all the files were served as text/html.

 Page C in this scenario has all the sandboxing flags set. Scripts are disabled, because the
 iframe in A has scripts disabled, and this overrides the allow-scripts keyword set on the
 iframe in B. Forms are also disabled, because the inner iframe (in B)
 does not have the allow-forms keyword
 set.

 Suppose now that a script in A removes all the sandbox attributes in A and B.
 This would change nothing immediately. If the user clicked the link in C, loading page D into the
 iframe in B, page D would now act as if the iframe in B had the allow-same-origin and allow-forms keywords set, because that was the
 state of the nested browsing context in the iframe in A when page B was
 loaded.

 Generally speaking, dynamically removing or changing the sandbox attribute is ill-advised, because it can make it quite
 hard to reason about what will be allowed and what will not.

 The seamless attribute is a boolean
 attribute. When specified, it indicates that the iframe element's
 browsing context is to be rendered in a manner that makes it appear to be part of the
 containing document (seamlessly included in the parent document).

 An HTML inclusion is effected using this attribute as in the following example.
 In this case, the inclusion is of a site-wide navigation bar.

 <!DOCTYPE HTML>
<title>Mirror Mirror — MovieInfo™</title>
<header>
 <h1>Mirror Mirror</h1>
 <p>Part of the MovieInfo™ Database</p>
 <nav>
 <iframe seamless src="nav.inc"></iframe>
 </nav>
</header>
...

 An iframe element is said to be in seamless mode when all of the
 following conditions are met:

 	The seamless attribute is set on the
 iframe element, and

	The iframe element's owner Document's active sandboxing flag
 set does not have the sandboxed seamless iframes flag set, and

	Either:

 	The browsing context's active document has the same
 origin as the iframe element's Document, or

	The browsing context's active document's has the same origin as the
 iframe element's Document, or

	The browsing context's active document is an
 iframe srcdoc document.

 When an iframe element is in seamless mode, the following
 requirements apply:

 	The user agent must set the seamless browsing context flag to true for that
 browsing context. This will cause links to open in the
 parent browsing context unless an explicit self-navigation override is used
 (target="_self").

 	Media queries in the context of the iframe's browsing context
 (e.g. on media attributes of style elements in
 Documents in that iframe) must be evaluated with respect to the nearest
 ancestor browsing context that is not itself being nested through an iframe that is in seamless
 mode. [MQ]

 	In a CSS-supporting user agent: the user agent must add all the style sheets that apply to
 the iframe element to the cascade of the active document of the
 iframe element's nested browsing context, at the appropriate cascade
 levels, before any style sheets specified by the document itself.

 	In a CSS-supporting user agent: the user agent must, for the purpose of CSS property
 inheritance only, treat the root element of the active document of the
 iframe element's nested browsing context as being a child of the
 iframe element. (Thus inherited properties on the root element of the document in
 the iframe will inherit the computed values of those properties on the
 iframe element instead of taking their initial values.)

 	In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic
 width of the iframe to the width that the element would have if it was a
 non-replaced block-level element with 'width: auto', unless that width would be zero (e.g. if the
 element is floating or absolutely positioned), in which case the user agent should set the
 intrinsic width of the iframe to the shrink-to-fit width of the root element (if
 any) of the content rendered in the iframe.

 	In visual media, in a CSS-supporting user agent: the user agent should set the intrinsic
 height of the iframe to the shortest height that would make the content rendered in
 the iframe at its current width (as given in the previous bullet point) have no
 scrollable overflow at its bottom edge. Scrollable overflow is any overflow that would increase the range to
 which a scrollbar or other scrolling mechanism can scroll.

 	

 In visual media, in a CSS-supporting user agent: the user agent must force the height of the
 initial containing block of the active document of the nested browsing
 context of the iframe to zero.

 This is intended to get around the otherwise circular dependency of percentage
 dimensions that depend on the height of the containing block, thus affecting the height of the
 document's bounding box, thus affecting the height of the viewport, thus affecting the size of
 the initial containing block.

 	In speech media, the user agent should render the nested browsing context
 without announcing that it is a separate document.

 	

 User agents should, in general, act as if the active document of the
 iframe's nested browsing context was part of the document that the
 iframe is in, if any.

 For example if the user agent supports listing all the links in a document,
 links in "seamlessly" nested documents would be included in that list without being
 significantly distinguished from links in the document itself.

 	The nested browsing context's Window object's
 cross-boundary event parent is the browsing context container. [DOM]

 If the attribute is not specified, or if the origin conditions listed above are
 not met, then the user agent should render the nested browsing context in a manner
 that is clearly distinguishable as a separate browsing context, and the
 seamless browsing context flag must be set to false for that browsing
 context.

 It is important that user agents recheck the above conditions whenever the
 active document of the nested browsing context of the
 iframe changes, such that the seamless browsing context flag gets unset
 if the nested browsing context is navigated to another
 origin.

 The attribute can be set or removed dynamically, with the rendering updating in
 tandem.

 In this example, the site's navigation is embedded using a client-side include using an
 iframe. Any links in the iframe will, in new user agents, be
 automatically opened in the iframe's parent browsing context; for legacy user
 agents, the site could also include a base element with a target attribute with the value _parent.
 Similarly, in new user agents the styles of the parent page will be automatically applied to the
 contents of the frame, but to support legacy user agents authors might wish to include the styles
 explicitly.

 <nav><iframe seamless src="nav.include.html"></iframe></nav>

 The contenteditable attribute does not
 propagate into seamless iframes.

 The iframe element supports dimension attributes for cases where the
 embedded content has specific dimensions (e.g. ad units have well-defined dimensions).

 An iframe element never has fallback content, as it will always
 create a nested browsing context, regardless of whether the specified initial
 contents are successfully used.

 Descendants of iframe elements represent nothing. (In legacy user agents that do
 not support iframe elements, the contents would be parsed as markup that could act as
 fallback content.)

 When used in HTML documents, the allowed content model
 of iframe elements is text, except that invoking the HTML fragment parsing
 algorithm with the iframe element as the context element and the text contents as the input must result in a list of nodes that are all phrasing content,
 with no parse errors having occurred, with no script
 elements being anywhere in the list or as descendants of elements in the list, and with all the
 elements in the list (including their descendants) being themselves conforming.

 The iframe element must be empty in XML documents.

 The HTML parser treats markup inside iframe elements as
 text.

 The IDL attributes src, srcdoc, name, sandbox, and seamless must reflect the respective
 content attributes of the same name.

 The contentDocument IDL attribute
 must return the Document object of the active document of the
 iframe element's nested browsing context, if any, or null otherwise.

 The contentWindow IDL attribute must
 return the WindowProxy object of the iframe element's nested
 browsing context, if any, or null otherwise.

 Here is an example of a page using an iframe to include advertising from an
 advertising broker:

 <iframe src="http://ads.example.com/?customerid=923513721&format=banner"
 width="468" height="60"></iframe>

 The embed element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	src

 	type

 	width

 	height

 	Any other attribute that has no namespace (see prose).

 	DOM interface:

 	
interface HTMLEmbedElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute DOMString width;
 attribute DOMString height;
 legacycaller any (any... arguments);
};

 Depending on the type of content instantiated by the
 embed element, the node may also support other
 interfaces.

 The embed element provides an integration point for an external
 (typically non-HTML) application or interactive content.

 The src attribute gives the address of the
 resource being embedded. The attribute, if present, must contain a valid non-empty URL
 potentially surrounded by spaces.

 The type attribute, if present, gives the
 MIME type by which the plugin to instantiate is selected. The value must be a
 valid MIME type. If both the type attribute and
 the src attribute are present, then the type attribute must specify the same type as the explicit Content-Type metadata of the resource given by the src attribute.

 When the element is created with neither a src attribute
 nor a type attribute, and when attributes are removed such
 that neither attribute is present on the element anymore, and when the element has a media
 element ancestor, and when the element has an ancestor object element that is
 not showing its fallback content, any plugin instantiated for
 the element must be removed, and the embed element then represents nothing.

 An embed element is said to be potentially
 active when the following conditions are all met simultaneously:

 	The element is in a Document or was in a Document the last time the event loop
 reached step 1.

 	The element's Document is fully active.

 	The element has either a src attribute set or a type attribute set (or both).

 	The element's src attribute is either absent or its value
 is not the empty string.

 	The element is not a descendant of a media element.

 	The element is not a descendant of an object element that is not showing its
 fallback content.

 	The element is being rendered, or was being rendered the last time
 the event loop reached step 1.

 Whenever an embed element that was not potentially active becomes potentially active, and whenever a potentially active embed element that is
 remaining potentially active and has its src attribute set, changed, or removed or its type attribute set, changed, or removed, the user agent must
 queue a task using the embed task source to run
 the embed element setup steps.

 The embed element setup steps are as follows:

 	If another task has since been queued to run the
 embed element setup steps for this element, then abort these steps.

 	

 	If the element has a src attribute set

 	

 The user agent must resolve the value of the element's
 src attribute, relative to the element. If that is
 successful, the user agent should fetch the resulting absolute
 URL, from the element's browsing context scope origin if it has one. The task that
 is queued by the networking task source once
 the resource has been fetched must run the following steps:

 	If another task has since been queued to run
 the embed element setup steps for this element, then abort these
 steps.

 	

 Determine the type of the content being embedded, as
 follows (stopping at the first substep that determines the type):

 	If the element has a type attribute, and that
 attribute's value is a type that a plugin supports, then the value of the type attribute is the content's
 type.

 	

 Otherwise, if applying the URL parser algorithm to the URL of the
 specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin
 supports, then the content's type is the type that that
 plugin can handle.

 For example, a plugin might say that it can handle resources with path components that end with the four character string ".swf".

 	Otherwise, if the specified resource has explicit Content-Type
 metadata, then that is the content's
 type.

 	Otherwise, the content has no type and there can
 be no appropriate plugin for it.

 	

 If the previous step determined that the content's
 type is image/svg+xml, then run the following substeps:

 	If the embed element is not associated with a nested browsing
 context, associate the element with a newly created nested browsing
 context, and, if the element has a name
 attribute, set the browsing context name of the element's nested
 browsing context to the value of this attribute.

	Navigate the nested browsing context to
 the fetched resource, with replacement enabled, and with the
 embed element's document's browsing context as the source
 browsing context. (The src attribute of the
 embed element doesn't get updated if the browsing context gets further
 navigated to other locations.)

 	The embed element now represents its associated
 nested browsing context.

 	

 Otherwise, find and instantiate an appropriate plugin based on the content's type, and hand that plugin the
 content of the resource, replacing any previously instantiated plugin for the element. The
 embed element now represents this plugin instance.

 Whether the resource is fetched successfully or not (e.g. whether the response code was a
 2xx code or equivalent) must be ignored
 when determining the content's type and when handing
 the resource to the plugin.

 This allows servers to return data for plugins even with error responses (e.g.
 HTTP 500 Internal Server Error codes can still contain plugin data).

 Fetching the resource must delay the load event of the element's document.

 	If the element has no src attribute set

 	

 The user agent should find and instantiate an appropriate plugin based on the
 value of the type attribute. The embed
 element now represents this plugin instance.

 The embed element has no fallback content. If the user agent can't
 find a suitable plugin when attempting to find and instantiate one for the algorithm above, then
 the user agent must use a default plugin. This default could be as simple as saying "Unsupported
 Format".

 Whenever an embed element that was potentially
 active stops being potentially active, any
 plugin that had been instantiated for that element must be unloaded.

 When a plugin is to be instantiated but it cannot be secured and the sandboxed plugins browsing context
 flag is set on the embed element's Document's active
 sandboxing flag set, then the user agent must not instantiate the plugin, and
 must instead render the embed element in a manner that conveys that the
 plugin was disabled. The user agent may offer the user the option to override the
 sandbox and instantiate the plugin anyway; if the user invokes such an option, the
 user agent must act as if the conditions above did not apply for the purposes of this element.

 Plugins that cannot be secured are
 disabled in sandboxed browsing contexts because they might not honor the restrictions imposed by
 the sandbox (e.g. they might allow scripting even when scripting in the sandbox is disabled). User
 agents should convey the danger of overriding the sandbox to the user if an option to do so is
 provided.

 Any namespace-less attribute other than name, align, hspace, and vspace may be
 specified on the embed element, so long as its name is XML-compatible
 and contains no uppercase ASCII letters. These attributes are then passed as
 parameters to the plugin.

 All attributes in HTML documents get lowercased automatically, so the
 restriction on uppercase letters doesn't affect such documents.

 The four exceptions are to exclude legacy attributes that have side-effects beyond
 just sending parameters to the plugin.

 The user agent should pass the names and values of all the attributes of the embed
 element that have no namespace to the plugin used, when one is instantiated.

 The HTMLEmbedElement object representing the element must expose the scriptable
 interface of the plugin instantiated for the embed element, if any. At a
 minimum, this interface must implement the legacy caller
 operation. (It is suggested that the default behavior of this legacy caller operation, e.g.
 the behavior of the default plugin's legacy caller operation, be to throw a
 NotSupportedError exception.)

 The embed element supports dimension attributes.

 The IDL attributes src and type each must reflect the respective
 content attributes of the same name.

 Here's a way to embed a resource that requires a proprietary plugin, like Flash:

 <embed src="catgame.swf">

 If the user does not have the plugin (for example if the plugin vendor doesn't support the
 user's platform), then the user will be unable to use the resource.

 To pass the plugin a parameter "quality" with the value "high", an attribute can be
 specified:

 <embed src="catgame.swf" quality="high">

 This would be equivalent to the following, when using an object element
 instead:

 <object data="catgame.swf">
 <param name="quality" value="high">
</object>

 The object element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	If the element has a usemap attribute: Interactive content.

 	Listed, submittable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	Zero or more param elements, then, transparent.

 	Content attributes:

 	Global attributes

 	data

 	type

 	typemustmatch

 	name

 	usemap

 	form

 	width

 	height

 	DOM interface:

 	
interface HTMLObjectElement : HTMLElement {
 attribute DOMString data;
 attribute DOMString type;
 attribute boolean typeMustMatch;
 attribute DOMString name;
 attribute DOMString useMap;
 readonly attribute HTMLFormElement? form;
 attribute DOMString width;
 attribute DOMString height;
 readonly attribute Document? contentDocument;
 readonly attribute WindowProxy? contentWindow;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 legacycaller any (any... arguments);
};

 Depending on the type of content instantiated by the
 object element, the node also supports other
 interfaces.

 The object element can represent an external resource, which, depending on the
 type of the resource, will either be treated as an image, as a nested browsing
 context, or as an external resource to be processed by a plugin.

 The data attribute, if present, specifies the
 address of the resource. If present, the attribute must be a valid non-empty URL potentially
 surrounded by spaces.

 Authors who reference resources from other origins
 that they do not trust are urged to use the typemustmatch attribute defined below. Without that
 attribute, it is possible in certain cases for an attacker on the remote host to use the plugin
 mechanism to run arbitrary scripts, even if the author has used features such as the Flash
 "allowScriptAccess" parameter.

 The type attribute, if present, specifies the
 type of the resource. If present, the attribute must be a valid MIME type.

 At least one of either the data attribute or the type attribute must be present.

 The typemustmatch attribute is a
 boolean attribute whose presence indicates that the resource specified by the data attribute is only to be used if the value of the type attribute and the Content-Type of the
 aforementioned resource match.

 The typemustmatch attribute must not be
 specified unless both the data attribute and the type attribute are present.

 The name attribute, if present, must be a
 valid browsing context name. The given value is used to name the nested
 browsing context, if applicable.

 Whenever one of the following conditions occur:

 	the element is created,

	the element is popped off the stack of open elements of an HTML
 parser or XML parser,

	the element is not on the stack of open elements of an HTML parser
 or XML parser, and it is either inserted into a document or removed from a document,

	the element's Document changes whether it is fully active,

	one of the element's ancestor object elements changes to or from showing its
 fallback content,

	the element's classid attribute is set, changed, or removed,

	the element's classid attribute is not present, and
 its data attribute is set, changed, or removed,

	neither the element's classid attribute nor its
 data attribute are present, and its type attribute is set, changed, or removed,

	the element changes from being rendered to not being rendered, or vice versa,

 ...the user agent must queue a task to run the following steps to (re)determine
 what the object element represents. The task source for this task is the DOM manipulation task source. This task being queued or actively
 running must delay the load event of the element's document.

 	

 If the user has indicated a preference that this object element's fallback
 content be shown instead of the element's usual behavior, then jump to the step below labeled fallback.

 For example, a user could ask for the element's fallback content to
 be shown because that content uses a format that the user finds more accessible.

 	

 If the element has an ancestor media element, or has an ancestor
 object element that is not showing its fallback content, or
 if the element is not in a Document with a
 browsing context, or if the element's Document is not fully
 active, or if the element is still in the stack of open elements of an
 HTML parser or XML parser, or if the element is not being
 rendered, then jump to the step below labeled fallback.

 	

 If the classid attribute is present, and has a value
 that isn't the empty string, then: if the user agent can find a plugin suitable
 according to the value of the classid attribute, and
 either plugins aren't being sandboxed or that
 plugin can be secured, then that
 plugin should be used, and the value of the data attribute, if any, should be passed to the
 plugin. If no suitable plugin can be found, or if the
 plugin reports an error, jump to the step below labeled fallback.

 	If the data attribute is present and its value is
 not the empty string, then:

 	If the type attribute is present and its value is
 not a type that the user agent supports, and is not a type that the user agent can find a
 plugin for, then the user agent may jump to the step below labeled fallback without fetching the content to examine its real type.

 	Resolve the URL specified by the data attribute, relative to the element.

 	If that failed, fire a simple event named error at the element, then jump to the step below labeled fallback.

 	

 Fetch the resulting absolute URL, from the element's
 browsing context scope origin if it has one.

 Fetching the resource must delay the load event of the element's document
 until the task that is queued by the networking task source once the resource has been
 fetched (defined next) has been run.

 For the purposes of the application cache networking model, this
 fetch operation is not for a child browsing context (though it might
 end up being used for one after all, as defined below).

 	If the resource is not yet available (e.g. because the resource was not available in the
 cache, so that loading the resource required making a request over the network), then jump to
 the step below labeled fallback. The task that is queued by the
 networking task source once the resource is available must restart this algorithm
 from this step. Resources can load incrementally; user agents may opt to consider a resource
 "available" whenever enough data has been obtained to begin processing the resource.

 	If the load failed (e.g. there was an HTTP 404 error, there was a DNS error), fire
 a simple event named error at the element, then jump to
 the step below labeled fallback.

 	

 Determine the resource type, as follows:

 	

 Let the resource type be unknown.

 	

 If the object element has a type
 attribute and a typemustmatch attribute, and
 the resource has associated Content-Type metadata, and the
 type specified in the resource's Content-Type metadata is
 an ASCII case-insensitive match for the value of the element's type attribute, then let resource type
 be that type and jump to the step below labeled handler.

 	

 If the object element has a typemustmatch attribute, jump to the step below
 labeled handler.

 	

 If the user agent is configured to strictly obey Content-Type headers for this resource,
 and the resource has associated Content-Type metadata,
 then let the resource type be the type specified in the resource's Content-Type metadata, and jump to the step below
 labeled handler.

 This can introduce a vulnerability, wherein a site is trying to embed a
 resource that uses a particular plugin, but the remote site overrides that and instead
 furnishes the user agent with a resource that triggers a different plugin with different
 security characteristics.

 	

 If there is a type attribute present on the
 object element, and that attribute's value is not a type that the user agent
 supports, but it is a type that a plugin supports, then let the resource type be the type specified in that type attribute, and jump to the step below labeled
 handler.

 	

 Run the appropriate set of steps from the following
 list:

 	If the resource has associated Content-Type
 metadata

 	

 	

 Let binary be false.

 	

 If the type specified in the resource's Content-Type
 metadata is "text/plain", and the result of applying the rules for distinguishing if a resource is
 text or binary to the resource is that the resource is not
 text/plain, then set binary to true.

 	

 If the type specified in the resource's Content-Type
 metadata is "application/octet-stream", then set binary to true.

 	

 If binary is false, then let the resource
 type be the type specified in the resource's
 Content-Type metadata, and jump to the step below labeled handler.

 	

 If there is a type attribute present on the
 object element, and its value is not application/octet-stream,
 then run the following steps:

 	

 If the attribute's value is a type that a plugin supports, or the
 attribute's value is a type that starts with "image/" that is not also an
 XML MIME type, then let the resource type be the type
 specified in that type attribute.

 	

 Jump to the step below labeled handler.

 	Otherwise, if the resource does not have associated
 Content-Type metadata

 	

 	

 If there is a type attribute present on the
 object element, then let the tentative type be the type
 specified in that type attribute.

 Otherwise, let tentative type be the sniffed type of the resource.

 	

 If tentative type is not
 application/octet-stream, then let resource type be
 tentative type and jump to the step below labeled
 handler.

 	

 If applying the URL parser algorithm to the URL of the
 specified resource (after any redirects) results in a parsed URL whose path component matches a pattern that a plugin
 supports, then let resource type be the type that that plugin can
 handle.

 For example, a plugin might say that it can handle resources with path components that end with the four character string
 ".swf".

 It is possible for this step to finish, or for one of the substeps above to
 jump straight to the next step, with resource type still being unknown. In
 both cases, the next step will trigger fallback.

 	Handler: Handle the content as given by the first of the following cases that
 matches:

 	If the resource type is not a type that the user agent supports, but
 it is a type that a plugin supports

 	

 If plugins are being sandboxed and the plugin that
 supports resource type cannot be secured, jump to the step below labeled fallback.

 Otherwise, the user agent should use the plugin that supports
 resource type and pass the content of the resource to that
 plugin. If the plugin reports an error, then jump to the step below labeled fallback.

 	If the resource type is an XML MIME type, or

 if the resource type does not start with "image/"

 	

 The object element must be associated with a newly created nested
 browsing context, if it does not already have one.

 If the URL of the given resource is not about:blank, the
 element's nested browsing context must then be navigated to that resource, with
 replacement enabled, and with the object element's document's
 browsing context as the source browsing context. (The data attribute of the object element doesn't
 get updated if the browsing context gets further navigated to other locations.)

 If the URL of the given resource is about:blank, then,
 instead, the user agent must queue a task to fire a simple event
 named load at the object element.

 The object element represents the nested browsing
 context.

 If the name attribute is present, the
 browsing context name must be set to the value of this attribute; otherwise,
 the browsing context name must be set to the empty string.

 In certain situations, e.g. if the resource was fetched from an application cache but it is an HTML file
 with a manifest attribute that points to a different
 application cache manifest, the navigation of the browsing context will be restarted so
 as to load the resource afresh from the network or a different application
 cache. Even if the resource is then found to have a different type, it is still used
 as part of a nested browsing context: only the navigate algorithm
 is restarted, not this object algorithm.

 	If the resource type starts with "image/", and support
 for images has not been disabled

 	

 Apply the image sniffing rules to
 determine the type of the image.

 The object element represents the specified image. The image is
 not a nested browsing context.

 If the image cannot be rendered, e.g. because it is malformed or in an unsupported
 format, jump to the step below labeled fallback.

 	Otherwise

 	

 The given resource type is not supported. Jump to the step below labeled fallback.

 If the previous step ended with the resource type being
 unknown, this is the case that is triggered.

 	The element's contents are not part of what the object element
 represents.

	

 Once the resource is completely loaded, queue a task to fire a simple
 event named load at the element.

 The task source for this task is the
 DOM manipulation task source.

 	If the data attribute is absent but the type attribute is present, and the user agent can find a
 plugin suitable according to the value of the type attribute, and either plugins
 aren't being sandboxed or the plugin can be secured, then that plugin should be used. If these conditions cannot be met, or if the
 plugin reports an error, jump to the step below labeled fallback.

 	Fallback: The object element represents the element's
 children, ignoring any leading param element children. This is the element's
 fallback content. If the element has an instantiated plugin, then
 unload it.

 When the algorithm above instantiates a plugin, the user agent
 should pass to the plugin used the names and values of all the attributes on the
 element, in the order they were added to the element, with the attributes added by the parser
 being ordered in source order, followed by a parameter named "PARAM" whose value is null, followed
 by all the names and values of parameters given by
 param elements that are children of the object element, in tree
 order. If the plugin supports a scriptable interface, the
 HTMLObjectElement object representing the element should expose that interface. The
 object element represents the plugin. The
 plugin is not a nested browsing context.

 Plugins are considered sandboxed for the purpose of an
 object element if the sandboxed plugins browsing context flag is set on
 the object element's Document's active sandboxing flag
 set.

 Due to the algorithm above, the contents of object elements act as fallback
 content, used only when referenced resources can't be shown (e.g. because it returned a 404
 error). This allows multiple object elements to be nested inside each other,
 targeting multiple user agents with different capabilities, with the user agent picking the first
 one it supports.

 Whenever the name attribute is set, if the
 object element has a nested browsing context, its name must be changed to the new value. If the attribute is removed, if the
 object element has a browsing context, the browsing context
 name must be set to the empty string.

 The usemap attribute, if present while the
 object element represents an image, can indicate that the object has an associated
 image map.

 The form attribute is used to explicitly associate the
 object element with its form owner.

 Constraint validation: object elements are always barred
 from constraint validation.

 The object element supports dimension attributes.

 The IDL attributes data, type and name each must reflect the respective
 content attributes of the same name. The typeMustMatch IDL attribute must
 reflect the typemustmatch content
 attribute. The useMap IDL attribute must
 reflect the usemap content attribute.

 The contentDocument IDL attribute
 must return the Document object of the active document of the
 object element's nested browsing context, if it has one; otherwise, it
 must return null.

 The contentWindow IDL attribute must
 return the WindowProxy object of the object element's nested
 browsing context, if it has one; otherwise, it must return null.

 The willValidate, validity, and validationMessage attributes, and the checkValidity() and setCustomValidity() methods, are part of the
 constraint validation API. The form IDL attribute
 is part of the element's forms API.

 All object elements have a legacy caller
 operation. If the object element has an instantiated plugin that
 supports a scriptable interface that defines a legacy caller operation, then that must be the
 behavior of the object's legacy caller operation. Otherwise, the object's legacy caller operation
 must be to throw a NotSupportedError exception.

 In the following example, a Java applet is embedded in a page using the object
 element. (Generally speaking, it is better to avoid using applets like these and instead use
 native JavaScript and HTML to provide the functionality, since that way the application will work
 on all Web browsers without requiring a third-party plugin. Many devices, especially embedded
 devices, do not support third-party technologies like Java.)

 <figure>
 <object type="application/x-java-applet">
 <param name="code" value="MyJavaClass">
 <p>You do not have Java available, or it is disabled.</p>
 </object>
 <figcaption>My Java Clock</figcaption>
</figure>

 In this example, an HTML page is embedded in another using the object
 element.

 <figure>
 <object data="clock.html"></object>
 <figcaption>My HTML Clock</figcaption>
</figure>

 The following example shows how a plugin can be used in HTML (in this case the Flash plugin,
 to show a video file). Fallback is provided for users who do not have Flash enabled, in this case
 using the video element to show the video for those using user agents that support
 video, and finally providing a link to the video for those who have neither Flash
 nor a video-capable browser.

 <p>Look at my video:
 <object type="application/x-shockwave-flash">
 <param name=movie value="http://video.example.com/library/watch.swf">
 <param name=allowfullscreen value=true>
 <param name=flashvars value="http://video.example.com/vids/315981">
 <video controls src="http://video.example.com/vids/315981">
 View video.
 </video>
 </object>
</p>

 The param element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of an object element, before any flow content.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	name

 	value

 	DOM interface:

 	
interface HTMLParamElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString value;
};

 The param element defines parameters for plugins
 invoked by object elements. It does not represent anything on its own.

 The name
 attribute gives the name of the parameter.

 The value
 attribute gives the value of the parameter.

 Both attributes must be present. They may have any value.

 If both attributes are present, and if the parent element of the
 param is an object element, then the
 element defines a parameter with the given
 name-value pair.

 If either the name or value of a parameter defined by a
 param element that is the child of an
 object element that represents an
 instantiated plugin changes, and if that
 plugin is communicating with the user agent using an
 API that features the ability to update the plugin when
 the name or value of a parameter so changes, then
 the user agent must appropriately exercise that ability to notify
 the plugin of the change.

 The IDL attributes name and value must both
 reflect the respective content attributes of the same
 name.

 The following example shows how the param element
 can be used to pass a parameter to a plugin, in this case the O3D
 plugin.

 <!DOCTYPE HTML>
<html lang="en">
 <head>
 <title>O3D Utah Teapot</title>
 </head>
 <body>
 <p>
 <object type="application/vnd.o3d.auto">
 <param name="o3d_features" value="FloatingPointTextures">
 <img src="o3d-teapot.png"
 title="3D Utah Teapot illustration rendered using O3D."
 alt="When O3D renders the Utah Teapot, it appears as a squat
 teapot with a shiny metallic finish on which the
 surroundings are reflected, with a faint shadow caused by
 the lighting.">
 <p>To see the teapot actually rendered by O3D on your
 computer, please download and install the O3D plugin.</p>
 </object>
 <script src="o3d-teapot.js"></script>
 </p>
 </body>
</html>

 The video element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	If the element has a controls attribute: Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	If the element has a src attribute:
 zero or more track elements, then
 transparent, but with no media element descendants.

 	If the element does not have a src attribute: zero or more source elements, then
 zero or more track elements, then
 transparent, but with no media element descendants.

 	Content attributes:

 	Global attributes

 	src

 	crossorigin

 	poster

 	preload

 	autoplay

 	mediagroup

 	loop

 	muted

 	controls

 	width

 	height

 	DOM interface:

 	
 interface HTMLVideoElement : HTMLMediaElement {
 attribute unsigned long width;
 attribute unsigned long height;
 readonly attribute unsigned long videoWidth;
 readonly attribute unsigned long videoHeight;
 attribute DOMString poster;
};

 A video element is used for playing videos or
 movies, and audio files with captions.

 Content may be provided inside the video
 element; it is intended for older Web browsers which do
 not support video, so that legacy video plugins can be
 tried, or to show text to the users of these older browsers informing
 them of how to access the video contents.

 In particular, this content is not intended to address accessibility concerns. To
 make video content accessible to the partially sighted, the blind, the hard-of-hearing, the deaf,
 and those with other physical or cognitive disabilities, a variety of features are available.
 Captions can be provided, either embedded in the video stream or as external files using the
 track element. Sign-language tracks can be provided, again either embedded in the
 video stream or by synchronizing multiple video elements using the mediagroup attribute or a MediaController
 object. Audio descriptions can be provided, either as a separate track embedded in the video
 stream, or a separate audio track in an audio element slaved to the same controller as the video element(s), or in text
 form using a

 text track file such as a
 WebVTT file referenced using the track element and
 synthesized into speech by the user agent. WebVTT can also be used to provide chapter titles. For
 users who would rather not use a media element at all, transcripts or other textual alternatives
 can be provided by simply linking to them in the prose near the video element. [WEBVTT]

 The video element is a media element
 whose media data is ostensibly video data, possibly
 with associated audio data.

 The src, preload, autoplay,
 mediagroup,
 loop,
 muted, and controls attributes are the attributes common to all media
 elements.

 The poster
 attribute gives the address of an image file that the user agent can
 show while no video data is available. The attribute, if present,
 must contain a valid non-empty URL potentially surrounded by
 spaces.

 If the specified resource is to be used, then, when the element is created or when the poster attribute is set, changed, or removed, the user agent must
 run the following steps to determine the element's poster frame (regardless of the
 value of the element's show poster flag):

 	If there is an existing instance of this algorithm running
 for this video element, abort that instance of this
 algorithm without changing the poster frame.

 	If the poster
 attribute's value is the empty string or if the attribute is
 absent, then there is no poster frame; abort these
 steps.

 	Resolve the poster attribute's value relative
 to the element. If this fails, then there is no poster
 frame; abort these steps.

 	Fetch the resulting absolute
 URL, from the element's Document's
 origin. This must delay the load event of
 the element's document.

 	If an image is thus obtained, the poster frame is that image. Otherwise,
 there is no poster frame.

 The image given by the poster attribute,
 the poster frame, is intended to be a representative frame of the video (typically one of
 the first non-blank frames) that gives the user an idea of what the video is like.

 A video element represents what is given for the first matching condition in the
 list below:

 	When no video data is available (the element's readyState attribute is either HAVE_NOTHING, or HAVE_METADATA but no video data has yet been obtained at
 all, or the element's readyState attribute is any
 subsequent value but the media resource does not have a video channel)

 	When the video element is paused, the current playback position is the first frame of video,
 and the element's show poster flag is set

 	The video element represents its poster frame.

 	When the video element is paused, and the
 frame of video corresponding to the current playback
 position is not available (e.g. because the video is seeking or buffering)

 	When the video element is neither potentially playing nor paused (e.g. when seeking or stalled)

 	The video element represents the last frame of the video to have
 been rendered.

 	When the video element is paused

 	The video element represents the frame of video corresponding to
 the current playback position.

 	Otherwise (the video element has a video channel and is potentially
 playing)

 	The video element represents the frame of video at the continuously
 increasing "current" position. When the
 current playback position changes such that the last frame rendered is no longer the
 frame corresponding to the current playback position in the video, the new frame
 must be rendered.

 Which frame in a video stream corresponds to a particular playback position is
 defined by the video stream's format.

 The video element also represents any text track cues whose text track cue active flag is set and whose
 text track is in the showing mode, and any
 audio from the media resource, at the current playback position.

 Any audio associated with the media resource must, if played, be played
 synchronized with the current playback position, at the element's effective
 media volume.

 In addition to the above, the user agent may provide messages to the user (such as "buffering",
 "no video loaded", "error", or more detailed information) by overlaying text or icons on the video
 or other areas of the element's playback area, or in another appropriate manner.

 User agents that cannot render the video may instead make the element represent a link to an external video playback utility or to the video
 data itself.

 When a video element's media resource has a video channel, the
 element provides a paint source whose width is the media resource's
 intrinsic width, whose height is the
 media resource's intrinsic
 height, and whose appearance is the frame of video corresponding to the current playback position, if that is available, or else
 (e.g. when the video is seeking or buffering) its previous appearance, if any, or else (e.g.
 because the video is still loading the first frame) blackness.

 	video . videoWidth

 	video . videoHeight

 	

 These attributes return the intrinsic dimensions of the video,
 or zero if the dimensions are not known.

 The intrinsic
 width and intrinsic height of the
 media resource are the dimensions of the resource in
 CSS pixels after taking into account the resource's dimensions,
 aspect ratio, clean aperture, resolution, and so forth, as defined
 for the format used by the resource. If an anamorphic format does
 not define how to apply the aspect ratio to the video data's
 dimensions to obtain the "correct" dimensions, then the user agent
 must apply the ratio by increasing one dimension and leaving the
 other unchanged.

 The videoWidth IDL
 attribute must return the intrinsic width of the
 video in CSS pixels. The videoHeight IDL
 attribute must return the intrinsic height of
 the video in CSS pixels. If the element's readyState attribute is HAVE_NOTHING, then the
 attributes must return 0.

 The video element supports dimension
 attributes.

 In the absence of style rules to the contrary, video content
 should be rendered inside the element's playback area such that the
 video content is shown centered in the playback area at the largest
 possible size that fits completely within it, with the video
 content's aspect ratio being preserved. Thus, if the aspect ratio of
 the playback area does not match the aspect ratio of the video, the
 video will be shown letterboxed or pillarboxed. Areas of the
 element's playback area that do not contain the video represent
 nothing.

 In user agents that implement CSS, the above
 requirement can be implemented by using the style rule suggested in the rendering
 section.

 The intrinsic width of a video element's playback area is the intrinsic width of
 the poster frame, if that is available and the element currently
 represents its poster frame; otherwise, it is the intrinsic width of the video resource, if that is
 available; otherwise the intrinsic width is missing.

 The intrinsic height of a video element's playback area is the intrinsic height of
 the poster frame, if that is available and the element currently
 represents its poster frame; otherwise it is the intrinsic height of the video resource, if that is
 available; otherwise the intrinsic height is missing.

 The default object size is a width of 300 CSS pixels and a height of 150 CSS
 pixels. [CSSIMAGES]

 User agents should provide controls to enable or disable the
 display of closed captions, audio description tracks, and other
 additional data associated with the video stream, though such
 features should, again, not interfere with the page's normal
 rendering.

 User agents may allow users to view the video content in manners
 more suitable to the user (e.g. full-screen or in an independent
 resizable window). As for the other user interface features,
 controls to enable this should not interfere with the page's normal
 rendering unless the user agent is exposing a user interface. In such an
 independent context, however, user agents may make full user
 interfaces visible, with, e.g., play, pause, seeking, and volume
 controls, even if the controls attribute is absent.

 User agents may allow video playback to affect system features
 that could interfere with the user's experience; for example, user
 agents could disable screensavers while video playback is in
 progress.

 The poster IDL
 attribute must reflect the poster content attribute.

 This example shows how to detect when a video has failed to play
 correctly:

 <script>
 function failed(e) {
 // video playback failed - show a message saying why
 switch (e.target.error.code) {
 case e.target.error.MEDIA_ERR_ABORTED:
 alert('You aborted the video playback.');
 break;
 case e.target.error.MEDIA_ERR_NETWORK:
 alert('A network error caused the video download to fail part-way.');
 break;
 case e.target.error.MEDIA_ERR_DECODE:
 alert('The video playback was aborted due to a corruption problem or because the video used features your browser did not support.');
 break;
 case e.target.error.MEDIA_ERR_SRC_NOT_SUPPORTED:
 alert('The video could not be loaded, either because the server or network failed or because the format is not supported.');
 break;
 default:
 alert('An unknown error occurred.');
 break;
 }
 }
</script>
<p><video src="tgif.vid" autoplay controls onerror="failed(event)"></video></p>
<p>Download the video file.</p>

 The audio element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	If the element has a controls attribute: Interactive content.

 	If the element has a controls attribute: Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	If the element has a src attribute:
zero or more track elements, then
transparent, but with no media element descendants.

 	If the element does not have a src attribute: zero or more source elements, then
 zero or more track elements, then
 transparent, but with no media element descendants.

 	Content attributes:

 	Global attributes

 	src

 	crossorigin

 	preload

 	autoplay

 	mediagroup

 	loop

 	muted

 	controls

 	DOM interface:

 	
 [NamedConstructor=Audio(optional DOMString src)]
interface HTMLAudioElement : HTMLMediaElement {};

 An audio element represents a sound or
 audio stream.

 Content may be provided inside the audio
 element; it is intended for older Web browsers which do
 not support audio, so that legacy audio plugins can be
 tried, or to show text to the users of these older browsers informing
 them of how to access the audio contents.

 In particular, this content is not intended to address accessibility concerns. To
 make audio content accessible to the deaf or to those with other physical or cognitive
 disabilities, a variety of features are available. If captions or a sign language video are
 available, the video element can be used instead of the audio element to
 play the audio, allowing users to enable the visual alternatives. Chapter titles can be provided
 to aid navigation, using the track element and a WebVTT file. And,
 naturally, transcripts or other textual alternatives can be provided by simply linking to them in
 the prose near the audio element. [WEBVTT]

 The audio element is a media element
 whose media data is ostensibly audio data.

 The src, preload, autoplay,
 mediagroup,
 loop,
 muted, and controls attributes are the attributes common to all media
 elements.

 When an audio element is potentially
 playing, it must have its audio data played synchronized with
 the current playback position, at the element's
 effective media volume.

 When an audio element is not potentially
 playing, audio must not play for the element.

 	audio = new Audio([url])

 	

 Returns a new audio element, with the src attribute set to the value
 passed in the argument, if applicable.

 A constructor is provided for creating HTMLAudioElement objects (in addition to
 the factory methods from DOM such as createElement()): Audio(src). When invoked as a
 constructor, it must return a new HTMLAudioElement object (a new audio
 element). The element must have its preload attribute set
 to the literal value "auto". If the src argument is present, the object created must have its src content attribute set to the provided value, and the user agent
 must invoke the object's resource selection
 algorithm before returning. The element's document must be the active document
 of the browsing context of the Window object on which the interface
 object of the invoked constructor is found.

 The source element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a media element, before any flow content
 or track elements.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	src

 	type

 	media

 	DOM interface:

 	
interface HTMLSourceElement : HTMLElement {
 attribute DOMString src;
 attribute DOMString type;
 attribute DOMString media;
};

 The source element allows authors to specify
 multiple alternative media
 resources for media
 elements. It does not represent anything on its own.

 The src attribute
 gives the address of the media resource. The value must
 be a valid non-empty URL potentially surrounded by
 spaces. This attribute must be present.

 Dynamically modifying a source element
 and its attribute when the element is already inserted in a
 video or audio element will have no
 effect. To change what is playing, just use the src attribute on the media
 element directly, possibly making use of the canPlayType() method to
 pick from amongst available resources. Generally, manipulating
 source elements manually after the document has been
 parsed is an unnecessarily complicated approach.

 The type
 attribute gives the type of the media resource, to help
 the user agent determine if it can play this media
 resource before fetching it. If specified, its value must be
 a valid MIME type. The codecs
 parameter, which certain MIME types define, might be necessary to
 specify exactly how the resource is encoded. [RFC4281]

 The following list shows some examples of how to use the codecs= MIME parameter in the type attribute.

 	H.264 Constrained baseline profile video (main and extended video compatible) level 3 and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>

 	H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E, mp4a.40.2"'>

 	H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>

 	H.264 'High' profile video (incompatible with main, baseline, or extended profiles) level 3 and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="avc1.64001E, mp4a.40.2"'>

 	MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8, mp4a.40.2"'>

 	MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in MP4 container

 	<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240, mp4a.40.2"'>

 	MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container

 	<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8, samr"'>

 	Theora video and Vorbis audio in Ogg container

 	<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

 	Theora video and Speex audio in Ogg container

 	<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

 	Vorbis audio alone in Ogg container

 	<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

 	Speex audio alone in Ogg container

 	<source src='audio.spx' type='audio/ogg; codecs=speex'>

 	FLAC audio alone in Ogg container

 	<source src='audio.oga' type='audio/ogg; codecs=flac'>

 	Dirac video and Vorbis audio in Ogg container

 	<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

 The media attribute gives the intended media
 type of the media resource, to help the user agent determine if this media
 resource is useful to the user before fetching it. Its value must be a valid media
 query.

 The resource
 selection algorithm is defined in such a way that when the media attribute is omitted the user agent acts the same as if the
 value was "all", i.e. by default the media resource is suitable
 for all media.

 If a source element is inserted as a child of a media element that
 has no src attribute and whose networkState has the value NETWORK_EMPTY, the user agent must invoke the media
 element's resource selection
 algorithm.

 The IDL attributes src, type, and media must reflect the respective content
 attributes of the same name.

 If the author isn't sure if user agents will all be able to render the media resources
 provided, the author can listen to the error event on the last
 source element and trigger fallback behavior:

 <script>
 function fallback(video) {
 // replace <video> with its contents
 while (video.hasChildNodes()) {
 if (video.firstChild instanceof HTMLSourceElement)
 video.removeChild(video.firstChild);
 else
 video.parentNode.insertBefore(video.firstChild, video);
 }
 video.parentNode.removeChild(video);
 }
</script>
<video controls autoplay>
 <source src='video.mp4' type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'
 onerror="fallback(parentNode)">
 ...
</video>

 The track element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a media element, before any flow content.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	kind

 	src

 	srclang

 	label

 	default

 	DOM interface:

 	
interface HTMLTrackElement : HTMLElement {
 attribute DOMString kind;
 attribute DOMString src;
 attribute DOMString srclang;
 attribute DOMString label;
 attribute boolean default;

 const unsigned short NONE = 0;
 const unsigned short LOADING = 1;
 const unsigned short LOADED = 2;
 const unsigned short ERROR = 3;
 readonly attribute unsigned short readyState;

 readonly attribute TextTrack track;
};

 The track element allows authors to specify explicit external timed text tracks for media elements. It
 does not represent anything on its own.

 The kind attribute is an enumerated
 attribute. The following table lists the keywords defined for this attribute. The keyword
 given in the first cell of each row maps to the state given in the second cell.

 	Keyword
 	State
 	Brief description

 	subtitles
 	Subtitles
 	
 Transcription or translation of the dialogue, suitable for when the sound is available but not understood (e.g. because the user does not understand the language of the media resource's audio track).
 Overlaid on the video.

 	captions
 	Captions
 	
 Transcription or translation of the dialogue, sound effects, relevant musical cues, and other relevant audio information, suitable for when sound is unavailable or not clearly audible (e.g. because it is muted, drowned-out by ambient noise, or because the user is deaf).
 Overlaid on the video; labeled as appropriate for the hard-of-hearing.

 	descriptions
 	Descriptions
 	
 Textual descriptions of the video component of the media resource, intended for audio synthesis when the visual component is obscured, unavailable, or not usable (e.g. because the user is interacting with the application without a screen while driving, or because the user is blind).
 Synthesized as audio.

 	chapters
 	Chapters
 	
 Chapter titles, intended to be used for navigating the media resource.
 Displayed as an interactive (potentially nested) list in the user agent's interface.

 	metadata
 	Metadata
 	
 Tracks intended for use from script.
 Not displayed by the user agent.

 The attribute may be omitted. The missing value default is the subtitles state.

 The src attribute gives the address of the text
 track data. The value must be a valid non-empty URL potentially surrounded by spaces.
 This attribute must be present.

 If the element has a src attribute whose value is not the
 empty string and whose value, when the attribute was set, could be successfully resolved relative to the element, then the element's track
 URL is the resulting absolute URL. Otherwise, the element's track
 URL is the empty string.

 If the element's track URL identifies a WebVTT resource, and the
 element's kind attribute is not in the metadata state, then the WebVTT file must be
 a WebVTT file using cue text. [WEBVTT]

 Furthermore, if the element's track URL identifies a WebVTT resource,
 and the element's kind attribute is in the chapters state, then the WebVTT file must be
 both a WebVTT file using chapter title text and a WebVTT file using only nested
 cues. [WEBVTT]

 The srclang attribute gives the language of
 the text track data. The value must be a valid BCP 47 language tag. This attribute must be present
 if the element's kind attribute is in the subtitles state. [BCP47]

 If the element has a srclang attribute whose value is
 not the empty string, then the element's track language is the value of the attribute.
 Otherwise, the element has no track language.

 The label attribute gives a user-readable
 title for the track. This title is used by user agents when listing subtitle, caption, and audio description tracks in their user interface.

 The value of the label attribute, if the attribute is
 present, must not be the empty string. Furthermore, there must not be two track
 element children of the same media element whose kind attributes are in the same state, whose srclang attributes are both missing or have values that
 represent the same language, and whose label attributes are
 again both missing or both have the same value.

 If the element has a label attribute whose value is not
 the empty string, then the element's track label is the value of the attribute.
 Otherwise, the element's track label is an empty string.

 The default attribute is a boolean
 attribute, which, if specified, indicates that the track is to be enabled if the user's
 preferences do not indicate that another track would be more appropriate.

 Each media element must have no more than one track element child
 whose kind attribute is in the subtitles or captions state and whose default attribute is specified.

 Each media element must have no more than one track element child
 whose kind attribute is in the description state and whose default attribute is specified.

 Each media element must have no more than one track element child
 whose kind attribute is in the chapters state and whose default attribute is specified.

 There is no limit on the number of track elements whose kind attribute is in the metadata state and whose default attribute is specified.

 	track . readyState

 	
 Returns the text track readiness state,
 represented by a number from the following list:

 	track . NONE (0)

 	
 The text track not loaded state.

 	track . LOADING (1)

 	
 The text track loading state.

 	track . LOADED (2)

 	
 The text track loaded state.

 	track . ERROR (3)

 	
 The text track failed to load state.

 	track . track

 	

 Returns the TextTrack object corresponding to the text track of the track element.

 The readyState attribute must return the
 numeric value corresponding to the text track readiness state of the
 track element's text track, as defined by the following list:

 	NONE (numeric value 0)

 	The text track not loaded state.

 	LOADING (numeric value 1)

 	The text track loading state.

 	LOADED (numeric value 2)

 	The text track loaded state.

 	ERROR (numeric value 3)

 	The text track failed to load state.

 The track IDL attribute must, on getting,
 return the track element's text track's corresponding
 TextTrack object.

 The src, srclang, label, and default IDL attributes must reflect the
 respective content attributes of the same name. The kind IDL attribute must reflect the content
 attribute of the same name, limited to only known values.

 This video has subtitles in several languages:

 <video src="brave.webm">
 <track kind=subtitles src=brave.en.vtt srclang=en label="English">
 <track kind=captions src=brave.en.hoh.vtt srclang=en label="English for the Hard of Hearing">
 <track kind=subtitles src=brave.fr.vtt srclang=fr lang=fr label="Français">
 <track kind=subtitles src=brave.de.vtt srclang=de lang=de label="Deutsch">
</video>

 (The lang attributes on the last two describe the language of
 the label attribute, not the language of the subtitles
 themselves. The language of the subtitles is given by the srclang attribute.)

 Media elements

 Media elements (audio and video, in
 this specification) implement the following interface:

 enum CanPlayTypeEnum { "" /* empty string */, "maybe", "probably" };
interface HTMLMediaElement : HTMLElement {

 // error state
 readonly attribute MediaError? error;

 // network state
 attribute DOMString src;
 readonly attribute DOMString currentSrc;
 attribute DOMString crossOrigin;
 const unsigned short NETWORK_EMPTY = 0;
 const unsigned short NETWORK_IDLE = 1;
 const unsigned short NETWORK_LOADING = 2;
 const unsigned short NETWORK_NO_SOURCE = 3;
 readonly attribute unsigned short networkState;
 attribute DOMString preload;
 readonly attribute TimeRanges buffered;
 void load();
 CanPlayTypeEnum canPlayType(DOMString type);

 // ready state
 const unsigned short HAVE_NOTHING = 0;
 const unsigned short HAVE_METADATA = 1;
 const unsigned short HAVE_CURRENT_DATA = 2;
 const unsigned short HAVE_FUTURE_DATA = 3;
 const unsigned short HAVE_ENOUGH_DATA = 4;
 readonly attribute unsigned short readyState;
 readonly attribute boolean seeking;

 // playback state
 attribute double currentTime;
 readonly attribute unrestricted double duration;
 readonly attribute startDate;
 readonly attribute boolean paused;
 attribute double defaultPlaybackRate;
 attribute double playbackRate;
 readonly attribute TimeRanges played;
 readonly attribute TimeRanges seekable;
 readonly attribute boolean ended;
 attribute boolean autoplay;
 attribute boolean loop;
 void play();
 void pause();

 // media controller
 attribute DOMString mediaGroup;
 attribute MediaController? controller;

 // controls
 attribute boolean controls;
 attribute double volume;
 attribute boolean muted;
 attribute boolean defaultMuted;

 // tracks
 readonly attribute AudioTrackList audioTracks;
 readonly attribute VideoTrackList videoTracks;
 readonly attribute TextTrackList textTracks;
 TextTrack addTextTrack(TextTrackKind kind, optional DOMString label = "", optional DOMString language = "");
};

 The media element attributes, src, crossorigin, preload, autoplay,
 mediagroup, loop,
 muted, and controls, apply to all media
 elements. They are defined in this section.

 Media elements are used to present audio data, or video and
 audio data, to the user. This is referred to as media data in this section, since this
 section applies equally to media elements for audio or for
 video.

 The term media resource is used to refer to the complete set of media data, e.g. the
 complete video file, or complete audio file.

 A media resource can have multiple audio and video tracks. For the purposes of a
 media element, the video data of the media resource is only that of the
 currently selected track (if any) given by the element's videoTracks attribute, and the audio data of the media
 resource is the result of mixing all the currently enabled tracks (if any) given by the
 element's audioTracks attribute.

 Both audio and video elements can be used for both audio
 and video. The main difference between the two is simply that the audio element has
 no playback area for visual content (such as video or captions), whereas the video
 element does.

 Except where otherwise explicitly specified, the task source for all the tasks
 queued in this section and its subsections is the media
 element event task source.

 Error codes

 	media . error

 	

 Returns a MediaError object representing the current error state of the
 element.

 Returns null if there is no error.

 All media elements have an associated error status, which
 records the last error the element encountered since its resource selection algorithm was last invoked. The
 error attribute, on getting, must return the
 MediaError object created for this last error, or null if there has not been an
 error.

 interface MediaError {
 const unsigned short MEDIA_ERR_ABORTED = 1;
 const unsigned short MEDIA_ERR_NETWORK = 2;
 const unsigned short MEDIA_ERR_DECODE = 3;
 const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;
 readonly attribute unsigned short code;
};

 	media . error . code

 	

 Returns the current error's error code, from the list below.

 The code attribute of a
 MediaError object must return the code for the error, which must be one of the
 following:

 	MEDIA_ERR_ABORTED (numeric value 1)

 	The fetching process for the media resource was aborted by the user agent at the
 user's request.

 	MEDIA_ERR_NETWORK (numeric value 2)

 	A network error of some description caused the user agent to stop fetching the media
 resource, after the resource was established to be usable.

 	MEDIA_ERR_DECODE (numeric value 3)

 	An error of some description occurred while decoding the media resource, after
 the resource was established to be usable.

 	MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)

 	The media resource indicated by the src
 attribute was not suitable.

 Location of the media resource

 The src content attribute on media elements gives the address of the media resource (video, audio) to show. The
 attribute, if present, must contain a valid non-empty URL potentially surrounded by
 spaces.

 The crossorigin content attribute on
 media elements is a CORS settings attribute.

 If a src attribute of a media element is set
 or changed, the user agent must invoke the media element's media element load
 algorithm. (Removing the src attribute does
 not do this, even if there are source elements present.)

 The src IDL attribute on media elements must reflect the content attribute of the same
 name.

 The crossOrigin IDL attribute must
 reflect the crossorigin content
 attribute, limited to only known values.

 	media . currentSrc

 	

 Returns the address of the current media resource.

 Returns the empty string when there is no media resource.

 The currentSrc IDL attribute is initially
 the empty string. Its value is changed by the resource
 selection algorithm defined below.

 There are two ways to specify a media resource, the src attribute, or source elements. The attribute
 overrides the elements.

 MIME types

 A media resource can be described in terms of its type, specifically a
 MIME type, in some cases with a codecs parameter. (Whether the
 codecs parameter is allowed or not depends on the MIME type.) [RFC4281]

 Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't say anything except what the container type is, and even a
 type like "video/mp4; codecs="avc1.42E01E, mp4a.40.2"" doesn't
 include information like the actual bitrate (only the maximum bitrate). Thus, given a type, a user
 agent can often only know whether it might be able to play media of that type (with
 varying levels of confidence), or whether it definitely cannot play media of that
 type.

 A type that the user agent knows it cannot render is one that describes a resource
 that the user agent definitely does not support, for example because it doesn't recognize the
 container type, or it doesn't support the listed codecs.

 The MIME type "application/octet-stream" with no parameters is never
 a type that the user agent knows it cannot render. User agents must treat that type
 as equivalent to the lack of any explicit Content-Type metadata
 when it is used to label a potential media resource.

 Only the MIME type "application/octet-stream" with no
 parameters is special-cased here; if any parameter appears with it, it will be treated just like
 any other MIME type. This is a deviation from the rule that unknown MIME type parameters should be ignored.

 	media . canPlayType(type)

 	

 Returns the empty string (a negative response), "maybe", or "probably" based on how confident
 the user agent is that it can play media resources of the given type.

 The canPlayType(type) method must return the empty string if type
 is a type that the user agent knows it cannot render or is the type
 "application/octet-stream"; it must return "probably" if the
 user agent is confident that the type represents a media resource that it can render
 if used in with this audio or video element; and it must return "maybe" otherwise. Implementors are encouraged to return "maybe" unless the type can be confidently established as being supported or not.
 Generally, a user agent should never return "probably" for a type that
 allows the codecs parameter if that parameter is not present.

 This script tests to see if the user agent supports a (fictional) new format to dynamically
 decide whether to use a video element or a plugin:

 <section id="video">
 <p>Download video</p>
</section>
<script>
 var videoSection = document.getElementById('video');
 var videoElement = document.createElement('video');
 var support = videoElement.canPlayType('video/x-new-fictional-format;codecs="kittens,bunnies"');
 if (support != "probably" && "New Fictional Video Plugin" in navigator.plugins) {
 // not confident of browser support
 // but we have a plugin
 // so use plugin instead
 videoElement = document.createElement("embed");
 } else if (support == "") {
 // no support from browser and no plugin
 // do nothing
 videoElement = null;
 }
 if (videoElement) {
 while (videoSection.hasChildNodes())
 videoSection.removeChild(videoSection.firstChild);
 videoElement.setAttribute("src", "playing-cats.nfv");
 videoSection.appendChild(videoElement);
 }
</script>

 The type attribute of the
 source element allows the user agent to avoid downloading resources that use formats
 it cannot render.

 Network states

 	media . networkState

 	

 Returns the current state of network activity for the element, from the codes in the list
 below.

 As media elements interact with the network, their current
 network activity is represented by the networkState attribute. On getting, it must
 return the current network state of the element, which must be one of the following values:

 	NETWORK_EMPTY (numeric value 0)

 	The element has not yet been initialized. All attributes are in their initial states.

 	NETWORK_IDLE (numeric value 1)

 	The element has selected a resource, but it is not actually using the network at this time.

 	NETWORK_LOADING (numeric value 2)

 	The user agent is actively trying to download data.

 	NETWORK_NO_SOURCE (numeric value 3)

 	The element has not yet found a resource to use.

 The resource selection algorithm defined
 below describes exactly when the networkState
 attribute changes value and what events fire to indicate changes in this state.

 Loading the media resource

 	media . load()

 	

 Causes the element to reset and start selecting and loading a new media resource
 from scratch.

 All media elements have an autoplaying flag,
 which must begin in the true state, and a delaying-the-load-event flag, which must
 begin in the false state. While the delaying-the-load-event flag is true, the element
 must delay the load event of its document.

 When the load() method on a media
 element is invoked, the user agent must run the media element load
 algorithm.

 The media element load algorithm consists of the following steps.

 	Abort any already-running instance of the resource selection algorithm for this
 element.

 	

 If there are any tasks from the media
 element's media element event task source in one of the task queues, then remove those tasks.

 If there are any tasks that were queued by the resource selection
 algorithm (including the algorithms that it itself invokes) for this same media
 element from the DOM manipulation task source in one of the task queues, then remove those tasks.

 Basically, pending events and callbacks for the media element are discarded when
 the media element starts loading a new resource.

 	If the media element's networkState is set to NETWORK_LOADING or NETWORK_IDLE, queue a task to fire a
 simple event named abort at the media
 element.

 	

 If the media element's networkState
 is not set to NETWORK_EMPTY, then run these
 substeps:

 	Queue a task to fire a simple event named emptied at the media element.

 	If a fetching process is in progress for the media
 element, the user agent should stop it.

 	Forget the media element's media-resource-specific tracks.

 	If readyState is not set to HAVE_NOTHING, then set it to that state.

 	If the paused attribute is false, then set it to
 true.

 	If seeking is true, set it to false.

 	

 Set the current playback position to 0.

 Set the official playback position to 0.

 If this changed the official playback position, then queue a task
 to fire a simple event named timeupdate at the media element.

 	Set the initial playback position to 0.

 	Set the timeline offset to Not-a-Number (NaN).

 	

 Update the duration attribute to Not-a-Number
 (NaN).

 The user agent will not fire a durationchange event for this particular change of
 the duration.

 	Set the playbackRate attribute to the value of
 the defaultPlaybackRate attribute.

 	Set the error attribute to null and the
 autoplaying flag to true.

 	Invoke the media element's resource selection algorithm.

 	

 Playback of any previously playing media resource for this element
 stops.

 The resource selection algorithm for a
 media element is as follows. This algorithm is always invoked synchronously, but one
 of the first steps in the algorithm is to return and continue running the remaining steps
 asynchronously, meaning that it runs in the background with scripts and other tasks running in parallel. In addition, this algorithm interacts
 closely with the event loop mechanism; in particular, it has synchronous sections (which are triggered as part of the event loop
 algorithm). Steps in such sections are marked with ⌛.

 	Set the element's networkState attribute to
 the NETWORK_NO_SOURCE value.

 	Set the element's show poster flag to true.

 	Set the media element's delaying-the-load-event flag to true
 (this delays the load event).

 	Asynchronously await a stable state, allowing the task that invoked this algorithm to continue. The synchronous
 section consists of all the remaining steps of this algorithm until the algorithm says the
 synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

 	

 ⌛ If the media element's blocked-on-parser flag is false,
 then populate the list of pending text tracks.

 	

 ⌛ If the media element has a src
 attribute, then let mode be attribute.

 ⌛ Otherwise, if the media element does not have a src attribute but has a source element child, then
 let mode be children and let candidate
 be the first such source element child in tree order.

 ⌛ Otherwise the media element has neither a src attribute nor a source element child: set the
 networkState to NETWORK_EMPTY, and abort these steps; the
 synchronous section ends.

 	⌛ Set the media element's networkState to NETWORK_LOADING.

 	⌛ Queue a task to fire a simple event named loadstart at the media element.

 	

 If mode is attribute, then run these substeps:

 	⌛ If the src
 attribute's value is the empty string, then end the synchronous section, and jump
 down to the failed with attribute step below.

 	⌛ Let absolute URL be the absolute URL that
 would have resulted from resolving the URL
 specified by the src attribute's value relative to the
 media element when the src attribute was last
 changed.

	⌛ If absolute URL was obtained successfully, set the currentSrc attribute to absolute
 URL.

 	End the synchronous section, continuing the remaining steps
 asynchronously.

 	If absolute URL was obtained successfully, run the resource fetch algorithm with absolute
 URL. If that algorithm returns without aborting this one, then the load
 failed.

 	

 Failed with attribute: Reaching this step indicates that the media resource
 failed to load or that the given URL could not be resolved. Queue a task to run the following steps, using the
 DOM manipulation task source:

 	Set the error attribute to a new
 MediaError object whose code attribute
 is set to MEDIA_ERR_SRC_NOT_SUPPORTED.

 	Forget the media element's media-resource-specific tracks.

 	Set the element's networkState attribute
 to the NETWORK_NO_SOURCE value.

 	Set the element's show poster flag to true.

 	Fire a simple event named error at
 the media element.

 	Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

 	Wait for the task queued by the previous step to have
 executed.

 	Abort these steps. Until the load() method is
 invoked or the src attribute is changed, the element won't
 attempt to load another resource.

 Otherwise, the source elements will be used; run these substeps:

 	

 ⌛ Let pointer be a position defined by two adjacent nodes in the
 media element's child list, treating the start of the list (before the first
 child in the list, if any) and end of the list (after the last child in the list, if any) as
 nodes in their own right. One node is the node before pointer, and the
 other node is the node after pointer. Initially, let pointer be the position between the candidate node and the
 next node, if there are any, or the end of the list, if it is the last node.

 As nodes are inserted and removed into the media element, pointer must be updated as follows:

 	If a new node is inserted between the two nodes that define pointer

 	Let pointer be the point between the node before pointer and the new node. In other words, insertions at pointer go after pointer.

 	If the node before pointer is removed

 	Let pointer be the point between the node after pointer and the node before the node after pointer. In
 other words, pointer doesn't move relative to the remaining nodes.

 	If the node after pointer is removed

 	Let pointer be the point between the node before pointer and the node after the node before pointer. Just
 as with the previous case, pointer doesn't move relative to the remaining
 nodes.

 Other changes don't affect pointer.

 	⌛ Process candidate: If candidate does not have a
 src attribute, or if its src attribute's value is the empty string, then end the
 synchronous section, and jump down to the failed with elements step
 below.

 	⌛ Let absolute URL be the absolute URL that
 would have resulted from resolving the URL
 specified by candidate's src
 attribute's value relative to the candidate when the src attribute was last changed.

	⌛ If absolute URL was not obtained successfully, then end the
 synchronous section, and jump down to the failed with elements step
 below.

 	⌛ If candidate has a type attribute whose value, when parsed as a MIME
 type (including any codecs described by the codecs parameter, for
 types that define that parameter), represents a type that the user agent knows it cannot
 render, then end the synchronous section, and jump down to the failed with elements step below.

 	⌛ If candidate has a media attribute whose value does not match the environment, then end the synchronous section, and
 jump down to the failed with elements step below.

 	⌛ Set the currentSrc attribute to absolute URL.

 	End the synchronous section, continuing the remaining steps
 asynchronously.

 	Run the resource fetch algorithm with
 absolute URL. If that algorithm returns without aborting this one,
 then the load failed.

 	Failed with elements: Queue a task, using the DOM manipulation task
 source, to fire a simple event named error
 at the candidate element.

 	Asynchronously await a stable state. The synchronous section
 consists of all the remaining steps of this algorithm until the algorithm says the
 synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

 	⌛ Forget the media element's media-resource-specific
 tracks.

 	⌛ Find next candidate: Let candidate be
 null.

 	⌛ Search loop: If the node after pointer is
 the end of the list, then jump to the waiting step below.

 	⌛ If the node after pointer is a source element,
 let candidate be that element.

 	⌛ Advance pointer so that the node before pointer is now the node that was after pointer, and the node
 after pointer is the node after the node that used to be after pointer, if any.

 	⌛ If candidate is null, jump back to the search
 loop step. Otherwise, jump back to the process candidate step.

 	⌛ Waiting: Set the element's networkState attribute to the NETWORK_NO_SOURCE value.

 	⌛ Set the element's show poster flag to true.

 	⌛ Set the element's delaying-the-load-event flag to false. This
 stops delaying the load event.

 	End the synchronous section, continuing the remaining steps
 asynchronously.

 	Wait until the node after pointer is a node other than the end of
 the list. (This step might wait forever.)

 	Asynchronously await a stable state. The synchronous section
 consists of all the remaining steps of this algorithm until the algorithm says the
 synchronous section has ended. (Steps in synchronous sections are marked with ⌛.)

 	⌛ Set the element's delaying-the-load-event flag back to true (this
 delays the load event again, in case it hasn't been
 fired yet).

	⌛ Set the networkState back to NETWORK_LOADING.

 	⌛ Jump back to the find next candidate step above.

 The resource fetch algorithm for a media
 element and a given absolute URL is as follows:

 	Let the current media resource be the resource given by the
 absolute URL passed to this algorithm. This is now the element's media
 resource.

 	Remove all media-resource-specific text
 tracks from the media element's list of pending text tracks, if
 any.

	Optionally, run the following substeps. This is the expected behavior if the user agent
 intends to not attempt to fetch the resource until the user requests it explicitly (e.g. as a way
 to implement the preload attribute's none keyword).

 	Set the networkState to NETWORK_IDLE.

 	Queue a task to fire a simple event named suspend at the element, using the DOM manipulation
 task source.

 	Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

 	Wait for the task to be run.

 	Wait for an implementation-defined event (e.g. the user requesting that the media
 element begin playback).

 	Set the element's delaying-the-load-event flag back to true (this delays the load event again, in case it hasn't been fired
 yet).

	Set the networkState to NETWORK_LOADING.

 	

 Perform a potentially CORS-enabled fetch of the current media resource's absolute URL, with the mode being
 the state of the media element's crossorigin content attribute, the origin
 being the origin of the media element's Document, and the
 default origin behaviour set to taint.

 The resource obtained in this fashion, if any, contains the media data. It can
 be CORS-same-origin or CORS-cross-origin; this affects whether
 subtitles referenced in the media data are exposed in the API and, for
 video elements, whether a canvas gets tainted when the video is drawn
 on it.

 While the load is not suspended (see below), every 350ms (±200ms) or for every byte
 received, whichever is least frequent, queue a task to fire a simple
 event named progress at the element.

 The stall timeout is a user-agent defined length of time, which should be about
 three seconds. When a media element that is actively attempting to obtain
 media data has failed to receive any data for a duration equal to the stall
 timeout, the user agent must queue a task to fire a simple
 event named stalled at the element.

 User agents may allow users to selectively block or slow media data downloads.
 When a media element's download has been blocked altogether, the user agent must
 act as if it was stalled (as opposed to acting as if the connection was closed). The rate of the
 download may also be throttled automatically by the user agent, e.g. to balance the download
 with other connections sharing the same bandwidth.

 User agents may decide to not download more content at any time, e.g.
 after buffering five minutes of a one hour media resource, while waiting for the user to decide
 whether to play the resource or not, while waiting for user input in an interactive resource, or
 when the user navigates away from the page. When a media element's download has
 been suspended, the user agent must queue a task, using the DOM manipulation
 task source, to set the networkState to NETWORK_IDLE and fire a simple event named
 suspend at the element. If and when downloading of the
 resource resumes, the user agent must queue a task to set the networkState to NETWORK_LOADING. Between the queuing of these tasks,
 the load is suspended (so progress events don't fire,
 as described above).

 The preload attribute provides a hint
 regarding how much buffering the author thinks is advisable, even in the absence of the autoplay attribute.

 When a user agent decides to completely stall a download, e.g. if it is waiting until the
 user starts playback before downloading any further content, the element's
 delaying-the-load-event flag must be set to false. This stops delaying the load event.

 The user agent may use whatever means necessary to fetch the resource (within the constraints
 put forward by this and other specifications); for example, reconnecting to the server in the
 face of network errors, using HTTP range retrieval requests, or switching to a streaming
 protocol. The user agent must consider a resource erroneous only if it has given up trying to
 fetch it.

 This specification does not currently say whether or how to check the MIME
 types of the media resources, or whether or how to perform file type sniffing using the actual
 file data. Implementors differ in their intentions on this matter and it is therefore unclear
 what the right solution is. In the absence of any requirement here, the HTTP specification's
 strict requirement to follow the Content-Type header prevails ("Content-Type specifies the media
 type of the underlying data." ... "If and only if the media type is not given by a Content-Type
 field, the recipient MAY attempt to guess the media type via inspection of its content
 and/or the name extension(s) of the URI used to identify the resource.").

 The networking task source tasks to process
 the data as it is being fetched must, when appropriate, include the relevant substeps from the
 following list:

 	If the media data cannot be fetched at all, due to network errors, causing the
 user agent to give up trying to fetch the resource

 	If the media data can be fetched but is found by inspection to be in an
 unsupported format, or can otherwise not be rendered at all

 	

 DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and other fatal
 network errors that occur before the user agent has established whether the current media resource is usable, as well as the file using an unsupported
 container format, or using unsupported codecs for all the data, must cause the user agent to
 execute the following steps:

 	The user agent should cancel the fetching process.

 	Abort this subalgorithm, returning to the resource selection algorithm.

 	If the media resource is found to have an audio
 track

 	

 	Create an AudioTrack object to represent the audio track.

 	Update the media element's audioTracks attribute's AudioTrackList
 object with the new AudioTrack object.

 	Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that
 uses the TrackEvent interface, with the track attribute initialized to the new
 AudioTrack object, at this AudioTrackList object.

 	If the media resource is found to have a video
 track

 	

 	Create a VideoTrack object to represent the video track.

 	Update the media element's videoTracks attribute's VideoTrackList
 object with the new VideoTrack object.

 	Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that
 uses the TrackEvent interface, with the track attribute initialized to the new
 VideoTrack object, at this VideoTrackList object.

 	Once enough of the media data has been fetched to
 determine the duration of the media resource, its dimensions, and other
 metadata

 	

 This indicates that the resource is usable. The user agent must follow these substeps:

 	

 Establish the media timeline for the purposes of the current playback
 position, the earliest possible position, and the initial playback
 position, based on the media data.

 	

 Update the timeline offset to the date and time that corresponds to the zero
 time in the media timeline established in the previous step, if any. If no
 explicit time and date is given by the media resource, the timeline
 offset must be set to Not-a-Number (NaN).

 	Set the current playback position and the official playback
 position to the earliest possible position.

 	

 Update the duration attribute with the time of
 the last frame of the resource, if known, on the media timeline established
 above. If it is not known (e.g. a stream that is in principle infinite), update the duration attribute to the value positive Infinity.

 The user agent will queue a task
 to fire a simple event named durationchange at the element at this point.

 	For video elements, set the videoWidth and videoHeight attributes.

 	

 Set the readyState attribute to HAVE_METADATA.

 A loadedmetadata DOM event
 will be fired as part of setting the readyState attribute to a new value.

 	Let jumped be false.

 	If the media element's default playback start position is
 greater than zero, then seek to that time, and let jumped be true.

 	Let the media element's default playback
 start position be zero.

 	

 If either the media resource or the address of the current
 media resource indicate a particular start time, then set the initial playback
 position to that time and, if jumped is still false, seek to that time and let jumped be
 true.

 For example, with media formats that support the Media Fragments
 URI fragment identifier syntax, the fragment identifier can be used to indicate a
 start position. [MEDIAFRAG]

 	

 If either the media resource or the address of the current
 media resource indicate a particular set of audio or video tracks to enable, then the
 selected audio tracks must be enabled in the element's audioTracks object, and, of the selected video tracks,
 the one that is listed first in the element's videoTracks object must be selected.

 	If the media element has a current media controller, then:
 if jumped is true and the initial playback position,
 relative to the current media controller's timeline, is greater than the
 current media controller's media controller position, then
 seek the media controller to the media element's initial
 playback position, relative to the current media controller's timeline;
 otherwise, seek the media element to the
 media controller position, relative to the media element's
 timeline.

 Once the readyState attribute reaches HAVE_CURRENT_DATA, after
 the loadeddata event has been fired, set the
 element's delaying-the-load-event flag to false. This stops delaying the load event.

 A user agent that is attempting to reduce network usage while still fetching
 the metadata for each media resource would also stop buffering at this point,
 following the rules described previously, which involve the
 networkState attribute switching to the NETWORK_IDLE value and a suspend event firing.

 The user agent is required to determine the duration of the
 media resource and go through this step before playing.

 	Once the entire media resource has been fetched
 (but potentially before any of it has been decoded)

 	

 Fire a simple event named progress
 at the media element.

 Set the networkState to NETWORK_IDLE and fire a simple event named
 suspend at the media element.

 If the user agent ever discards any media data and then needs to resume the
 network activity to obtain it again, then it must queue a task to set the networkState to NETWORK_LOADING.

 If the user agent can keep the media resource loaded, then the
 algorithm will continue to its final step below, which aborts the algorithm.

 	If the connection is interrupted after some media data has been received,
 causing the user agent to give up trying to fetch the resource

 	

 Fatal network errors that occur after the user agent has established whether the current media resource is usable (i.e. once the media element's
 readyState attribute is no longer HAVE_NOTHING) must cause the user agent to execute the
 following steps:

 	The user agent should cancel the fetching process.

 	Set the error attribute to a new
 MediaError object whose code attribute
 is set to MEDIA_ERR_NETWORK.

 	Fire a simple event named error at
 the media element.

 	Set the element's networkState attribute
 to the NETWORK_IDLE value.

 	Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

 	Abort the overall resource selection
 algorithm.

 	If the media data is corrupted

 	

 Fatal errors in decoding the media data that occur after the user agent has
 established whether the current media resource is usable must cause the
 user agent to execute the following steps:

 	The user agent should cancel the fetching process.

 	Set the error attribute to a new
 MediaError object whose code attribute
 is set to MEDIA_ERR_DECODE.

 	Fire a simple event named error at
 the media element.

 	

 If the media element's readyState
 attribute has a value equal to HAVE_NOTHING, set
 the element's networkState attribute to the
 NETWORK_EMPTY value, set the element's
 show poster flag to true, and fire a simple event named emptied at the element.

 Otherwise, set the element's networkState
 attribute to the NETWORK_IDLE value.

 	Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

 	Abort the overall resource selection
 algorithm.

 	If the media data fetching process is aborted by the user

 	

 The fetching process is aborted by the user, e.g. because the user
 pressed a "stop" button, the user agent must execute the following steps. These steps are not
 followed if the load() method itself is invoked while
 these steps are running, as the steps above handle that particular kind of abort.

 	The user agent should cancel the fetching process.

 	Set the error attribute to a new
 MediaError object whose code attribute
 is set to MEDIA_ERR_ABORTED.

 	Fire a simple event named abort at
 the media element.

 	

 If the media element's readyState
 attribute has a value equal to HAVE_NOTHING, set
 the element's networkState attribute to the
 NETWORK_EMPTY value, set the element's
 show poster flag to true, and fire a simple event named emptied at the element.

 Otherwise, set the element's networkState
 attribute to the NETWORK_IDLE value.

 	Set the element's delaying-the-load-event flag to false. This stops delaying the load event.

 	Abort the overall resource selection
 algorithm.

 	If the media data can be fetched but has non-fatal
 errors or uses, in part, codecs that are unsupported, preventing the user agent from rendering
 the content completely correctly but not preventing playback altogether

 	

 The server returning data that is partially usable but cannot be optimally rendered must
 cause the user agent to render just the bits it can handle, and ignore the rest.

 	If the media resource is
 found to declare a media-resource-specific text track that the user agent
 supports

 	

 If the media data is CORS-same-origin, run the steps to
 expose a media-resource-specific text track with the relevant data.

 Cross-origin videos do not expose their subtitles, since that would allow
 attacks such as hostile sites reading subtitles from confidential videos on a user's
 intranet.

 When the networking task source has queued the
 last task as part of fetching the
 media resource (i.e. once the download has completed), if the fetching process
 completes without errors, including decoding the media data, and if all of the data is available
 to the user agent without network access, then, the user agent must move on to the next step.
 This might never happen, e.g. when streaming an infinite resource such as Web radio, or if the
 resource is longer than the user agent's ability to cache data.

 While the user agent might still need network access to obtain parts of the media
 resource, the user agent must remain on this step.

 For example, if the user agent has discarded the first half of a video, the
 user agent will remain at this step even once the playback has
 ended, because there is always the chance the user will seek back to the start. In fact,
 in this situation, once playback has ended, the user agent
 will end up firing a suspend event, as described
 earlier.

 	If the user agent ever reaches this step (which can only happen if the entire resource
 gets loaded and kept available): abort the overall resource selection algorithm.

 When a media element is to forget the media element's media-resource-specific
 tracks, the user agent must remove from the media element's list of text
 tracks all the media-resource-specific
 text tracks, then empty the media element's audioTracks attribute's AudioTrackList object,
 then empty the media element's videoTracks
 attribute's VideoTrackList object. No events (in particular, no removetrack events) are fired as part of this; the error and emptied
 events, fired by the algorithms that invoke this one, can be used instead.

 The preload attribute is an enumerated
 attribute. The following table lists the keywords and states for the attribute — the
 keywords in the left column map to the states in the cell in the second column on the same row as
 the keyword. The attribute can be changed even once the media resource is being
 buffered or played; the descriptions in the table below are to be interpreted with that in
 mind.

 	 Keyword
 	 State
 	 Brief description

 	none
 	None
 	Hints to the user agent that either the author does not expect the user to need the media resource, or that the server wants to minimize unnecessary traffic.
 This state does not provide a hint regarding how aggressively to actually download the media resource if buffering starts anyway (e.g. once the user hits "play").

 	metadata
 	Metadata
 	Hints to the user agent that the author does not expect the user to need the media resource, but that fetching the resource metadata (dimensions, track list, duration, etc), and maybe even the first few frames, is reasonable. If the user agent precisely fetches no more than the metadata, then the media element will end up with its readyState attribute set to HAVE_METADATA; typically though, some frames will be obtained as well and it will probably be HAVE_CURRENT_DATA or HAVE_FUTURE_DATA.
 When the media resource is playing, hints to the user agent that bandwidth is to be considered scarce, e.g. suggesting throttling the download so that the media data is obtained at the slowest possible rate that still maintains consistent playback.

 	auto
 	Automatic
 	Hints to the user agent that the user agent can put the user's needs first without risk to the server, up to and including optimistically downloading the entire resource.

 The empty string is also a valid keyword, and maps to the Automatic state. The attribute's missing value
 default is user-agent defined, though the Metadata state is suggested as a compromise
 between reducing server load and providing an optimal user experience.

 Authors might switch the attribute from "none" or "metadata" to "auto" dynamically once the user begins playback. For
 example, on a page with many videos this might be used to indicate that the many videos are not to
 be downloaded unless requested, but that once one is requested it is to be downloaded
 aggressively.

 The preload attribute is intended to provide a hint to
 the user agent about what the author thinks will lead to the best user experience. The attribute
 may be ignored altogether, for example based on explicit user preferences or based on the
 available connectivity.

 The preload IDL attribute must
 reflect the content attribute of the same name, limited to only known
 values.

 The autoplay attribute can override the
 preload attribute (since if the media plays, it naturally
 has to buffer first, regardless of the hint given by the preload attribute). Including both is not an error, however.

 	media . buffered

 	

 Returns a TimeRanges object that represents the ranges of the media
 resource that the user agent has buffered.

 The buffered attribute must return a new
 static normalized TimeRanges object that represents the ranges of the
 media resource, if any, that the user agent has buffered, at the time the attribute
 is evaluated. Users agents must accurately determine the ranges available, even for media streams
 where this can only be determined by tedious inspection.

 Typically this will be a single range anchored at the zero point, but if, e.g. the
 user agent uses HTTP range requests in response to seeking, then there could be multiple
 ranges.

 User agents may discard previously buffered data.

 Thus, a time position included within a range of the objects return by the buffered attribute at one time can end up being not included in
 the range(s) of objects returned by the same attribute at later times.

 Offsets into the media resource

 	media . duration

 	

 Returns the length of the media resource, in seconds, assuming that the start of
 the media resource is at time zero.

 Returns NaN if the duration isn't available.

 Returns Infinity for unbounded streams.

 	media . currentTime [= value]

 	

 Returns the official playback position, in seconds.

 Can be set, to seek to the given time.

 Will throw an InvalidStateError exception if there is no selected media
 resource or if there is a current media controller.

 A media resource has a media timeline that maps times (in seconds) to
 positions in the media resource. The origin of a timeline is its earliest defined
 position. The duration of a timeline is its last defined position.

 Establishing the media
 timeline: If the media resource somehow specifies an explicit timeline whose
 origin is not negative (i.e. gives each frame a specific time offset and gives the first frame a
 zero or positive offset), then the media timeline should be that timeline. (Whether
 the media resource can specify a timeline or not depends on the media resource's format.) If the media resource specifies an
 explicit start time and date, then that time and date should be considered the zero point
 in the media timeline; the timeline offset will be the time and date,
 exposed using the startDate attribute.

 If the media resource has a discontinuous timeline, the user agent must extend the
 timeline used at the start of the resource across the entire resource, so that the media
 timeline of the media resource increases linearly starting from the
 earliest possible position (as defined below), even if the underlying media
 data has out-of-order or even overlapping time codes.

 For example, if two clips have been concatenated into one video file, but the
 video format exposes the original times for the two clips, the video data might expose a timeline
 that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent would not expose those
 times; it would instead expose the times as 00:15..00:29 and 00:29..01:02, as a single video.

 In the rare case of a media resource that does not have an explicit timeline, the
 zero time on the media timeline should correspond to the first frame of the
 media resource. In the even rarer case of a media resource with no
 explicit timings of any kind, not even frame durations, the user agent must itself determine the
 time for each frame in a user-agent-defined manner.
 [image: (This is a fingerprinting vector.)]

 An example of a file format with no explicit timeline but with explicit frame
 durations is the Animated GIF format. An example of a file format with no explicit timings at all
 is the JPEG-push format (multipart/x-mixed-replace with JPEG frames, often
 used as the format for MJPEG streams).

 If, in the case of a resource with no timing information, the user agent will nonetheless be
 able to seek to an earlier point than the first frame originally provided by the server, then the
 zero time should correspond to the earliest seekable time of the media resource;
 otherwise, it should correspond to the first frame received from the server (the point in the
 media resource at which the user agent began receiving the stream).

 At the time of writing, there is no known format that lacks explicit frame time
 offsets yet still supports seeking to a frame before the first frame sent by the server.

 Consider a stream from a TV broadcaster, which begins streaming on a sunny Friday afternoon in
 October, and always sends connecting user agents the media data on the same media timeline, with
 its zero time set to the start of this stream. Months later, user agents connecting to this
 stream will find that the first frame they receive has a time with millions of seconds. The startDate attribute would always return the date that the
 broadcast started; this would allow controllers to display real times in their scrubber (e.g.
 "2:30pm") rather than a time relative to when the broadcast began ("8 months, 4 hours, 12
 minutes, and 23 seconds").

 Consider a stream that carries a video with several concatenated fragments, broadcast by a
 server that does not allow user agents to request specific times but instead just streams the
 video data in a predetermined order, with the first frame delivered always being identified as
 the frame with time zero. If a user agent connects to this stream and receives fragments defined
 as covering timestamps 2010-03-20 23:15:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12 14:25:00
 UTC to 2010-02-12 14:35:00 UTC, it would expose this with a media timeline starting
 at 0s and extending to 3,600s (one hour). Assuming the streaming server disconnected at the end
 of the second clip, the duration attribute would then
 return 3,600. The startDate attribute would return a
 Date object with a time corresponding to 2010-03-20 23:15:00 UTC. However, if a
 different user agent connected five minutes later, it would (presumably) receive
 fragments covering timestamps 2010-03-20 23:20:00 UTC to 2010-03-21 00:05:00 UTC and 2010-02-12
 14:25:00 UTC to 2010-02-12 14:35:00 UTC, and would expose this with a media timeline
 starting at 0s and extending to 3,300s (fifty five minutes). In this case, the startDate attribute would return a Date object
 with a time corresponding to 2010-03-20 23:20:00 UTC.

 In both of these examples, the seekable attribute
 would give the ranges that the controller would want to actually display in its UI; typically, if
 the servers don't support seeking to arbitrary times, this would be the range of time from the
 moment the user agent connected to the stream up to the latest frame that the user agent has
 obtained; however, if the user agent starts discarding earlier information, the actual range
 might be shorter.

 In any case, the user agent must ensure that the earliest possible position (as
 defined below) using the established media timeline, is greater than or equal to
 zero.

 The media timeline also has an associated clock. Which clock is used is user-agent
 defined, and may be media resource-dependent, but it should approximate the user's
 wall clock.

 All the media elements that share current
 media controller use the same clock for their media timeline.

 Media elements have a current playback position,
 which must initially (i.e. in the absence of media data) be zero seconds. The
 current playback position is a time on the media timeline.

 Media elements also have an official playback
 position, which must initially be set to zero seconds. The official playback
 position is an approximation of the current playback position that is kept
 stable while scripts are running.

 Media elements also have a default playback start
 position, which must initially be set to zero seconds. This time is used to allow the
 element to be seeked even before the media is loaded.

 Each media element has a show poster flag. When a media
 element is created, this flag must be set to true. This flag is used to control when the
 user agent is to show a poster frame for a video element instead of showing the video
 contents.

 The currentTime attribute must, on
 getting, return the media element's default playback start position,
 unless that is zero, in which case it must return the element's official playback
 position. The returned value must be expressed in seconds. On setting, if the media
 element has a current media controller, then the user agent must throw an
 InvalidStateError exception; otherwise, if the media element's readyState is HAVE_NOTHING, then it must set the media
 element's default playback start position to the new value; otherwise, it must
 set the official playback position to the new value and then seek to the new value. The new value must be interpreted as being in
 seconds.

 Media elements have an initial playback position,
 which must initially (i.e. in the absence of media data) be zero seconds. The
 initial playback position is updated when a media resource is loaded.
 The initial playback position is a time on the media timeline.

 If the media resource is a streaming resource, then the user agent might be unable
 to obtain certain parts of the resource after it has expired from its buffer. Similarly, some
 media resources might have a media timeline that
 doesn't start at zero. The earliest possible position is the earliest position in the
 stream or resource that the user agent can ever obtain again. It is also a time on the media
 timeline.

 The earliest possible position is not explicitly exposed in the API;
 it corresponds to the start time of the first range in the seekable attribute's TimeRanges object, if any, or
 the current playback position otherwise.

 When the earliest possible position changes, then: if the current playback
 position is before the earliest possible position, the user agent must seek to the earliest possible position; otherwise, if
 the user agent has not fired a timeupdate event at the
 element in the past 15 to 250ms and is not still running event handlers for such an event, then
 the user agent must queue a task to fire a simple event named timeupdate at the element.

 Because of the above requirement and the requirement in the resource fetch algorithm that kicks in when the metadata of the clip becomes known, the current
 playback position can never be less than the earliest possible position.

 If at any time the user agent learns that an audio or video track has ended and all media
 data relating to that track corresponds to parts of the media timeline that
 are before the earliest possible position, the user agent may queue a
 task to first remove the track from the audioTracks
 attribute's AudioTrackList object or the videoTracks attribute's VideoTrackList object as
 appropriate and then fire a trusted event with the name removetrack, that does not bubble and is not cancelable, and that
 uses the TrackEvent interface, with the track attribute initialized to the AudioTrack or
 VideoTrack object representing the track, at the media element's
 aforementioned AudioTrackList or VideoTrackList object.

 The duration attribute must return the time
 of the end of the media resource, in seconds, on the media timeline. If
 no media data is available, then the attributes must return the Not-a-Number (NaN)
 value. If the media resource is not known to be bounded (e.g. streaming radio, or a
 live event with no announced end time), then the attribute must return the positive Infinity
 value.

 The user agent must determine the duration of the media resource before playing
 any part of the media data and before setting readyState to a value equal to or greater than HAVE_METADATA, even if doing so requires fetching multiple
 parts of the resource.

 When the length of the media resource changes to a known value
 (e.g. from being unknown to known, or from a previously established length to a new length) the
 user agent must queue a task to fire a simple event named durationchange at the media element. (The
 event is not fired when the duration is reset as part of loading a new media resource.) If the
 duration is changed such that the current playback position ends up being greater
 than the time of the end of the media resource, then the user agent must also seek to the time of the end of the media resource.

 If an "infinite" stream ends for some reason, then the duration would change
 from positive Infinity to the time of the last frame or sample in the stream, and the durationchange event would be fired. Similarly, if the
 user agent initially estimated the media resource's duration instead of determining
 it precisely, and later revises the estimate based on new information, then the duration would
 change and the durationchange event would be
 fired.

 Some video files also have an explicit date and time corresponding to the zero time in the
 media timeline, known as the timeline offset. Initially, the
 timeline offset must be set to Not-a-Number (NaN).

 The startDate attribute must return a new Date object representing the current
 timeline offset.

 The loop attribute is a boolean
 attribute that, if specified, indicates that the media element is to seek back
 to the start of the media resource upon reaching the end.

 The loop attribute has no effect while the element has a
 current media controller.

 The loop IDL attribute must reflect
 the content attribute of the same name.

 Ready states

 	media . readyState

 	

 Returns a value that expresses the current state of the element with respect to rendering the
 current playback position, from the codes in the list below.

 Media elements have a ready state, which describes to
 what degree they are ready to be rendered at the current playback position. The
 possible values are as follows; the ready state of a media element at any particular time is the
 greatest value describing the state of the element:

 	HAVE_NOTHING (numeric value 0)

 	No information regarding the media resource is available. No data for the
 current playback position is available. Media
 elements whose networkState attribute are set
 to NETWORK_EMPTY are always in the HAVE_NOTHING state.

 	HAVE_METADATA (numeric value 1)

 	Enough of the resource has been obtained that the duration of the resource is available.
 In the case of a video element, the dimensions of the video are also available. The
 API will no longer throw an exception when seeking. No media data is available for
 the immediate current playback position.

 	HAVE_CURRENT_DATA (numeric value 2)

 	Data for the immediate current playback position is available, but either not
 enough data is available that the user agent could successfully advance the current
 playback position in the direction of playback at all without immediately
 reverting to the HAVE_METADATA state, or there is no
 more data to obtain in the direction of playback. For example, in video this
 corresponds to the user agent having data from the current frame, but not the next frame, when
 the current playback position is at the end of the current frame; and to when playback has ended.

 	HAVE_FUTURE_DATA (numeric value 3)

 	Data for the immediate current playback position is available, as well as
 enough data for the user agent to advance the current playback position in the
 direction of playback at least a little without immediately reverting to the HAVE_METADATA state, and the text tracks are
 ready. For example, in video this corresponds to the user agent having data for at least
 the current frame and the next frame when the current playback position is at the
 instant in time between the two frames, or to the user agent having the video data for the
 current frame and audio data to keep playing at least a little when the current playback
 position is in the middle of a frame. The user agent cannot be in this state if playback has ended, as the current playback position
 can never advance in this case.

 	HAVE_ENOUGH_DATA (numeric value 4)

 	

 All the conditions described for the HAVE_FUTURE_DATA state are met, and, in addition,
 either of the following conditions is also true:

 	The user agent estimates that data is being fetched at a rate where the current
 playback position, if it were to advance at the effective playback rate,
 would not overtake the available data before playback reaches the end of the media
 resource.

 	The user agent has entered a state where waiting longer will not result in further data
 being obtained, and therefore nothing would be gained by delaying playback any further. (For
 example, the buffer might be full.)

 In practice, the difference between HAVE_METADATA and HAVE_CURRENT_DATA is negligible. Really the only time
 the difference is relevant is when painting a video element onto a
 canvas, where it distinguishes the case where something will be drawn (HAVE_CURRENT_DATA or greater) from the case where
 nothing is drawn (HAVE_METADATA or less). Similarly,
 the difference between HAVE_CURRENT_DATA (only
 the current frame) and HAVE_FUTURE_DATA (at least
 this frame and the next) can be negligible (in the extreme, only one frame). The only time that
 distinction really matters is when a page provides an interface for "frame-by-frame"
 navigation.

 When the ready state of a media element whose networkState is not NETWORK_EMPTY changes, the user agent must follow the steps
 given below:

 	

 Apply the first applicable set of substeps from the following list:

 	If the previous ready state was HAVE_NOTHING,
 and the new ready state is HAVE_METADATA

 	

 Queue a task to fire a simple event named loadedmetadata at the element.

 Before this task is run, as part of the event loop mechanism, the
 rendering will have been updated to resize the video element if appropriate.

 	If the previous ready state was HAVE_METADATA and the new ready state is HAVE_CURRENT_DATA or greater

 	

 If this is the first time this occurs for this media
 element since the load() algorithm was last
 invoked, the user agent must queue a task to fire a simple event
 named loadeddata at the element.

 If the new ready state is HAVE_FUTURE_DATA
 or HAVE_ENOUGH_DATA, then the relevant steps
 below must then be run also.

 	If the previous ready state was HAVE_FUTURE_DATA or more, and the new ready state is
 HAVE_CURRENT_DATA or less

 	

 If the media element was potentially
 playing before its readyState attribute
 changed to a value lower than HAVE_FUTURE_DATA, and the element has not
 ended playback, and playback has not stopped due to errors,
 paused for user interaction, or paused for in-band content, the user
 agent must queue a task to fire a simple event named timeupdate at the element, and queue a task
 to fire a simple event named waiting at
 the element.

 	If the previous ready state was HAVE_CURRENT_DATA or less, and the new ready state
 is HAVE_FUTURE_DATA

 	

 The user agent must queue a task to fire a simple event named
 canplay at the element.

 If the element's paused attribute is false, the user
 agent must queue a task to fire a simple event named playing at the element.

 	If the new ready state is HAVE_ENOUGH_DATA

 	

 If the previous ready state was HAVE_CURRENT_DATA or less, the user agent must
 queue a task to fire a simple event named canplay at the element, and, if the element's paused attribute is false, queue a task to
 fire a simple event named playing
 at the element.

 If the autoplaying flag is true, and the paused attribute is true, and the media element
 has an autoplay attribute specified, and the
 media element's Document's active sandboxing flag set
 does not have the sandboxed automatic features browsing context flag set, then
 the user agent may also run the following substeps:

 	Set the paused attribute to false.

 	If the element's show poster flag is true, set it to false and run the
 time marches on steps.

 	Queue a task to fire a simple event named play at the element.

 	Queue a task to fire a simple event named playing at the element.

 User agents do not need to support autoplay, and it is suggested that user
 agents honor user preferences on the matter. Authors are urged to use the autoplay attribute rather than using script to force the
 video to play, so as to allow the user to override the behavior if so desired.

 In any case, the user agent must finally queue a task to fire a simple
 event named canplaythrough at the element.

 	If the media element has a current media controller, then
 report the controller state for the media element's current media
 controller.

 It is possible for the ready state of a media element to jump between these states
 discontinuously. For example, the state of a media element can jump straight from HAVE_METADATA to HAVE_ENOUGH_DATA without passing through the HAVE_CURRENT_DATA and HAVE_FUTURE_DATA states.

 The readyState IDL attribute must, on
 getting, return the value described above that describes the current ready state of the
 media element.

 The autoplay attribute is a boolean
 attribute. When present, the user agent will automatically begin playback of the media resource as
 soon as it can do so without stopping.

 Authors are urged to use the autoplay
 attribute rather than using script to trigger automatic playback, as this allows the user to
 override the automatic playback when it is not desired, e.g. when using a screen reader. Authors
 are also encouraged to consider not using the automatic playback behavior at all, and instead to
 let the user agent wait for the user to start playback explicitly.

 The autoplay IDL attribute must
 reflect the content attribute of the same name.

 Playing the media resource

 	media . paused

 	

 Returns true if playback is paused; false otherwise.

 	media . ended

 	

 Returns true if playback has reached the end of the media resource.

 	media . defaultPlaybackRate [= value]

 	

 Returns the default rate of playback, for when the user is not fast-forwarding or reversing
 through the media resource.

 Can be set, to change the default rate of playback.

 The default rate has no direct effect on playback, but if the user switches to a fast-forward
 mode, when they return to the normal playback mode, it is expected that the rate of playback
 will be returned to the default rate of playback.

 When the element has a current media controller, the defaultPlaybackRate attribute is ignored and the
 current media controller's defaultPlaybackRate is used instead.

 	media . playbackRate [= value]

 	

 Returns the current rate playback, where 1.0 is normal speed.

 Can be set, to change the rate of playback.

 When the element has a current media controller, the playbackRate attribute is ignored and the current
 media controller's playbackRate is
 used instead.

 	media . played

 	

 Returns a TimeRanges object that represents the ranges of the media
 resource that the user agent has played.

 	media . play()

 	

 Sets the paused attribute to false, loading the
 media resource and beginning playback if necessary. If the playback had ended, will
 restart it from the start.

 	media . pause()

 	

 Sets the paused attribute to true, loading the
 media resource if necessary.

 The paused attribute represents whether the
 media element is paused or not. The attribute must initially be true.

 A media element is a blocked media element if its readyState attribute is in the HAVE_NOTHING state, the HAVE_METADATA state, or the HAVE_CURRENT_DATA state, or if the element has
 paused for user interaction or paused for in-band content.

 A media element is said to be potentially playing when its paused attribute is false, the element has not ended
 playback, playback has not stopped due to errors, the element either has no
 current media controller or has a current media controller but is not
 blocked on its media controller, and the element is not a blocked media
 element.

 A waiting DOM event can be fired as a result of an element that is
 potentially playing stopping playback due to its readyState attribute changing to a value lower than HAVE_FUTURE_DATA.

 A media element is said to have ended playback when:

 	The element's readyState attribute is HAVE_METADATA or greater, and

	

 Either:

 	The current playback position is the end of the media resource,
 and

	The direction of playback is forwards, and

	Either the media element does not have a loop attribute specified, or the media element has
 a current media controller.

 Or:

 	The current playback position is the earliest possible position,
 and

	The direction of playback is backwards.

 The ended attribute must return true if, the
 last time the event loop reached step 1, the media element had
 ended playback and the direction of playback was forwards, and false
 otherwise.

 A media element is said to have stopped due to errors when the
 element's readyState attribute is HAVE_METADATA or greater, and the user agent encounters a non-fatal error during the processing of the
 media data, and due to that error, is not able to play the content at the
 current playback position.

 A media element is said to have paused for user interaction when its
 paused attribute is false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the user agent has reached a point
 in the media resource where the user has to make a selection for the resource to
 continue. If the media element has a current media controller when this
 happens, then the user agent must report the controller state for the media
 element's current media controller. If the media element has a
 current media controller when the user makes a selection, allowing playback to
 resume, the user agent must similarly report the controller state for the media
 element's current media controller.

 It is possible for a media element to have both ended playback and
 paused for user interaction at the same time.

 When a media element that is potentially playing stops playing
 because it has paused for user interaction, the user agent must queue a
 task to fire a simple event named timeupdate at the element.

 A media element is said to have paused for in-band content when its
 paused attribute is false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the user agent has suspended
 playback of the media resource in order to play content that is temporally anchored
 to the media resource and has a non-zero length, or to play content that is
 temporally anchored to a segment of the media resource but has a length longer than
 that segment. If the media element has a current media controller when
 this happens, then the user agent must report the controller state for the
 media element's current media controller. If the media
 element has a current media controller when the user agent unsuspends
 playback, the user agent must similarly report the controller state for the
 media element's current media controller.

 One example of when a media element would be paused for
 in-band content is when the user agent is playing audio descriptions from an external WebVTT file, and
 the synthesized speech generated for a cue is longer than the time between the text track
 cue start time and the text track cue end time.

 When the current playback position reaches the end of the media
 resource when the direction of playback is forwards, then the user agent must
 follow these steps:

 	If the media element has a loop
 attribute specified and does not have a current media controller, then seek to the earliest possible position of the
 media resource and abort these steps.

 	As defined above, the ended IDL attribute starts
 returning true once the event loop's current task
 ends.

 	Queue a task to fire a simple event named timeupdate at the media element.

 	Queue a task that, if the media element does not have a
 current media controller, and the media element has still ended
 playback, and the direction of playback is still forwards, and paused is false, changes paused to true and fires a
 simple event named pause at the media
 element.

 	Queue a task to fire a simple event named ended at the media element.

 	If the media element has a current media controller, then
 report the controller state for the media element's current media
 controller.

 When the current playback position reaches the earliest possible
 position of the media resource when the direction of playback is
 backwards, then the user agent must only queue a task to fire a simple
 event named timeupdate at the element.

 The defaultPlaybackRate attribute
 gives the desired speed at which the media resource is to play, as a multiple of its
 intrinsic speed. The attribute is mutable: on getting it must return the last value it was set to,
 or 1.0 if it hasn't yet been set; on setting the attribute must be set to the new value.

 The defaultPlaybackRate is used
 by the user agent when it exposes a user
 interface to the user.

 The playbackRate attribute gives the
 effective playback rate (assuming there is no current media controller
 overriding it), which is the speed at which the media resource plays, as a multiple
 of its intrinsic speed. If it is not equal to the defaultPlaybackRate, then the implication is that the
 user is using a feature such as fast forward or slow motion playback. The attribute is mutable: on
 getting it must return the last value it was set to, or 1.0 if it hasn't yet been set; on setting
 the attribute must be set to the new value, and the playback will change speed (if the element is
 potentially playing and there is no current media controller).

 When the defaultPlaybackRate
 or playbackRate attributes change value (either by
 being set by script or by being changed directly by the user agent, e.g. in response to user
 control) the user agent must queue a task to fire a simple event named
 ratechange at the media element.

 The defaultPlaybackRate and
 playbackRate attributes have no effect when the
 media element has a current media controller; the namesake attributes on
 the MediaController object are used instead in that situation.

 The played attribute must return a new static
 normalized TimeRanges object that represents the ranges of points on the
 media timeline of the media resource reached through the usual monotonic
 increase of the current playback position during normal playback, if any, at the time
 the attribute is evaluated.

 When the play() method on a media
 element is invoked, the user agent must run the following steps.

 	If the media element's networkState attribute has the value NETWORK_EMPTY, invoke the media element's
 resource selection algorithm.

 	

 If the playback has ended and the direction of
 playback is forwards, and the media element does not have a current
 media controller, seek to the earliest possible
 position of the media resource.

 This will cause the user agent to queue a
 task to fire a simple event named timeupdate at the media element.

 	If the media element has a current media controller, then
 bring the media element up to speed with its new media controller.

	

 If the media element's paused attribute is
 true, run the following substeps:

 	Change the value of paused to false.

 	If the show poster flag is true, set the element's show poster
 flag to false and run the time marches on steps.

 	Queue a task to fire a simple event named play at the element.

 	

 If the media element's readyState
 attribute has the value HAVE_NOTHING, HAVE_METADATA, or HAVE_CURRENT_DATA, queue a task to
 fire a simple event named waiting at the
 element.

 Otherwise, the media element's readyState attribute has the value HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA: queue a task to
 fire a simple event named playing at the
 element.

 	Set the media element's autoplaying flag to false.

 	If the media element has a current media controller, then
 report the controller state for the media element's current media
 controller.

 When the pause() method is invoked, and when
 the user agent is required to pause the media element, the user agent must run the
 following steps:

 	If the media element's networkState attribute has the value NETWORK_EMPTY, invoke the media element's
 resource selection algorithm.

 	Set the media element's autoplaying flag to false.

 	If the media element's paused attribute
 is false, run the following steps:

 	Change the value of paused to true.

 	Queue a task to fire a simple
 event named timeupdate at the
 element.

 	Queue a task to fire a simple
 event named pause
 at the element.

 	Set the official playback position to the current playback
 position.

 	If the media element has a current media controller, then
 report the controller state for the media element's current media
 controller.

 The effective playback rate is not necessarily the element's playbackRate. When a media element has a
 current media controller, its effective playback rate is the
 MediaController's media controller playback rate. Otherwise, the
 effective playback rate is just the element's playbackRate. Thus, the current media
 controller overrides the media element.

 If the effective playback rate is positive or zero, then the direction of
 playback is forwards. Otherwise, it is backwards.

 When a media element is potentially playing and
 its Document is a fully active Document, its current
 playback position must increase monotonically at effective playback rate units
 of media time per unit time of the media timeline's clock. (This specification always
 refers to this as an increase, but that increase could actually be a decrease if
 the effective playback rate is negative.)

 The effective playback rate can be 0.0, in which case the
 current playback position doesn't move, despite playback not being paused (paused doesn't become true, and the pause event doesn't fire).

 This specification doesn't define how the user agent achieves the appropriate
 playback rate — depending on the protocol and media available, it is plausible that the user
 agent could negotiate with the server to have the server provide the media data at the appropriate
 rate, so that (except for the period between when the rate is changed and when the server updates
 the stream's playback rate) the client doesn't actually have to drop or interpolate any
 frames.

 Any time the user agent provides a stable state,
 the official playback position must be set to the current playback
 position.

 When the direction of playback is backwards, any corresponding audio must be
 muted. When the effective playback rate is so low or so high that the user agent
 cannot play audio usefully, the corresponding audio must also be muted. If the effective
 playback rate is not 1.0, the user agent may apply pitch adjustments to the audio as
 necessary to render it faithfully.

 Media elements that are potentially playing
 while not in a Document must not play any video, but should play any
 audio component. Media elements must not stop playing just because all references to them have
 been removed; only once a media element is in a state where no further audio could ever be played
 by that element may the element be garbage collected.

 It is possible for an element to which no explicit references exist to play audio,
 even if such an element is not still actively playing: for instance, it could have a current
 media controller that still has references and can still be unpaused, or it could be
 unpaused but stalled waiting for content to buffer.

 Each media element has a list of newly introduced cues, which must be
 initially empty. Whenever a text track cue is added to the list of cues of a text track that is in the list of text
 tracks for a media element, that cue must
 be added to the media element's list of newly introduced cues. Whenever
 a text track is added to the list of text tracks for a media
 element, all of the cues in that text
 track's list of cues must be added to the
 media element's list of newly introduced cues. When a media
 element's list of newly introduced cues has new cues added while the
 media element's show poster flag is not set, then the user agent must
 run the time marches on steps.

 When a text track cue is removed from the list of cues of a text track that is in the list of text
 tracks for a media element, and whenever a text track is removed
 from the list of text tracks of a media element, if the media
 element's show poster flag is not set, then the user agent must run the
 time marches on steps.

 When the current playback position of a media element changes (e.g.
 due to playback or seeking), the user agent must run the time marches on steps. If the
 current playback position changes while the steps are running, then the user agent
 must wait for the steps to complete, and then must immediately rerun the steps. (These steps are
 thus run as often as possible or needed — if one iteration takes a long time, this can cause
 certain cues to be skipped over as the user agent rushes ahead
 to "catch up".)

 The time marches on steps are as follows:

 	Let current cues be a list of cues, initialized to contain all the cues of all
 the hidden or showing text tracks of the media
 element (not the disabled ones) whose start times are less than or equal to the current
 playback position and whose end times are
 greater than the current playback position.

 	Let other cues be a list of cues,
 initialized to contain all the cues of hidden and showing text tracks of the media element that are not present in current cues.

 	Let last time be the current playback position at the
 time this algorithm was last run for this media element, if this is not the first
 time it has run.

 	If the current playback position has, since the last time this algorithm was
 run, only changed through its usual monotonic increase during normal playback, then let missed cues be the list of cues in other cues whose start times are
 greater than or equal to last time and whose end times are less than or equal to the current playback position.
 Otherwise, let missed cues be an empty list.

 	Remove all the cues in missed cues
 that are also in the media element's list of newly introduced cues, and
 then empty the element's list of newly introduced cues.

 	If the time was reached through the usual monotonic increase of the current playback
 position during normal playback, and if the user agent has not fired a timeupdate event at the element in the past 15 to 250ms and
 is not still running event handlers for such an event, then the user agent must queue a
 task to fire a simple event named timeupdate at the element. (In the other cases, such as
 explicit seeks, relevant events get fired as part of the overall process of changing the
 current playback position.)

 The event thus is not to be fired faster than about 66Hz or slower than 4Hz
 (assuming the event handlers don't take longer than 250ms to run). User agents are encouraged to
 vary the frequency of the event based on the system load and the average cost of processing the
 event each time, so that the UI updates are not any more frequent than the user agent can
 comfortably handle while decoding the video.

 	If all of the cues in current cues
 have their text track cue active flag set, none of the cues in other cues have their text track cue active
 flag set, and missed cues is empty, then abort these steps.

 	

 If the time was reached through the usual monotonic increase of the current playback
 position during normal playback, and there are cues
 in other cues that have their text track cue pause-on-exit flag
 set and that either have their text track cue active flag set or are also in missed cues, then immediately pause the
 media element.

 In the other cases, such as explicit seeks, playback is not paused by going past
 the end time of a cue, even if that cue has its text track cue pause-on-exit flag set.

 	

 Let events be a list of tasks,
 initially empty. Each task in this list will be associated
 with a text track, a text track cue, and a time, which are used to
 sort the list before the tasks are queued.

 Let affected tracks be a list of text
 tracks, initially empty.

 When the steps below say to prepare an event named event for a
 text track cue target with a time time, the
 user agent must run these substeps:

 	Let track be the text track with which the text
 track cue target is associated.

 	Create a task to fire a simple event
 named event at target.

 	Add the newly created task to events, associated with the time time, the text
 track track, and the text track cue target.

 	Add track to affected tracks.

 	For each text track cue in missed
 cues, prepare an event named enter for the
 TextTrackCue object with the text track cue start time.

 	For each text track cue in other
 cues that either has its text track cue active flag set or is in missed cues, prepare an event named exit for the TextTrackCue object with the later of the
 text track cue end time and the text track cue start time.

 	For each text track cue in current
 cues that does not have its text track cue active flag set, prepare an
 event named enter for the TextTrackCue
 object with the text track cue start time.

 	

 Sort the tasks in events in ascending
 time order (tasks with earlier times first).

 Further sort tasks in events that have
 the same time by the relative text track cue order of the text track cues associated with these tasks.

 Finally, sort tasks in events that have
 the same time and same text track cue order by placing tasks that fire enter events before
 those that fire exit events.

 	Queue each task in
 events, in list order.

 	Sort affected tracks in the same order as the text tracks appear in the media element's list of text
 tracks, and remove duplicates.

	For each text track in affected tracks, in the list
 order, queue a task to fire a simple event named cuechange at the TextTrack object, and, if the
 text track has a corresponding track element, to then fire a
 simple event named cuechange at the
 track element as well.

 	Set the text track cue active flag of all the cues in the current cues, and unset the text track cue
 active flag of all the cues in the other
 cues.

 	Run the rules for updating the text track rendering of each of the text tracks in affected tracks that are showing. For example, for text
 tracks based on WebVTT, the rules for updating the display of WebVTT
 text tracks. [WEBVTT]

 For the purposes of the algorithm above, a text track cue is considered to be part
 of a text track only if it is listed in the text track list of cues, not
 merely if it is associated with the text track.

 If the media element's Document stops being a
 fully active document, then the playback will stop
 until the document is active again.

 When a media element is removed
 from a Document, the user agent must run the following steps:

 	Asynchronously await a stable state, allowing the task that removed the media element from the
 Document to continue. The synchronous section consists of all the
 remaining steps of this algorithm. (Steps in the synchronous section are marked with
 ⌛.)

 	⌛ If the media element is in a Document,
 abort these steps.

 	⌛ If the media element's networkState attribute has the value NETWORK_EMPTY, abort these steps.

 	⌛ Pause the media element.

 Seeking

 	media . seeking

 	

 Returns true if the user agent is currently seeking.

 	media . seekable

 	

 Returns a TimeRanges object that represents the ranges of the media
 resource to which it is possible for the user agent to seek.

 The seeking attribute must initially have the
 value false.

 When the user agent is required to seek to a particular new playback position in the media resource, optionally with the
 approximate-for-speed flag set, it means that the user agent must run the following steps.
 This algorithm interacts closely with the event loop mechanism; in particular, it has
 a synchronous section (which is triggered as part of the event loop
 algorithm). Steps in that section are marked with ⌛.

 	Set the media element's show poster flag to false.

 	If the media element's readyState
 is HAVE_NOTHING, abort these steps.

 	If the element's seeking IDL attribute is true,
 then another instance of this algorithm is already running. Abort that other instance of the
 algorithm without waiting for the step that it is running to complete.

 	Set the seeking IDL attribute to true.

 	If the seek was in response to a DOM method call or setting of an IDL attribute, then
 continue the script. The remainder of these steps must be run asynchronously. With the exception
 of the steps marked with ⌛, they could be aborted at any time by another instance of this
 algorithm being invoked.

 	If the new playback position is later than the end of the media
 resource, then let it be the end of the media resource instead.

 	If the new playback position is less than the earliest possible
 position, let it be that position instead.

 	If the (possibly now changed) new playback position is not in one of
 the ranges given in the seekable attribute, then let it
 be the position in one of the ranges given in the seekable attribute that is the nearest to the new
 playback position. If two positions both satisfy that constraint (i.e. the new playback position is exactly in the middle between two ranges in the seekable attribute) then use the position that is closest to
 the current playback position. If there are no ranges given in the seekable attribute then set the seeking IDL attribute to false and abort these steps.

 	

 If the approximate-for-speed flag is set, adjust the new playback
 position to a value that will allow for playback to resume promptly. If new
 playback position before this step is before current playback position, then
 the adjusted new playback position must also be before the current
 playback position. Similarly, if the new playback position before
 this step is after current playback position, then the adjusted new
 playback position must also be after the current playback position.

 For example, the user agent could snap to the nearest key frame, so that it
 doesn't have to spend time decoding then discarding intermediate frames before resuming
 playback.

 	Queue a task to fire a simple event named seeking at the element.

 	

 Set the current playback position to the given new playback
 position.

 If the media element was potentially playing
 immediately before it started seeking, but seeking caused its readyState attribute to change to a value lower than HAVE_FUTURE_DATA, then a waiting will be
 fired at the element.

 The currentTime attribute does not
 get updated asynchronously, as it returns the official playback position, not the
 current playback position.

 	Wait until the user agent has established whether or not the media data for
 the new playback position is available, and, if it is, until it has decoded
 enough data to play back that position.

 	Await a stable state. The synchronous section consists of all
 the remaining steps of this algorithm. (Steps in the synchronous section are marked
 with ⌛.)

 	⌛ Set the seeking IDL attribute to
 false.

 	⌛ Run the time marches on steps.

 	⌛ Queue a task to fire a simple event
 named timeupdate at the element.

 	⌛ Queue a task to fire a simple event named seeked at the element.

 The seekable attribute must return a new
 static normalized TimeRanges object that represents the ranges of the
 media resource, if any, that the user agent is able to seek to, at the time the
 attribute is evaluated.

 If the user agent can seek to anywhere in the media resource, e.g.
 because it is a simple movie file and the user agent and the server support HTTP Range requests,
 then the attribute would return an object with one range, whose start is the time of the first
 frame (the earliest possible position, typically zero), and whose end is the same as
 the time of the first frame plus the duration attribute's
 value (which would equal the time of the last frame, and might be positive Infinity).

 The range might be continuously changing, e.g. if the user agent is buffering a
 sliding window on an infinite stream. This is the behavior seen with DVRs viewing live TV, for
 instance.

 Media resources might be internally scripted or
 interactive. Thus, a media element could play in a non-linear fashion. If this
 happens, the user agent must act as if the algorithm for seeking was used whenever the current playback position
 changes in a discontinuous fashion (so that the relevant events fire). If the media
 element has a current media controller, then the user agent must seek
 the media controller appropriately instead.

 Media resources with multiple media tracks

 A media resource can have multiple embedded audio and video tracks. For example,
 in addition to the primary video and audio tracks, a media resource could have
 foreign-language dubbed dialogues, director's commentaries, audio descriptions, alternative
 angles, or sign-language overlays.

 	media . audioTracks

 	

 Returns an AudioTrackList object representing the audio tracks available in the
 media resource.

 	media . videoTracks

 	

 Returns a VideoTrackList object representing the video tracks available in the
 media resource.

 The audioTracks attribute of a
 media element must return a live AudioTrackList object
 representing the audio tracks available in the media element's media
 resource. The same object must be returned each time.

 The videoTracks attribute of a
 media element must return a live VideoTrackList object
 representing the video tracks available in the media element's media
 resource. The same object must be returned each time.

 There are only ever one AudioTrackList object and one
 VideoTrackList object per media element, even if another media
 resource is loaded into the element: the objects are reused. (The AudioTrack
 and VideoTrack objects are not, though.)

 In this example, a script defines a function that takes a URL to a video and a reference to an
 element where the video is to be placed. That function then tries to load the video, and, once it
 is loaded, checks to see if there is a sign-language track available. If there is, it also
 displays that track. Both tracks are just placed in the given container; it's assumed that styles
 have been applied to make this work in a pretty way!

 <script>
 function loadVideo(url, container) {
 var controller = new MediaController();
 var video = document.createElement('video');
 video.src = url;
 video.autoplay = true;
 video.controls = true;
 video.controller = controller;
 container.appendChild(video);
 video.onloadedmetadata = function (event) {
 for (var i = 0; i < video.videoTracks.length; i += 1) {
 if (video.videoTracks[i].kind == 'sign') {
 var sign = document.createElement('video');
 sign.src = url + '#track=' + video.videoTracks[i].id;
 sign.autoplay = true;
 sign.controller = controller;
 container.appendChild(sign);
 return;
 }
 }
 };
 }
</script>

 AudioTrackList and VideoTrackList objects

 The AudioTrackList and VideoTrackList interfaces are used by
 attributes defined in the previous section.

 interface AudioTrackList : EventTarget {
 readonly attribute unsigned long length;
 getter AudioTrack (unsigned long index);
 AudioTrack? getTrackById(DOMString id);

 attribute EventHandler onchange;
 attribute EventHandler onaddtrack;
 attribute EventHandler onremovetrack;
};

interface AudioTrack {
 readonly attribute DOMString id;
 readonly attribute DOMString kind;
 readonly attribute DOMString label;
 readonly attribute DOMString language;
 attribute boolean enabled;
};

interface VideoTrackList : EventTarget {
 readonly attribute unsigned long length;
 getter VideoTrack (unsigned long index);
 VideoTrack? getTrackById(DOMString id);
 readonly attribute long selectedIndex;

 attribute EventHandler onchange;
 attribute EventHandler onaddtrack;
 attribute EventHandler onremovetrack;
};

interface VideoTrack {
 readonly attribute DOMString id;
 readonly attribute DOMString kind;
 readonly attribute DOMString label;
 readonly attribute DOMString language;
 attribute boolean selected;
};

 	media . audioTracks . length

 	media . videoTracks . length

 	

 Returns the number of tracks in the list.

 	audioTrack = media . audioTracks[index]

 	videoTrack = media . videoTracks[index]

 	

 Returns the specified AudioTrack or VideoTrack object.

 	audioTrack = media . audioTracks . getTrackById(id)

 	videoTrack = media . videoTracks . getTrackById(id)

 	

 Returns the AudioTrack or VideoTrack object with the given identifier, or null if no track has that identifier.

 	audioTrack . id

 	videoTrack . id

 	

 Returns the ID of the given track. This is the ID that can be used with a fragment identifier
 if the format supports the Media Fragments URI syntax, and that can be used with
 the getTrackById() method. [MEDIAFRAG]

 	audioTrack . kind

 	videoTrack . kind

 	

 Returns the category the given track falls into. The possible track categories are given below.

 	audioTrack . label

 	videoTrack . label

 	

 Returns the label of the given track, if known, or the empty string otherwise.

 	audioTrack . language

 	videoTrack . language

 	

 Returns the language of the given track, if known, or the empty string otherwise.

 	audioTrack . enabled [= value]

 	

 Returns true if the given track is active, and false otherwise.

 Can be set, to change whether the track is enabled or not. If multiple audio tracks are
 enabled simultaneously, they are mixed.

 	media . videoTracks . selectedIndex

 	

 Returns the index of the currently selected track, if any, or −1 otherwise.

 	videoTrack . selected [= value]

 	

 Returns true if the given track is active, and false otherwise.

 Can be set, to change whether the track is selected or not. Either zero or one video track is
 selected; selecting a new track while a previous one is selected will unselect the previous
 one.

 An AudioTrackList object represents a dynamic list of zero or more audio tracks,
 of which zero or more can be enabled at a time. Each audio track is represented by an
 AudioTrack object.

 A VideoTrackList object represents a dynamic list of zero or more video tracks, of
 which zero or one can be selected at a time. Each video track is represented by a
 VideoTrack object.

 Tracks in AudioTrackList and VideoTrackList objects must be
 consistently ordered. If the media resource is in a format that defines an order,
 then that order must be used; otherwise, the order must be the relative order in which the tracks
 are declared in the media resource. The order used is called the natural order
 of the list.

 Each track in a TrackList thus has an index; the first has the index
 0, and each subsequent track is numbered one higher than the previous one. If a media
 resource dynamically adds or removes audio or video tracks, then the indices of the tracks
 will change dynamically. If the media resource changes entirely, then all the
 previous tracks will be removed and replaced with new tracks.

 The AudioTrackList.length and VideoTrackList.length attributes must return
 the number of tracks represented by their objects at the time of getting.

 The supported property indices of AudioTrackList and
 VideoTrackList objects at any instant are the numbers from zero to the number of
 tracks represented by the respective object minus one, if any tracks are represented. If an
 AudioTrackList or VideoTrackList object represents no tracks, it has no
 supported property indices.

 To determine the value of an indexed property for a given index index in an AudioTrackList or VideoTrackList object list, the user agent must return the AudioTrack or
 VideoTrack object that represents the indexth track in list.

 The AudioTrackList.getTrackById(id) and VideoTrackList.getTrackById(id) methods must return the first AudioTrack or
 VideoTrack object (respectively) in the AudioTrackList or
 VideoTrackList object (respectively) whose identifier is equal to the value of the
 id argument (in the natural order of the list, as defined above). When no
 tracks match the given argument, the methods must return null.

 The AudioTrack and VideoTrack objects represent specific tracks of a
 media resource. Each track can have an identifier, category, label, and language.
 These aspects of a track are permanent for the lifetime of the track; even if a track is removed
 from a media resource's AudioTrackList or VideoTrackList
 objects, those aspects do not change.

 In addition, AudioTrack objects can each be enabled or disabled; this is the audio
 track's enabled state. When an AudioTrack is created, its enabled state
 must be set to false (disabled). The resource fetch
 algorithm can override this.

 Similarly, a single VideoTrack object per VideoTrackList object can
 be selected, this is the video track's selection state. When a VideoTrack is
 created, its selection state must be set to false (not selected). The resource fetch algorithm can override this.

 The AudioTrack.id and VideoTrack.id attributes must return the identifier
 of the track, if it has one, or the empty string otherwise. If the media resource is
 in a format that supports the Media Fragments URI fragment identifier syntax, the
 identifier returned for a particular track must be the same identifier that would enable the track
 if used as the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG]

 For example, in Ogg files, this would be the Name header field of the track. [OGGSKELETONHEADERS]

 The AudioTrack.kind and VideoTrack.kind attributes must return the category
 of the track, if it has one, or the empty string otherwise.

 The category of a track is the string given in the first column of the table below that is the
 most appropriate for the track based on the definitions in the table's second and third columns,
 as determined by the metadata included in the track in the media resource. The cell
 in the third column of a row says what the category given in the cell in the first column of that
 row applies to; a category is only appropriate for an audio track if it applies to audio tracks,
 and a category is only appropriate for video tracks if it applies to video tracks. Categories must
 only be returned for AudioTrack objects if they are appropriate for audio, and must
 only be returned for VideoTrack objects if they are appropriate for video.

 For Ogg files, the Role header field of the track gives the relevant metadata. For DASH media
 resources, the Role element conveys the information. For WebM, only the
 FlagDefault element currently maps to a value. [OGGSKELETONHEADERS] [DASH] [WEBMCG]

 Return values for AudioTrack.kind() and VideoTrack.kind()

 	Category
 	Definition
 	Applies to...
 	Examples

 	"alternative"
 	A possible alternative to the main track, e.g. a different take of a song (audio), or a different angle (video).
 	Audio and video.
 	Ogg: "audio/alternate" or "video/alternate"; DASH: "alternate" without "main" and "commentary" roles, and, for audio, without the "dub" role (other roles ignored).

 	"captions"
 	A version of the main video track with captions burnt in. (For legacy content; new content would use text tracks.)
 	Video only.
 	DASH: "caption" and "main" roles together (other roles ignored).

 	"description"
 	An audio description of a video track.
 	Audio only.
 	Ogg: "audio/audiodesc".

 	"main"
 	The primary audio or video track.
 	Audio and video.
 	Ogg: "audio/main" or "video/main"; WebM: the "FlagDefault" element is set; DASH: "main" role without "caption", "subtitle", and "dub" roles (other roles ignored).

 	"main-desc"
 	The primary audio track, mixed with audio descriptions.
 	Audio only.
 	AC3 audio in MPEG-2 TS: bsmod=2 and full_svc=1.

 	"sign"
 	A sign-language interpretation of an audio track.
 	Video only.
 	Ogg: "video/sign".

 	"subtitles"
 	A version of the main video track with subtitles burnt in. (For legacy content; new content would use text tracks.)
 	Video only.
 	DASH: "subtitle" and "main" roles together (other roles ignored).

 	"translation"
 	A translated version of the main audio track.
 	Audio only.
 	Ogg: "audio/dub". DASH: "dub" and "main" roles together (other roles ignored).

 	"commentary"
 	Commentary on the primary audio or video track, e.g. a director's commentary.
 	Audio and video.
 	DASH: "commentary" role without "main" role (other roles ignored).

 	"" (empty string)
 	No explicit kind, or the kind given by the track's metadata is not recognised by the user agent.
 	Audio and video.
 	Any other track type, track role, or combination of track roles not described above.

 The AudioTrack.label and VideoTrack.label attributes must return the label
 of the track, if it has one, or the empty string otherwise.

 The AudioTrack.language and VideoTrack.language attributes must return the
 BCP 47 language tag of the language of the track, if it has one, or the empty string otherwise. If
 the user agent is not able to express that language as a BCP 47 language tag (for example because
 the language information in the media resource's format is a free-form string without
 a defined interpretation), then the method must return the empty string, as if the track had no
 language.

 The AudioTrack.enabled attribute, on
 getting, must return true if the track is currently enabled, and false otherwise. On setting, it
 must enable the track if the new value is true, and disable it otherwise. (If the track is no
 longer in an AudioTrackList object, then the track being enabled or disabled has no
 effect beyond changing the value of the attribute on the AudioTrack object.)

 Whenever an audio track in an AudioTrackList is enabled or disabled, the user
 agent must queue a task to fire a simple event named change at the AudioTrackList object.

 The VideoTrackList.selectedIndex attribute
 must return the index of the currently selected track, if any. If the VideoTrackList
 object does not currently represent any tracks, or if none of the tracks are selected, it must
 instead return −1.

 The VideoTrack.selected attribute, on
 getting, must return true if the track is currently selected, and false otherwise. On setting, it
 must select the track if the new value is true, and unselect it otherwise. If the track is in a
 VideoTrackList, then all the other VideoTrack objects in that list must
 be unselected. (If the track is no longer in a VideoTrackList object, then the track
 being selected or unselected has no effect beyond changing the value of the attribute on the
 VideoTrack object.)

 Whenever a track in a VideoTrackList that was previously not selected is selected,
 the user agent must queue a task to fire a simple event named change at the VideoTrackList object.

 The following are the event handlers (and their corresponding event handler event types) that must be supported, as IDL attributes,
 by all objects implementing the AudioTrackList and VideoTrackList
 interfaces:

 	Event handler 	Event handler event type

 	onchange 	 change

	onaddtrack 	 addtrack

	onremovetrack 	 removetrack

 The task source for the tasks listed in this
 section is the DOM manipulation task source.

 Selecting specific audio and video tracks declaratively

 The audioTracks and videoTracks attributes allow scripts to select which track
 should play, but it is also possible to select specific tracks declaratively, by specifying
 particular tracks in the fragment identifier of the URL of the media
 resource. The format of the fragment identifier depends on the MIME type of
 the media resource. [RFC2046] [URL]

 In this example, a video that uses a format that supports the Media Fragments URI
 fragment identifier syntax is embedded in such a way that the alternative angles labeled
 "Alternative" are enabled instead of the default video track. [MEDIAFRAG]

 <video src="myvideo#track=Alternative"></video>

 Synchronising multiple media elements

 Introduction

 Each media element can have a MediaController. A
 MediaController is an object that coordinates the playback of multiple media elements, for instance so that a sign-language interpreter
 track can be overlaid on a video track, with the two being kept in sync.

 By default, a media element has no MediaController. An implicit
 MediaController can be assigned using the mediagroup content attribute. An explicit
 MediaController can be assigned directly using the controller IDL attribute.

 Media elements with a MediaController are said
 to be slaved to their controller. The MediaController modifies the playback
 rate and the playback volume of each of the media elements
 slaved to it, and ensures that when any of its slaved media
 elements unexpectedly stall, the others are stopped at the same time.

 When a media element is slaved to a MediaController, its playback
 rate is fixed to that of the other tracks in the same MediaController, and any
 looping is disabled.

 Media controllers

 enum MediaControllerPlaybackState { "waiting", "playing", "ended" };
[Constructor]
interface MediaController : EventTarget {
 readonly attribute unsigned short readyState; // uses HTMLMediaElement.readyState's values

 readonly attribute TimeRanges buffered;
 readonly attribute TimeRanges seekable;
 readonly attribute unrestricted double duration;
 attribute double currentTime;

 readonly attribute boolean paused;
 readonly attribute MediaControllerPlaybackState playbackState;
 readonly attribute TimeRanges played;
 void pause();
 void unpause();
 void play(); // calls play() on all media elements as well

 attribute double defaultPlaybackRate;
 attribute double playbackRate;

 attribute double volume;
 attribute boolean muted;

 attribute EventHandler onemptied;
 attribute EventHandler onloadedmetadata;
 attribute EventHandler onloadeddata;
 attribute EventHandler oncanplay;
 attribute EventHandler oncanplaythrough;
 attribute EventHandler onplaying;
 attribute EventHandler onended;
 attribute EventHandler onwaiting;

 attribute EventHandler ondurationchange;
 attribute EventHandler ontimeupdate;
 attribute EventHandler onplay;
 attribute EventHandler onpause;
 attribute EventHandler onratechange;
 attribute EventHandler onvolumechange;
};

 	controller = new MediaController()

 	

 Returns a new MediaController object.

 	media . controller [= controller]

 	

 Returns the current MediaController for the media element, if any;
 returns null otherwise.

 Can be set, to set an explicit MediaController. Doing so removes the mediagroup attribute, if any.

 	controller . readyState

 	

 Returns the state that the MediaController was in the last time it fired events
 as a result of reporting the controller state.
 The values of this attribute are the same as for the readyState attribute of media
 elements.

 	controller . buffered

 	

 Returns a TimeRanges object that represents the intersection of the time ranges
 for which the user agent has all relevant media data for all the slaved media elements.

 	controller . seekable

 	

 Returns a TimeRanges object that represents the intersection of the time ranges
 into which the user agent can seek for all the slaved media
 elements.

 	controller . duration

 	

 Returns the difference between the earliest playable moment and the latest playable moment
 (not considering whether the data in question is actually buffered or directly seekable, but not
 including time in the future for infinite streams). Will return zero if there is no media.

 	controller . currentTime [= value]

 	

 Returns the current playback position, in seconds, as a position between zero
 time and the current duration.

 Can be set, to seek to the given time.

 	controller . paused

 	

 Returns true if playback is paused; false otherwise. When this attribute is true, any
 media element slaved to this controller will be stopped.

 	controller . playbackState

 	

 Returns the state that the MediaController was in the last time it fired events
 as a result of reporting the controller state.
 The value of this attribute is either "playing", indicating that the media is actively
 playing, "ended", indicating that the media is
 not playing because playback has reached the end of all the slaved media elements,
 or "waiting", indicating that the media is not
 playing for some other reason (e.g. the MediaController is paused).

 	controller . pause()

 	

 Sets the paused attribute to true.

 	controller . unpause()

 	

 Sets the paused attribute to false.

 	controller . play()

 	

 Sets the paused attribute to false and
 invokes the play() method of each slaved media element.

 	controller . played

 	

 Returns a TimeRanges object that represents the union of the time ranges in all
 the slaved media elements that have been played.

 	controller . defaultPlaybackRate [= value]

 	

 Returns the default rate of playback.

 Can be set, to change the default rate of playback.

 This default rate has no direct effect on playback, but if the user switches to a
 fast-forward mode, when they return to the normal playback mode, it is expected that rate of
 playback (playbackRate) will be returned
 to this default rate.

 	controller . playbackRate [= value]

 	

 Returns the current rate of playback.

 Can be set, to change the rate of playback.

 	controller . volume [= value]

 	

 Returns the current playback volume multiplier, as a number in the range 0.0 to 1.0, where
 0.0 is the quietest and 1.0 the loudest.

 Can be set, to change the volume multiplier.

 Throws an IndexSizeError exception if the new value is not in the range 0.0 .. 1.0.

 	controller . muted [= value]

 	

 Returns true if all audio is muted (regardless of other attributes either on the controller
 or on any media elements slaved to this controller), and
 false otherwise.

 Can be set, to change whether the audio is muted or not.

 A media element can have a current media controller, which is a
 MediaController object. When a media element is created without a mediagroup attribute, it does not have a current media
 controller. (If it is created with such an attribute, then that attribute
 initializes the current media controller, as defined below.)

 The slaved media elements of a MediaController are the media elements whose current media controller is that
 MediaController. All the slaved media elements of a
 MediaController must use the same clock for their definition of their media
 timeline's unit time. When the user agent is required to act on each slaved media element in turn, they must be processed in the order that they
 were last associated with the MediaController.

 The controller attribute on a media
 element, on getting, must return the element's current media controller, if
 any, or null otherwise. On setting, the user agent must run the following steps:

 	Let m be the media element in question.

 	Let old controller be m's current media
 controller, if it currently has one, and null otherwise.

 	Let new controller be null.

 	Let m have no current media controller, if it currently
 has one.

 	Remove the element's mediagroup content
 attribute, if any.

 	If the new value is null, then jump to the update controllers step below.

 	Let m's current media controller be the new
 value.

 	Let new controller be m's current media
 controller.

 	Bring the media element up to speed with its new media controller.

 	Update controllers: If old controller and new
 controller are the same (whether both null or both the same controller) then abort these
 steps.

 	If old controller is not null and still has one or more slaved
 media elements, then report the controller state for old
 controller.

 	If new controller is not null, then report the controller
 state for new controller.

 The MediaController() constructor, when
 invoked, must return a newly created MediaController object.

 The readyState attribute must
 return the value to which it was most recently set. When the MediaController object
 is created, the attribute must be set to the value 0 (HAVE_NOTHING). The value is updated by the report the
 controller state algorithm below.

 The seekable attribute must return
 a new static normalized TimeRanges object that represents the
 intersection of the ranges of the media resources of the
 slaved media elements that the user agent is able to seek to, at the time the
 attribute is evaluated.

 The buffered attribute must return
 a new static normalized TimeRanges object that represents the
 intersection of the ranges of the media resources of the
 slaved media elements that the user agent has buffered, at the time the attribute is
 evaluated. Users agents must accurately determine the ranges available, even for media streams
 where this can only be determined by tedious inspection.

 The duration attribute must return
 the media controller duration.

 Every 15 to 250ms, or whenever the MediaController's media controller
 duration changes, whichever happens least often, the user agent must queue a
 task to fire a simple event named durationchange at the
 MediaController. If the MediaController's media controller
 duration decreases such that the media controller position is greater than the
 media controller duration, the user agent must immediately seek the media
 controller to media controller duration.

 The currentTime attribute must
 return the media controller position on getting, and on setting must seek the
 media controller to the new value.

 Every 15 to 250ms, or whenever the MediaController's media controller
 position changes, whichever happens least often, the user agent must queue a
 task to fire a simple event named timeupdate at the
 MediaController.

 When a MediaController is created it is a playing media controller. It
 can be changed into a paused media controller and back either via the user agent's user
 interface (when the element is exposing a user
 interface to the user) or by script using the APIs defined in this section (see below).

 The paused attribute must return
 true if the MediaController object is a paused media controller, and
 false otherwise.

 When the pause() method is invoked,
 if the MediaController is a playing media controller then the user agent
 must change the MediaController into a paused media controller,
 queue a task to fire a simple event named pause at the MediaController, and then
 report the controller state of the MediaController.

 When the unpause() method is
 invoked, if the MediaController is a paused media controller, the user
 agent must change the MediaController into a playing media controller,
 queue a task to fire a simple event named play at the MediaController, and then
 report the controller state of the MediaController.

 When the play() method is invoked, the
 user agent must invoke the play method of each slaved media element in turn, and then invoke the unpause method of the MediaController.

 The playbackState attribute
 must return the value to which it was most recently set. When the MediaController
 object is created, the attribute must be set to the value "waiting". The value is updated by the report the
 controller state algorithm below.

 The played attribute must return a
 new static normalized TimeRanges object that represents the union of the
 ranges of points on the media timelines of the media resources of the slaved media elements that the
 user agent has so far reached through the usual monotonic increase of their current playback positions during normal playback, at the time the
 attribute is evaluated.

 A MediaController has a media controller default playback rate and a
 media controller playback rate, which must both be set to 1.0 when the
 MediaController object is created.

 The defaultPlaybackRate
 attribute, on getting, must return the MediaController's media controller
 default playback rate, and on setting, must set the MediaController's
 media controller default playback rate to the new value, then queue a
 task to fire a simple event named ratechange at the
 MediaController.

 The playbackRate attribute, on
 getting, must return the MediaController's media controller playback
 rate, and on setting, must set the MediaController's media controller
 playback rate to the new value, then queue a task to fire a simple
 event named ratechange at the
 MediaController.

 A MediaController has a media controller volume multiplier, which must
 be set to 1.0 when the MediaController object is created, and a media controller
 mute override, much must initially be false.

 The volume attribute, on getting,
 must return the MediaController's media controller volume multiplier,
 and on setting, if the new value is in the range 0.0 to 1.0 inclusive, must set the
 MediaController's media controller volume multiplier to the new value
 and queue a task to fire a simple event named volumechange at the
 MediaController. If the new value is outside the range 0.0 to 1.0 inclusive, then, on
 setting, an IndexSizeError exception must be thrown instead.

 The muted attribute, on getting, must
 return the MediaController's media controller mute override, and on
 setting, must set the MediaController's media controller mute override
 to the new value and queue a task to fire a simple event named volumechange at the
 MediaController.

 The media resources of all the slaved media
 elements of a MediaController have a defined temporal relationship which
 provides relative offsets between the zero time of each such media resource: for
 media resources with a timeline offset, their
 relative offsets are the difference between their timeline offset; the zero times of
 all the media resources without a timeline offset
 are not offset from each other (i.e. the origins of their timelines are cotemporal); and finally,
 the zero time of the media resource with the earliest timeline offset
 (if any) is not offset from the zero times of the media
 resources without a timeline offset (i.e. the origins of media resources without a timeline offset are further cotemporal
 with the earliest defined point on the timeline of the media resource with the
 earliest timeline offset).

 The media resource end position of a media resource in a media
 element is defined as follows: if the media resource has a finite and known
 duration, the media resource end position is the duration of the media
 resource's timeline (the last defined position on that timeline); otherwise, the
 media resource's duration is infinite or unknown, and the media resource end
 position is the time of the last frame of media data currently available for
 that media resource.

 Each MediaController also has its own defined timeline. On this timeline, all the
 media resources of all the slaved media elements
 of the MediaController are temporally aligned according to their defined offsets. The
 media controller duration of that MediaController is the time from the
 earliest earliest possible position, relative to this MediaController
 timeline, of any of the media resources of the slaved
 media elements of the MediaController, to the time of the latest media
 resource end position of the media resources of the
 slaved media elements of the MediaController, again relative to this
 MediaController timeline.

 Each MediaController has a media controller position. This is the time
 on the MediaController's timeline at which the user agent is trying to play the
 slaved media elements. When a MediaController is created, its
 media controller position is initially zero.

 When the user agent is to bring a media element up to speed with its new media controller, it must seek that media element to the
 MediaController's media controller position relative to the media
 element's timeline.

 When the user agent is to seek the media controller to a particular new playback position, it must follow these steps:

 	If the new playback position is less than zero, then set it to
 zero.

 	If the new playback position is greater than the media
 controller duration, then set it to the media controller duration.

 	Set the media controller position to the new playback
 position.

 	Seek each slaved
 media element to the new playback position relative to the media
 element timeline.

 A MediaController is a blocked media controller if the
 MediaController is a paused media controller, or if any of its
 slaved media elements are blocked media
 elements, or if any of its slaved media elements whose autoplaying
 flag is true still have their paused attribute set to
 true, or if all of its slaved media elements have their paused attribute set to true.

 A media element is blocked on its media controller if the
 MediaController is a blocked media controller, or if its media
 controller position is either before the media resource's earliest
 possible position relative to the MediaController's timeline or after the end
 of the media resource relative to the MediaController's timeline.

 When a MediaController is not a blocked media
 controller and it has at least one slaved media
 element whose Document is a fully active Document,
 the MediaController's media controller position must increase
 monotonically at media controller playback rate units of time on the
 MediaController's timeline per unit time of the clock used by its slaved media
 elements.

 When the zero point on the timeline of a MediaController moves relative to the
 timelines of the slaved media elements by a time difference ΔT, the MediaController's media controller
 position must be decremented by ΔT.

 In some situations, e.g. when playing back a live stream without buffering
 anything, the media controller position would increase monotonically as described
 above at the same rate as the ΔT described in the previous paragraph
 decreases it, with the end result that for all intents and purposes, the media controller
 position would appear to remain constant (probably with the value 0).

 A MediaController has a most recently reported readiness state, which
 is a number from 0 to 4 derived from the numbers used for the media element readyState attribute, and a most recently reported
 playback state, which is either playing, waiting, or ended.

 When a MediaController is created, its most recently reported readiness
 state must be set to 0, and its most recently reported playback state must be
 set to waiting.

 When a user agent is required to report the controller state for a
 MediaController, the user agent must run the following steps:

 	

 If the MediaController has no slaved media elements, let new readiness state be 0.

 Otherwise, let it have the lowest value of the readyState IDL attributes of all of its slaved media
 elements.

 	

 If the MediaController's most recently reported readiness state is
 less than the new readiness state, then run these substeps:

 	Let next state be the MediaController's most
 recently reported readiness state.

 	Loop: Increment next state by one.

 	

 Queue a task to run the following steps:

 	Set the MediaController's readyState attribute to the value next state.

 	Fire a simple event at the MediaController object, whose
 name is the event name corresponding to the value of next state given in
 the table below.

 	If next state is less than new readiness state,
 then return to the step labeled loop.

 Otherwise, if the MediaController's most recently reported readiness
 state is greater than new readiness state then queue a
 task to fire a simple event at the MediaController object,
 whose name is the event name corresponding to the value of new readiness
 state given in the table below.

 	Value of new readiness state
 	Event name

 	 0
 	 emptied

 	 1
 	 loadedmetadata

 	 2
 	 loadeddata

 	 3
 	 canplay

 	 4
 	 canplaythrough

 	Let the MediaController's most recently reported readiness state
 be new readiness state.

 	

 Initialize new playback state by setting it to the state given for the
 first matching condition from the following list:

 	If the MediaController has no slaved media elements

 	Let new playback state be waiting.

 	If all of the MediaController's slaved media elements have
 ended playback and the media controller playback rate is positive or
 zero

 	Let new playback state be ended.

 	If the MediaController is a blocked media controller

 	Let new playback state be waiting.

 	Otherwise

 	Let new playback state be playing.

 	If the MediaController's most recently reported playback state
 is not equal to new playback state and the new playback
 state is ended, then queue a task that, if the
 MediaController object is a playing media controller, and all of the
 MediaController's slaved media elements have still ended
 playback, and the media controller playback rate is still positive or zero,
 changes the MediaController object to a paused media controller and
 then fires a simple event named pause at the MediaController
 object.

 	

 If the MediaController's most recently reported playback state is
 not equal to new playback state then queue a task to run the
 following steps:

 	Set the MediaController's playbackState attribute to the value given in
 the second column of the row of the following table whose first column contains the new playback state.

 	Fire a simple event at the MediaController object, whose name
 is the value given in the third column of the row of the following table whose first column
 contains the new playback state.

 	New playback state
 	New value for playbackState
 	Event name

 	playing
 	"playing"
 	playing

 	waiting
 	"waiting"
 	waiting

 	ended
 	"ended"
 	ended

 	Let the MediaController's most recently reported playback state
 be new playback state.

 The following are the event handlers (and their corresponding event handler event types) that must be supported, as IDL attributes,
 by all objects implementing the MediaController interface:

 	Event handler 	Event handler event type

 	onemptied 	 emptied

	onloadedmetadata 	 loadedmetadata

	onloadeddata 	 loadeddata

	oncanplay 	 canplay

	oncanplaythrough 	 canplaythrough

	onplaying 	 playing

	onended 	 ended

	onwaiting 	 waiting

 	ondurationchange 	 durationchange

	ontimeupdate 	 timeupdate

	onplay 	 play

	onpause 	 pause

	onratechange 	 ratechange

	onvolumechange 	 volumechange

 The task source for the tasks listed in this
 section is the DOM manipulation task source.

 Assigning a media controller declaratively

 The mediagroup content attribute on media elements can be used to link multiple media elements together by implicitly creating a MediaController. The
 value is text; media elements with the same value are
 automatically linked by the user agent.

 When a media element is created with a mediagroup attribute, and when a media element's
 mediagroup attribute is set, changed, or removed, the
 user agent must run the following steps:

 	Let m be the media element in question.

 	Let old controller be m's current media
 controller, if it currently has one, and null otherwise.

 	Let new controller be null.

 	Let m have no current media controller, if it currently
 has one.

 	If m's mediagroup attribute
 is being removed, then jump to the update controllers step below.

 	

 If there is another media element whose Document is the same as
 m's Document (even if one or both of these elements are not
 actually in the Document), and which
 also has a mediagroup attribute, and whose mediagroup attribute has the same value as the new value of
 m's mediagroup attribute, then
 let controller be that media element's current media
 controller.

 Otherwise, let controller be a newly created
 MediaController.

 	Let m's current media controller be controller.

 	Let new controller be m's current media
 controller.

 	Bring the media element up to speed with its new media
 controller.

 	Update controllers: If old
 controller and new controller are the
 same (whether both null or both the same controller) then abort
 these steps.

 	If old controller is not null and still has one or more slaved
 media elements, then report the controller state for old
 controller.

 	If new controller is not null, then report the controller
 state for new controller.

 The mediaGroup IDL attribute on media elements must reflect the mediagroup content attribute.

 Multiple media elements referencing the same media
 resource will share a single network request. This can be used to efficiently play two
 (video) tracks from the same media resource in two different places on the screen.
 Used with the mediagroup attribute, these elements can
 also be kept synchronised.

 In this example, a sign-languge interpreter track from a movie file is overlaid on the primary
 video track of that same video file using two video elements, some CSS, and an
 implicit MediaController:

 <article>
 <style scoped>
 div { margin: 1em auto; position: relative; width: 400px; height: 300px; }
 video { position; absolute; bottom: 0; right: 0; }
 video:first-child { width: 100%; height: 100%; }
 video:last-child { width: 30%; }
 </style>
 <div>
 <video src="movie.vid#track=Video&track=English" autoplay controls mediagroup=movie></video>
 <video src="movie.vid#track=sign" autoplay mediagroup=movie></video>
 </div>
</article>

 Timed text tracks

 Text track model

 A media element can have a group of associated text
 tracks, known as the media element's list of text tracks. The text tracks are sorted as follows:

 	The text tracks corresponding to track element
 children of the media element, in tree order.

 	Any text tracks added using the addTextTrack() method, in the order they were added, oldest
 first.

 	Any media-resource-specific text
 tracks (text tracks corresponding to data in the
 media resource), in the order defined by the media resource's format
 specification.

 A text track consists of:

 	The kind of text track

	

 This decides how the track is handled by the user agent. The kind is represented by a string.
 The possible strings are:

 	subtitles

	captions

	descriptions

	chapters

	metadata

 The kind of track can change dynamically, in the case of
 a text track corresponding to a track element.

 	A label

	

 This is a human-readable string intended to identify the track for the user.

 The label of a track can change dynamically, in the
 case of a text track corresponding to a track element.

 When a text track label is the empty string, the user agent should automatically
 generate an appropriate label from the text track's other properties (e.g. the kind of text
 track and the text track's language) for use in its user interface. This automatically-generated
 label is not exposed in the API.

 	An in-band metadata track dispatch type

	

 This is a string extracted from the media resource specifically for in-band
 metadata tracks to enable such tracks to be dispatched to different scripts in the document.

 For example, a traditional TV station broadcast streamed on the Web and
 augmented with Web-specific interactive features could include text tracks with metadata for ad
 targeting, trivia game data during game shows, player states during sports games, recipe
 information during food programs, and so forth. As each program starts and ends, new tracks
 might be added or removed from the stream, and as each one is added, the user agent could bind
 them to dedicated script modules using the value of this attribute.

 Other than for in-band metadata text tracks, the in-band metadata track dispatch type is the empty string. How this
 value is populated for different media formats is described in steps to expose a
 media-resource-specific text track.

 	A language

	

 This is a string (a BCP 47 language tag) representing the language of the text track's cues.
 [BCP47]

 The language of a text track can change dynamically,
 in the case of a text track corresponding to a track element.

 	A readiness state

	

 One of the following:

 	Not loaded

	

 Indicates that the text track's cues have not been obtained.

 	Loading

	

 Indicates that the text track is loading and there have been no fatal errors encountered so
 far. Further cues might still be added to the track by the parser.

 	Loaded

	

 Indicates that the text track has been loaded with no fatal errors.

 	Failed to load

	

 Indicates that the text track was enabled, but when the user agent attempted to obtain it,
 this failed in some way (e.g. URL could not be resolved, network error, unknown text track format). Some or all of the cues are
 likely missing and will not be obtained.

 The readiness state of a text
 track changes dynamically as the track is obtained.

 	A mode

	

 One of the following:

 	Disabled

	

 Indicates that the text track is not active. Other than for the purposes of exposing the
 track in the DOM, the user agent is ignoring the text track. No cues are active, no events are
 fired, and the user agent will not attempt to obtain the track's cues.

 	Hidden

	

 Indicates that the text track is active, but that the user agent is not actively displaying
 the cues. If no attempt has yet been made to obtain the track's cues, the user agent will
 perform such an attempt momentarily. The user agent is maintaining a list of which cues are
 active, and events are being fired accordingly.

 	Showing

	

 Indicates that the text track is active. If no attempt has yet been made to obtain the
 track's cues, the user agent will perform such an attempt momentarily. The user agent is
 maintaining a list of which cues are active, and events are being fired accordingly. In
 addition, for text tracks whose kind is subtitles or captions, the cues are being overlaid on the video
 as appropriate; for text tracks whose kind is descriptions, the user agent is making the
 cues available to the user in a non-visual fashion; and for text tracks whose kind is chapters, the user agent is making available to
 the user a mechanism by which the user can navigate to any point in the media
 resource by selecting a cue.

 	A list of zero or more cues

	

 A list of text track cues, along with rules for
 updating the text track rendering. For example, for WebVTT, the rules
 for updating the display of WebVTT text tracks. [WEBVTT]

 The list of cues of a text track can change
 dynamically, either because the text track has not yet been loaded or is still loading,
 or due to DOM manipulation.

 Each text track has a corresponding TextTrack object.

 Each media element has a list of pending text tracks, which must
 initially be empty, a blocked-on-parser flag, which must initially be false, and a
 did-perform-automatic-track-selection flag, which must also initially be false.

 When the user agent is required to populate the list of pending text tracks of a
 media element, the user agent must add to the element's list of pending text
 tracks each text track in the element's list of text tracks whose
 text track mode is not disabled and whose
 text track readiness state is loading.

 Whenever a track element's parent node changes, the user agent must remove the
 corresponding text track from any list of pending text tracks that it is
 in.

 Whenever a text track's text track readiness state changes to either
 loaded or failed to
 load, the user agent must remove it from any list of pending text tracks that
 it is in.

 When a media element is created by an HTML parser or XML
 parser, the user agent must set the element's blocked-on-parser flag to true.
 When a media element is popped off the stack of open elements of an
 HTML parser or XML parser, the user agent must honor user
 preferences for automatic text track selection, populate the list of pending text
 tracks, and set the element's blocked-on-parser flag to false.

 The text tracks of a media element are ready when both the element's list of pending text
 tracks is empty and the element's blocked-on-parser flag is false.

 Each media element has a pending text track change notification flag,
 which must initially be unset.

 Whenever a text track that is in a media element's list of text
 tracks has its text track mode change value, the user agent must run the
 following steps for the media element:

 	If the media element's pending text track change notification
 flag is set, abort these steps.

 	Set the media element's pending text track change notification
 flag.

 	

 Queue a task that runs the following substeps:

 	Unset the media element's pending text track change notification
 flag.

 	Fire a simple event named change at
 the media element's textTracks
 attribute's TextTrackList object.

 	If the media element's show poster flag is not set, run the
 time marches on steps.

 The task source for the tasks listed in this
 section is the DOM manipulation task source.

 A text track cue is the unit of time-sensitive data in a text track,
 corresponding for instance for subtitles and captions to the text that appears at a particular
 time and disappears at another time.

 Each text track cue consists of:

 	An identifier

	
 An arbitrary string.

 	A start time

	
 The time, in seconds and fractions of a second, that describes the beginning of the range of
 the media data to which the cue applies.

 	An end time

	
 The time, in seconds and fractions of a second, that describes the end of the range of the
 media data to which the cue applies.

 	A pause-on-exit flag

	
 A boolean indicating whether playback of the media resource is to pause when the
 end of the range to which the cue applies is reached.

 	Some additional format-specific data

 	
 Additional fields, as needed for the format. For example, WebVTT has a text track cue
 writing direction and so forth. [WEBVTT]

 	The text of the cue

	
 The raw text of the cue, and rules for rendering the cue in isolation.

 The text track cue start time and text track cue end
 time can be negative. (The current playback position can never be negative,
 though, so cues entirely before time zero cannot be active.)

 Each text track cue has a corresponding TextTrackCue object (or more
 specifically, an object that inherits from TextTrackCue — for example, WebVTT
 cues use the VTTCue interface). A text track cue's in-memory
 representation can be dynamically changed through this TextTrackCue API. [WEBVTT]

 A text track cue is associated with rules for updating the text track
 rendering, as defined by the specification for the specific kind of text track
 cue. These rules are used specifically when the object representing the cue is added to a
 TextTrack object using the addCue()
 method.

 In addition, each text track cue has two pieces of dynamic information:

 	The active flag

	

 This flag must be initially unset. The flag is used to ensure events are fired appropriately
 when the cue becomes active or inactive, and to make sure the right cues are rendered.

 The user agent must synchronously unset this flag whenever the text track cue is
 removed from its text track's text track list of cues; whenever the
 text track itself is removed from its media element's list of
 text tracks or has its text track mode changed to disabled; and whenever the media element's readyState is changed back to HAVE_NOTHING. When the flag is unset in this way for one
 or more cues in text tracks that were showing prior to the relevant incident, the user agent must, after having unset
 the flag for all the affected cues, apply the rules for updating the text track
 rendering of those text tracks. For example, for text tracks based on WebVTT, the rules for updating
 the display of WebVTT text tracks. [WEBVTT]

 	The display state

	

 This is used as part of the rendering model, to keep cues in a consistent position. It must
 initially be empty. Whenever the text track cue active flag is unset, the user
 agent must empty the text track cue display state.

 The text track cues of a media element's text tracks are ordered relative to each other in the text track
 cue order, which is determined as follows: first group the cues by their text track, with the groups being sorted in the same order
 as their text tracks appear in the media element's
 list of text tracks; then, within each group, cues must be sorted by their start
 time, earliest first; then, any cues with the same
 start time must be sorted by their end time, latest first; and finally, any cues with identical end times must
 be sorted in the order they were last added to their respective text track list of
 cues, oldest first (so e.g. for cues from a WebVTT file, that would initially
 be the order in which the cues were listed in the file). [WEBVTT]

 Sourcing in-band text tracks

 A media-resource-specific text track is a text track that corresponds
 to data found in the media resource.

 Rules for processing and rendering such data are defined by the relevant specifications, e.g.
 the specification of the video format if the media resource is a video.

 When a media resource contains data that the user agent recognises and supports as
 being equivalent to a text track, the user agent runs the steps to expose a
 media-resource-specific text track with the relevant data, as follows.

 	Associate the relevant data with a new text track and its corresponding new
 TextTrack object. The text track is a media-resource-specific
 text track.

 	Set the new text track's kind, label, and language
 based on the semantics of the relevant data, as defined by the relevant specification. If there
 is no label in that data, then the label must be set to the
 empty string.

 	Associate the text track list of cues with the rules for updating the
 text track rendering appropriate for the format in question.

	

 If the new text track's kind is metadata, then set the text track in-band
 metadata track dispatch type as follows, based on the type of the media
 resource:

 	If the media resource is an Ogg file

 	The text track in-band metadata track dispatch type must be set to the value
 of the Name header field. [OGGSKELETONHEADERS]

 	If the media resource is a WebM file

 	The text track in-band metadata track dispatch type must be set to the value
 of the CodecID element. [WEBMCG]

 	If the media resource is an MPEG-2 file

 	Let stream type be the value of the "stream_type" field describing the
 text track's type in the file's program map section, interpreted as an 8-bit unsigned integer.
 Let length be the value of the "ES_info_length" field for the track in the
 same part of the program map section, interpreted as an integer as defined by the MPEG-2
 specification. Let descriptor bytes be the length bytes
 following the "ES_info_length" field. The text track in-band metadata track dispatch
 type must be set to the concatenation of the stream type byte and
 the zero or more descriptor bytes bytes, expressed in hexadecimal using
 uppercase ASCII hex digits. [MPEG2]

 	If the media resource is an MPEG-4 file

 	Let the
 first stsd box of the
 first stbl box of the
 first minf box of the
 first mdia box of the
 text track's trak box in the
 first moov box
 of the file be the stsd box, if any.

 If the file has no stsd box, or if the stsd box has neither a mett box nor a metx box, then the text track
 in-band metadata track dispatch type must be set to the empty string.

 Otherwise, if the stsd box has a mett box then the text
 track in-band metadata track dispatch type must be set to the concatenation of the
 string "mett", a U+0020 SPACE character, and the value of the first mime_format field of the first mett box of the stsd
 box, or the empty string if that field is absent in that box.

 Otherwise, if the stsd box has no mett box but has a metx box then the text track in-band metadata track dispatch type
 must be set to the concatenation of the string "metx", a U+0020 SPACE
 character, and the value of the first namespace field of the first metx box of the stsd box, or the empty string if that field is absent in
 that box.

 [MPEG4]

 	Populate the new text track's list of
 cues with the cues parsed so far, following the guidelines for exposing
 cues, and begin updating it dynamically as necessary.

 	Set the new text track's readiness
 state to loaded.

 	Set the new text track's mode to the
 mode consistent with the user's preferences and the requirements of the relevant specification
 for the data.

 	Add the new text track to the media element's list of text
 tracks.

 	Fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses
 the TrackEvent interface, with the track
 attribute initialized to the text track's TextTrack object, at the
 media element's textTracks attribute's
 TextTrackList object.

 Sourcing out-of-band text tracks

 When a track element is created, it must be associated with a new text
 track (with its value set as defined below) and its corresponding new
 TextTrack object.

 The text track kind is determined from the state of the element's kind attribute according to the following table; for a state given
 in a cell of the first column, the kind is the string given
 in the second column:

 	State
 	String

 	Subtitles
 	subtitles

 	Captions
 	captions

 	Descriptions
 	descriptions

 	Chapters
 	chapters

 	Metadata
 	metadata

 The text track label is the element's track label.

 The text track language is the element's track language, if any, or
 the empty string otherwise.

 As the kind, label,
 and srclang attributes are set, changed, or removed, the
 text track must update accordingly, as per the definitions above.

 Changes to the track URL are handled in the algorithm below.

 The text track readiness state is initially not loaded, and the text track mode is initially disabled.

 The text track list of cues is initially empty. It is dynamically modified when
 the referenced file is parsed. Associated with the list are the rules for updating the text
 track rendering appropriate for the format in question; for WebVTT, this is
 the rules for updating the display of WebVTT text tracks. [WEBVTT]

 When a track element's parent element changes and the new parent is a media
 element, then the user agent must add the track element's corresponding
 text track to the media element's list of text tracks, and
 then queue a task to fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that uses
 the TrackEvent interface, with the track
 attribute initialized to the text track's TextTrack object, at the
 media element's textTracks attribute's
 TextTrackList object.

 When a track element's parent element changes and the old parent was a media
 element, then the user agent must remove the track element's corresponding
 text track from the media element's list of text tracks,
 and then queue a task to fire a trusted event with the name removetrack, that does not bubble and is not cancelable, and that
 uses the TrackEvent interface, with the track attribute initialized to the text track's
 TextTrack object, at the media element's textTracks attribute's TextTrackList object.

 When a text track corresponding to a track element is added to a
 media element's list of text tracks, the user agent must queue a
 task to run the following steps for the media element:

 	If the element's blocked-on-parser flag is true, abort these steps.

 	If the element's did-perform-automatic-track-selection flag is true, abort
 these steps.

 	Honor user preferences for automatic text track selection for this
 element.

 When the user agent is required to honor user preferences for automatic text track
 selection for a media element, the user agent must run the following steps:

 	Perform automatic text track selection for subtitles and captions.

 	Perform automatic text track selection for descriptions.

 	Perform automatic text track selection for chapters.

 	If there are any text tracks in the media
 element's list of text tracks whose text track kind is metadata that correspond to track
 elements with a default attribute set whose text
 track mode is set to disabled, then set the
 text track mode of all such tracks to hidden

 	Set the element's did-perform-automatic-track-selection flag to
 true.

 When the steps above say to perform automatic text track selection for one or more
 text track kinds, it means to run the following steps:

 	Let candidates be a list consisting of the text tracks in the media element's list of text tracks
 whose text track kind is one of the kinds that were passed to the algorithm, if any,
 in the order given in the list of text tracks.

 	If candidates is empty, then abort these steps.

 	If any of the text tracks in candidates have a text track mode set to showing, abort these steps.

 	

 If the user has expressed an interest in having a track from candidates
 enabled based on its text track kind, text track language, and
 text track label, then set its text track mode to showing.

 For example, the user could have set a browser preference to the effect of "I
 want French captions whenever possible", or "If there is a subtitle track with 'Commentary' in
 the title, enable it", or "If there are audio description tracks available, enable one, ideally
 in Swiss German, but failing that in Standard Swiss German or Standard German".

 Otherwise, if there are any text tracks in candidates that correspond to track elements with a default attribute set whose text track mode is
 set to disabled, then set the text track
 mode of the first such track to showing.

 When a text track corresponding to a track element experiences any of
 the following circumstances, the user agent must start the track processing
 model for that text track and its track element:

 	The track element is created.

 	The text track has its text track mode changed.

 	The track element's parent element changes and the new parent is a media
 element.

 When a user agent is to start the track processing model for a
 text track and its track element, it must run the following algorithm.
 This algorithm interacts closely with the event loop mechanism; in particular, it has
 a synchronous section (which is triggered as part of the event loop
 algorithm). The steps in that section are marked with ⌛.

 	If another occurrence of this algorithm is already running for this text
 track and its track element, abort these steps, letting that other algorithm
 take care of this element.

 	If the text track's text track mode is not set to one of hidden or showing, abort
 these steps.

 	If the text track's track element does not have a media
 element as a parent, abort these steps.

 	Run the remainder of these steps asynchronously, allowing whatever caused these steps to
 run to continue.

 	Top: Await a stable state. The synchronous section
 consists of the following steps. (The steps in the synchronous section are marked
 with ⌛.)

 	⌛ Set the text track readiness state to loading.

 	⌛ Let URL be the track URL of the
 track element.

 	⌛ If the track element's parent is a media element then
 let CORS mode be the state of the parent media element's crossorigin content attribute. Otherwise, let CORS mode be No CORS.

 	End the synchronous section, continuing the remaining steps
 asynchronously.

 	

 If URL is not the empty string, perform a potentially CORS-enabled
 fetch of URL, with the mode being CORS mode, the origin being the origin of the
 track element's Document, and the default origin behaviour set
 to fail.

 The resource obtained in this fashion, if any, contains the text track data. If any data is
 obtained, it is by definition CORS-same-origin (cross-origin resources that are not
 suitably CORS-enabled do not get this far).

 The tasks queued by the
 fetching algorithm on the networking task source to
 process the data as it is being fetched must . If the
 type of the resource is not a supported text track format, the load will fail, as
 described below. Otherwise, the resource's data must be passed to the appropriate parser (e.g.
 the WebVTT parser) as it is received, with the text track list of cues being used for
 that parser's output. [WEBVTT]

 The appropriate parser will synchronously (during these networking task
 source tasks) and incrementally (as each such task is
 run with whatever data has been received from the network) update the text track list of
 cues.

 This specification does not currently say whether or how to check the MIME
 types of text tracks, or whether or how to perform file type sniffing using the actual file
 data. Implementors differ in their intentions on this matter and it is therefore unclear what
 the right solution is. In the absence of any requirement here, the HTTP specification's strict
 requirement to follow the Content-Type header prevails ("Content-Type specifies the media type
 of the underlying data." ... "If and only if the media type is not given by a Content-Type
 field, the recipient MAY attempt to guess the media type via inspection of its content
 and/or the name extension(s) of the URI used to identify the resource.").

 If the fetching algorithm fails for any reason (network error, the
 server returns an error code, a cross-origin check fails, etc), if URL is
 the empty string, or if the type of the resource is not a supported text track
 format, then run these steps:

 	Queue a task to first change the text track readiness state to
 failed to load and then fire a simple
 event named error at the track
 element.

 	Wait until the text track readiness state is no longer set to loading.

 	Wait until the track URL is no longer equal to URL, at
 the same time as the text track mode is set to hidden or showing.

 	Jump to the step labeled top.

 If the fetching algorithm does not fail, then the final task that is queued by the
 networking task source must run the following steps after it has tried to parse the
 data:

 	Change the text track readiness state to loaded.

 	

 If the file was successfully processed, fire a simple event named load at the track element.

 Otherwise, the file was not successfully processed (e.g. the format in question is an XML
 format and the file contained a well-formedness error that the XML specification requires be
 detected and reported to the application); fire a simple event named error at the track element.

 	Wait until the track URL is no longer equal to URL, at
 the same time as the text track mode is set to hidden or showing.

 	Jump back to the step labeled top.

 If, while the fetching algorithm is active, either:

 	the track URL changes so that it is no longer equal to URL, while the text track mode is set to hidden or showing; or

 	the text track mode changes to hidden
 or showing, while the track URL is not
 equal to URL

 ...then the user agent must run the following steps:

 	Abort the fetching algorithm, discarding any pending tasks generated by that algorithm (and in particular, not adding
 any cues to the text track list of cues after the moment the URL
 changed).

 	Jump back to the step labeled top.

 Until one of the above circumstances occurs, the user agent must remain on this step.

 Whenever a track element has its src attribute
 set, changed, or removed, the user agent must synchronously empty the element's text
 track's text track list of cues. (This also causes the algorithm above to stop
 adding cues from the resource being obtained using the previously given URL, if any.)

 Guidelines for exposing cues in various formats as text track cues

 How a specific format's text track cues are to be interpreted for the purposes of processing by
 an HTML user agent is defined by that format. In the absence of such a specification, this section
 provides some constraints within which implementations can attempt to consistently expose such
 formats.

 To support the text track model of HTML, each unit of timed data is converted to a
 text track cue. Where the mapping of the format's features to the aspects of a
 text track cue as defined in this specification are not defined, implementations must
 ensure that the mapping is consistent with the definitions of the aspects of a text track
 cue as defined above, as well as with the following constraints:

 	The text track cue identifier

	
 Should be set to the empty string if the format has no obvious analogue to a per-cue
 identifier.

 	The text track cue pause-on-exit flag

	
 Should be set to false.

 Text track API

 interface TextTrackList : EventTarget {
 readonly attribute unsigned long length;
 getter TextTrack (unsigned long index);
 TextTrack? getTrackById(DOMString id);

 attribute EventHandler onchange;
 attribute EventHandler onaddtrack;
 attribute EventHandler onremovetrack;
};

 	media . textTracks . length

 	
 Returns the number of text tracks associated with the media element (e.g. from track elements). This is the number of text tracks in the media element's list of text tracks.

 	media . textTracks[n]

 	
 Returns the TextTrack object representing the nth text track in the media element's list of text tracks.

 	textTrack = media . textTracks . getTrackById(id)

 	

 Returns the TextTrack object with the given identifier, or null if no track has that identifier.

 	track . track

 	
 Returns the TextTrack object representing the track element's text track.

 A TextTrackList object represents a dynamically
 updating list of text tracks in a
 given order.

 The textTracks attribute
 of media elements must return a
 TextTrackList object representing the
 TextTrack objects of the text
 tracks in the media element's list of text
 tracks, in the same order as in the list of text
 tracks. The same object must be returned each time the
 attribute is accessed. [WEBIDL]

 The length attribute
 of a TextTrackList object must return the number of
 text tracks in the list represented
 by the TextTrackList object.

 The supported property indices of a
 TextTrackList object at any instant are the numbers
 from zero to the number of text
 tracks in the list represented by the
 TextTrackList object minus one, if any. If there are no
 text tracks in the list, there are
 no supported property indices.

 To determine the value of an indexed property of a
 TextTrackList object for a given index index, the user agent must return the indexth text track in the list
 represented by the TextTrackList object.

 The getTrackById(id) method must return the first TextTrack in the
 TextTrackList object whose id IDL attribute
 would return a value equal to the value of the id argument. When no tracks
 match the given argument, the method must return null.

 enum TextTrackMode { "disabled", "hidden", "showing" };
enum TextTrackKind { "subtitles", "captions", "descriptions", "chapters", "metadata" };
interface TextTrack : EventTarget {
 readonly attribute TextTrackKind kind;
 readonly attribute DOMString label;
 readonly attribute DOMString language;

 readonly attribute DOMString id;
 readonly attribute DOMString inBandMetadataTrackDispatchType;

 attribute TextTrackMode mode;

 readonly attribute TextTrackCueList? cues;
 readonly attribute TextTrackCueList? activeCues;

 void addCue(TextTrackCue cue);
 void removeCue(TextTrackCue cue);

 attribute EventHandler oncuechange;
};

 	textTrack = media . addTextTrack(kind [, label [, language]])

 	
 Creates and returns a new TextTrack object, which is also added to the media element's list of text tracks.

 	textTrack . kind

 	
 Returns the text track kind string.

 	textTrack . label

 	
 Returns the text track label, if there is one, or
 the empty string otherwise (indicating that a custom label
 probably needs to be generated from the other attributes of the
 object if the object is exposed to the user).

 	textTrack . language

 	
 Returns the text track language string.

 	textTrack . id

 	

 Returns the ID of the given track.

 For in-band tracks, this is the ID that can be used with a fragment identifier if the format
 supports the Media Fragments URI syntax, and that can be used with the getTrackById() method. [MEDIAFRAG]

 For TextTrack objects corresponding to track elements, this is the
 ID of the track element.

 	textTrack . inBandMetadataTrackDispatchType

 	
 Returns the text track in-band metadata track dispatch type string.

 	textTrack . mode [= value]

 	
 Returns the text track mode, represented by a
 string from the following list:

 	"disabled"

 	
 The text track disabled mode.

 	"hidden"

 	
 The text track hidden mode.

 	"showing"

 	
 The text track showing mode.

 Can be set, to change the mode.

 	textTrack . cues

 	
 Returns the text track list of cues, as a TextTrackCueList object.

 	textTrack . activeCues

 	
 Returns the text track cues from the text track list of cues that are currently active (i.e. that start before the current playback position and end after it), as a TextTrackCueList object.

 	textTrack . addCue(cue)

 	
 Adds the given cue to textTrack's text track list of cues.

 	textTrack . removeCue(cue)

 	
 Removes the given cue from textTrack's text track list of cues.

 The addTextTrack(kind, label, language) method of media elements, when invoked, must run the following steps:

 	

 Create a new TextTrack object.

 	

 Create a new text track corresponding to the new object, and set its text
 track kind to kind, its text track label to label, its text track language to language, its
 text track readiness state to the text track loaded state, its
 text track mode to the text track hidden mode, and its text
 track list of cues to an empty list.

 Initially, the text track list of cues is not associated with any rules
 for updating the text track rendering. When a text track cue is added to it,
 the text track list of cues has its rules permanently set accordingly.

 	

 Add the new text track to the media element's list of text
 tracks.

 	

 Queue a task to fire a trusted event with the name addtrack, that does not bubble and is not cancelable, and that
 uses the TrackEvent interface, with the track attribute initialized to the new text
 track's TextTrack object, at the media element's textTracks attribute's TextTrackList
 object.

 	

 Return the new TextTrack object.

 The kind attribute must return the
 text track kind of the text track that the TextTrack object
 represents.

 The label attribute must return the
 text track label of the text track that the TextTrack
 object represents.

 The language attribute must return the
 text track language of the text track that the TextTrack
 object represents.

 The id attribute returns the track's
 identifier, if it has one, or the empty string otherwise. For tracks that correspond to
 track elements, the track's identifier is the value of the element's id attribute, if any. For in-band tracks, the track's identifier is
 specified by the media resource. If the media resource is in a format
 that supports the Media Fragments URI fragment identifier syntax, the identifier
 returned for a particular track must be the same identifier that would enable the track if used as
 the name of a track in the track dimension of such a fragment identifier. [MEDIAFRAG]

 The inBandMetadataTrackDispatchType
 attribute must return the text track in-band metadata track dispatch type of the
 text track that the TextTrack object represents.

 The mode attribute, on getting, must return
 the string corresponding to the text track mode of the text track that
 the TextTrack object represents, as defined by the following list:

 	"disabled"

 	The text track disabled mode.

 	"hidden"

 	The text track hidden mode.

 	"showing"

 	The text track showing mode.

 On setting, if the new value isn't equal to what the attribute would currently return, the new
 value must be processed as follows:

 	If the new value is "disabled"

 	

 Set the text track mode of the text track that the
 TextTrack object represents to the text track disabled mode.

 	If the new value is "hidden"

 	

 Set the text track mode of the text track that the
 TextTrack object represents to the text track hidden mode.

 	If the new value is "showing"

 	

 Set the text track mode of the text track that the
 TextTrack object represents to the text track showing mode.

 If the text track mode of the text track that the
 TextTrack object represents is not the text track disabled mode, then
 the cues attribute must return a
 live TextTrackCueList object that represents the subset of the
 text track list of cues of the text track that the
 TextTrack object represents whose end
 times occur at or after the earliest possible position when the script
 started, in text track cue order. Otherwise, it must return null. When an
 object is returned, the same object must be returned each time.

 The earliest possible position when the script started is whatever the
 earliest possible position was the last time the event loop reached step
 1.

 If the text track mode of the text track that the
 TextTrack object represents is not the text track disabled mode, then
 the activeCues attribute must return a
 live TextTrackCueList object that represents the subset of the
 text track list of cues of the text track that the
 TextTrack object represents whose active flag was set when the script
 started, in text track cue order. Otherwise, it must return null. When an
 object is returned, the same object must be returned each time.

 A text track cue's active flag was set when the script started if its
 text track cue active flag was set the last time the event loop reached
 step 1.

 The addCue(cue) method
 of TextTrack objects, when invoked, must run the following steps:

 	If the text track list of cues does not yet have any associated rules
 for updating the text track rendering, then associate the text track list of
 cues with the rules for updating the text track rendering appropriate to cue.

	If text track list of cues' associated rules for updating the text
 track rendering are not the same rules for updating the text track rendering
 as appropriate for cue, then throw an InvalidStateError
 exception and abort these steps.

	If the given cue is in a text track list of cues, then
 remove cue from that text track list of cues.

 	Add cue to the method's TextTrack object's text
 track's text track list of cues.

 The removeCue(cue)
 method of TextTrack objects, when invoked, must run the following steps:

 	If the given cue is not currently listed in the method's
 TextTrack object's text track's text track list of cues,
 then throw a NotFoundError exception and abort these steps.

 	Remove cue from the method's TextTrack object's
 text track's text track list of cues.

 In this example, an audio element is used to play a specific sound-effect from a
 sound file containing many sound effects. A cue is used to pause the audio, so that it ends
 exactly at the end of the clip, even if the browser is busy running some script. If the page had
 relied on script to pause the audio, then the start of the next clip might be heard if the
 browser was not able to run the script at the exact time specified.

 var sfx = new Audio('sfx.wav');
var sounds = sfx.addTextTrack('metadata');

// add sounds we care about
function addFX(start, end, name) {
 var cue = new VTTCue(start, end, '');
 cue.id = name;
 cue.pauseOnExit = true;
 sounds.addCue(cue);
}
addFX(12.783, 13.612, 'dog bark');
addFX(13.612, 15.091, 'kitten mew'))

function playSound(id) {
 sfx.currentTime = sounds.getCueById(id).startTime;
 sfx.play();
}

// play a bark as soon as we can
sfx.oncanplaythrough = function () {
 playSound('dog bark');
}
// meow when the user tries to leave
window.onbeforeunload = function () {
 playSound('kitten mew');
 return 'Are you sure you want to leave this awesome page?';
}

 interface TextTrackCueList {
 readonly attribute unsigned long length;
 getter TextTrackCue (unsigned long index);
 TextTrackCue? getCueById(DOMString id);
};

 	cuelist . length

 	
 Returns the number of cues in the list.

 	cuelist[index]

 	
 Returns the text track cue with index index in the list. The cues are sorted in text track cue order.

 	cuelist . getCueById(id)

 	
 Returns the first text track cue (in text track cue order) with text track cue identifier id.

 Returns null if none of the cues have the given identifier or if the argument is the empty string.

 A TextTrackCueList object represents a dynamically updating list of text track cues in a given order.

 The length attribute must return
 the number of cues in the list represented by the
 TextTrackCueList object.

 The supported property indices of a TextTrackCueList object at any
 instant are the numbers from zero to the number of cues in the
 list represented by the TextTrackCueList object minus one, if any. If there are no
 cues in the list, there are no supported property
 indices.

 To determine the value of an indexed property for a given index index, the user agent must return the indexth text track
 cue in the list represented by the TextTrackCueList object.

 The getCueById(id) method, when called with an argument other than the empty string,
 must return the first text track cue in the list represented by the
 TextTrackCueList object whose text track cue identifier is id, if any, or null otherwise. If the argument is the empty string, then the method
 must return null.

 interface TextTrackCue : EventTarget {
 readonly attribute TextTrack? track;

 attribute DOMString id;
 attribute double startTime;
 attribute double endTime;
 attribute boolean pauseOnExit;

 attribute EventHandler onenter;
 attribute EventHandler onexit;
};

 	cue . track

 	
 Returns the TextTrack object to which this
 text track cue belongs, if any, or null
 otherwise.

 	cue . id [= value]

 	
 Returns the text track cue identifier.

 Can be set.

 	cue . startTime [= value]

 	
 Returns the text track cue start time, in seconds.

 Can be set.

 	cue . endTime [= value]

 	
 Returns the text track cue end time, in seconds.

 Can be set.

 	cue . pauseOnExit [= value]

 	
 Returns true if the text track cue pause-on-exit flag is set, false otherwise.

 Can be set.

 The track attribute, on getting, must
 return the TextTrack object of the text track in whose list of cues the text track cue that the
 TextTrackCue object represents finds itself, if any; or null otherwise.

 The id attribute, on getting, must return
 the text track cue identifier of the text track cue that the
 TextTrackCue object represents. On setting, the text track cue
 identifier must be set to the new value.

 The startTime attribute, on getting,
 must return the text track cue start time of the text track cue that the
 TextTrackCue object represents, in seconds. On setting, the text track cue
 start time must be set to the new value, interpreted in seconds; then, if the
 TextTrackCue object's text track cue is in a text track's
 list of cues, and that text track is in
 a media element's list of text tracks, and the media
 element's show poster flag is not set, then run the time marches on
 steps for that media element.

 The endTime attribute, on getting,
 must return the text track cue end time of the text track cue that the
 TextTrackCue object represents, in seconds. On setting, the text track cue end
 time must be set to the new value, interpreted in seconds; then, if the
 TextTrackCue object's text track cue is in a text track's
 list of cues, and that text track is in
 a media element's list of text tracks, and the media
 element's show poster flag is not set, then run the time marches on
 steps for that media element.

 The pauseOnExit attribute, on
 getting, must return true if the text track cue pause-on-exit flag of the text
 track cue that the TextTrackCue object represents is set; or false otherwise.
 On setting, the text track cue pause-on-exit flag must be set if the new value is
 true, and must be unset otherwise.

 Text tracks describing chapters

 Chapters are segments of a media resource with a given title. Chapters can be
 nested, in the same way that sections in a document outline can have subsections.

 Each text track cue in a text track being used for describing
 chapters has three key features: the text track cue start time, giving the start time
 of the chapter, the text track cue end time, giving the end time of the chapter, and
 the text track cue text giving the chapter title.

 The rules for constructing the chapter tree from a text track are as follows. They
 produce a potentially nested list of chapters, each of which have a start time, end time, title,
 and a list of nested chapters. This algorithm discards cues that do not correctly nest within each
 other, or that are out of order.

 	Let list be a copy of the list
 of cues of the text track being processed.

 	Remove from list any text track cue whose text
 track cue end time is before its text track cue start time.

 	Let output be an empty list of chapters, where a chapter is a record
 consisting of a start time, an end time, a title, and a (potentially empty) list of nested
 chapters. For the purpose of this algorithm, each chapter also has a parent chapter.

 	Let current chapter be a stand-in chapter whose start time is negative
 infinity, whose end time is positive infinity, and whose list of nested chapters is output. (This is just used to make the algorithm easier to describe.)

 	Loop: If list is empty, jump to the step labeled
 end.

 	Let current cue be the first cue in list, and then
 remove it from list.

 	If current cue's text track cue start time is less than
 the start time of current chapter, then return to the step labeled
 loop.

	While current cue's text track cue start time is greater
 than or equal to current chapter's end time, let current
 chapter be current chapter's parent chapter.

 	If current cue's text track cue end time is greater than
 the end time of current chapter, then return to the step labeled
 loop.

	

 Create a new chapter new chapter, whose start time is current cue's text track cue start time, whose end time is current cue's text track cue end time, whose title is current cue's text track cue text interpreted according to its
 rules for rendering the cue in isolation, and whose list of nested chapters is
 empty.

 For WebVTT, the rules for rendering the cue in isolation are the
 rules for interpreting WebVTT cue text. [WEBVTT]

 	Append new chapter to current chapter's list of
 nested chapters, and let current chapter be new chapter's
 parent.

 	Let current chapter be new chapter.

 	Return to the step labeled loop.

 	End: Return output.

 The following snippet of a WebVTT file shows how nested chapters can be marked
 up. The file describes three 50-minute chapters, "Astrophysics", "Computational Physics", and
 "General Relativity". The first has three subchapters, the second has four, and the third has
 two. [WEBVTT]

 WEBVTT

00:00:00.000 --> 00:50:00.000
Astrophysics

00:00:00.000 --> 00:10:00.000
Introduction to Astrophysics

00:10:00.000 --> 00:45:00.000
The Solar System

00:00:00.000 --> 00:10:00.000
Coursework Description

00:50:00.000 --> 01:40:00.000
Computational Physics

00:50:00.000 --> 00:55:00.000
Introduction to Programming

00:55:00.000 --> 01:30:00.000
Data Structures

01:30:00.000 --> 01:35:00.000
Answers to Last Exam

01:35:00.000 --> 01:40:00.000
Coursework Description

01:40:00.000 --> 02:30:00.000
General Relativity

01:40:00.000 --> 02:00:00.000
Tensor Algebra

02:00:00.000 --> 02:30:00.000
The General Relativistic Field Equations

 Event definitions

 The following are the event handlers that (and their corresponding event handler event types) must be supported, as IDL
 attributes, by all objects implementing the TextTrackList interface:

 	Event handler 	Event handler event type

 	onchange 	 change

	onaddtrack 	 addtrack

	onremovetrack 	 removetrack

 The following are the event handlers that (and their corresponding event handler event types) must be supported, as IDL
 attributes, by all objects implementing the TextTrack interface:

 	Event handler 	Event handler event type

 	oncuechange 	 cuechange

 The following are the event handlers that (and their corresponding event handler event types) must be supported, as IDL
 attributes, by all objects implementing the TextTrackCue interface:

 	Event handler 	Event handler event type

 	onenter 	 enter

	onexit 	 exit

 User interface

 The controls attribute is a boolean
 attribute. If present, it indicates that the author has not provided a scripted controller
 and would like the user agent to provide its own set of controls.

 If the attribute is present, or if scripting is
 disabled for the media element, then the user agent should expose a user
 interface to the user. This user interface should include features to begin playback, pause
 playback, seek to an arbitrary position in the content (if the content supports arbitrary
 seeking), change the volume, change the display of closed captions or embedded sign-language
 tracks, select different audio tracks or turn on audio descriptions, and show the media content in
 manners more suitable to the user (e.g. full-screen video or in an independent resizable window).
 Other controls may also be made available.

 If the media element has a current media controller, then the user
 agent should expose audio tracks from all the slaved media elements (although
 avoiding duplicates if the same media resource is being used several times). If a
 media resource's audio track exposed in this way has no known name, and it is the
 only audio track for a particular media element, the user agent should use the
 element's title attribute, if any, as the name (or as part of the
 name) of that track.

 Even when the attribute is absent, however, user agents may provide controls to affect playback
 of the media resource (e.g. play, pause, seeking, and volume controls), but such features should
 not interfere with the page's normal rendering. For example, such features could be exposed in the
 media element's context menu. The user agent may implement this simply by exposing a user interface to the user as
 described above (as if the controls attribute was
 present).

 Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for
 seeking, for changing the rate of playback, for fast-forwarding or rewinding, for listing,
 enabling, and disabling text tracks, and for muting or changing the volume of the audio), user
 interface features exposed by the user agent must be implemented in terms of the DOM API described
 above, so that, e.g., all the same events fire.

 When a media element has a current media controller, the user agent's
 user interface for pausing and unpausing playback, for seeking, for changing the rate of playback,
 for fast-forwarding or rewinding, and for muting or changing the volume of audio of the entire
 group must be implemented in terms of the MediaController API exposed on that
 current media controller. When a media element has a current media
 controller, and all the slaved media elements of that
 MediaController are paused, the user agent should also unpause all the slaved
 media elements when the user invokes a user agent interface control for beginning
 playback.

 The "play" function in the user agent's interface must set the playbackRate attribute to the value of the defaultPlaybackRate attribute before invoking the play()
 method. When a media element has a current media controller, the
 attributes and method with those names on that MediaController object must be used.
 Otherwise, the attributes and method with those names on the media element itself
 must be used.

 Features such as fast-forward or rewind must be implemented by only changing the playbackRate attribute (and not the defaultPlaybackRate
 attribute). Again, when a media element has a current media controller,
 the attributes with those names on that MediaController object must be used;
 otherwise, the attributes with those names on the media element itself must be used.

 When a media element has a current media controller, seeking must be
 implemented in terms of the currentTime
 attribute on that MediaController object. Otherwise, the user agent must directly
 seek to the requested position in the media
 element's media timeline. For media resources where seeking to an arbitrary
 position would be slow, user agents are encouraged to use the approximate-for-speed flag
 when seeking in response to the user manipulating an approximate position interface such as a seek
 bar.

 When a media element has a current media controller, user agents may
 additionally provide the user with controls that directly manipulate an individual media
 element without affecting the MediaController, but such features are
 considered relatively advanced and unlikely to be useful to most users.

 For the purposes of listing chapters in the media resource, only text tracks in the media element's list of text tracks
 that are showing and whose text track kind is
 chapters should be used. Such tracks must be
 interpreted according to the rules for constructing the chapter tree from a text
 track. When seeking in response to a user maniplating a chapter selection interface, user
 agents should not use the approximate-for-speed flag.

 The controls IDL attribute must
 reflect the content attribute of the same name.

 	media . volume [= value]

 	

 Returns the current playback volume, as a number in the range 0.0 to 1.0, where 0.0 is the
 quietest and 1.0 the loudest.

 Can be set, to change the volume.

 Throws an IndexSizeError exception if the new value is not in the range 0.0 .. 1.0.

 	media . muted [= value]

 	

 Returns true if audio is muted, overriding the volume
 attribute, and false if the volume attribute is being
 honored.

 Can be set, to change whether the audio is muted or not.

 The volume attribute must return the playback
 volume of any audio portions of the media element, in the range 0.0 (silent) to 1.0
 (loudest). Initially, the volume should be 1.0, but user agents may remember the last set value
 across sessions, on a per-site basis or otherwise, so the volume may start at other values. On
 setting, if the new value is in the range 0.0 to 1.0 inclusive, the playback volume of any audio
 portions of the media element must be set to the new value. If the new value is
 outside the range 0.0 to 1.0 inclusive, then, on setting, an IndexSizeError exception
 must be thrown instead.

 The muted attribute must return true if the
 audio output is muted and false otherwise. Initially, the audio output should not be muted
 (false), but user agents may remember the last set value across sessions, on a per-site basis or
 otherwise, so the muted state may start as muted (true). On setting, if the new value is true then
 the audio output should be muted and if the new value is false it should be unmuted.

 Whenever either of the values that would be returned by the volume and muted attributes
 change, the user agent must queue a task to fire a simple event named
 volumechange at the media element.

 An element's effective media volume is determined as follows:

 	If the user has indicated that the user agent is to override the volume of the element,
 then the element's effective media volume is the volume desired by the user. Abort
 these steps.

 	If the element's audio output is muted, the element's effective media volume
 is zero. Abort these steps.

 	If the element has a current media controller and that
 MediaController object's media controller mute override is true, the
 element's effective media volume is zero. Abort these steps.

 	Let volume be the playback volume of the audio portions of the
 media element, in range 0.0 (silent) to 1.0 (loudest).

 	If the element has a current media controller, multiply volume by that MediaController object's media controller volume
 multiplier.

 	The element's effective media volume is volume,
 interpreted relative to the range 0.0 to 1.0, with 0.0 being silent, and 1.0 being the loudest
 setting, values in between increasing in loudness. The range need not be linear. The loudest
 setting may be lower than the system's loudest possible setting; for example the user could have
 set a maximum volume.

 The muted attribute on media elements is a boolean attribute that controls the default state
 of the audio output of the media resource, potentially overriding user
 preferences.

 When a media element is created, if it has a muted attribute specified, the user agent must mute the
 media element's audio output, overriding any user preference.

 The defaultMuted IDL attribute must
 reflect the muted content attribute.

 This attribute has no dynamic effect (it only controls the default state of the
 element).

 This video (an advertisement) autoplays, but to avoid annoying users, it does so without
 sound, and allows the user to turn the sound on.

 <video src="adverts.cgi?kind=video" controls autoplay loop muted></video>

 Time ranges

 Objects implementing the TimeRanges interface
 represent a list of ranges (periods) of time.

 interface TimeRanges {
 readonly attribute unsigned long length;
 double start(unsigned long index);
 double end(unsigned long index);
};

 	media . length

 	

 Returns the number of ranges in the object.

 	time = media . start(index)

 	

 Returns the time for the start of the range with the given index.

 Throws an IndexSizeError exception if the index is out of range.

 	time = media . end(index)

 	

 Returns the time for the end of the range with the given index.

 Throws an IndexSizeError exception if the index is out of range.

 The length
 IDL attribute must return the number of ranges represented by the object.

 The start(index) method must return the position
 of the start of the indexth range represented by
 the object, in seconds measured from the start of the timeline that
 the object covers.

 The end(index) method must return the position
 of the end of the indexth range represented by
 the object, in seconds measured from the start of the timeline that
 the object covers.

 These methods must throw IndexSizeError exceptions
 if called with an index argument greater than or
 equal to the number of ranges represented by the object.

 When a TimeRanges object is said to be a
 normalized TimeRanges object, the ranges it
 represents must obey the following criteria:

 	The start of a range must be greater than the end of all
 earlier ranges.

 	The start of a range must be less than the end of that same
 range.

 In other words, the ranges in such an object are ordered, don't
 overlap, aren't empty, and don't touch (adjacent ranges are folded
 into one bigger range).

 Ranges in a TimeRanges object must be inclusive.

 Thus, the end of a range would be equal to the
 start of a following adjacent (touching but not overlapping) range.
 Similarly, a range covering a whole timeline anchored at zero would
 have a start equal to zero and an end equal to the duration of the
 timeline.

 The timelines used by the objects returned by the buffered, seekable and played IDL attributes of media elements must be that element's
 media timeline.

 Event definitions

 [Constructor(DOMString type, optional TrackEventInit eventInitDict)]
interface TrackEvent : Event {
 readonly attribute (VideoTrack or AudioTrack or TextTrack) track;
};

dictionary TrackEventInit : EventInit {
 (VideoTrack or AudioTrack or TextTrack) track;
};

 	event . track

 	

 Returns the track object (TextTrack, AudioTrack, or
 VideoTrack) to which the event relates.

 The track
 attribute must return the value it was initialized to. When the
 object is created, this attribute must be initialized to null. It
 represents the context information for the event.

 Event summary

 This section is non-normative.

 The following events fire on media
 elements as part of the processing model described above:

 	Event name
 	Interface
 	Fired when...
 	Preconditions

 	loadstart
 	Event
 	The user agent begins looking for media data, as part of the resource selection algorithm.
 	networkState equals NETWORK_LOADING

 	progress
 	Event
 	The user agent is fetching media data.
 	networkState equals NETWORK_LOADING

 	suspend
 	Event
 	The user agent is intentionally not currently fetching media data.
 	networkState equals NETWORK_IDLE

 	abort
 	Event
 	The user agent stops fetching the media data before it is completely downloaded, but not due to an error.
 	error is an object with the code MEDIA_ERR_ABORTED.
 networkState equals either NETWORK_EMPTY or NETWORK_IDLE, depending on when the download was aborted.

 	error
 	Event
 	An error occurs while fetching the media data.
 	error is an object with the code MEDIA_ERR_NETWORK or higher.
 networkState equals either NETWORK_EMPTY or NETWORK_IDLE, depending on when the download was aborted.

 	emptied
 	Event
 	A media element whose networkState was previously not in the NETWORK_EMPTY state has just switched to that state (either because of a fatal error during load that's about to be reported, or because the load() method was invoked while the resource selection algorithm was already running).
 	networkState is NETWORK_EMPTY; all the IDL attributes are in their initial states.

 	stalled
 	Event
 	The user agent is trying to fetch media data, but data is unexpectedly not forthcoming.
 	networkState is NETWORK_LOADING.

 	loadedmetadata
 	Event
 	The user agent has just determined the duration and dimensions of the media resource
 and the text tracks are ready.
 	readyState is newly equal to HAVE_METADATA or greater for the first time.

 	loadeddata
 	Event
 	The user agent can render the media data at the current playback position for the first time.
 	readyState newly increased to HAVE_CURRENT_DATA or greater for the first time.

 	canplay
 	Event
 	The user agent can resume playback of the media data, but estimates that if playback were to be started now, the media resource could not be rendered at the current playback rate up to its end without having to stop for further buffering of content.
 	readyState newly increased to HAVE_FUTURE_DATA or greater.

 	canplaythrough
 	Event
 	The user agent estimates that if playback were to be started now, the media resource could be rendered at the current playback rate all the way to its end without having to stop for further buffering.
 	readyState is newly equal to HAVE_ENOUGH_DATA.

 	playing
 	Event
 	Playback is ready to start after having been paused or delayed due to lack of media data.
 	readyState is newly equal to or greater than HAVE_FUTURE_DATA and paused is false, or paused is newly false and readyState is equal to or greater than HAVE_FUTURE_DATA. Even if this event fires, the element might still not be potentially playing, e.g. if
 the element is blocked on its media controller (e.g. because the current media controller is paused, or another slaved media element is stalled somehow, or because the media resource has no data corresponding to the media controller position), or
 the element is paused for user interaction or paused for in-band content.

 	waiting
 	Event
 	Playback has stopped because the next frame is not available, but the user agent expects that frame to become available in due course.
 	readyState is equal to or less than HAVE_CURRENT_DATA, and paused is false. Either seeking is true, or the current playback position is not contained in any of the ranges in buffered. It is possible for playback to stop for other reasons without paused being false, but those reasons do not fire this event (and when those situations resolve, a separate playing event is not fired either): e.g.
 the element is newly blocked on its media controller, or
 playback ended, or playback stopped due to errors, or the element has paused for user interaction or paused for in-band content.

 	seeking
 	Event
 	The seeking IDL attribute changed to true.
 	

 	seeked
 	Event
 	The seeking IDL attribute changed to false.
 	

 	ended
 	Event
 	Playback has stopped because the end of the media resource was reached.
 	currentTime equals the end of the media resource; ended is true.

 	durationchange
 	Event
 	The duration attribute has just been updated.
 	

 	timeupdate
 	Event
 	The current playback position changed as part of normal playback or in an especially interesting way, for example discontinuously.
 	

 	play
 	Event
 	The element is no longer paused. Fired after the play() method has returned, or when the autoplay attribute has caused playback to begin.
 	paused is newly false.

 	pause
 	Event
 	The element has been paused. Fired after the pause() method has returned.
 	paused is newly true.

 	ratechange
 	Event
 	Either the defaultPlaybackRate or the playbackRate attribute has just been updated.
 	

 	volumechange
 	Event
 	Either the volume attribute or the muted attribute has changed. Fired after the relevant attribute's setter has returned.
 	

 The following events fire on MediaController objects:

 	Event name
 	Interface
 	Fired when...

 	emptied
 	Event
 	All the slaved media elements newly have readyState set to HAVE_NOTHING or greater, or there are no longer any slaved media elements.

 	loadedmetadata
 	Event
 	All the slaved media elements newly have readyState set to HAVE_METADATA or greater.

 	loadeddata
 	Event
 	All the slaved media elements newly have readyState set to HAVE_CURRENT_DATA or greater.

 	canplay
 	Event
 	All the slaved media elements newly have readyState set to HAVE_FUTURE_DATA or greater.

 	canplaythrough
 	Event
 	All the slaved media elements newly have readyState set to HAVE_ENOUGH_DATA or greater.

 	playing
 	Event
 	The MediaController is no longer a blocked media controller.

 	ended
 	Event
 	The MediaController has reached the end of all the slaved media elements.

 	waiting
 	Event
 	The MediaController is now a blocked media controller.

 	ended
 	Event
 	All the slaved media elements have newly ended playback.

 	durationchange
 	Event
 	The duration attribute has just been updated.

 	timeupdate
 	Event
 	The media controller position changed.

 	play
 	Event
 	The paused attribute is newly false.

 	pause
 	Event
 	The paused attribute is newly true.

 	ratechange
 	Event
 	Either the defaultPlaybackRate attribute or the playbackRate attribute has just been updated.

 	volumechange
 	Event
 	Either the volume attribute or the muted attribute has just been updated.

 The following events fire on AudioTrackList, VideoTrackList, and TextTrackList objects:

 	Event name
 	Interface
 	Fired when...

 	change
 	Event
 	One or more tracks in the track list has been enabled or disabled.

 	addtrack
 	TrackEvent
 	A track has been added to the track list.

 	removetrack
 	TrackEvent
 	A track has been removed from the track list.

 Security and privacy considerations

 The main security and privacy implications of the
 video and audio elements come from the
 ability to embed media cross-origin. There are two directions that
 threats can flow: from hostile content to a victim page, and from a
 hostile page to victim content.

 If a victim page embeds hostile content, the threat is that the
 content might contain scripted code that attempts to interact with
 the Document that embeds the content. To avoid this,
 user agents must ensure that there is no access from the content to
 the embedding page. In the case of media content that uses DOM
 concepts, the embedded content must be treated as if it was in its
 own unrelated top-level browsing context.

 For instance, if an SVG animation was embedded in
 a video element, the user agent would not give it
 access to the DOM of the outer page. From the perspective of scripts
 in the SVG resource, the SVG file would appear to be in a lone
 top-level browsing context with no parent.

 If a hostile page embeds victim content, the threat is that the
 embedding page could obtain information from the content that it
 would not otherwise have access to. The API does expose some
 information: the existence of the media, its type, its duration, its
 size, and the performance characteristics of its host. Such
 information is already potentially problematic, but in practice the
 same information can more or less be obtained using the
 img element, and so it has been deemed acceptable.

 However, significantly more sensitive information could be
 obtained if the user agent further exposes metadata within the
 content such as subtitles or chapter titles. Such information is
 therefore only exposed if the video resource passes a CORS
 resource sharing check. The crossorigin attribute allows
 authors to control how this check is performed. [CORS]

 Without this restriction, an attacker could trick
 a user running within a corporate network into visiting a site that
 attempts to load a video from a previously leaked location on the
 corporation's intranet. If such a video included confidential plans
 for a new product, then being able to read the subtitles would
 present a serious confidentiality breach.

 Best practices for authors using media elements

 This section is non-normative.

 Playing audio and video resources on small devices such as
 set-top boxes or mobile phones is often constrained by limited
 hardware resources in the device. For example, a device might only
 support three simultaneous videos. For this reason, it is a good
 practice to release resources held by media elements when they are done playing, either by
 being very careful about removing all references to the element and
 allowing it to be garbage collected, or, even better, by removing
 the element's src attribute and
 any source element descendants, and invoking the
 element's load() method.

 Similarly, when the playback rate is not exactly 1.0, hardware,
 software, or format limitations can cause video frames to be dropped
 and audio to be choppy or muted.

 Best practices for implementors of media elements

 This section is non-normative.

 How accurately various aspects of the media element API are implemented is
 considered a quality-of-implementation issue.

 For example, when implementing the buffered attribute,
 how precise an implementation reports the ranges that have been buffered depends on how carefully
 the user agent inspects the data. Since the API reports ranges as times, but the data is obtained
 in byte streams, a user agent receiving a variable-bit-rate stream might only be able to determine
 precise times by actually decoding all of the data. User agents aren't required to do this,
 however; they can instead return estimates (e.g. based on the average bit rate seen so far) which
 get revised as more information becomes available.

 As a general rule, user agents are urged to be conservative rather than optimistic. For
 example, it would be bad to report that everything had been buffered when it had not.

 Another quality-of-implementation issue would be playing a video backwards when the codec is
 designed only for forward playback (e.g. there aren't many key frames, and they are far apart, and
 the intervening frames only have deltas from the previous frame). User agents could do a poor job,
 e.g. only showing key frames; however, better implementations would do more work and thus do a
 better job, e.g. actually decoding parts of the video forwards, storing the complete frames, and
 then playing the frames backwards.

 Similarly, while implementations are allowed to drop buffered data at any time (there is no
 requirement that a user agent keep all the media data obtained for the lifetime of the media
 element), it is again a quality of implementation issue: user agents with sufficient resources to
 keep all the data around are encouraged to do so, as this allows for a better user experience. For
 example, if the user is watching a live stream, a user agent could allow the user only to view the
 live video; however, a better user agent would buffer everything and allow the user to seek
 through the earlier material, pause it, play it forwards and backwards, etc.

 When multiple tracks are synchronised with a MediaController, it is possible for
 scripts to add and remove media elements from the MediaController's list of
 slaved media elements, even while these tracks are playing. How smoothly the media
 plays back in such situations is another quality-of-implementation issue.

 When a media element that is paused is removed from a document and not reinserted before the next time the event
 loop spins, implementations that are resource constrained are encouraged to take that
 opportunity to release all hardware resources (like video planes, networking resources, and data
 buffers) used by the media element. (User agents still have to keep track of the
 playback position and so forth, though, in case playback is later restarted.)

 The canvas element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Embedded content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where embedded content is expected.

 	Content model:

 	Transparent.

 	Content attributes:

 	Global attributes

 	width

 	height

 	DOM interface:

 	
 typedef (or WebGLRenderingContext) RenderingContext;

interface HTMLCanvasElement : HTMLElement {
 attribute unsigned long width;
 attribute unsigned long height;

 RenderingContext? getContext(DOMString contextId, any... arguments);

 DOMString toDataURL(optional DOMString type, any... arguments);
 void toBlob(FileCallback? _callback, optional DOMString type, any... arguments);
};

 The canvas element provides scripts with a resolution-dependent bitmap canvas,
 which can be used for rendering graphs, game graphics, art, or other visual images on the fly.

 Authors should not use the canvas element in a document when a more suitable
 element is available. For example, it is inappropriate to use a canvas element to
 render a page heading: if the desired presentation of the heading is graphically intense, it
 should be marked up using appropriate elements (typically h1) and then styled using
 CSS and supporting technologies such as XBL.

 When authors use the canvas element, they must also provide content that, when
 presented to the user, conveys essentially the same function or purpose as the
 canvas' bitmap. This content may be placed as content of the canvas
 element. The contents of the canvas element, if any, are the element's fallback
 content.

 In interactive visual media, if scripting is enabled for
 the canvas element, and if support for canvas elements has been enabled,
 the canvas element represents embedded content consisting
 of a dynamically created image, the element's bitmap.

 In non-interactive, static, visual media, if the canvas element has been
 previously associated with a rendering context (e.g. if the page was viewed in an interactive
 visual medium and is now being printed, or if some script that ran during the page layout process
 painted on the element), then the canvas element represents
 embedded content with the element's current bitmap and size. Otherwise, the element
 represents its fallback content instead.

 In non-visual media, and in visual media if scripting is
 disabled for the canvas element or if support for canvas elements
 has been disabled, the canvas element represents its fallback
 content instead.

 When a canvas element represents embedded content, the
 user can still focus descendants of the canvas element (in the fallback
 content). When an element is focused, it is the target of keyboard interaction events (even
 though the element itself is not visible). This allows authors to make an interactive canvas
 keyboard-accessible: authors should have a one-to-one mapping of interactive regions to focusable
 elements in the fallback content. (Focus has no effect on mouse interaction events.)
 [DOMEVENTS]

 The canvas element has two attributes to control the size of the coordinate space:
 width and height. These attributes, when specified, must have
 values that are valid non-negative integers. The width
 attribute defaults to 300, and the height attribute
 defaults to 150.

 The intrinsic dimensions of the canvas element when it represents
 embedded content are equal to the dimensions of the element's bitmap.

 A canvas element can be sized arbitrarily by a style sheet, its
 bitmap is then subject to the 'object-fit' CSS property. [CSSIMAGES]

 The bitmaps of canvas elements, as well as some of the bitmaps of rendering
 contexts, such as those described in the section on the CanvasRenderingContext2D
 object below, have an origin-clean flag, which can
 be set to true or false. Initially, when the canvas element is created, its bitmap's
 origin-clean flag must be set to true.

 A canvas element can have a rendering context bound to it. Initially, it does not
 have a bound rendering context. To keep track of whether it has a rendering context or not, and
 what kind of rendering context it is, a canvas also has a canvas context mode, which is initially none but can be changed to either direct-2d, direct-webgl, indirect, or proxied by algorithms defined in this specification.

 When its canvas context mode is none, a canvas element has no rendering context,
 and its bitmap must be fully transparent black with an intrinsic width equal to the numeric value
 of the element's width attribute and an intrinsic height
 equal to the numeric value of the element's height
 attribute, those values being interpreted in CSS pixels, and being updated as the attributes are
 set, changed, or removed.

 When a canvas element represents embedded content, it provides
 a paint source whose width is the element's intrinsic width, whose height is the element's
 intrinsic height, and whose appearance is the element's bitmap.

 Whenever the width and height content attributes are set, removed, changed, or
 redundantly set to the value they already have, if the canvas context mode is direct-2d, the user agent must to the numeric values of
 the width and height content attributes.

 The width and height IDL attributes must reflect the
 respective content attributes of the same name, with the same defaults.

 The bitmaps used with canvas elements can have arbitrary pixel
 densities. Typically, the density will match that of the user's screen.

 	context = canvas . getContext(contextId [, ...])

 	

 Returns an object that exposes an API for drawing on the canvas. The first argument specifies
 the desired API, either "2d" or "webgl". Subsequent arguments are handled by that API.

 The list of defined contexts is given on the WHATWG Wiki CanvasContexts page. [WHATWGWIKI]

Example contexts are the "2d" [CANVAS2D] and the "webgl" context [WEBGL].

 Returns null if the given context ID is not supported or if the canvas has already been
 initialized with some other (incompatible) context type (e.g. trying to get a "2d" context after getting a "webgl" context).

 A canvas element can have a primary context, which is the first context
 to have been obtained for that element. When created, a canvas element must not
 have a primary context.

 The getContext(contextId, arguments...) method of the canvas element, when invoked,
 must run the steps in the cell of the following table whose column header describes the
 canvas element's canvas context mode
 and whose row header describes the method's first argument.

 	
 	none
 	direct-2d
 	direct-webgl
 	indirect
 	proxied

 	"2d"
 	
 Set the canvas element's context
 mode to direct-2d; follow the defined in the section below, passing it the
 canvas element, to obtain a CanvasRenderingContext2D object; set
 that object's to
 , and return the
 CanvasRenderingContext2D object
 	
 Return the same object as was return the last time the method was invoked with this same
 argument.
 	
 Return null.
 	
 Throw an InvalidStateError exception.
 	
 Throw an InvalidStateError exception.

 	"webgl", if the user agent supports the WebGL feature in its current configuration
 	
 Follow the instructions given in the WebGL specification's Context Creation section to
 obtain either a WebGLRenderingContext or null; if the returned value is null,
 then return null and abort these steps, otherwise, set the canvas element's context mode to direct-webgl, set the new
 WebGLRenderingContext object's to , and return the WebGLRenderingContext
 object‡ [WEBGL]
 	
 Return null.
 	
 Return the same object as was return the last time the method was invoked with this same
 argument.
 	
 Throw an InvalidStateError exception.
 	
 Throw an InvalidStateError exception.

 	A vendor-specific extension*
 	
 Behave as defined for the extension.
 	
 Behave as defined for the extension.
 	
 Behave as defined for the extension.
 	
 Throw an InvalidStateError exception.
 	
 Throw an InvalidStateError exception.

 	An unsupported value†
 	
 Return null.
 	
 Return null.
 	
 Return null.
 	
 Throw an InvalidStateError exception.
 	
 Throw an InvalidStateError exception.

 * Vendors may define experimental contexts using the syntax vendorname-context, for example,
 moz-3d.

 † For example, the "webgl" value in the case of a user agent having exhausted the
 graphics hardware's abilities and having no software fallback implementation.

 ‡ The second (and subsequent) argument(s) to the method, if
 any, are ignored in all cases except this one. See the WebGL specification for
 details.

 	url = canvas . toDataURL([type, ...])

 	

 Returns a data: URL for the image in
 the canvas.

 The first argument, if provided, controls the type of the image to be returned (e.g. PNG or
 JPEG). The default is image/png; that type is also used if the given type
 isn't supported. The other arguments are specific to the type, and control the way that the
 image is generated, as given in the table
 below.

 When trying to use types other than "image/png", authors can check if the image
 was really returned in the requested format by checking to see if the returned string starts
 with one of the exact strings "data:image/png," or "data:image/png;". If it does, the image is PNG, and thus the requested type was
 not supported. (The one exception to this is if the canvas has either no height or no width, in
 which case the result might simply be "data:,".)

 The toDataURL() method returns the data at a
 resolution of 96dpi.

 	canvas . toBlob(callback [, type, ...])

 	

 Creates a Blob object representing a file containing the image in the canvas,
 and invokes a callback with a handle to that object.

 The second argument, if provided, controls the type of the image to be returned (e.g. PNG or
 JPEG). The default is image/png; that type is also used if the given type
 isn't supported. The other arguments are specific to the type, and control the way that the
 image is generated, as given in the table
 below.

 The toBlob() method provides the data at a resolution
 of 96dpi.

 The toDataURL() method must run the following
 steps:

 	If the canvas element's bitmap's origin-clean flag is set to false, throw a
 SecurityError exception and abort these steps.

	If the canvas element's bitmap has no pixels (i.e. either its horizontal
 dimension or its vertical dimension is zero) then return the string "data:," and abort these steps. (This is the shortest data: URL; it represents the empty string in a text/plain resource.)

 	Let file be a
 serialization of the canvas element's bitmap as a file, using the method's
 arguments (if any) as the arguments.

 	Return a data: URL representing
 file. [RFC2397]

 The toBlob() method must run the following
 steps:

 	If the canvas element's bitmap's origin-clean flag is set to false, throw a
 SecurityError exception and abort these steps.

	Let callback be the first argument.

 	Let arguments be the second and subsequent arguments to the method, if
 any.

 	

 If the canvas element's bitmap has no pixels (i.e. either its horizontal
 dimension or its vertical dimension is zero) then let result be null.

 Otherwise, let result be a Blob object representing a serialization of the canvas
 element's bitmap as a file, using arguments. [FILEAPI]

 	Return, but continue running these steps asynchronously.

 	If callback is null, abort these steps.

 	Queue a task to invoke the FileCallback callback with result as its argument. The task
 source for this task is the canvas blob serialization task source.

 Color spaces and color correction

 The canvas APIs must perform color correction at only two points: when rendering
 images with their own gamma correction and color space information onto a bitmap, to convert the
 image to the color space used by the bitmaps (e.g. using the 2D Context's drawImage() method with an HTMLImageElement
 object), and when rendering the actual canvas bitmap to the output device.

 Thus, in the 2D context, colors used to draw shapes onto the canvas will exactly
 match colors obtained through the getImageDataHD() method.

 The toDataURL() method must not include color space
 information in the resources it returns. Where the output format allows it, the color of pixels
 in resources created by toDataURL() must match those
 returned by the getImageData() method.

 In user agents that support CSS, the color space used by a canvas element must
 match the color space used for processing any colors for that element in CSS.

 The gamma correction and color space information of images must be handled in such a way that
 an image rendered directly using an img element would use the same colors as one
 painted on a canvas element that is then itself rendered. Furthermore, the rendering
 of images that have no color correction information (such as those returned by the toDataURL() method) must be rendered with no color
 correction.

 Serializing bitmaps to a file

 When a user agent is to create a serialization of the bitmap as a file, optionally
 with some given arguments, and optionally with a native
 flag set, it must create an image file in the format given by the first value of arguments, or, if there are no arguments, in the PNG format. [PNG]

 If the native flag is set, or if the bitmap has one pixel per coordinate
 space unit, then the image file must have the same pixel data (before compression, if applicable)
 as the bitmap, and if the file format used supports encoding resolution metadata, the resolution
 of that bitmap (device pixels per coordinate space units being interpreted as image pixels per CSS
 pixel) must be given as well.

 Otherwise, the image file's pixel data must be the bitmap's pixel data scaled to one image
 pixel per coordinate space unit, and if the file format used supports encoding resolution
 metadata, the resolution must be given as 96dpi (one image pixel per CSS pixel).

 If arguments is not empty, the first value must be interpreted as a MIME type giving the format to use. If the type has any parameters, it
 must be treated as not supported.

 For example, the value "image/png" would mean to generate a PNG
 image, the value "image/jpeg" would mean to generate a JPEG image, and the value
 "image/svg+xml" would mean to generate an SVG image (which would require that the
 user agent track how the bitmap was generated, an unlikely, though potentially awesome,
 feature).

 User agents must support PNG ("image/png"). User agents may support other types.
 If the user agent does not support the requested type, it must create the file using the PNG
 format. [PNG]

 User agents must convert the provided type to ASCII
 lowercase before establishing if they support that type.

 For image types that do not support an alpha channel, the serialized image must be the bitmap
 image composited onto a solid black background using the source-over operator.

 If the first argument in arguments gives a type corresponding to one of the
 types given in the first column of the following table, and the user agent supports that type,
 then the subsequent arguments, if any, must be treated as described in the second cell of that
 row.

 Arguments for serialization methods

 	 Type 	 Other arguments 	 Reference

 	 image/jpeg
 	 The second argument is a number in the range 0.0 to 1.0
 inclusive treated as the desired quality level.
 	 [JPEG]

 For the purposes of these rules, an argument is considered to be a number if it is converted to
 an IDL double value by the rules for handling arguments of type any in the
 Web IDL specification. [WEBIDL]

 Other arguments must be ignored and must not cause the user agent to throw an exception. A
 future version of this specification will probably define other parameters to be passed to these
 methods to allow authors to more carefully control compression settings, image metadata, etc.

 Security with canvas elements

 This section is non-normative.

 Information leakage can occur if scripts from
 one origin can access information (e.g. read pixels)
 from images from another origin (one that isn't the same).

 To mitigate this, bitmaps used with canvas elements are defined to have a flag
 indicating whether they are origin-clean. All
 bitmaps start with their origin-clean set to
 true. The flag is set to false when cross-origin images or fonts are used.

 The toDataURL(), toBlob(), getImageData(), and getImageDataHD()
 methods check the flag and will throw a SecurityError
 exception rather than leak cross-origin data.

 The flag can be reset in certain situations; for example, when a
 CanvasRenderingContext2D is bound to a new canvas, the bitmap is cleared
 and its flag reset.

 The map element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Transparent.

 	Content attributes:

 	Global attributes

 	name

 	DOM interface:

 	
interface HTMLMapElement : HTMLElement {
 attribute DOMString name;
 readonly attribute HTMLCollection areas;
 readonly attribute HTMLCollection images;
};

 The map element, in conjunction with any
 area element descendants, defines an image
 map. The element represents its children.

 The name attribute
 gives the map a name so that it can be referenced. The attribute
 must be present and must have a non-empty value with no space characters. The value of the
 name attribute must not be a
 compatibility-caseless
 match for the value of the name
 attribute of another map element in the same
 document. If the id attribute is also
 specified, both attributes must have the same value.

 	map . areas

 	

 Returns an HTMLCollection of the area elements in the map.

 	map . images

 	

 Returns an HTMLCollection of the img and object elements that use the map.

 The areas attribute
 must return an HTMLCollection rooted at the
 map element, whose filter matches only
 area elements.

 The images
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 img and object elements that are
 associated with this map element according to the
 image map processing model.

 The IDL attribute name must
 reflect the content attribute of the same name.

 Image maps can be defined in conjunction with other content on
 the page, to ease maintenance. This example is of a page with an
 image map at the top of the page and a corresponding set of text
 links at the bottom.

 <!DOCTYPE HTML>
<TITLE>Babies™: Toys</TITLE>
<HEADER>
 <H1>Toys</H1>
 <IMG SRC="/images/menu.gif"
 ALT="Babies™ navigation menu. Select a department to go to its page."
 USEMAP="#NAV">
</HEADER>
 ...
<FOOTER>
 <MAP NAME="NAV">
 <P>
 Clothes
 <AREA ALT="Clothes" COORDS="0,0,100,50" HREF="/clothes/"> |
 Toys
 <AREA ALT="Toys" COORDS="0,0,100,50" HREF="/toys/"> |
 Food
 <AREA ALT="Food" COORDS="0,0,100,50" HREF="/food/"> |
 Books
 <AREA ALT="Books" COORDS="0,0,100,50" HREF="/books/">
 </MAP>
</FOOTER>

 The area element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected, but only if there is a map element ancestor.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	alt

 	coords

 	shape

 	href

 	target

 	download

 	rel

 	hreflang

 	type

 	DOM interface:

 	
interface HTMLAreaElement : HTMLElement {
 attribute DOMString alt;
 attribute DOMString coords;
 attribute DOMString shape;
 attribute DOMString target;
 attribute DOMString download;

 attribute DOMString rel;
 readonly attribute DOMTokenList relList;
 attribute DOMString hreflang;
 attribute DOMString type;
};
HTMLAreaElement implements URLUtils;

 The area element represents either a
 hyperlink with some text and a corresponding area on an image
 map, or a dead area on an image map.

 An area element with a parent node must have a map element
 ancestor.

 If the area element has an href attribute, then the
 area element represents a hyperlink. In
 this case, the alt
 attribute must be present. It specifies the text of the
 hyperlink. Its value must be text that, when presented with the
 texts specified for the other hyperlinks of the image
 map, and with the alternative text of the image, but without
 the image itself, provides the user with the same kind of choice as
 the hyperlink would when used without its text but with its shape
 applied to the image. The alt
 attribute may be left blank if there is another area
 element in the same image map that points to the same
 resource and has a non-blank alt
 attribute.

 If the area element has no href attribute, then the area
 represented by the element cannot be selected, and the alt attribute must be omitted.

 In both cases, the shape and
 coords attributes specify the
 area.

 The shape
 attribute is an enumerated attribute. The following
 table lists the keywords defined for this attribute. The states
 given in the first cell of the rows with keywords give the states to
 which those keywords map.

 	State
 	Keywords
 	Notes

 	Circle state
 	circle
 	

 	circ
 	Non-conforming

 	Default state
 	default
 	

 	Polygon state
 	poly
 	

 	polygon
 	Non-conforming

 	Rectangle state
 	rect
 	

 	rectangle
 	Non-conforming

 The attribute may be omitted. The missing value default is
 the rectangle state.

 The coords
 attribute must, if specified, contain a valid list of
 integers. This attribute gives the coordinates for the shape
 described by the shape
 attribute.

 In the circle state,
 area elements must have a coords attribute present, with three
 integers, the last of which must be non-negative. The first integer
 must be the distance in CSS pixels from the left edge of the image
 to the center of the circle, the second integer must be the distance
 in CSS pixels from the top edge of the image to the center of the
 circle, and the third integer must be the radius of the circle,
 again in CSS pixels.

 In the default state
 state, area elements must not have a coords attribute. (The area is the
 whole image.)

 In the polygon state,
 area elements must have a coords attribute with at least six
 integers, and the number of integers must be even. Each pair of
 integers must represent a coordinate given as the distances from the
 left and the top of the image in CSS pixels respectively, and all
 the coordinates together must represent the points of the polygon,
 in order.

 In the rectangle state,
 area elements must have a coords attribute with exactly four
 integers, the first of which must be less than the third, and the
 second of which must be less than the fourth. The four points must
 represent, respectively, the distance from the left edge of the
 image to the left side of the rectangle, the distance from the
 top edge to the top side, the distance from the left edge to the
 right side, and the distance from the top edge to the bottom side,
 all in CSS pixels.

 When user agents allow users to follow hyperlinks or
 download hyperlinks created using the
 area element, as described in the next section, the href, target,
 download, and

 attributes decide how the link is followed. The rel, hreflang, and type
 attributes may be used to indicate to the user the likely nature of the target resource before the
 user follows the link.

 The target,
 download,

 rel, hreflang, and type
 attributes must be omitted if the href attribute is not
 present.

 The activation behavior of area elements is to run the following
 steps:

 	If the a element's Document is not in a browsing
 context, then abort these steps.

 	

 If the area element has
 a download attribute and the algorithm is not
 allowed to show a popup, or the element's target attribute is present and applying the rules for
 choosing a browsing context given a browsing context name, using the value of the target attribute as the browsing context name, would result
 in there not being a chosen browsing context, then run these substeps:

 	If there is an entry script, throw an InvalidAccessError exception.

 	Abort these steps without following the hyperlink.

 	Otherwise, the user agent must follow the
 hyperlink or download the hyperlink created by
 the area element, if any, and as determined by the download attribute and any expressed user
 preference.

 The IDL attributes alt, coords, target, download,

 rel,
 hreflang, and type, each must reflect the respective
 content attributes of the same name.

 The IDL attribute shape must
 reflect the shape content attribute.

 The IDL attribute relList must
 reflect the rel content attribute.

 The area element also supports the URLUtils interface. [URL]

 When the element is created, and whenever the element's href content attribute is set, changed, or removed, the user
 agent must invoke the element's URLUtils interface's set the input algorithm with the value of the href content attribute, if any, or the empty string otherwise,
 as the given value.

 The element's URLUtils interface's get the
 base algorithm must simply return the element's base URL.

 The element's URLUtils interface's query
 encoding is the document's character encoding.

 When the element's URLUtils interface invokes its update steps with a string value, the user
 agent must set the element's href content attribute to
 the string value.

 Image maps

 Authoring

 An image map allows geometric areas on an image to be
 associated with hyperlinks.

 An image, in the form of an img element or an
 object element representing an image, may be associated
 with an image map (in the form of a map element) by
 specifying a usemap attribute on
 the img or object element. The usemap attribute, if specified,
 must be a valid hash-name reference to a
 map element.

 Consider an image that looks as follows:

 [image: A line with four shapes in it, equally spaced: a red hollow box, a green circle, a blue triangle, and a yellow four-pointed star.]

 If we wanted just the colored areas to be clickable, we could
 do it as follows:

 <p>
 Please select a shape:
 <img src="shapes.png" usemap="#shapes"
 alt="Four shapes are available: a red hollow box, a green circle, a blue triangle, and a yellow four-pointed star.">
 <map name="shapes">
 <area shape=rect coords="50,50,100,100"> <!-- the hole in the red box -->
 <area shape=rect coords="25,25,125,125" href="red.html" alt="Red box.">
 <area shape=circle coords="200,75,50" href="green.html" alt="Green circle.">
 <area shape=poly coords="325,25,262,125,388,125" href="blue.html" alt="Blue triangle.">
 <area shape=poly coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"
 href="yellow.html" alt="Yellow star.">
 </map>
</p>

 Processing model

 If an img element or an object element
 representing an image has a usemap attribute specified,
 user agents must process it as follows:

 	First, rules for parsing a hash-name reference
 to a map element must be followed. This will return
 either an element (the map) or null.

 	If that returned null, then abort these steps. The image is
 not associated with an image map after all.

 	Otherwise, the user agent must collect all the
 area elements that are descendants of the map. Let those be the areas.

 Having obtained the list of area elements that form
 the image map (the areas), interactive user
 agents must process the list in one of two ways.

 If the user agent intends to show the text that the
 img element represents, then it must use the following
 steps.

 In user agents that do not support images, or that
 have images disabled, object elements cannot represent
 images, and thus this section never applies (the fallback
 content is shown instead). The following steps therefore only
 apply to img elements.

 	Remove all the area elements in areas that have no href attribute.

 	Remove all the area elements in areas that have no alt attribute, or whose alt attribute's value is the empty
 string, if there is another area element in
 areas with the same value in the href attribute and with a
 non-empty alt attribute.

 	Each remaining area element in areas represents a hyperlink. Those
 hyperlinks should all be made available to the user in a manner
 associated with the text of the img.

 In this context, user agents may represent area and
 img elements with no specified alt attributes, or whose alt
 attributes are the empty string or some other non-visible text, in
 a user-agent-defined fashion intended to indicate the lack of
 suitable author-provided text.

 If the user agent intends to show the image and allow interaction
 with the image to select hyperlinks, then the image must be
 associated with a set of layered shapes, taken from the
 area elements in areas, in reverse
 tree order (so the last specified area element in the
 map is the bottom-most shape, and the first
 element in the map, in tree order, is the
 top-most shape).

 Each area element in areas must
 be processed as follows to obtain a shape to layer onto the
 image:

 	Find the state that the element's shape attribute represents.

 	Use the rules for parsing a list of integers to
 parse the element's coords
 attribute, if it is present, and let the result be the coords list. If the attribute is absent, let the
 coords list be the empty list.

 	If the number of items in the coords
 list is less than the minimum number given for the
 area element's current state, as per the following
 table, then the shape is empty; abort these steps.

 	State
 	Minimum number of items

 	Circle state
 	3

 	Default state
 	0

 	Polygon state
 	6

 	Rectangle state
 	4

 	Check for excess items in the coords
 list as per the entry in the following list corresponding to the
 shape attribute's state:

 	Circle state

 	Drop any items in the list beyond the third.

 	Default state

 	Drop all items in the list.

 	Polygon state

 	Drop the last item if there's an odd number of items.

 	Rectangle state

 	Drop any items in the list beyond the fourth.

 	If the shape attribute
 represents the rectangle
 state, and the first number in the list is numerically less
 than the third number in the list, then swap those two numbers
 around.

 	If the shape attribute
 represents the rectangle
 state, and the second number in the list is numerically less
 than the fourth number in the list, then swap those two numbers
 around.

 	If the shape attribute
 represents the circle
 state, and the third number in the list is less than or
 equal to zero, then the shape is empty; abort these steps.

 	Now, the shape represented by the element is the one
 described for the entry in the list below corresponding to the
 state of the shape
 attribute:

 	Circle state

 	
 Let x be the first number in coords, y be the second
 number, and r be the third number.

 The shape is a circle whose center is x
 CSS pixels from the left edge of the image and y CSS pixels from the top edge of the image, and
 whose radius is r pixels.

 	Default state

 	
 The shape is a rectangle that exactly covers the entire
 image.

 	Polygon state

 	

 Let xi be the th entry in coords,
 and yi be the th entry in coords
 (the first entry in coords being the one
 with index 0).

 Let the coordinates be (xi, yi),
 interpreted in CSS pixels measured from the top left of the
 image, for all integer values of i from 0 to
 , where N is the number of items in coords.

 The shape is a polygon whose vertices are given by the coordinates, and whose interior is
 established using the even-odd rule. [GRAPHICS]

 	Rectangle state

 	

 Let x1 be the first
 number in coords, y1 be the second number, x2 be the third number, and y2 be the fourth number.

 The shape is a rectangle whose top-left corner is given by
 the coordinate (x1, y1) and whose bottom right
 corner is given by the coordinate (x2, y2), those coordinates being interpreted as
 CSS pixels from the top left corner of the image.

 For historical reasons, the coordinates must be interpreted
 relative to the displayed image after any stretching
 caused by the CSS 'width' and 'height' properties (or, for non-CSS
 browsers, the image element's width and
 height attributes — CSS browsers map
 those attributes to the aforementioned CSS properties).

 Browser zoom features and transforms applied using
 CSS or SVG do not affect the coordinates.

 Pointing device interaction with an image associated with a set
 of layered shapes per the above algorithm must result in the
 relevant user interaction events being first fired to the top-most
 shape covering the point that the pointing device indicated, if any,
 or to the image element itself, if there is no shape covering that
 point. User agents may also allow individual area
 elements representing hyperlinks to
 be selected and activated (e.g. using a keyboard).

 Because a map element (and its
 area elements) can be associated with multiple
 img and object elements, it is possible
 for an area element to correspond to multiple focusable
 areas of the document.

 Image maps are live; if the DOM is mutated, then the
 user agent must act as if it had rerun the algorithms for image
 maps.

 MathML

 The math element from the MathML
 namespace falls into the embedded content,
 phrasing content, and flow content
 categories for the purposes of the content models in this
 specification.

 User agents must handle text other than inter-element
 whitespace found in MathML elements whose content models do
 not allow straight text by pretending for the purposes of MathML
 content models, layout, and rendering that that text is actually
 wrapped in an mtext element in the
 MathML namespace. (Such text is not, however,
 conforming.)

 User agents must act as if any MathML element whose contents does
 not match the element's content model was replaced, for the purposes
 of MathML layout and rendering, by an merror
 element in the MathML namespace containing some
 appropriate error message.

 To enable authors to use MathML tools that only accept MathML in
 its XML form, interactive HTML user agents are encouraged to provide
 a way to export any MathML fragment as an XML namespace-well-formed
 XML fragment.

 The semantics of MathML elements are defined by the MathML
 specification and other applicable specifications. [MATHML]

 Here is an example of the use of MathML in an HTML document:

 <!DOCTYPE html>
<html>
 <head>
 <title>The quadratic formula</title>
 </head>
 <body>
 <h1>The quadratic formula</h1>
 <p>
 <math>
 <mi>x</mi>
 <mo>=</mo>
 <mfrac>
 <mrow>
 <mo form="prefix">−</mo> <mi>b</mi>
 <mo>±</mo>
 <msqrt>
 <msup> <mi>b</mi> <mn>2</mn> </msup>
 <mo>−</mo>
 <mn>4</mn> <mo>⁢</mo> <mi>a</mi> <mo>⁢</mo> <mi>c</mi>
 </msqrt>
 </mrow>
 <mrow>
 <mn>2</mn> <mo>⁢</mo> <mi>a</mi>
 </mrow>
 </mfrac>
 </math>
 </p>
 </body>
</html>

 SVG

 The svg element from the SVG
 namespace falls into the embedded content,
 phrasing content, and flow content
 categories for the purposes of the content models in this
 specification.

 To enable authors to use SVG tools that only accept SVG in its
 XML form, interactive HTML user agents are encouraged to provide a
 way to export any SVG fragment as an XML namespace-well-formed XML
 fragment.

 When the SVG foreignObject element contains
 elements from the HTML namespace, such elements must
 all be flow content. [SVG]

 The content model for title elements in the
 SVG namespace inside HTML documents is
 phrasing content. (This further constrains the
 requirements given in the SVG specification.)

 The semantics of SVG elements are defined by the SVG
 specification and other applicable specifications. [SVG]

 The SVG specification includes requirements regarding the
 handling of elements in the DOM that are not in the SVG namespace,
 that are in SVG fragments, and that are not included in a
 foreignObject element. This
 specification does not define any processing for elements in SVG
 fragments that are not in the HTML namespace; they are considered
 neither conforming nor non-conforming from the perspective of this
 specification.

 Dimension attributes

 The width and height attributes on
 img, iframe, embed,
 object, video, and, when their type attribute is in the Image Button state,
 input elements may be specified to give the dimensions
 of the visual content of the element (the width and height
 respectively, relative to the nominal direction of the output
 medium), in CSS pixels. The attributes, if specified, must have
 values that are valid
 non-negative integers.

 The specified dimensions given may differ from the dimensions
 specified in the resource itself, since the resource may have a
 resolution that differs from the CSS pixel resolution. (On screens,
 CSS pixels have a resolution of 96ppi, but in general the CSS pixel
 resolution depends on the reading distance.) If both attributes are
 specified, then one of the following statements must be true:

 	

 	

 	

 The target ratio is the ratio of the
 intrinsic width to the intrinsic height in the resource. The specified width and specified
 height are the values of the width and height attributes respectively.

 The two attributes must be omitted if the resource in question
 does not have both an intrinsic width and an intrinsic height.

 If the two attributes are both zero, it indicates that the
 element is not intended for the user (e.g. it might be a part of a
 service to count page views).

 The dimension attributes are not intended to be used
 to stretch the image.

 User agent requirements: User agents are
 expected to use these attributes as hints
 for the rendering.

 The width and height IDL attributes on
 the iframe, embed, object,
 and video elements must reflect the
 respective content attributes of the same name.

 For iframe, embed, and
 object the IDL attributes are DOMString;
 for video the IDL attributes are unsigned
 long.

 The corresponding IDL attributes for img and input elements are defined in those
 respective elements' sections, as they are slightly more specific to
 those elements' other behaviors.

 Tabular data

 The table element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	In this order: optionally a caption element,
 followed by zero or more colgroup elements, followed
 optionally by a thead element, followed optionally by
 a tfoot element, followed by either zero or more
 tbody elements or one or more tr
 elements, followed optionally by a tfoot element (but
 there can only be one tfoot element child in
 total), optionally intermixed with one or more script-supporting elements.

 	Content attributes:

 	Global attributes

 	border

 	DOM interface:

 	
interface HTMLTableElement : HTMLElement {
 attribute HTMLTableCaptionElement? caption;
 HTMLElement createCaption();
 void deleteCaption();
 attribute HTMLTableSectionElement? tHead;
 HTMLElement createTHead();
 void deleteTHead();
 attribute HTMLTableSectionElement? tFoot;
 HTMLElement createTFoot();
 void deleteTFoot();
 readonly attribute HTMLCollection tBodies;
 HTMLElement createTBody();
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(optional long index = -1);
 void deleteRow(long index);
 attribute DOMString border;
};

 The table element represents data with
 more than one dimension, in the form of a table.

 Tables have rows, columns, and
 cells given by their descendants. The rows and columns form a grid;
 a table's cells must completely cover that grid without overlap.

 Precise rules for determining whether this
 conformance requirement is met are described in the description of
 the table model.

 Authors are encouraged to provide information describing how to
 interpret complex tables. Guidance on how to provide such information
 is given below.

 If a table element has a (non-conforming) summary attribute, and the user
 agent has not classified the table as a layout table, the user agent
 may report the contents of that attribute to the user.

 Tables should not be used as layout aids.

 Historically, many Web authors have tables in HTML as a way to
 control their page layout making it difficult to extract tabular
 data from such documents.

 In particular, users of accessibility tools, like screen readers,
 are likely to find it very difficult to navigate pages with tables
 used for layout.

 If a table is to be used for layout it must be marked with the
 attribute role="presentation" for a user agent to properly represent
 the table to an assistive technology and to properly convey the
 intent of the author to tools that wish to extract tabular data from
 the document.

 There are a variety of alternatives to using HTML
 tables for layout, primarily using CSS positioning and the CSS table
 model. [CSS]

 The border
 attribute may be specified on a table element to
 explicitly indicate that the table element is not being
 used for layout purposes. If specified, the attribute's value must
 either be the empty string or the value "1".
 The attribute is used by certain user agents as an indication that
 borders should be drawn around cells of the table.

 Tables can be complicated to understand and navigate. To help
 users with this, user agents should clearly delineate cells in a
 table from each other, unless the user agent has classified the
 table as a

 layout table.

 Authors
 are encouraged to consider using some of the table design techniques
 described below to make tables easier to navigate for users.

 User agents, especially those that do table analysis on arbitrary
 content, are encouraged to find heuristics to determine which tables
 actually contain data and which are merely being used for layout.
 This specification does not define a precise heuristic, but the
 following are suggested as possible indicators:

 	Feature
 	Indication

 	The use of the role attribute with the value presentation
 	Probably a layout table

 	The use of the border attribute with the non-conforming value 0
 	Probably a layout table

 	The use of the non-conforming cellspacing and cellpadding attributes with the value 0
 	Probably a layout table

 	The use of caption, thead, or th elements
 	Probably a non-layout table

 	The use of the headers and scope attributes
 	Probably a non-layout table

 	The use of the border attribute with a value other than 0
 	Probably a non-layout table

 	Explicit visible borders set using CSS
 	Probably a non-layout table

 	The use of the summary attribute
 	Not a good indicator (both layout and non-layout tables have historically been given this attribute)

 It is quite possible that the above suggestions are
 wrong. Implementors are urged to provide feedback elaborating on
 their experiences with trying to create a layout table detection
 heuristic.

 	table . caption [= value]

 	
 Returns the table's caption element.

 Can be set, to replace the caption element. If the
 new value is not a caption element, throws a
 HierarchyRequestError exception.

 	caption = table . createCaption()

 	
 Ensures the table has a caption element, and returns it.

 	table . deleteCaption()

 	
 Ensures the table does not have a caption element.

 	table . tHead [= value]

 	
 Returns the table's thead element.

 Can be set, to replace the thead element. If the
 new value is not a thead element, throws a
 HierarchyRequestError exception.

 	thead = table . createTHead()

 	
 Ensures the table has a thead element, and returns it.

 	table . deleteTHead()

 	
 Ensures the table does not have a thead element.

 	table . tFoot [= value]

 	
 Returns the table's tfoot element.

 Can be set, to replace the tfoot element. If the
 new value is not a tfoot element, throws a
 HierarchyRequestError exception.

 	tfoot = table . createTFoot()

 	
 Ensures the table has a tfoot element, and returns it.

 	table . deleteTFoot()

 	
 Ensures the table does not have a tfoot element.

 	table . tBodies

 	
 Returns an HTMLCollection of the tbody elements of the table.

 	tbody = table . createTBody()

 	
 Creates a tbody element, inserts it into the table, and returns it.

 	table . rows

 	
 Returns an HTMLCollection of the tr elements of the table.

 	tr = table . insertRow([index])

 	
 Creates a tr element, along with a tbody if required, inserts them into the table at the position given by the argument, and returns the tr.

 The position is relative to the rows in the table. The index −1, which is the default if the argument is omitted, is equivalent to inserting at the end of the table.

 If the given position is less than −1 or greater than the number of rows, throws an IndexSizeError exception.

 	table . deleteRow(index)

 	
 Removes the tr element with the given position in the table.

 The position is relative to the rows in the table. The index −1 is equivalent to deleting the last row of the table.

 If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an IndexSizeError exception.

 The caption IDL
 attribute must return, on getting, the first caption
 element child of the table element, if any, or null
 otherwise. On setting, if the new value is a caption
 element, the first caption element child of the
 table element, if any, must be removed, and the new
 value must be inserted as the first node of the table
 element. If the new value is not a caption element,
 then a HierarchyRequestError DOM exception must be
 thrown instead.

 The createCaption()
 method must return the first caption element child of
 the table element, if any; otherwise a new
 caption element must be created, inserted as the first
 node of the table element, and then returned.

 The deleteCaption()
 method must remove the first caption element child of
 the table element, if any.

 The tHead IDL
 attribute must return, on getting, the first thead
 element child of the table element, if any, or null
 otherwise. On setting, if the new value is a thead
 element, the first thead element child of the
 table element, if any, must be removed, and the new
 value must be inserted immediately before the first element in the
 table element that is neither a caption
 element nor a colgroup element, if any, or at the end
 of the table if there are no such elements. If the new value is not
 a thead element, then a
 HierarchyRequestError DOM exception must be thrown
 instead.

 The createTHead()
 method must return the first thead element child of the
 table element, if any; otherwise a new
 thead element must be created and inserted immediately
 before the first element in the table element that is
 neither a caption element nor a colgroup
 element, if any, or at the end of the table if there are no such
 elements, and then that new element must be returned.

 The deleteTHead()
 method must remove the first thead element child of the
 table element, if any.

 The tFoot IDL
 attribute must return, on getting, the first tfoot
 element child of the table element, if any, or null
 otherwise. On setting, if the new value is a tfoot
 element, the first tfoot element child of the
 table element, if any, must be removed, and the new
 value must be inserted immediately before the first element in the
 table element that is neither a caption
 element, a colgroup element, nor a thead
 element, if any, or at the end of the table if there are no such
 elements. If the new value is not a tfoot element, then
 a HierarchyRequestError DOM exception must be thrown
 instead.

 The createTFoot()
 method must return the first tfoot element child of the
 table element, if any; otherwise a new
 tfoot element must be created and inserted immediately
 before the first element in the table element that is
 neither a caption element, a colgroup
 element, nor a thead element, if any, or at the end of
 the table if there are no such elements, and then that new element
 must be returned.

 The deleteTFoot()
 method must remove the first tfoot element child of the
 table element, if any.

 The tBodies
 attribute must return an HTMLCollection rooted at the
 table node, whose filter matches only
 tbody elements that are children of the
 table element.

 The createTBody()
 method must create a new tbody element, insert it
 immediately after the last tbody element child in the
 table element, if any, or at the end of the
 table element if the table element has no
 tbody element children, and then must return the new
 tbody element.

 The rows attribute
 must return an HTMLCollection rooted at the
 table node, whose filter matches only tr
 elements that are either children of the table element,
 or children of thead, tbody, or
 tfoot elements that are themselves children of the
 table element. The elements in the collection must be
 ordered such that those elements whose parent is a
 thead are included first, in tree order, followed by
 those elements whose parent is either a table or
 tbody element, again in tree order, followed finally by
 those elements whose parent is a tfoot element, still
 in tree order.

 The behavior of the insertRow(index) method depends on the state of
 the table. When it is called, the method must act as required by the
 first item in the following list of conditions that describes the
 state of the table and the index argument:

 	If index is less than −1 or greater than
 the number of elements in rows
 collection:

 	The method must throw an IndexSizeError
 exception.

 	If the rows collection has
 zero elements in it, and the table has no
 tbody elements in it:

 	The method must create a tbody element, then
 create a tr element, then append the tr
 element to the tbody element, then append the
 tbody element to the table element, and
 finally return the tr element.

 	If the rows collection has
 zero elements in it:

 	The method must create a tr element, append it to
 the last tbody element in the table, and return the
 tr element.

 	If index is −1 or
 equal to the number of items in rows collection:

 	The method must create a tr element, and append it
 to the parent of the last tr element in the rows collection. Then, the newly
 created tr element must be returned.

 	Otherwise:

 	The method must create a tr element, insert it
 immediately before the indexth tr
 element in the rows collection,
 in the same parent, and finally must return the newly created
 tr element.

 When the deleteRow(index) method is called, the user agent
 must run the following steps:

 	If index is equal to −1, then
 index must be set to the number of items in the
 rows collection, minus
 one.

 	Now, if index is less than zero, or
 greater than or equal to the number of elements in the rows collection, the method must
 instead throw an IndexSizeError exception, and these
 steps must be aborted.

 	Otherwise, the method must remove the indexth element in the rows collection from its parent.

 The border IDL
 attribute must reflect the content attribute of the
 same name.

 Here is an example of a table being used to mark up a Sudoku
 puzzle. Observe the lack of headers, which are not necessary in
 such a table.

 <section>
 <style scoped>
 table { border-collapse: collapse; border: solid thick; }
 colgroup, tbody { border: solid medium; }
 td { border: solid thin; height: 1.4em; width: 1.4em; text-align: center; padding: 0; }
 </style>
 <h1>Today's Sudoku</h1>
 <table>
 <colgroup><col><col><col>
 <colgroup><col><col><col>
 <colgroup><col><col><col>
 <tbody>
 <tr> <td> 1 <td> <td> 3 <td> 6 <td> <td> 4 <td> 7 <td> <td> 9
 <tr> <td> <td> 2 <td> <td> <td> 9 <td> <td> <td> 1 <td>
 <tr> <td> 7 <td> <td> <td> <td> <td> <td> <td> <td> 6
 <tbody>
 <tr> <td> 2 <td> <td> 4 <td> <td> 3 <td> <td> 9 <td> <td> 8
 <tr> <td> <td> <td> <td> <td> <td> <td> <td> <td>
 <tr> <td> 5 <td> <td> <td> 9 <td> <td> 7 <td> <td> <td> 1
 <tbody>
 <tr> <td> 6 <td> <td> <td> <td> 5 <td> <td> <td> <td> 2
 <tr> <td> <td> <td> <td> <td> 7 <td> <td> <td> <td>
 <tr> <td> 9 <td> <td> <td> 8 <td> <td> 2 <td> <td> <td> 5
 </table>
</section>

 Techniques for describing tables

 For tables that consist of more than just
 a grid of cells with headers in the first row and headers in the
 first column, and for any table in general where the reader might
 have difficulty understanding the content, authors should include
 explanatory information introducing the table. This information is
 useful for all users, but is especially useful for users who cannot
 see the table, e.g. users of screen readers.

 Such explanatory information should introduce the purpose of the
 table, outline its basic cell structure, highlight any trends or
 patterns, and generally teach the user how to use the table.

 For instance, the following table:

 Characteristics with positive and negative sides

 	 Negative
 	 Characteristic
 	 Positive

 	 Sad
 	 Mood
 	 Happy

 	 Failing
 	 Grade
 	 Passing

 ...might benefit from a description explaining the way the table
 is laid out, something like "Characteristics are given in the
 second column, with the negative side in the left column and the
 positive side in the right column".

 There are a variety of ways to include this information, such as:

 	In prose, surrounding the table

 	
 <p id="summary">In the following table, characteristics are
given in the second column, with the negative side in the left column and the positive
side in the right column.</p>
<table aria-describedby="summary">
 <caption>Characteristics with positive and negative sides</caption>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

 In the example above the

 aria-describedby attribute is used to explicitly associate the information
 with the table for assistive technology users.

 	In the table's caption

 	
 <table>
 <caption>
 Characteristics with positive and negative sides.
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the right
 column.</p>
 </caption>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

 	In the table's caption, in a details element

 	
 <table>
 <caption>
 Characteristics with positive and negative sides.
 <details>
 <summary>Help</summary>
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the right
 column.</p>
 </details>
 </caption>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

 	Next to the table, in the same figure

 	
 <figure>
 <figcaption>Characteristics with positive and negative sides</figcaption>
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the right
 column.</p>
 <table>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
 </table>
</figure>

 	Next to the table, in a figure's figcaption

 	
 <figure>
 <figcaption>
 Characteristics with positive and negative sides
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the right
 column.</p>
 </figcaption>
 <table>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
 </table>
</figure>

 Authors may also use other techniques, or combinations of the
 above techniques, as appropriate.

 The best option, of course, rather than writing a description
 explaining the way the table is laid out, is to adjust the table
 such that no explanation is needed.

 In the case of the table used in the examples above, a simple
 rearrangement of the table so that the headers are on the top and
 left sides removes the need for an explanation as well as removing
 the need for the use of headers attributes:

 <table>
 <caption>Characteristics with positive and negative sides</caption>
 <thead>
 <tr>
 <th> Characteristic
 <th> Negative
 <th> Positive
 <tbody>
 <tr>
 <th> Mood
 <td> Sad
 <td> Happy
 <tr>
 <th> Grade
 <td> Failing
 <td> Passing
</table>

 Techniques for table design

 Good table design is key to making tables more readable and usable.

 In visual media, providing column and row borders and alternating
 row backgrounds can be very effective to make complicated tables
 more readable.

 For tables with large volumes of numeric content, using
 monospaced fonts can help users see patterns, especially in
 situations where a user agent does not render the borders.
 (Unfortunately, for historical reasons, not rendering borders on
 tables is a common default.)

 In speech media, table cells can be distinguished by reporting
 the corresponding headers before reading the cell's contents, and by
 allowing users to navigate the table in a grid fashion, rather than
 serializing the entire contents of the table in source order.

 Authors are encouraged to use CSS to achieve these effects.

 User agents are encouraged to render tables using these
 techniques whenever the page does not use CSS and the table is not
 classified as a layout table.

 The caption element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the first element child of a table element.

 	Content model:

 	Flow content, but with no descendant table elements.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
interface HTMLTableCaptionElement : HTMLElement {};

 The caption element represents the title of the table
 that is its parent, if it has a parent and that is a table element.

 The caption element takes part in the table model.

 When a table element is the only content in a figure element other
 than the figcaption, the caption element should be omitted in favor of
 the figcaption.

 A caption can introduce context for a table, making it significantly easier to understand.

 Consider, for instance, the following table:

 	 	 1 	 2 	 3 	 4 	 5 	 6

 	 1 	 2 	 3 	 4 	 5 	 6 	 7

 	 2 	 3 	 4 	 5 	 6 	 7 	 8

 	 3 	 4 	 5 	 6 	 7 	 8 	 9

 	 4 	 5 	 6 	 7 	 8 	 9 	 10

 	 5 	 6 	 7 	 8 	 9 	 10 	 11

 	 6 	 7 	 8 	 9 	 10 	 11 	 12

 In the abstract, this table is not clear. However, with a caption giving the table's number
 (for reference in the main prose) and explaining its use, it makes more sense:

 <caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

 This provides the user with more context:

 Table 1.

This table shows the total score obtained from rolling two
 six-sided dice. The first row represents the value of the first
 die, the first column the value of the second die. The total is
 given in the cell that corresponds to the values of the two dice.

 	 	 1 	 2 	 3 	 4 	 5 	 6

 	 1 	 2 	 3 	 4 	 5 	 6 	 7

 	 2 	 3 	 4 	 5 	 6 	 7 	 8

 	 3 	 4 	 5 	 6 	 7 	 8 	 9

 	 4 	 5 	 6 	 7 	 8 	 9 	 10

 	 5 	 6 	 7 	 8 	 9 	 10 	 11

 	 6 	 7 	 8 	 9 	 10 	 11 	 12

 The colgroup element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a table element, after any
 caption elements and before any thead,
 tbody, tfoot, and tr
 elements.

 	Content model:

 	If the span attribute is present: Empty.

 	If the span attribute is absent: Zero or more col elements.

 	Content attributes:

 	Global attributes

 	span

 	DOM interface:

 	
interface HTMLTableColElement : HTMLElement {
 attribute unsigned long span;
};

 The colgroup element represents a group of one or more columns in the table that
 is its parent, if it has a parent and that is a table
 element.

 If the colgroup element contains no col
 elements, then the element may have a span content attribute
 specified, whose value must be a valid non-negative
 integer greater than zero.

 The colgroup element and its span attribute take part in the
 table model.

 The span IDL
 attribute must reflect the content attribute of the
 same name. The value must be limited to only non-negative
 numbers greater than zero.

 The col element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a colgroup element that doesn't have
 a span attribute.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	span

 	DOM interface:

 	
 HTMLTableColElement, same as for
 colgroup elements. This interface defines one member,
 span.

 If a col element has a parent and that is a
 colgroup element that itself has a parent that is a
 table element, then the col element
 represents one or more columns in the column group represented by that
 colgroup.

 The element may have a span content attribute
 specified, whose value must be a valid non-negative
 integer greater than zero.

 The col element and its span attribute take part in the
 table model.

 The span IDL
 attribute must reflect the content attribute of the
 same name. The value must be limited to only non-negative
 numbers greater than zero.

 The tbody element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a table element, after any
 caption, colgroup, and
 thead elements, but only if there are no
 tr elements that are children of the
 table element.

 	Content model:

 	Zero or more tr and script-supporting elements

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLTableSectionElement : HTMLElement {
 readonly attribute HTMLCollection rows;
 HTMLElement insertRow(optional long index = -1);
 void deleteRow(long index);
};

 The HTMLTableSectionElement interface is also
 used for thead and tfoot elements.

 The tbody element represents a block of rows that consist of a body of data for
 the parent table element, if the tbody
 element has a parent and it is a table.

 The tbody element takes part in the table
 model.

 	tbody . rows

 	
 Returns an HTMLCollection of the tr elements of the table section.

 	tr = tbody . insertRow([index])

 	
 Creates a tr element, inserts it into the table section at the position given by the argument, and returns the tr.

 The position is relative to the rows in the table section. The index −1, which is the default if the argument is omitted, is equivalent to inserting at the end of the table section.

 If the given position is less than −1 or greater than the number of rows, throws an IndexSizeError exception.

 	tbody . deleteRow(index)

 	
 Removes the tr element with the given position in the table section.

 The position is relative to the rows in the table section. The index −1 is equivalent to deleting the last row of the table section.

 If the given position is less than −1 or greater than the index of the last row, or if there are no rows, throws an IndexSizeError exception.

 The rows attribute
 must return an HTMLCollection rooted at the element,
 whose filter matches only tr elements that are children
 of the element.

 The insertRow(index) method must, when invoked on an
 element table section, act as follows:

 If index is less than −1 or greater than the
 number of elements in the rows
 collection, the method must throw an IndexSizeError
 exception.

 If index is −1 or
 equal to the number of items in the rows collection, the method must
 create a tr element, append it to the element table section, and return the newly created
 tr element.

 Otherwise, the method must create a tr element,
 insert it as a child of the table section
 element, immediately before the indexth
 tr element in the rows collection, and finally must
 return the newly created tr element.

 The deleteRow(index) method must remove the indexth element in the rows collection from its parent. If
 index is less than zero or greater than or equal
 to the number of elements in the rows collection, the method must
 instead throw an IndexSizeError exception.

 The thead element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a table element, after any
 caption, and colgroup
 elements and before any tbody, tfoot, and
 tr elements, but only if there are no other
 thead elements that are children of the
 table element.

 	Content model:

 	Zero or more tr and script-supporting elements

 	Content attributes:

 	Global attributes

 	DOM interface:

 	HTMLTableSectionElement, as defined for
 tbody elements.

 The thead element represents the block of rows that consist of the column labels
 (headers) for the parent table element, if the
 thead element has a parent and it is a
 table.

 The thead element takes part in the table
 model.

 This example shows a thead element being used.
 Notice the use of both th and td elements
 in the thead element: the first row is the headers,
 and the second row is an explanation of how to fill in the
 table.

 <table>
 <caption> School auction sign-up sheet </caption>
 <thead>
 <tr>
 <th><label for=e1>Name</label>
 <th><label for=e2>Product</label>
 <th><label for=e3>Picture</label>
 <th><label for=e4>Price</label>
 <tr>
 <td>Your name here
 <td>What are you selling?
 <td>Link to a picture
 <td>Your reserve price
 <tbody>
 <tr>
 <td>Ms Danus
 <td>Doughnuts
 <td>
 <td>$45
 <tr>
 <td><input id=e1 type=text name=who required form=f>
 <td><input id=e2 type=text name=what required form=f>
 <td><input id=e3 type=url name=pic form=f>
 <td><input id=e4 type=number step=0.01 min=0 value=0 required form=f>
</table>
<form id=f action="/auction.cgi">
 <input type=button name=add value="Submit">
</form>

 The tfoot element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a table element, after any
 caption, colgroup, and thead
 elements and before any tbody and tr
 elements, but only if there are no other tfoot
 elements that are children of the table element.

 	As a child of a table element, after any
 caption, colgroup, thead,
 tbody, and tr elements, but only if there
 are no other tfoot elements that are children of the
 table element.

 	Content model:

 	Zero or more tr and script-supporting elements

 	Content attributes:

 	Global attributes

 	DOM interface:

 	HTMLTableSectionElement, as defined for
 tbody elements.

 The tfoot element represents the block of rows that consist of the column summaries
 (footers) for the parent table element, if the
 tfoot element has a parent and it is a
 table.

 The tfoot element takes part in the table
 model.

 The tr element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a thead element.

 	As a child of a tbody element.

 	As a child of a tfoot element.

 	As a child of a table element, after any
 caption, colgroup, and thead
 elements, but only if there are no tbody elements that
 are children of the table element.

 	Content model:

 	Zero or more td, th, and script-supporting elements

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLTableRowElement : HTMLElement {
 readonly attribute long rowIndex;
 readonly attribute long sectionRowIndex;
 readonly attribute HTMLCollection cells;
 HTMLElement insertCell(optional long index = -1);
 void deleteCell(long index);
};

 The tr element represents a row of
 cells in a table.

 The tr element takes part in the table model.

 	tr . rowIndex

 	

 Returns the position of the row in the table's rows
 list.

 Returns −1 if the element isn't in a table.

 	tr . sectionRowIndex

 	

 Returns the position of the row in the table section's rows list.

 Returns −1 if the element isn't in a table section.

 	tr . cells

 	

 Returns an HTMLCollection of the td and th elements of
 the row.

 	cell = tr . insertCell([index])

 	

 Creates a td element, inserts it into the table row at the position given by the
 argument, and returns the td.

 The position is relative to the cells in the row. The index −1, which is the default
 if the argument is omitted, is equivalent to inserting at the end of the row.

 If the given position is less than −1 or greater than the number of cells, throws an
 IndexSizeError exception.

 	tr . deleteCell(index)

 	

 Removes the td or th element with the given position in the
 row.

 The position is relative to the cells in the row. The index −1 is equivalent to
 deleting the last cell of the row.

 If the given position is less than −1 or greater than the index of the last cell, or
 if there are no cells, throws an IndexSizeError exception.

 The rowIndex attribute must, if the element has
 a parent table element, or a parent tbody, thead, or
 tfoot element and a grandparent table element, return the index
 of the tr element in that table element's rows collection. If there is no such table element,
 then the attribute must return −1.

 The sectionRowIndex attribute must, if
 the element has a parent table, tbody, thead, or
 tfoot element, return the index of the tr element in the parent
 element's rows collection (for tables, that's the HTMLTableElement.rows collection; for table sections, that's the
 HTMLTableRowElement.rows collection). If there is no such
 parent element, then the attribute must return −1.

 The cells attribute must return an
 HTMLCollection rooted at the tr element, whose filter matches only
 td and th elements that are children of the tr element.

 The insertCell(index)
 method must act as follows:

 If index is less than −1 or greater than the number of elements in
 the cells collection, the method must throw an
 IndexSizeError exception.

 If index is equal to −1 or equal to the number of items in cells collection, the method must create a td element,
 append it to the tr element, and return the newly created td
 element.

 Otherwise, the method must create a td element, insert it as a child of the
 tr element, immediately before the indexth td or
 th element in the cells collection, and finally
 must return the newly created td element.

 The deleteCell(index)
 method must remove the indexth element in the cells collection from its parent. If index is less
 than zero or greater than or equal to the number of elements in the cells collection, the method must instead throw an
 IndexSizeError exception.

 The td element

 	Categories:

 	Sectioning root.

 	Contexts in which this element can be used:

 	As a child of a tr element.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	colspan

 	rowspan

 	headers

 	DOM interface:

 	
 interface HTMLTableDataCellElement : HTMLTableCellElement {};

 The td element represents a data cell in a table.

 The td element and its colspan, rowspan, and headers
 attributes take part in the table model.

 User agents, especially in non-visual environments or where displaying the table as a 2D grid
 is impractical, may give the user context for the cell when rendering the contents of a cell; for
 instance, giving its position in the table model, or listing the cell's header cells
 (as determined by the algorithm for assigning header cells). When a cell's header
 cells are being listed, user agents may use the value of abbr
 attributes on those header cells, if any, instead of the contents of the header cells
 themselves.

 The th element

 	Categories:

 	If the th element is a : Interactive content.

 	Otherwise: None.

 	Contexts in which this element can be used:

 	As a child of a tr element.

 	Content model:

 	Flow content, but with no header, footer, sectioning content, or heading content descendants, and if the th element is a , no interactive content descendants.

 	Content attributes:

 	Global attributes

 	colspan

 	rowspan

 	headers

 	scope

 	abbr

 	DOM interface:

 	
 interface HTMLTableHeaderCellElement : HTMLTableCellElement {
 attribute DOMString scope;
 attribute DOMString abbr;
 void ();
};

 The th element represents a header cell in a table.

 The th element may have a scope
 content attribute specified. The scope attribute is an
 enumerated attribute with five states, four of which have explicit keywords:

 	The row keyword, which maps to the
 row state

 	The row state means the header cell applies to some of the subsequent cells in the
 same row(s).

 	The col keyword, which maps to the
 column state

 	The column state means the header cell applies to some of the subsequent cells in the
 same column(s).

 	The rowgroup keyword, which maps to
 the row group state

 	The row group state means the header cell applies to all the remaining cells in the
 row group. A th element's scope attribute must
 not be in the row group state if the element is not
 anchored in a row group.

 	The colgroup keyword, which maps to
 the column group state

 	The column group state means the header cell applies to all the remaining cells in the
 column group. A th element's scope attribute must
 not be in the column group state if the element is
 not anchored in a column group.

 	The auto state

 	The auto state makes the header cell apply to a set of cells selected based on
 context.

 The scope attribute's missing value default is the
 auto state.

 The th element may have an abbr
 content attribute specified. Its value must be an alternative label for the header cell, to be
 used when referencing the cell in other contexts (e.g. when describing the header cells that apply
 to a data cell). It is typically an abbreviated form of the full header cell, but can also be an
 expansion, or merely a different phrasing.

 The th element and its colspan, rowspan, headers, and
 scope attributes take part in the table model.

 The scope IDL attribute must reflect
 the content attribute of the same name, limited to only known values.

 The abbr IDL attribute must reflect the
 content attributes of the same name.

 The following example shows how the scope attribute's rowgroup value affects which data cells a header cell
 applies to.

 Here is a markup fragment showing a table:

The tbody elements in this example identify the range of the row groups.

 <table>
 <caption>Measurement of legs and tails in Cats and English speakers</caption>
 <thead>
 <tr> <th> ID <th> Measurement <th> Average <th> Maximum
 <tbody>
 <tr> <td> <th scope=rowgroup> Cats <td> <td>
 <tr> <td> 93 <th scope=row> Legs <td> 3.5 <td> 4
 <tr> <td> 10 <th scope=row> Tails <td> 1 <td> 1
 </tbody>
 <tbody>
 <tr> <td> <th scope=rowgroup> English speakers <td> <td>
 <tr> <td> 32 <th scope=row> Legs <td> 2.67 <td> 4
 <tr> <td> 35 <th scope=row> Tails <td> 0.33 <td> 1
 </tbody>
 </table>

 This would result in the following table:

Measurement of legs and tails in Cats and English speakers

 	 ID 	 Measurement 	 Average 	 Maximum

 	 	 Cats 	 	

 	 93 	 Legs 	 3.5 	 4

 	 10 	 Tails 	 1 	 1

 	 	 English speakers 	 	

 	 32 	 Legs 	 2.67 	 4

 	 35 	 Tails 	 0.33 	 1

 The header cells in row 1 ('ID', 'Measurement', 'Average' and 'Maximum') each apply only to the cells in their column.

 The header cells with a scope=rowgroup
 ('Cats' and 'English speakers') apply to all the cells in their row group other
 than the cells (to their left) in column 1:

 The header 'Cats' (row 2, column 2) applies to the headers 'Legs' (row 3, column 2)
 and 'Tails' (row 4, column 2) and to the data cells
 in rows 2, 3 and 4 of the 'Average' and 'Maximum' columns.

 The header 'English speakers' (row 5, column 2) applies to the headers 'Legs' (row 6, column 2)
 and 'Tails' (row 7, column 2) and to the data cells in rows 5, 6 and 7 of the 'Average' and 'Maximum' columns.

 Each of the 'Legs' and 'Tails' header cells has a scope=row and therefore apply to the data cells (to the right)
 in their row, from the 'Average' and 'Maximum' columns.

 [image: Representation of the example
 table overlayed with arrows indicating which cells each header applies to.]

 Attributes common to td and th elements

 The td and th elements may have a colspan content attribute specified, whose value must
 be a valid non-negative integer greater than zero.

 The td and th elements may also have a rowspan content attribute specified, whose value must
 be a valid non-negative integer. For this attribute, the value zero means that the
 cell is to span all the remaining rows in the row group.

 These attributes give the number of columns and rows respectively that the cell is to span.
 These attributes must not be used to overlap cells.

 The td and th element may have a headers content attribute specified. The headers attribute, if specified, must contain a string consisting
 of an unordered set of unique space-separated tokens that are
 case-sensitive, each of which must have the value of an ID of a th element taking part in the same table as the td or th element.

 A th element with ID id is
 said to be directly targeted by all td and th elements in the
 same table that have headers attributes whose values include as one of their tokens
 the ID id. A th element A is said to be targeted by a th or td element
 B if either A is directly targeted by B or if there exists an element C that is itself
 targeted by the element B and A is directly
 targeted by C.

 A th element must not be targeted by itself.

 The colspan, rowspan, and headers
 attributes take part in the table model.

 The td and th elements implement interfaces that inherit from the
 HTMLTableCellElement interface:

 interface HTMLTableCellElement : HTMLElement {
 attribute unsigned long colSpan;
 attribute unsigned long rowSpan;
 [PutForwards=] readonly attribute DOMSettableTokenList headers;
 readonly attribute long cellIndex;
};

 	cell . cellIndex

 	

 Returns the position of the cell in the row's cells list.
 This does not necessarily correspond to the x-position of the cell in the
 table, since earlier cells might cover multiple rows or columns.

 Returns −1 if the element isn't in a row.

 The colSpan IDL attribute must
 reflect the colspan content attribute. Its
 default value is 1.

 The rowSpan IDL attribute must
 reflect the rowspan content attribute. Its
 default value is 1.

 The headers IDL attribute must
 reflect the content attribute of the same name.

 The cellIndex IDL attribute must, if the
 element has a parent tr element, return the index of the cell's element in the parent
 element's cells collection. If there is no such parent element,
 then the attribute must return −1.

 Processing model

 The various table elements and their content attributes together define the table
 model.

 A table consists of cells aligned on a two-dimensional grid of
 slots with coordinates (x, y). The grid is finite, and is either empty or has one or more slots. If the grid
 has one or more slots, then the x coordinates are always in the range , and the y coordinates are always in the
 range . If one or both of xwidth and yheight are zero, then the
 table is empty (has no slots). Tables correspond to table elements.

 A cell is a set of slots anchored at a slot (cellx, celly), and with
 a particular width and height such that the cell covers
 all the slots with coordinates (x, y) where and . Cells can either be data cells
 or header cells. Data cells correspond to td elements, and header cells
 correspond to th elements. Cells of both types can have zero or more associated
 header cells.

 It is possible, in certain error cases, for two cells to occupy the same slot.

 A row is a complete set of slots from to , for a particular value of y. Rows usually
 correspond to tr elements, though a row group
 can have some implied rows at the end in some cases involving
 cells spanning multiple rows.

 A column is a complete set of slots from to , for a particular value of x. Columns can
 correspond to col elements. In the absence of col elements, columns are
 implied.

 A row group is a set of rows anchored at a slot (0, groupy) with a particular height such that the row group
 covers all the slots with coordinates (x, y) where and . Row groups correspond to
 tbody, thead, and tfoot elements. Not every row is
 necessarily in a row group.

 A column group is a set of columns anchored at a slot (groupx, 0) with a particular width such that the column group
 covers all the slots with coordinates (x, y) where and . Column
 groups correspond to colgroup elements. Not every column is necessarily in a column
 group.

 Row groups cannot overlap each other. Similarly, column groups cannot overlap each other.

 A cell cannot cover slots that are from two or more row groups. It is, however, possible for a cell to be in multiple
 column groups. All the slots that form part of one cell
 are part of zero or one row groups and zero or more column groups.

 In addition to cells, columns, rows, row groups, and column
 groups, tables can have a caption element
 associated with them. This gives the table a heading, or legend.

 A table model error is an error with the data represented by table
 elements and their descendants. Documents must not have table model errors.

 Forming a table

 To determine which elements correspond to which slots in a table associated with a table element, to determine the
 dimensions of the table (xwidth and yheight), and to determine if there are any table model errors, user agents must use the following algorithm:

 	
 Let xwidth be zero.

 	
 Let yheight be zero.

 	

 Let pending tfoot elements be a list of tfoot
 elements, initially empty.

 	

 Let the table be the table represented
 by the table element. The xwidth and yheight variables give the table's
 dimensions. The table is initially empty.

 	

 If the table element has no children elements, then return the
 table (which will be empty), and abort these steps.

 	

 Associate the first caption element child of the table element with
 the table. If there are no such children, then it has no associated
 caption element.

 	

 Let the current element be the first element child of the
 table element.

 If a step in this algorithm ever requires the current element to be advanced to the next child of the table when
 there is no such next child, then the user agent must jump to the step labeled end, near
 the end of this algorithm.

 	

 While the current element is not one of the following elements, advance the current element to the next
 child of the table:

 	colgroup

 	thead

 	tbody

 	tfoot

 	tr

 	

 If the current element is a colgroup, follow these
 substeps:

 	

 Column groups: Process the current element according to the
 appropriate case below:

 	If the current element has any col element children

 	

 Follow these steps:

 	

 Let xstart have the value of .

 	

 Let the current column be the first col element child
 of the colgroup element.

 	

 Columns: If the current column col element has
 a span attribute, then parse its value using the
 rules for parsing non-negative integers.

 If the result of parsing the value is not an error or zero, then let span be that value.

 Otherwise, if the col element has no span attribute, or if trying to parse the attribute's value
 resulted in an error or zero, then let span be 1.

 	

 Increase xwidth by span.

 	

 Let the last span columns in
 the table correspond to the current column
 col element.

 	

 If current column is not the last col element child of
 the colgroup element, then let the current column be the
 next col element child of the colgroup element, and return to
 the step labeled columns.

 	

 Let all the last columns in the
 table from to
 form a new column group, anchored at the slot (xstart, 0), with width , corresponding to the colgroup element.

 	If the current element has no col element children

 	

 	

 If the colgroup element has a span
 attribute, then parse its value using the rules for parsing non-negative
 integers.

 If the result of parsing the value is not an error or zero, then let span be that value.

 Otherwise, if the colgroup element has no span attribute, or if trying to parse the attribute's
 value resulted in an error or zero, then let span be 1.

 	

 Increase xwidth by span.

 	

 Let the last span columns in
 the table form a new column
 group, anchored at the slot (, 0), with width span, corresponding to the colgroup element.

 	

 Advance the current element
 to the next child of the table.

 	

 While the current element is not one of the following elements, advance the current element to the
 next child of the table:

 	colgroup

 	thead

 	tbody

 	tfoot

 	tr

 	

 If the current element is a colgroup element, jump to the
 step labeled column groups above.

 	

 Let ycurrent be zero.

 	

 Let the list of downward-growing cells be an empty list.

 	

 Rows: While the current element is not one of the following
 elements, advance the current
 element to the next child of the table:

 	thead

 	tbody

 	tfoot

 	tr

 	

 If the current element is a tr, then run the algorithm
 for processing rows, advance the current element to the next child of the table, and return to the
 step labeled rows.

 	

 Run the algorithm for ending a row group.

 	

 If the current element is a tfoot, then add that element to
 the list of pending tfoot elements, advance the current element to the next
 child of the table, and return to the step labeled rows.

 	

 The current element is either a thead or a
 tbody.

 Run the algorithm for processing row groups.

 	

 Advance the current element to
 the next child of the table.

 	

 Return to the step labeled rows.

 	

 End: For each tfoot element in the list of pending
 tfoot elements, in tree order, run the algorithm for processing row
 groups.

 	

 If there exists a row or column in the table containing only slots that do not have a cell
 anchored to them, then this is a table model error.

 	

 Return the table.

 The algorithm for processing row groups, which is invoked by the set of steps above
 for processing thead, tbody, and tfoot elements, is:

 	

 Let ystart have the value of yheight.

 	

 For each tr element that is a child of the element being processed, in tree
 order, run the algorithm for processing rows.

 	

 If , then let all the last rows in the table from to form a new row
 group, anchored at the slot with coordinate (0, ystart), with height , corresponding
 to the element being processed.

 	

 Run the algorithm for ending a row group.

 The algorithm for ending a row group, which is invoked by the set of steps above
 when starting and ending a block of rows, is:

 	

 While ycurrent is less than yheight, follow these steps:

 	

 Run the algorithm for growing downward-growing cells.

 	

 Increase ycurrent by 1.

 	

 Empty the list of downward-growing cells.

 The algorithm for processing rows, which is invoked by the set of steps above for
 processing tr elements, is:

 	

 If yheight is equal to ycurrent, then increase yheight by
 1. (ycurrent is never greater than yheight.)

 	

 Let xcurrent be 0.

 	

 Run the algorithm for growing downward-growing cells.

 	

 If the tr element being processed has no td or th
 element children, then increase ycurrent by 1, abort
 this set of steps, and return to the algorithm above.

 	

 Let current cell be the first td or th element child
 in the tr element being processed.

 	

 Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already has a
 cell assigned to it, increase xcurrent by 1.

 	

 If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

 	

 If the current cell has a colspan
 attribute, then parse that attribute's
 value, and let colspan be the result.

 If parsing that value failed, or returned zero, or if the attribute is absent, then let colspan be 1, instead.

 	

 If the current cell has a rowspan
 attribute, then parse that attribute's
 value, and let rowspan be the result.

 If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

 	

 If rowspan is zero and the table element's
 Document is not set to quirks mode, then let cell grows
 downward be true, and set rowspan to 1. Otherwise, let cell grows downward be false.

 	

 If , then let xwidth be .

 	

 If , then let yheight be .

 	

 Let the slots with coordinates (x, y) such that and be covered by a
 new cell c, anchored at (xcurrent, ycurrent),
 which has width colspan and height rowspan,
 corresponding to the current cell element.

 If the current cell element is a th element, let this new
 cell c be a header cell; otherwise, let it be a data cell.

 To establish which header cells apply to the current cell element, use
 the algorithm for assigning header cells described in the next section.

 If any of the slots involved already had a cell covering
 them, then this is a table model error. Those slots now have two cells
 overlapping.

 	

 If cell grows downward is true, then add the tuple {c, xcurrent, colspan}
 to the list of downward-growing cells.

 	

 Increase xcurrent by colspan.

 	

 If current cell is the last td or th element child in
 the tr element being processed, then increase ycurrent by 1, abort this set of steps, and return to the algorithm
 above.

 	

 Let current cell be the next td or th element child
 in the tr element being processed.

 	

 Return to the step labeled cells.

 When the algorithms above require the user agent to run the algorithm for growing
 downward-growing cells, the user agent must, for each {cell, cellx, width} tuple in the list of downward-growing cells, if any, extend the cell cell so that it also covers the slots with
 coordinates (x, ycurrent), where .

 Forming relationships between data cells and header cells

 Each cell can be assigned zero or more header cells. The algorithm for assigning header
 cells to a cell principal cell is as follows.

 	

 Let header list be an empty list of cells.

 	

 Let (principalx, principaly) be the coordinate of the slot to which the principal
 cell is anchored.

 	

 	If the principal cell has a headers attribute specified

 	

 	

 Take the value of the principal cell's headers attribute and split it on spaces, letting id list be the list of tokens
 obtained.

 	

 For each token in the id list, if the
 first element in the Document with an ID equal to
 the token is a cell in the same table, and that cell is not the
 principal cell, then add that cell to header list.

 	If principal cell does not have a headers attribute specified

 	

 	

 Let principalwidth be the width of the principal cell.

 	

 Let principalheight be the height of the principal cell.

 	

 For each value of y from principaly to , run
 the internal algorithm for scanning and assigning header cells, with the principal cell, the header list, the initial coordinate
 (principalx,y), and the
 increments and .

 	

 For each value of x from principalx to , run
 the internal algorithm for scanning and assigning header cells, with the principal cell, the header list, the initial coordinate
 (x,principaly), and the
 increments and .

 	

 If the principal cell is anchored in a row group, then add all header cells that are row group headers and are anchored in the same row group
 with an x-coordinate less than or equal to and a y-coordinate less than or
 equal to to header
 list.

 	

 If the principal cell is anchored in a column group, then add all header cells that are column group headers and are anchored in the same column
 group with an x-coordinate less than or equal to and a y-coordinate less than or
 equal to to header
 list.

 	

 Remove all the empty cells from the header
 list.

 	

 Remove any duplicates from the header list.

 	

 Remove principal cell from the header list if it is
 there.

 	

 Assign the headers in the header list to the principal
 cell.

 The internal algorithm for scanning and assigning header cells, given a principal cell, a header list, an initial coordinate (initialx, initialy),
 and Δx and Δy increments, is as follows:

 	

 Let x equal initialx.

 	

 Let y equal initialy.

 	

 Let opaque headers be an empty list of cells.

 	

 	If principal cell is a header cell

 	Let in header block be true, and let headers from
 current header block be a list of cells containing just the principal
 cell.

 	Otherwise

 	Let in header block be false and let headers from
 current header block be an empty list of cells.

 	

 Loop: Increment x by Δx; increment y by Δy.

 For each invocation of this algorithm, one of Δx and
 Δy will be −1, and the other will be 0.

 	

 If either x or y is less than 0, then abort this
 internal algorithm.

 	

 If there is no cell covering slot (x, y), or if there
 is more than one cell covering slot (x, y), return to
 the substep labeled loop.

 	

 Let current cell be the cell covering slot (x, y).

 	

 	If current cell is a header cell

 	

 	Set in header block to true.

 	Add current cell to headers from current header
 block.

 	Let blocked be false.

 	

 	If Δx is 0

 	

 If there are any cells in the opaque headers list anchored with the
 same x-coordinate as the current cell, and with
 the same width as current cell, then let blocked
 be true.

 If the current cell is not a column header, then let
 blocked be true.

 	If Δy is 0

 	

 If there are any cells in the opaque headers list anchored with the
 same y-coordinate as the current cell, and with
 the same height as current cell, then let blocked
 be true.

 If the current cell is not a row header, then let blocked be true.

 	If blocked is false, then add the current cell
 to the headers list.

 	If current cell is a data cell and in header block is true

 	Set in header block to false. Add all the cells in headers from current header block to the opaque headers
 list, and empty the headers from current header block list.

 	

 Return to the step labeled loop.

 A header cell anchored at the slot with coordinate (x, y) with width width and height height is
 said to be a column header if any of the following conditions are true:

 	The cell's scope attribute is in the column state, or

 	The cell's scope attribute is in the auto state, and there are no data cells in any of the cells
 covering slots with y-coordinates y .. .

 A header cell anchored at the slot with coordinate (x, y) with width width and height height is
 said to be a row header if any of the following conditions are true:

 	The cell's scope attribute is in the row state, or

 	The cell's scope attribute is in the auto state, the cell is not a column header, and
 there are no data cells in any of the cells covering slots with x-coordinates
 x .. .

 A header cell is said to be a column group header if its scope attribute is in the column
 group state.

 A header cell is said to be a row group header if its scope attribute is in the row
 group state.

 A cell is said to be an empty cell if it contains no elements and its text content,
 if any, consists only of White_Space characters.

 Examples

 This section is non-normative.

 The following shows how might one mark up the bottom part of
 table 45 of the Smithsonian physical tables, Volume
 71:

 <table>
 <caption>Specification values: Steel, Castings,
 Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.</caption>
 <thead>
 <tr>
 <th rowspan=2>Grade.</th>
 <th rowspan=2>Yield Point.</th>
 <th colspan=2>Ultimate tensile strength</th>
 <th rowspan=2>Per cent elong. 50.8mm or 2 in.</th>
 <th rowspan=2>Per cent reduct. area.</th>
 </tr>
 <tr>
 <th>kg/mm²</th>
 <th>lb/in²</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Hard</td>
 <td>0.45 ultimate</td>
 <td>56.2</td>
 <td>80,000</td>
 <td>15</td>
 <td>20</td>
 </tr>
 <tr>
 <td>Medium</td>
 <td>0.45 ultimate</td>
 <td>49.2</td>
 <td>70,000</td>
 <td>18</td>
 <td>25</td>
 </tr>
 <tr>
 <td>Soft</td>
 <td>0.45 ultimate</td>
 <td>42.2</td>
 <td>60,000</td>
 <td>22</td>
 <td>30</td>
 </tr>
 </tbody>
</table>

 This table could look like this:

 Specification values: Steel, Castings,
 Ann. A.S.T.M. A27-16, Class B;* P max. 0.06; S max. 0.05.

 	Grade.
 	Yield Point.
 	Ultimate tensile strength
 	Per cent elong. 50.8 mm or 2 in.
 	Per cent reduct. area.

 	kg/mm2
 	lb/in2

 	Hard
 	0.45 ultimate
 	56.2
 	80,000
 	15
 	20

 	Medium
 	0.45 ultimate
 	49.2
 	70,000
 	18
 	25

 	Soft
 	0.45 ultimate
 	42.2
 	60,000
 	22
 	30

 The following shows how one might mark up the gross margin table
 on page 46 of Apple, Inc's 10-K filing for fiscal year 2008:

 <table>
 <thead>
 <tr>
 <th>
 <th>2008
 <th>2007
 <th>2006
 <tbody>
 <tr>
 <th>Net sales
 <td>$ 32,479
 <td>$ 24,006
 <td>$ 19,315
 <tr>
 <th>Cost of sales
 <td> 21,334
 <td> 15,852
 <td> 13,717
 <tbody>
 <tr>
 <th>Gross margin
 <td>$ 11,145
 <td>$ 8,154
 <td>$ 5,598
 <tfoot>
 <tr>
 <th>Gross margin percentage
 <td>34.3%
 <td>34.0%
 <td>29.0%
</table>

 This table could look like this:

 	
 	2008
 	2007
 	2006

 	Net sales
 	$ 32,479
 	$ 24,006
 	$ 19,315

 	Cost of sales
 	 21,334
 	 15,852
 	 13,717

 	Gross margin
 	$ 11,145
 	$ 8,154
 	$ 5,598

 	Gross margin percentage
 	34.3%
 	34.0%
 	29.0%

 The following shows how one might mark up the operating expenses
 table from lower on the same page of that document:

 <table>
 <colgroup> <col>
 <colgroup> <col> <col> <col>
 <thead>
 <tr> <th> <th>2008 <th>2007 <th>2006
 <tbody>
 <tr> <th scope=rowgroup> Research and development
 <td> $ 1,109 <td> $ 782 <td> $ 712
 <tr> <th scope=row> Percentage of net sales
 <td> 3.4% <td> 3.3% <td> 3.7%
 <tbody>
 <tr> <th scope=rowgroup> Selling, general, and administrative
 <td> $ 3,761 <td> $ 2,963 <td> $ 2,433
 <tr> <th scope=row> Percentage of net sales
 <td> 11.6% <td> 12.3% <td> 12.6%
</table>

 This table could look like this:

 	 	2008 	2007 	2006

 	 Research and development
 	 $ 1,109 	 $ 782 	 $ 712

 	 Percentage of net sales
 	 3.4% 	 3.3% 	 3.7%

 	 Selling, general, and administrative
 	 $ 3,761 	 $ 2,963 	 $ 2,433

 	 Percentage of net sales
 	 11.6% 	 12.3% 	 12.6%

 Forms

 Introduction

 This section is non-normative.

 A form is a component of a Web page that has form controls, such as text fields, buttons,
 checkboxes, range controls, or color pickers. A user can interact with such a form, providing data
 that can then be sent to the server for further processing (e.g. returning the results of a search
 or calculation). No client-side scripting is needed in many cases, though an API is available so
 that scripts can augment the user experience or use forms for purposes other than submitting data
 to a server.

 Writing a form consists of several steps, which can be performed in any order: writing the user
 interface, implementing the server-side processing, and configuring the user interface to
 communicate with the server.

 Writing a form's user interface

 This section is non-normative.

 For the purposes of this brief introduction, we will create a pizza ordering form.

 Any form starts with a form element, inside which are placed the controls. Most
 controls are represented by the input element, which by default provides a one-line
 text field. To label a control, the label element is used; the label text and the
 control itself go inside the label element. Each part of a form is considered a
 paragraph, and is typically separated from other parts using p elements.
 Putting this together, here is how one might ask for the customer's name:

 <form>
 <p><label>Customer name: <input></label></p>
</form>

 To let the user select the size of the pizza, we can use a set of radio buttons. Radio buttons
 also use the input element, this time with a type attribute with the value radio. To make the radio buttons work as a group, they are
 given a common name using the name attribute. To group a batch
 of controls together, such as, in this case, the radio buttons, one can use the
 fieldset element. The title of such a group of controls is given by the first element
 in the fieldset, which has to be a legend element.

 <form>
 <p><label>Customer name: <input></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
</form>

 Changes from the previous step are highlighted.

 To pick toppings, we can use checkboxes. These use the input element with a type attribute with the value checkbox:

 <form>
 <p><label>Customer name: <input></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox> Bacon </label></p>
 <p><label> <input type=checkbox> Extra Cheese </label></p>
 <p><label> <input type=checkbox> Onion </label></p>
 <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
</form>

 The pizzeria for which this form is being written is always making mistakes, so it needs a way
 to contact the customer. For this purpose, we can use form controls specifically for telephone
 numbers (input elements with their type
 attribute set to tel) and e-mail addresses
 (input elements with their type attribute set to
 email):

 <form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox> Bacon </label></p>
 <p><label> <input type=checkbox> Extra Cheese </label></p>
 <p><label> <input type=checkbox> Onion </label></p>
 <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
</form>

 We can use an input element with its type
 attribute set to time to ask for a delivery time. Many
 of these form controls have attributes to control exactly what values can be specified; in this
 case, three attributes of particular interest are min, max, and step. These set the
 minimum time, the maximum time, and the interval between allowed values (in seconds). This
 pizzeria only delivers between 11am and 9pm, and doesn't promise anything better than 15 minute
 increments, which we can mark up as follows:

 <form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox> Bacon </label></p>
 <p><label> <input type=checkbox> Extra Cheese </label></p>
 <p><label> <input type=checkbox> Onion </label></p>
 <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
</form>

 The textarea element can be used to provide a free-form text field. In this
 instance, we are going to use it to provide a space for the customer to give delivery
 instructions:

 <form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox> Bacon </label></p>
 <p><label> <input type=checkbox> Extra Cheese </label></p>
 <p><label> <input type=checkbox> Onion </label></p>
 <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
 <p><label>Delivery instructions: <textarea></textarea></label></p>
</form>

 Finally, to make the form submittable we use the button element:

 <form>
 <p><label>Customer name: <input></label></p>
 <p><label>Telephone: <input type=tel></label></p>
 <p><label>E-mail address: <input type=email></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size> Small </label></p>
 <p><label> <input type=radio name=size> Medium </label></p>
 <p><label> <input type=radio name=size> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox> Bacon </label></p>
 <p><label> <input type=checkbox> Extra Cheese </label></p>
 <p><label> <input type=checkbox> Onion </label></p>
 <p><label> <input type=checkbox> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900"></label></p>
 <p><label>Delivery instructions: <textarea></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

 Implementing the server-side processing for a form

 This section is non-normative.

 The exact details for writing a server-side processor are out of scope for this specification.
 For the purposes of this introduction, we will assume that the script at https://pizza.example.com/order.cgi is configured to accept submissions using the
 application/x-www-form-urlencoded format,
 expecting the following parameters sent in an HTTP POST body:

 	custname

 	Customer's name

 	custtel

 	Customer's telephone number

 	custemail

 	Customer's e-mail address

 	size

 	The pizza size, either small, medium, or large

 	topping

 	A topping, specified once for each selected topping, with the allowed values being bacon, cheese, onion, and mushroom

 	delivery

 	The requested delivery time

 	comments

 	The delivery instructions

 Configuring a form to communicate with a server

 This section is non-normative.

 Form submissions are exposed to servers in a variety of ways, most commonly as HTTP GET or POST
 requests. To specify the exact method used, the method
 attribute is specified on the form element. This doesn't specify how the form data is
 encoded, though; to specify that, you use the enctype
 attribute. You also have to specify the URL of the service that will handle the
 submitted data, using the action attribute.

 For each form control you want submitted, you then have to give a name that will be used to
 refer to the data in the submission. We already specified the name for the group of radio buttons;
 the same attribute (name) also specifies the submission name.
 Radio buttons can be distinguished from each other in the submission by giving them different
 values, using the value attribute.

 Multiple controls can have the same name; for example, here we give all the checkboxes the same
 name, and the server distinguishes which checkbox was checked by seeing which values are submitted
 with that name — like the radio buttons, they are also given unique values with the value attribute.

 Given the settings in the previous section, this all becomes:

 <form method="post"
 enctype="application/x-www-form-urlencoded"
 action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname"></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size value="small"> Small </label></p>
 <p><label> <input type=radio name=size value="medium"> Medium </label></p>
 <p><label> <input type=radio name=size value="large"> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
 <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
 <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
 <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery"></label></p>
 <p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

 There is no particular significance to the way some
 of the attributes have their values quoted and others don't. The
 HTML syntax allows a variety of equally valid ways to specify
 attributes, as discussed in the
 syntax section.

 For example, if the customer entered "Denise Lawrence" as their
 name, "555-321-8642" as their telephone number, did not specify an
 e-mail address, asked for a medium-sized pizza, selected the Extra
 Cheese and Mushroom toppings, entered a delivery time of 7pm, and
 left the delivery instructions text field blank, the user agent
 would submit the following to the online Web service:

 custname=Denise+Lawrence&custtel=555-321-8624&custemail=&size=medium&topping=cheese&topping=mushroom&delivery=19%3A00&comments=

 Client-side form validation

 This section is non-normative.

 Forms can be annotated in such a way that the user agent will
 check the user's input before the form is submitted. The server
 still has to verify the input is valid (since hostile users can
 easily bypass the form validation), but it allows the user to avoid
 the wait incurred by having the server be the sole checker of the
 user's input.

 The simplest annotation is the required attribute, which can be
 specified on input elements to indicate that the form
 is not to be submitted until a value is given. By adding this
 attribute to the customer name, pizza size, and delivery time
 fields, we allow the user agent to notify the user when the user
 submits the form without filling in those fields:

 <form method="post"
 enctype="application/x-www-form-urlencoded"
 action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size required value="small"> Small </label></p>
 <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
 <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
 <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
 <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
 <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments"></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

 It is also possible to limit the length of the input, using the
 maxlength attribute. By
 adding this to the textarea element, we can limit users
 to 1000 characters, preventing them from writing huge essays to the
 busy delivery drivers instead of staying focused and to the
 point:

 <form method="post"
 enctype="application/x-www-form-urlencoded"
 action="https://pizza.example.com/order.cgi">
 <p><label>Customer name: <input name="custname" required></label></p>
 <p><label>Telephone: <input type=tel name="custtel"></label></p>
 <p><label>E-mail address: <input type=email name="custemail"></label></p>
 <fieldset>
 <legend> Pizza Size </legend>
 <p><label> <input type=radio name=size required value="small"> Small </label></p>
 <p><label> <input type=radio name=size required value="medium"> Medium </label></p>
 <p><label> <input type=radio name=size required value="large"> Large </label></p>
 </fieldset>
 <fieldset>
 <legend> Pizza Toppings </legend>
 <p><label> <input type=checkbox name="topping" value="bacon"> Bacon </label></p>
 <p><label> <input type=checkbox name="topping" value="cheese"> Extra Cheese </label></p>
 <p><label> <input type=checkbox name="topping" value="onion"> Onion </label></p>
 <p><label> <input type=checkbox name="topping" value="mushroom"> Mushroom </label></p>
 </fieldset>
 <p><label>Preferred delivery time: <input type=time min="11:00" max="21:00" step="900" name="delivery" required></label></p>
 <p><label>Delivery instructions: <textarea name="comments" maxlength=1000></textarea></label></p>
 <p><button>Submit order</button></p>
</form>

 When a form is submitted, invalid events are
 fired at each form control that is invalid, and then at the form element itself. This
 can be useful for displaying a summary of the problems with the form, since typically the browser
 itself will only report one problem at a time.

 Date, time, and number formats

 This section is non-normative.

 In this pizza delivery example, the times are specified in the format "HH:MM": two digits for
 the hour, in 24-hour format, and two digits for the time. (Seconds could also be specified, though
 they are not necessary in this example.)

 In some locales, however, times are often expressed differently when presented to users. For
 example, in the United States, it is still common to use the 12-hour clock with an am/pm
 indicator, as in "2pm". In France, it is common to separate the hours from the minutes using an
 "h" character, as in "14h00".

 Similar issues exist with dates, with the added complication that even the order of the
 components is not always consistent — for example, in Cyprus the first of February 2003
 would typically be written "1/2/03", while that same date in Japan would typically be written as
 "2003年02月01日" — and even with numbers, where locales differ, for
 example, in what punctuation is used as the decimal separator and the thousands separator.

 It is therefore important to distinguish the time, date, and number formats used in HTML and in
 form submissions, which are always the formats defined in this specification (and based on the
 well-established ISO 8601 standard for computer-readable date and time formats), from the time,
 date, and number formats presented to the user by the browser and accepted as input from the user
 by the browser.

 The format used "on the wire", i.e. in HTML markup and in form submissions, is intended to be
 computer-readable and consistent irrespective of the user's locale. Dates, for instance, are
 always written in the format "YYYY-MM-DD", as in "2003-02-01". Users are not expected to ever see
 this format.

 The time, date, or number given by the page in the wire format is then translated to the user's
 preferred presentation (based on user preferences or on the locale of the page itself), before
 being displayed to the user. Similarly, after the user inputs a time, date, or number using their
 preferred format, the user agent converts it back to the wire format before putting it in the DOM
 or submitting it.

 This allows scripts in pages and on servers to process times, dates, and numbers in a
 consistent manner without needing to support dozens of different formats, while still supporting
 the users' needs.

 See also the implementation notes regarding
 localization of form controls.

 Categories

 Mostly for historical reasons, elements in this section fall into several overlapping (but
 subtly different) categories in addition to the usual ones like flow content,
 phrasing content, and interactive content.

 A number of the elements are form-associated
 elements, which means they can have a form owner.

 	button

 	fieldset

 	input

 	keygen

 	label

 	object

 	output

 	select

 	textarea

 	img

 The form-associated
 elements fall into several subcategories:

 	Listed elements

 	

 Denotes elements that are listed in the form.elements
 and fieldset.elements APIs.

 	button

 	fieldset

 	input

 	keygen

 	object

 	output

 	select

 	textarea

 	Submittable elements

 	

 Denotes elements that can be used for constructing the form data
 set when a form element is submitted.

 	button

 	input

 	keygen

 	object

 	select

 	textarea

 Some submittable elements
 can be, depending on their attributes, buttons. The prose below defines when
 an element is a button. Some buttons are specifically submit buttons.

 	Resettable elements

 	

 Denotes elements that can be affected when a form
 element is reset.

 	input

 	keygen

 	output

 	select

 	textarea

 	Reassociateable elements

 	

 Denotes elements that have a form content attribute, and a
 matching form IDL attribute, that allow authors to specify an
 explicit form owner.

 	button

 	fieldset

 	input

 	keygen

 	label

 	object

 	output

 	select

 	textarea

 Some elements, not all of them form-associated, are categorized as labelable elements. These are elements
 that can be associated with a label element.

 	button

 	input (if the type attribute is not in the Hidden state)

 	keygen

 	meter

 	output

 	progress

 	select

 	textarea

 The form element

 	Categories:

 	Flow content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content, but with no form element descendants.

 	Content attributes:

 	Global attributes

 	accept-charset

 	action

 	autocomplete

 	enctype

 	method

 	name

 	novalidate

 	target

 	DOM interface:

 	
[OverrideBuiltins]
interface HTMLFormElement : HTMLElement {
 attribute DOMString acceptCharset;
 attribute DOMString action;
 attribute DOMString autocomplete;
 attribute DOMString enctype;
 attribute DOMString encoding;
 attribute DOMString method;
 attribute DOMString name;
 attribute boolean noValidate;
 attribute DOMString target;

 readonly attribute HTMLFormControlsCollection elements;
 readonly attribute long length;
 getter Element (unsigned long index);
 getter (RadioNodeList or HTMLInputElement or HTMLImageElement) (DOMString name);

 void submit();
 void reset();
 boolean checkValidity();
};

 The form element represents a collection of form-associated elements, some of which can represent
 editable values that can be submitted to a server for processing.

 The accept-charset attribute gives the
 character encodings that are to be used for the submission. If specified, the value must be an
 ordered set of unique space-separated tokens that are ASCII
 case-insensitive, and each token must be an ASCII case-insensitive match for
 the name of an ASCII-compatible character
 encoding. [ENCODING]

 The name attribute represents the
 form's name within the forms collection. The
 value must not be the empty string, and the value must be unique amongst the form
 elements in the forms collection that it is in, if
 any.

 The autocomplete attribute is an
 enumerated attribute. The attribute has two states. The on keyword maps to the on state, and the off keyword maps to the off state. The attribute may also be omitted. The
 missing value default is the on state.
 The off state indicates that by default,
 form controls in the form will have their autofill field name set to "off"; the on state indicates that by default, form controls
 in the form will have their autofill field name set to "on".

 The action, enctype,
 method, novalidate,
 and target attributes are attributes for form
 submission.

 	form . elements

 	

 Returns an HTMLCollection of the form controls in the form (excluding image
 buttons for historical reasons).

 	form . length

 	

 Returns the number of form controls in the form (excluding image buttons for historical
 reasons).

 	form[index]

 	

 Returns the indexth element in the form (excluding image buttons for
 historical reasons).

 	form[name]

 	

 Returns the form control (or, if there are several, a RadioNodeList of the form
 controls) in the form with the given ID or name (excluding image buttons for historical reasons); or, if there
 are none, returns the img element with the given ID.

 Once an element has been referenced using a particular name, that name will continue being
 available as a way to reference that element in this method, even if the element's actual ID or name changes, for as long as
 the element remains in the Document.

 If there are multiple matching items, then a RadioNodeList object containing all
 those elements is returned.

 	form . submit()

 	

 Submits the form.

 	form . reset()

 	

 Resets the form.

 	form . checkValidity()

 	

 Returns true if the form's controls are all valid; otherwise, returns false.

 The autocomplete IDL attribute must
 reflect the content attribute of the same name, limited to only known
 values.

 The name IDL attribute must reflect
 the content attribute of the same name.

 The acceptCharset IDL attribute must
 reflect the accept-charset content
 attribute.

 The elements IDL attribute must return an
 HTMLFormControlsCollection rooted at the Document node while the
 form element is in a Document and rooted at the
 form element itself when it is not, whose filter matches listed elements whose form owner is the
 form element, with the exception of input elements whose type attribute is in the Image
 Button state, which must, for historical reasons, be excluded from this particular
 collection.

 The length IDL attribute must return the number
 of nodes represented by the elements collection.

 The supported property indices at any instant are the indices supported by the
 object returned by the elements attribute at that
 instant.

 When a form element is indexed for indexed property
 retrieval, the user agent must return the value returned by the item method on the elements collection, when invoked with the given index as its
 argument.

 Each form element has a mapping of names to elements called the past names
 map. It is used to persist names of controls even when they change names.

 The supported property names consist of the names obtained from the following
 algorithm, in the order obtained from this algorithm:

 	Let sourced names be an initially empty ordered list of tuples
 consisting of a string, an element, a source, where the source is either id, name,
 or past, and, if the source is past, an age.

 	

 For each listed element candidate
 whose form owner is the form element, with the exception of any
 input elements whose type attribute is in the
 Image Button state, run these substeps:

 	If candidate has an id attribute, add
 an entry to sourced names with that id
 attribute's value as the string, candidate as the element, and id as
 the source.

 	If candidate has a name attribute,
 add an entry to sourced names with that name attribute's value as the string, candidate
 as the element, and name as the source.

 	

 For each img element candidate whose form owner
 is the form element, run these substeps:

 	If candidate has an id attribute, add
 an entry to sourced names with that id
 attribute's value as the string, candidate as the element, and id as
 the source.

 	If candidate has a name attribute,
 add an entry to sourced names with that name attribute's value as the string, candidate
 as the element, and name as the source.

 	

 For each entry past entry in the past names map add an entry
 to sourced names with the past entry's name as the
 string, past entry's element as the element, past as the source, and
 the length of time past entry has been in the past names map as
 the age.

 	Sort sourced names by tree order of the element entry of
 each tuple, sorting entries with the same element by putting entries whose source is id
 first, then entries whose source is name, and finally entries whose source is past,
 and sorting entries with the same element and source by their age, oldest first.

 	Remove any entries in sourced names that have the empty string as
 their name.

 	Remove any entries in sourced names that have the same name as an
 earlier entry in the map.

 	Return the list of names from sourced names, maintaining their
 relative order.

 When a form element is indexed for named property
 retrieval, the user agent must run the following steps:

 	Let candidates be a live RadioNodeList
 object containing all the listed elements whose form
 owner is the form element that have either an id
 attribute or a name attribute equal to name, with the exception of input elements whose type attribute is in the Image
 Button state, in tree order.

 	If candidates is empty, let candidates be a
 live RadioNodeList object containing all the img elements
 that are descendants of the form element and that have either an id attribute or a name attribute equal
 to name, in tree order.

 	If candidates is empty, name is the name of one of
 the entries in the form element's past names map: return the object
 associated with name in that map.

 	If candidates contains more than one node, return candidates and abort these steps.

 	Otherwise, candidates contains exactly one node. Add a mapping from
 name to the node in candidates in the form
 element's past names map, replacing the previous entry with the same name, if
 any.

 	Return the node in candidates.

 If an element listed in the form element's past names map is removed
 from the Document, then its entries must be removed from the map.

 The submit() method, when invoked, must submit the form element from the form
 element itself, with the submitted from submit() method flag set.

 The reset() method, when invoked, must run the
 following steps:

 	If the form element is marked as locked for reset, then abort these
 steps.

 	Mark the form element as locked for reset.

 	Reset the form element.

 	Unmark the form element as locked for reset.

 If the checkValidity() method is
 invoked, the user agent must statically validate the constraints of the
 form element, and return true if the constraint validation return a positive
 result, and false if it returned a negative result.

 This example shows two search forms:

 <form action="http://www.google.com/search" method="get">
 <label>Google: <input type="search" name="q"></label> <input type="submit" value="Search...">
</form>
<form action="http://www.bing.com/search" method="get">
 <label>Bing: <input type="search" name="q"></label> <input type="submit" value="Search...">
</form>

 The fieldset element

 	Categories:

 	Flow content.

 	Sectioning root.

 	Listed and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Optionally a legend element, followed by flow content.

 	Content attributes:

 	Global attributes

 	disabled

 	form

 	name

 	DOM interface:

 	
interface HTMLFieldSetElement : HTMLElement {
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute DOMString name;

 readonly attribute DOMString type;

 readonly attribute HTMLFormControlsCollection elements;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);
};

 The fieldset element represents a set of form controls optionally
 grouped under a common name.

 The name of the group is given by the first legend element that is a child of the
 fieldset element, if any. The remainder of the descendants form the group.

 The disabled attribute, when specified,
 causes all the form control descendants of the fieldset element, excluding those that
 are descendants of the fieldset element's first legend element child, if
 any, to be disabled.

 The form attribute is used to explicitly associate the
 fieldset element with its form owner. The name attribute represents the element's name.

 	fieldset . type

 	

 Returns the string "fieldset".

 	fieldset . elements

 	

 Returns an HTMLFormControlsCollection of the form controls in the element.

 The disabled IDL attribute must
 reflect the content attribute of the same name.

 The type IDL attribute must return the string
 "fieldset".

 The elements IDL attribute must return an
 HTMLFormControlsCollection rooted at the fieldset element, whose filter
 matches listed elements.

 The willValidate, validity, and validationMessage attributes, and the checkValidity() and setCustomValidity() methods, are part of the
 constraint validation API. The form and name IDL attributes are part of the element's forms API.

 This example shows a fieldset element being used to group a set of related
 controls:

 <fieldset>
 <legend>Display</legend>
 <div><label><input type=radio name=c value=0 checked> Black on White</label></div>
 <div><label><input type=radio name=c value=1> White on Black</label></div>
 <div><label><input type=checkbox name=g> Use grayscale</label></div>
 <div><label>Enhance contrast <input type=range name=e list=contrast min=0 max=100 value=0 step=1></label></div>
 <datalist id=contrast>
 <option label=Normal value=0>
 <option label=Maximum value=100>
 </datalist>
</fieldset>

 The div elements used in the code samples above and below are not intended to
 convey any semantic meaning and are used only to create a non-inline rendering of the grouped
 fieldset controls.

 The following snippet shows a fieldset with a checkbox in the legend that controls whether or
 not the fieldset is enabled. The contents of the fieldset consist of two required text fields and
 an optional year/month control.

 <fieldset name="clubfields" disabled>
 <legend> <label>
 <input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
 Use Club Card
 </label> </legend>
 <div><label>Name on card: <input name=clubname required></label></div>
 <div><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></div>
 <div><label>Expiry date: <input name=clubexp type=month></label></div>
</fieldset>

 You can also nest fieldset elements. Here is an example expanding on the previous
 one that does so:

 <fieldset name="clubfields" disabled>
 <legend> <label>
 <input type=checkbox name=club onchange="form.clubfields.disabled = !checked">
 Use Club Card
 </label> </legend>
 <div><label>Name on card: <input name=clubname required></label></div>
 <fieldset name="numfields">
 <legend> <label>
 <input type=radio checked name=clubtype onchange="form.numfields.disabled = !checked">
 My card has numbers on it
 </label> </legend>
 <div><label>Card number: <input name=clubnum required pattern="[-0-9]+"></label></div>
 </fieldset>
 <fieldset name="letfields" disabled>
 <legend> <label>
 <input type=radio name=clubtype onchange="form.letfields.disabled = !checked">
 My card has letters on it
 </label> </legend>
 <div><label>Card code: <input name=clublet required pattern="[A-Za-z]+"></label></>
 </fieldset>
</fieldset>

 In this example, if the outer "Use Club Card" checkbox is not checked, everything inside the
 outer fieldset, including the two radio buttons in the legends of the two nested
 fieldsets, will be disabled. However, if the checkbox is checked, then the radio
 buttons will both be enabled and will let you select which of the two inner
 fieldsets is to be enabled.

 The legend element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the first child of a fieldset element.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
 interface HTMLLegendElement : HTMLElement {
 readonly attribute HTMLFormElement? form;
};

 The legend element represents a caption for the rest of the contents
 of the legend element's parent fieldset element.

 	legend . form

 	

 Returns the element's form element, if any, or null otherwise.

 The form IDL attribute's behavior depends on
 whether the legend element is in a fieldset element or not. If the
 legend has a fieldset element as its parent, then the form IDL attribute must return the same value as the form IDL attribute on that fieldset element. Otherwise,
 it must return null.

 The label element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content, but with no descendant labelable elements unless it is the element's labeled control, and no descendant label elements.

 	Content attributes:

 	Global attributes

 	form

 	for

 	DOM interface:

 	
interface HTMLLabelElement : HTMLElement {
 readonly attribute HTMLFormElement? form;
 attribute DOMString htmlFor;
 readonly attribute HTMLElement? control;
};

 The label element represents a caption in a user interface. The
 caption can be associated with a specific form control, either using the for attribute, or by putting the form control inside the
 label element itself.

 Except where otherwise specified by the following rules, a label element has no
 labeled control.

 The for attribute may be specified to indicate a
 form control with which the caption is to be associated. If the attribute is specified, the
 attribute's value must be the ID of a labelable element in the same Document as the
 label element.

 If the for attribute is not specified, but the
 label element has a labelable element descendant,
 then the first such descendant in tree order is the label element's
 labeled control.

 The label element's exact default presentation and behavior, in particular what
 its activation behavior might be, if anything, should match the platform's label
 behavior. The activation behavior of a label element for events targeted
 at interactive content descendants of a label element, and any
 descendants of those interactive content descendants, must be to do nothing.

 For example, on platforms where clicking a checkbox label checks the checkbox, clicking the
 label in the following snippet could trigger the user agent to run synthetic
 click activation steps on the input element, as if the element itself had
 been triggered by the user:

 <label><input type=checkbox name=lost> Lost</label>

 On other platforms, the behavior might be just to focus the control, or do nothing.

 The form attribute is used to explicitly associate the
 label element with its form owner.

 The following example shows three form controls each with a label, two of which have small
 text showing the right format for users to use.

 <p><label>Full name: <input name=fn> <small>Format: First Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12 3CD</small></label></p>

 	label . control

 	

 Returns the form control that is associated with this element.

 The htmlFor IDL attribute must
 reflect the for content attribute.

 The control IDL attribute must return the
 label element's labeled control, if any, or null if there isn't one.

 The form IDL attribute is part of the element's forms
 API.

 	control . labels

 	

 Returns a NodeList of all the label elements that the form control
 is associated with.

 Labelable elements have a NodeList object
 associated with them that represents the list of label elements, in tree
 order, whose labeled control is the element in question. The labels IDL attribute of labelable elements, on getting, must return that
 NodeList object.

 The input element

 	Categories:

 	Flow content.

 	Phrasing content.

 	If the type attribute is not in the Hidden state: Interactive content.

 	If the type attribute is not in the Hidden state: Listed, labelable, submittable, resettable, and reassociateable form-associated element.

 	If the type attribute is in the Hidden state: Listed, submittable, resettable, and reassociateable form-associated element.

 	If the type attribute is not in the Hidden state: Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	accept

 	alt

 	autocomplete

 	autofocus

 	checked

 	dirname

 	disabled

 	form

 	formaction

 	formenctype

 	formmethod

 	formnovalidate

 	formtarget

 	height

 	list

 	max

 	maxlength

 	min

 	multiple

 	name

 	pattern

 	placeholder

 	readonly

 	required

 	size

 	src

 	step

 	type

 	value

 	width

 	DOM interface:

 	
interface HTMLInputElement : HTMLElement {
 attribute DOMString accept;
 attribute DOMString alt;
 attribute DOMString autocomplete;
 attribute boolean autofocus;
 attribute boolean defaultChecked;
 attribute boolean checked;
 attribute DOMString dirName;
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 readonly attribute FileList? files;
 attribute DOMString formAction;
 attribute DOMString formEnctype;
 attribute DOMString formMethod;
 attribute boolean formNoValidate;
 attribute DOMString formTarget;
 attribute unsigned long height;
 attribute boolean indeterminate;
 readonly attribute HTMLElement? list;
 attribute DOMString max;
 attribute long maxLength;
 attribute DOMString min;
 attribute boolean multiple;
 attribute DOMString name;
 attribute DOMString pattern;
 attribute DOMString placeholder;
 attribute boolean readOnly;
 attribute boolean required;
 attribute unsigned long size;
 attribute DOMString src;
 attribute DOMString step;
 attribute DOMString type;
 attribute DOMString defaultValue;
 [TreatNullAs=EmptyString] attribute DOMString value;
 attribute ? valueAsDate;
 attribute unrestricted double valueAsNumber;
 attribute unsigned long width;

 void stepUp(optional long n = 1);
 void stepDown(optional long n = 1);

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;

 void select();
 attribute unsigned long selectionStart;
 attribute unsigned long selectionEnd;
 attribute DOMString selectionDirection;
 void setRangeText(DOMString replacement);
 void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode);
 void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction);
};

 The input element represents a typed data field,
 usually with a form control to allow the user to edit the data.

 The type
 attribute controls the data type (and associated control) of the
 element. It is an enumerated attribute. The following
 table lists the keywords and states for the attribute — the
 keywords in the left column map to the states in the cell in the
 second column on the same row as the keyword.

 	 Keyword
 	 State
 	 Data type
 	 Control type

 	 hidden
 	 Hidden
 	 An arbitrary string
 	 n/a

 	 text
 	 Text
 	 Text with no line breaks
 	 A text field

 	 search
 	 Search
 	 Text with no line breaks
 	 Search field

 	 tel
 	 Telephone
 	 Text with no line breaks
 	 A text field

 	 url
 	 URL
 	 An absolute URL
 	 A text field

 	 email
 	 E-mail
 	 An e-mail address or list of e-mail addresses
 	 A text field

 	 password
 	 Password
 	 Text with no line breaks (sensitive information)
 	 A text field that obscures data entry

 	 datetime
 	 Date and Time
 	 A date and time (year, month, day, hour, minute, second, fraction of a second) with the time zone set to UTC
 	 A date and time control

 	 date
 	 Date
 	 A date (year, month, day) with no time zone
 	 A date control

 	 month
 	 Month
 	 A date consisting of a year and a month with no time zone
 	 A month control

 	 week
 	 Week
 	 A date consisting of a week-year number and a week number with no time zone
 	 A week control

 	 time
 	 Time
 	 A time (hour, minute, seconds, fractional seconds) with no time zone
 	 A time control

 	 datetime-local
 	 Local Date and Time
 	 A date and time (year, month, day, hour, minute, second, fraction of a second) with no time zone
 	 A date and time control

 	 number
 	 Number
 	 A numerical value
 	 A text field or spinner control

 	 range
 	 Range
 	 A numerical value, with the extra semantic that the exact value is not important
 	 A slider control or similar

 	 color
 	 Color
 	 An sRGB color with 8-bit red, green, and blue components
 	 A color well

 	 checkbox
 	 Checkbox
 	 A set of zero or more values from a predefined list
 	 A checkbox

 	 radio
 	 Radio Button
 	 An enumerated value
 	 A radio button

 	 file
 	 File Upload
 	 Zero or more files each with a MIME type and optionally a file name
 	 A label and a button

 	 submit
 	 Submit Button
 	 An enumerated value, with the extra semantic that it must be the last value selected and initiates form submission
 	 A button

 	 image
 	 Image Button
 	 A coordinate, relative to a particular image's size, with the extra semantic that it must be the last value selected and initiates form submission
 	 Either a clickable image, or a button

 	 reset
 	 Reset Button
 	 n/a
 	 A button

 	 button
 	 Button
 	 n/a
 	 A button

 The missing value default is the Text state.

 Which of the accept, alt, autocomplete, checked, dirname, formaction, formenctype, formmethod, formnovalidate, formtarget, height,
 list, max, maxlength, min, multiple, pattern, placeholder, readonly, required,
 size, src, step, and width content
 attributes, the checked, files, valueAsDate,
 valueAsNumber, and list IDL attributes, the select() method, the selectionStart, selectionEnd, and selectionDirection, IDL attributes, the setRangeText() and setSelectionRange() methods, the stepUp() and stepDown()
 methods, and the input and change events apply to an input element depends on
 the state of its type attribute. The subsections that define
 each type also clearly define in normative "bookkeeping" sections which of these feature apply,
 and which do not apply, to each type. The behavior of these features depends on whether
 they apply or not, as defined in their various sections.

 The following table summarizes which of those
 content attributes, IDL attributes, methods, and events apply to each state:

 	
 	
 	

 	

 	
 	
 	

 	
 	
 	
 	
 	

 	
 	
 	
 	

 	Content attributes

 	 accept
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 Yes
 	 ·
 	 ·
 	 ·

 	 alt
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 Yes
 	 ·

 	 autocomplete
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 checked
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 Yes

 	 ·
 	 ·
 	 ·
 	 ·

 	 dirname
 	 ·
 	 Yes

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 formaction
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 Yes
 	 Yes
 	 ·

 	 formenctype
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 Yes
 	 Yes
 	 ·

 	 formmethod
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 Yes
 	 Yes
 	 ·

 	 formnovalidate
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 Yes
 	 Yes
 	 ·

 	 formtarget
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 Yes
 	 Yes
 	 ·

 	 height
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 Yes
 	 ·

 	 list
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 max
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 maxlength
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 min
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 multiple
 	 ·
 	 ·

 	 ·
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 Yes
 	 ·
 	 ·
 	 ·

 	 pattern
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 placeholder
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 Yes
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 readonly
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 Yes
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 required
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 Yes
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 ·
 	 ·

 	 size
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 src
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 Yes
 	 ·

 	 step
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 width
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 Yes
 	 ·

 	IDL attributes and methods

 	 checked
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 Yes

 	 ·
 	 ·
 	 ·
 	 ·

 	 files
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 Yes
 	 ·
 	 ·
 	 ·

 	 value
 	 default
 	 value

 	 value
 	 value
 	 value
 	 value

 	 value
 	 value
 	 value
 	 value
 	 default/on

 	 filename
 	 default
 	 default
 	 default

 	 valueAsDate
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 valueAsNumber
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 list
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 select()
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 selectionStart
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 selectionEnd
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 selectionDirection
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 setRangeText()
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 setSelectionRange()
 	 ·
 	 Yes

 	 Yes
 	 ·
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 stepDown()
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	 stepUp()
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 ·
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	Events

 	
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes
 	 ·

 	 ·
 	 ·
 	 ·
 	 ·

 	
 	 ·
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 Yes
 	 Yes
 	 Yes
 	 Yes

 	 Yes
 	 ·
 	 ·
 	 ·

 Some states of the type attribute define a value
 sanitization algorithm.

 Each input element has a value, which is
 exposed by the value IDL attribute. Some states define an
 algorithm to convert a string to a number, an
 algorithm to convert a number to a string, an
 algorithm to convert a string to a Date
 object, and an algorithm to convert a
 Date object to a string, which are used by max, min, step, valueAsDate, valueAsNumber, stepDown(), and stepUp().

 Each input element has a boolean dirty
 value flag. The dirty value flag must be
 initially set to false when the element is created, and must be set to true whenever the user
 interacts with the control in a way that changes the value.
 (It is also set to true when the value is programmatically changed, as described in the definition
 of the value IDL attribute.)

 The value content attribute gives the default
 value of the input element.

 Each input element has a checkedness,
 which is exposed by the checked IDL attribute.

 Each input element has a boolean dirty checkedness flag. When it is true, the
 element is said to have a dirty checkedness.
 The dirty checkedness flag must be initially
 set to false when the element is created, and must be set to true whenever the user interacts with
 the control in a way that changes the checkedness.

 The checked content attribute is a
 boolean attribute that gives the default checkedness of the input element.

 The reset algorithm for input
 elements is to set the dirty value flag and
 dirty checkedness flag back to false, set
 the value of the element to the value of the value content attribute, if there is one, or the empty string
 otherwise, set the checkedness of the element to true if
 the element has a checked content attribute and false if
 it does not, empty the list of selected
 files, and then invoke the value sanitization algorithm, if the type attribute's current state defines one.

 Each input element can be mutable. Except where
 otherwise specified, an input element is always mutable. Similarly, except where otherwise specified, the user
 agent should not allow the user to modify the element's value or checkedness.

 When an input element is disabled, it is not mutable.

 The readonly attribute can also in some
 cases (e.g. for the Date state, but not the Checkbox state) stop an input element from
 being mutable.

 The cloning steps for input elements
 must propagate the value, dirty value flag, checkedness, and dirty checkedness flag from the node being cloned
 to the copy.

 When an input element is first created, the element's rendering and behavior must
 be set to the rendering and behavior defined for the type
 attribute's state, and the value sanitization algorithm, if one is defined for the
 type attribute's state, must be invoked.

 When an input element's type attribute
 changes state, the user agent must run the following steps:

 	If the previous state of the element's type attribute
 put the value IDL attribute in the value mode, and the element's value is not the empty string, and the new state of the element's
 type attribute puts the value IDL attribute in either the default mode or the default/on mode, then set the element's value content attribute to the element's value.

 	Otherwise, if the previous state of the element's type attribute put the value
 IDL attribute in any mode other than the value mode, and the
 new state of the element's type attribute puts the value IDL attribute in the value mode, then set the value of the element to the value of the value content attribute, if there is one, or the empty string
 otherwise, and then set the control's dirty value
 flag to false.

 	Update the element's rendering and behavior to the new state's.

 	Invoke the value sanitization algorithm, if one is defined for the type attribute's new state.

 The name attribute represents the element's name.
 The dirname attribute controls how the element's directionality is submitted.
 The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted.
 The form attribute is used to explicitly associate the input element with its form owner.
 The autofocus attribute controls focus.
 The autocomplete attribute controls how the user agent provides autofill behavior.

 The indeterminate IDL attribute must
 initially be set to false. On getting, it must return the last value it was set to. On setting, it
 must be set to the new value. It has no effect except for changing the appearance of checkbox controls.

 The accept, alt, max,
 min, multiple, pattern, placeholder, required, size, src,
 and step IDL attributes must reflect
 the respective content attributes of the same name. The dirName IDL attribute must reflect the
 dirname content attribute. The readOnly IDL attribute must reflect the
 readonly content attribute. The defaultChecked IDL attribute must
 reflect the checked content attribute. The
 defaultValue IDL attribute must
 reflect the value content attribute.

 The type IDL attribute must reflect
 the respective content attribute of the same name, limited to only known values.
 The maxLength IDL attribute must reflect
 the maxlength content attribute, limited to only
 non-negative numbers.

 The IDL attributes width and height must return the rendered width and height of
 the image, in CSS pixels, if an image is being rendered, and is being rendered to a
 visual medium; or else the intrinsic width and height of the image, in CSS pixels, if an image is
 available but not being rendered to a visual medium; or else 0,
 if no image is available. When the input element's
 type attribute is not in the Image Button state, then no image is available. [CSS]

 On setting, they must act as if they reflected the respective
 content attributes of the same name.

 The willValidate, validity, and validationMessage IDL attributes, and the checkValidity() and setCustomValidity() methods, are part of the
 constraint validation API. The labels IDL
 attribute provides a list of the element's labels. The select(), selectionStart, selectionEnd, selectionDirection, setRangeText(), and setSelectionRange() methods and IDL attributes
 expose the element's text selection. The autofocus, disabled, form, and name IDL attributes are part of the element's forms API.

 States of the type attribute

 Hidden state (type=hidden)

 When an input element's type attribute is in
 the Hidden state, the rules in this section apply.

 The input element represents a value that is not intended to be
 examined or manipulated by the user.

 Constraint validation: If an input element's type attribute is in the Hidden state, it is barred from constraint
 validation.

 If the name attribute is present and has a value that is a
 case-sensitive match for the string "_charset_", then the element's value attribute must be omitted.

 The
 value
 IDL attribute applies to this element and is
 in mode default.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input and change events do not apply.

 Text (type=text) state and Search state (type=search)

 When an input element's type attribute is in
 the Text state or the Search state, the rules in this section apply.

 The input element represents a one line plain text edit control for
 the element's value.

 The difference between the Text state
 and the Search state is primarily stylistic: on
 platforms where search fields are distinguished from regular text fields, the Search state might result in an appearance consistent with
 the platform's search fields rather than appearing like a regular text field.

 If the element is mutable, its value should be editable by the user. User agents must not allow
 users to insert "LF" (U+000A) or "CR" (U+000D) characters into the element's
 value.

 If the element is mutable, the user agent should allow the
 user to change the writing direction of the element, setting it either to a left-to-right writing
 direction or a right-to-left writing direction. If the user does so, the user agent must then run
 the following steps:

 	Set the element's dir attribute to "ltr" if the user selected a left-to-right writing direction, and
 "rtl" if the user selected a right-to-left writing
 direction.

 	Queue a task to fire a simple event that bubbles named input at the input element.

 The value attribute, if specified, must have a value that
 contains no "LF" (U+000A) or "CR" (U+000D) characters.

 The value sanitization algorithm is as follows: Strip line
 breaks from the value.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 dirname,
 list,
 maxlength,
 pattern,
 placeholder,
 readonly,
 required, and
 size content attributes;
 list,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 value IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 max,
 min,
 multiple,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 Telephone state (type=tel)

 When an input element's type attribute is in
 the Telephone state, the rules in this section apply.

 The input element represents a control for editing a telephone number
 given in the element's value.

 If the element is mutable, its value should be editable by the user. User agents may change the
 spacing and, with care, the punctuation of values that the
 user enters. User agents must not allow users to insert "LF" (U+000A) or "CR" (U+000D) characters into the element's value.

 The value attribute, if specified, must have a value that
 contains no "LF" (U+000A) or "CR" (U+000D) characters.

 The value sanitization algorithm is as follows: Strip line
 breaks from the value.

 Unlike the URL and E-mail types, the Telephone type does not enforce a particular syntax. This is
 intentional; in practice, telephone number fields tend to be free-form fields, because there are a
 wide variety of valid phone numbers. Systems that need to enforce a particular format are
 encouraged to use the pattern attribute or the setCustomValidity() method to hook into the client-side
 validation mechanism.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 maxlength,
 pattern,
 placeholder,
 readonly,
 required, and
 size content attributes;
 list,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 value IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 max,
 min,
 multiple,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 URL state (type=url)

 When an input element's type attribute is in
 the URL state, the rules in this section apply.

 The input element represents a control for editing a single
 absolute URL given in the element's value.

 If the element is mutable, the user agent should allow the
 user to change the URL represented by its value. User agents
 may allow the user to set the value to a string that is not
 a valid absolute URL, but may also or instead
 automatically escape characters entered by the user so that the value is always a valid
 absolute URL (even if that isn't the actual value seen and edited by the user in the
 interface). User agents should allow the user to set the value to the empty string. User agents must not allow users to
 insert "LF" (U+000A) or "CR" (U+000D) characters into the value.

 The value attribute, if specified and not empty, must
 have a value that is a valid URL potentially surrounded by spaces that is also an
 absolute URL.

 The value sanitization algorithm is as follows: Strip line
 breaks from the value, then strip leading and
 trailing whitespace from the value.

 Constraint validation: While the value
 of the element is neither the empty string nor a valid
 absolute URL, the element is suffering from a type mismatch.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 maxlength,
 pattern,
 placeholder,
 readonly,
 required, and
 size content attributes;
 list,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 value IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 max,
 min,
 multiple,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 If a document contained the following markup:

 <input type="url" name="location" list="urls">
<datalist id="urls">
 <option label="MIME: Format of Internet Message Bodies" value="http://tools.ietf.org/html/rfc2045">
 <option label="HTML 4.01 Specification" value="http://www.w3.org/TR/html4/">
 <option label="Form Controls" value="http://www.w3.org/TR/xforms/slice8.html#ui-commonelems-hint">
 <option label="Scalable Vector Graphics (SVG) 1.1 Specification" value="http://www.w3.org/TR/SVG/">
 <option label="Feature Sets - SVG 1.1 - 20030114" value="http://www.w3.org/TR/SVG/feature.html">
 <option label="The Single UNIX Specification, Version 3" value="http://www.unix-systems.org/version3/">
</datalist>

 ...and the user had typed "www.w3", and the user agent had also found that the user
 had visited http://www.w3.org/Consortium/#membership and
 http://www.w3.org/TR/XForms/ in the recent past, then the rendering might look like
 this:

 [image: A text box with an icon on the left followed by the text "www.w3" and a cursor, with a drop down button on the right hand side; with, below, a drop down box containing a list of six URLs on the left, with the first four having grayed out labels on the right; and a scroll bar to the right of the drop down box, indicating further values are available.]

 The first four URLs in this sample consist of the four URLs in the author-specified list that
 match the text the user has entered, sorted in some UA-defined manner (maybe by how frequently
 the user refers to those URLs). Note how the UA is using the knowledge that the values are URLs
 to allow the user to omit the scheme part and perform intelligent matching on the domain
 name.

 The last two URLs (and probably many more, given the scrollbar's indications of more values
 being available) are the matches from the user agent's session history data. This data is not
 made available to the page DOM. In this particular case, the UA has no titles to provide for
 those values.

 E-mail state (type=email)

 When an input element's type attribute is in
 the E-mail state, the rules in this section apply.

 How the E-mail state operates depends on whether the
 multiple attribute is specified or not.

 	When the multiple attribute is not specified on the
 element

 	

 The input element represents a control for editing an e-mail
 address given in the element's value.

 If the element is mutable, the user agent should allow the
 user to change the e-mail address represented by its value. User agents may allow the user to set the value to a string that is not a valid e-mail
 address. The user agent should act in a manner consistent with expecting the user to
 provide a single e-mail address. User agents should allow the user to set the value to the empty string. User agents must not allow users to
 insert "LF" (U+000A) or "CR" (U+000D) characters into the value. User agents may transform the value for display and editing; in particular, user agents should
 convert punycode in the value to IDN in the display and
 vice versa.

 Constraint validation: While the user interface is representing input that
 the user agent cannot convert to punycode, the control is suffering from bad
 input.

 The value attribute, if specified and not empty, must
 have a value that is a single valid e-mail address.

 The value sanitization algorithm is as follows: Strip
 line breaks from the value, then strip
 leading and trailing whitespace from the value.

 When the multiple attribute is removed, the user
 agent must run the value sanitization algorithm.

 Constraint validation: While the value
 of the element is neither the empty string nor a single valid e-mail address, the
 element is suffering from a type mismatch.

 	When the multiple attribute is specified on
 the element

 	

 The element's values are the result of splitting on commas the element's value.

 The input element represents a control for adding, removing, and
 editing the e-mail addresses given in the element's values.

 If the element is mutable, the user agent should allow the
 user to add, remove, and edit the e-mail addresses represented by its values. User agents may allow the user to set any
 individual value in the list of values to a
 string that is not a valid e-mail address, but must not allow users to set any
 individual value to a string containing "," (U+002C), "LF" (U+000A), or "CR" (U+000D) characters. User agents should allow the user to remove all the addresses
 in the element's values. User agents may
 transform the values for display and editing; in
 particular, user agents should convert punycode in the value to IDN in the display and vice versa.

 Constraint validation: While the user interface describes a situation where
 an individual value contains a "," (U+002C) or is representing input that the user agent
 cannot convert to punycode, the control is suffering from bad input.

 Whenever the user changes the element's values, the user agent must run the following
 steps:

 	Let latest values be a copy of the element's values.

 	Strip leading and trailing whitespace from each value in latest values.

 	Let the element's value be the result of
 concatenating all the values in latest values, separating each value from
 the next by a single "," (U+002C) character, maintaining the list's order.

 The value attribute, if specified, must have a value
 that is a valid e-mail address list.

 The value sanitization algorithm is as follows:

 	Split on commas the element's value, strip leading and trailing whitespace from
 each resulting token, if any, and let the element's values be the (possibly empty) resulting list of
 (possibly empty) tokens, maintaining the original order.

 	Let the element's value be the result of
 concatenating the element's values, separating
 each value from the next by a single "," (U+002C) character, maintaining the list's
 order.

 When the multiple attribute is set, the user agent
 must run the value sanitization algorithm.

 Constraint validation: While the value
 of the element is not a valid e-mail address list, the element is suffering
 from a type mismatch.

 A valid e-mail address is a string that matches the email
 production of the following ABNF, the character set for which is Unicode. This ABNF implements the
 extensions described in RFC 1123. [ABNF] [RFC5322] [RFC1034] [RFC1123]

 email = 1*(atext / ".") "@" label *("." label)
label = let-dig [[ldh-str] let-dig] ; limited to a length of 63 characters by RFC 1034 section 3.5
atext = < as defined in RFC 5322 section 3.2.3 >
let-dig = < as defined in RFC 1034 section 3.5 >
ldh-str = < as defined in RFC 1034 section 3.5 >

 This requirement is a willful violation of RFC 5322, which defines a
 syntax for e-mail addresses that is simultaneously too strict (before the "@" character), too
 vague (after the "@" character), and too lax (allowing comments, whitespace characters, and quoted
 strings in manners unfamiliar to most users) to be of practical use here.

 The following JavaScript- and Perl-compatible regular expression is an implementation of the
 above definition.

 /^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$/

 A valid e-mail address list is a set of comma-separated tokens, where
 each token is itself a valid e-mail address.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 maxlength,
 multiple,
 pattern,
 placeholder,
 readonly,
 required, and
 size content attributes;
 list and
 value IDL attributes.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 max,
 min,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown() and
 stepUp() methods.

 Password state (type=password)

 When an input element's type attribute is in
 the Password state, the rules in this section
 apply.

 The input element represents a one line plain text edit control for
 the element's value. The user agent should obscure the value
 so that people other than the user cannot see it.

 If the element is mutable, its value should be editable by the user. User agents must not allow
 users to insert "LF" (U+000A) or "CR" (U+000D) characters into the value.

 The value attribute, if specified, must have a value that
 contains no "LF" (U+000A) or "CR" (U+000D) characters.

 The value sanitization algorithm is as follows: Strip line
 breaks from the value.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 maxlength,
 pattern,
 placeholder,
 readonly,
 required, and
 size content attributes;
 selectionStart,
 selectionEnd,
 selectionDirection, and
 value IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 min,
 multiple,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 Date and Time state (type=datetime)

 When an input element's type attribute is in
 the Date and Time state, the rules in this section
 apply.

 The input element represents a control for setting the element's
 value to a string representing a specific global date and time.

 If the element is mutable, the user agent should allow the
 user to change the global date and time represented by its
 value, as obtained by parsing a global date and time from it. User agents must not allow the user to
 set the value to a non-empty string that is not a
 valid normalized forced-UTC global date and time string, though user agents may allow
 the user to set and view the time in another time zone and silently translate the time to and from
 the UTC time zone in the value. If the user agent provides a
 user interface for selecting a global date and time, then
 the value must be set to a valid normalized forced-UTC
 global date and time string representing the user's selection. User agents should allow the
 user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid normalized forced-UTC global date and time string,
 the control is suffering from bad input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid global date and time string.

 The value sanitization algorithm is as follows: If the value of the element is a valid global date and time
 string, then adjust the time so that the value
 represents the same point in time but expressed in the UTC time zone as a valid normalized
 forced-UTC global date and time string, otherwise, set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid global date and time string. The max
 attribute, if specified, must have a value that is a valid global date and time
 string.

 The step attribute is expressed in seconds. The default step is 60 seconds.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest global date and time for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a global date and time from input results in an error, then return an error; otherwise, return the number of
 milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the time represented by the
 value "1970-01-01T00:00:00.0Z") to the parsed global date and time, ignoring leap seconds.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid normalized forced-UTC global date and time string that represents the global date and time that is input
 milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by the value
 "1970-01-01T00:00:00.0Z").

 The algorithm to convert a string to a
 Date object, given a string input, is as follows:
 If parsing a global date and time from
 input results in an error, then return an error; otherwise, return a new Date object representing the parsed global date and time, expressed in UTC.

 The algorithm to convert a
 Date object to a string, given a Date object input, is as follows: Return a valid normalized forced-UTC global
 date and time string that represents the global date and
 time that is represented by input.

 The Date and Time state (and other date- and
 time-related states described in subsequent sections) is not intended for the entry of values for
 which a precise date and time relative to the contemporary calendar cannot be established. For
 example, it would be inappropriate for the entry of times like "one millisecond after the big
 bang", "the early part of the Jurassic period", or "a winter around 250 BCE".

 For the input of dates before the introduction of the Gregorian calendar, authors are
 encouraged to not use the Date and Time state (and
 the other date- and time-related states described in subsequent sections), as user agents are not
 required to support converting dates and times from earlier periods to the Gregorian calendar,
 and asking users to do so manually puts an undue burden on users. (This is complicated by the
 manner in which the Gregorian calendar was phased in, which occurred at different times in
 different countries, ranging from partway through the 16th century all the way to early in the
 20th.) Instead, authors are encouraged to provide fine-grained input controls using the
 select element and input elements with the Number state.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd, and
 selectionDirection IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The following fragment shows part of a calendar application. A user can specify a date and
 time for a meeting (in his local time zone, probably, though the user agent can allow the user to
 change that), and since the submitted data includes the time-zone offset, the application can
 ensure that the meeting is shown at the correct time regardless of the time zones used by all the
 participants.

 <fieldset>
 <legend>Add Meeting</legend>
 <p><label>Meeting name: <input type=text name="meeting.label"></label>
 <p><label>Meeting time: <input type=datetime name="meeting.start"></label>
</fieldset>

 Had the application used the datetime-local type instead, the calendar
 application would have also had to explicitly determine which time zone the user intended.

 For events where the precise time is to vary as the user travels (e.g. "celebrate the new
 year!"), and for recurring events that are to stay at the same time for a specific geographic
 location even though that location may go in and out of daylight savings time (e.g. "bring the
 kid to school"), the datetime-local type
 combined with a select element (or other similar control) to pick the specific
 geographic location to which to anchor the time would be more appropriate.

 Date state (type=date)

 When an input element's type attribute is in
 the Date state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a specific date.

 If the element is mutable, the user agent should allow the
 user to change the date represented by its value, as obtained by parsing a
 date from it. User agents must not allow the user to set the value to a non-empty string that is not a valid date
 string. If the user agent provides a user interface for selecting a date, then the value must be set
 to a valid date string representing the user's selection. User agents should allow
 the user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid date string, the control is suffering from bad
 input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid date string.

 The value sanitization algorithm is as follows: If the value of the element is not a valid date string, then
 set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid date string. The max attribute, if
 specified, must have a value that is a valid date string.

 The step attribute is expressed in days. The default step is 1 day.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest date for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a date from input results in an
 error, then return an error; otherwise, return the number of milliseconds elapsed from midnight
 UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the parsed date, ignoring leap seconds.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid date string that represents the date that, in
 UTC, is current input milliseconds after midnight UTC on the morning of
 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

 The algorithm to convert a string to a
 Date object, given a string input, is as follows:
 If parsing a date from input results
 in an error, then return an error; otherwise, return a new
 Date object representing midnight UTC on the morning of the parsed date.

 The algorithm to convert a
 Date object to a string, given a Date object input, is as follows: Return a valid date string that
 represents the date current at the time represented by input in the UTC time zone.

 See the note on historical dates in the
 Date and Time state section.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 selectionStart,
 selectionEnd, and
 selectionDirection IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Month state (type=month)

 When an input element's type attribute is in
 the Month state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a specific month.

 If the element is mutable, the user agent should allow the
 user to change the month represented by its value, as obtained by parsing a
 month from it. User agents must not allow the user to set the value to a non-empty string that is not a valid month
 string. If the user agent provides a user interface for selecting a month, then the value must be
 set to a valid month string representing the user's selection. User agents should
 allow the user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid month string, the control is suffering from bad
 input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid month string.

 The value sanitization algorithm is as follows: If the value of the element is not a valid month string,
 then set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid month string. The max attribute, if
 specified, must have a value that is a valid month string.

 The step attribute is expressed in months. The default step is 1 month.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest month for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a month from input results in an
 error, then return an error; otherwise, return the number of months between January 1970 and the
 parsed month.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid month string that represents the month that
 has input months between it and January 1970.

 The algorithm to convert a string to a
 Date object, given a string input, is as follows:
 If parsing a month from input
 results in an error, then return an error; otherwise, return a
 new Date object representing midnight UTC on the morning of the first day of
 the parsed month.

 The algorithm to convert a
 Date object to a string, given a Date object input, is as follows: Return a valid month string that
 represents the month current at the time represented by input in the UTC time zone.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd, and
 selectionDirection IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Week state (type=week)

 When an input element's type attribute is in
 the Week state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a specific week.

 If the element is mutable, the user agent should allow the
 user to change the week represented by its value, as obtained by parsing a
 week from it. User agents must not allow the user to set the value to a non-empty string that is not a valid week
 string. If the user agent provides a user interface for selecting a week, then the value must be set
 to a valid week string representing the user's selection. User agents should allow
 the user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid week string, the control is suffering from bad
 input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid week string.

 The value sanitization algorithm is as follows: If the value of the element is not a valid week string, then
 set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid week string. The max attribute, if
 specified, must have a value that is a valid week string.

 The step attribute is expressed in weeks. The default step is 1 week.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest week for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a week string from input results in
 an error, then return an error; otherwise, return the number of milliseconds elapsed from midnight
 UTC on the morning of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning of the Monday of the
 parsed week, ignoring leap seconds.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid week string that represents the week that, in
 UTC, is current input milliseconds after midnight UTC on the morning of
 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z").

 The algorithm to convert a string to a
 Date object, given a string input, is as follows:
 If parsing a week from input results
 in an error, then return an error; otherwise, return a new
 Date object representing midnight UTC on the morning of the Monday of the
 parsed week.

 The algorithm to convert a
 Date object to a string, given a Date object input, is as follows: Return a valid week string that
 represents the week current at the time represented by input in the UTC time zone.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd, and
 selectionDirection IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Time state (type=time)

 When an input element's type attribute is in
 the Time state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a specific time.

 If the element is mutable, the user agent should allow the
 user to change the time represented by its value, as obtained by parsing a
 time from it. User agents must not allow the user to set the value to a non-empty string that is not a valid time
 string. If the user agent provides a user interface for selecting a time, then the value must be set
 to a valid time string representing the user's selection. User agents should allow
 the user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid time string, the control is suffering from bad
 input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid time string.

 The value sanitization algorithm is as follows: If the value of the element is not a valid time string, then
 set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid time string. The max attribute, if
 specified, must have a value that is a valid time string.

 The step attribute is expressed in seconds. The default step is 60 seconds.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest time for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a time from input results in an
 error, then return an error; otherwise, return the number of milliseconds elapsed from midnight to
 the parsed time on a day with no time changes.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid time string that represents the time that is
 input milliseconds after midnight on a day with no time changes.

 The algorithm to convert a string to a
 Date object, given a string input, is as follows:
 If parsing a time from input results
 in an error, then return an error; otherwise, return a new
 Date object representing the parsed time in
 UTC on 1970-01-01.

 The algorithm to convert a
 Date object to a string, given a Date object input, is as follows: Return a valid time string that
 represents the UTC time component that is represented by input.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value,
 valueAsDate, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd, and
 selectionDirection IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Local Date and Time state (type=datetime-local)

 When an input element's type attribute is in
 the Local Date and Time state, the rules in
 this section apply.

 The input element represents a control for setting the element's
 value to a string representing a local date and time, with no time-zone offset
 information.

 If the element is mutable, the user agent should allow the
 user to change the date and time represented by its
 value, as obtained by parsing a date and time from it. User agents must not allow the user to set
 the value to a non-empty string that is not a valid
 normalized local date and time string. If the user agent provides a user interface for
 selecting a local date and time, then the value must be set to a valid normalized local date and time
 string representing the user's selection. User agents should allow the user to set the
 value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid normalized local date and time string, the control is
 suffering from bad input.

 See the introduction section for a discussion of
 the difference between the input format and submission format for date, time, and number form
 controls.

 The value attribute, if specified and not empty, must
 have a value that is a valid local date and time string.

 The value sanitization algorithm is as follows: If the value of the element is a valid local date and time
 string, then set it to a valid normalized local date and time string
 representing the same date and time; otherwise, set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid local date and time string. The max
 attribute, if specified, must have a value that is a valid local date and time
 string.

 The step attribute is expressed in seconds. The default step is 60 seconds.

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest local date and time for which the element would not suffer from a step mismatch.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If parsing a date and time from input results in an error, then return an error; otherwise, return the number of
 milliseconds elapsed from midnight on the morning of 1970-01-01 (the time represented by the value
 "1970-01-01T00:00:00.0") to the parsed local date and time, ignoring leap seconds.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid normalized local date and time string that represents the date and time that is
 input milliseconds after midnight on the morning of 1970-01-01 (the time
 represented by the value "1970-01-01T00:00:00.0").

 See the note on historical dates in the
 Date and Time state section.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 readonly,
 required, and
 step content attributes;
 list,
 value, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 valueAsDate IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 The following example shows part of a flight booking application. The application uses an
 input element with its type attribute set to
 datetime-local, and it then interprets the
 given date and time in the time zone of the selected airport.

 <fieldset>
 <legend>Destination</legend>
 <p><label>Airport: <input type=text name=to list=airports></label></p>
 <p><label>Departure time: <input type=datetime-local name=totime step=3600></label></p>
</fieldset>
<datalist id=airports>
 <option value=ATL label="Atlanta">
 <option value=MEM label="Memphis">
 <option value=LHR label="London Heathrow">
 <option value=LAX label="Los Angeles">
 <option value=FRA label="Frankfurt">
</datalist>

 If the application instead used the datetime
 type, then the user would have to work out the time-zone conversions himself, which is clearly
 not a good user experience!

 Number state (type=number)

 When an input element's type attribute is in
 the Number state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a number.

 If the element is mutable, the user agent should allow the
 user to change the number represented by its value, as
 obtained from applying the rules for parsing floating-point number values to it. User
 agents must not allow the user to set the value to a
 non-empty string that is not a valid floating-point number. If the user agent
 provides a user interface for selecting a number, then the value must be set to the best representation of the number representing the user's
 selection as a floating-point number. User agents should allow the user to set the value to the empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid floating-point number, the control is suffering
 from bad input.

 This specification does not define what user interface user agents are to use;
 user agent vendors are encouraged to consider what would best serve their users' needs. For
 example, a user agent in Persian or Arabic markets might support Persian and Arabic numeric input
 (converting it to the format required for submission as described above). Similarly, a user agent
 designed for Romans might display the value in Roman numerals rather than in decimal; or (more
 realistically) a user agent designed for the French market might display the value with
 apostrophes between thousands and commas before the decimals, and allow the user to enter a value
 in that manner, internally converting it to the submission format described above.

 The value attribute, if specified and not empty, must
 have a value that is a valid floating-point number.

 The value sanitization algorithm is as follows: If the value of the element is not a valid floating-point
 number, then set it to the empty string instead.

 The min attribute, if specified, must have a value that is
 a valid floating-point number. The max attribute,
 if specified, must have a value that is a valid floating-point number.

 The default step is 1 (allowing only
 integers to be selected by the user, unless the step
 base has a non-integer value).

 When the element is suffering from a step mismatch, the user agent may round the
 element's value to the nearest number for which the element
 would not suffer from a step mismatch. If
 there are two such numbers, user agents are encouraged to pick the one nearest positive
 infinity.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If applying the
 rules for parsing floating-point number values to input results
 in an error, then return an error; otherwise, return the resulting number.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid floating-point number that represents input.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min,
 placeholder,
 readonly,
 required, and
 step content attributes;
 list,
 value, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 valueAsDate IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Here is an example of using a numeric input control:

 <label>How much do you want to charge? $<input type=number min=0 step=0.01 name=price></label>

 As described above, a user agent might support numeric input in the user's local format,
 converting it to the format required for submission as described above. This might include
 handling grouping separators (as in "872,000,000,000") and various decimal separators (such as
 "3,99" vs "3.99") or using local digits (such as those in Arabic, Devanagari, Persian, and
 Thai).

 The type=number state is not appropriate for input that
 happens to only consist of numbers but isn't strictly speaking a number. For example, it would be
 inappropriate for credit card numbers or US postal codes. A simple way of determining whether to
 use type=number is to consider whether it would make sense for the input
 control to have a spinbox interface (e.g. with "up" and "down" arrows). Getting a credit card
 number wrong by 1 in the last digit isn't a minor mistake, it's as wrong as getting every digit
 incorrect. So it would not make sense for the user to select a credit card number using "up" and
 "down" buttons. When a spinbox interface is not appropriate, type=text is
 probably the right choice (possibly with a pattern
 attribute).

 Range state (type=range)

 When an input element's type attribute is in
 the Range state, the rules in this section apply.

 The input element represents a control for setting the element's
 value to a string representing a number, but with the caveat
 that the exact value is not important, letting UAs provide a simpler interface than they do for
 the Number state.

 In this state, the range and step constraints are enforced even during user input,
 and there is no way to set the value to the empty string.

 If the element is mutable, the user agent should allow the
 user to change the number represented by its value, as
 obtained from applying the rules for parsing floating-point number values to it. User
 agents must not allow the user to set the value to a string
 that is not a valid floating-point number. If the user agent provides a user
 interface for selecting a number, then the value must be set
 to a best
 representation of the number representing the user's selection as a floating-point number.
 User agents must not allow the user to set the value to the
 empty string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid floating-point number, the control is suffering
 from bad input.

 The value attribute, if specified, must have a value that
 is a valid floating-point number.

 The value sanitization algorithm is as follows: If the value of the element is not a valid floating-point
 number, then set it to a valid floating-point number that represents the default value.

 The min attribute, if specified, must have a value that is
 a valid floating-point number. The default
 minimum is 0. The max attribute, if specified, must
 have a value that is a valid floating-point number. The default maximum is 100.

 The default value is the minimum plus half the difference between the minimum and the maximum,
 unless the maximum is less than the minimum, in which case the default value is the minimum.

 When the element is suffering from an underflow, the user agent must set the
 element's value to a valid floating-point
 number that represents the minimum.

 When the element is suffering from an overflow, if the maximum is not less than the minimum, the user agent must set the element's value to a valid floating-point number that
 represents the maximum.

 The default step is 1 (allowing only
 integers, unless the min attribute has a non-integer
 value).

 When the element is suffering from a step mismatch, the user agent must round the
 element's value to the nearest number for which the element
 would not suffer from a step mismatch, and
 which is greater than or equal to the minimum, and, if the
 maximum is not less than the minimum, which is less than or equal to the maximum, if there is a number that matches these constraints. If
 two numbers match these constraints, then user agents must use the one nearest to positive
 infinity.

 For example, the markup
 <input type="range" min=0 max=100 step=20 value=50>
 results in a range control whose initial value is 60.

 The algorithm to convert a string to a
 number, given a string input, is as follows: If applying the
 rules for parsing floating-point number values to input results
 in an error, then return an error; otherwise, return the resulting number.

 The algorithm to convert a number to a
 string, given a number input, is as follows: Return a
 valid floating-point number that represents input.

 The following common input element content
 attributes, IDL attributes, and methods apply to the element:
 autocomplete,
 list,
 max,
 min, and
 step content attributes;
 list,
 value, and
 valueAsNumber IDL attributes;
 stepDown() and
 stepUp() methods.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 maxlength,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd,
 selectionDirection, and
 valueAsDate IDL attributes;
 select(),
 setRangeText(), and
 setSelectionRange() methods.

 Here is an example of a range control using an autocomplete list with the list attribute. This could be useful if there are values along the
 full range of the control that are especially important, such as preconfigured light levels or
 typical speed limits in a range control used as a speed control. The following markup
 fragment:

 <input type="range" min="-100" max="100" value="0" step="10" name="power" list="powers">
<datalist id="powers">
 <option value="0">
 <option value="-30">
 <option value="30">

</datalist>

 ...with the following style sheet applied:

 input { height: 75px; width: 49px; background: #D5CCBB; color: black; }

 ...might render as:

 [image: A vertical slider control whose primary color is black and whose background color is beige, with the slider having five tick marks, one long one at each extremity, and three short ones clustered around the midpoint.]

Note how the UA determined the orientation of the control from the ratio of the
 style-sheet-specified height and width properties. The colors were similarly derived from the
 style sheet. The tick marks, however, were derived from the markup. In particular, the step attribute has not affected the placement of tick marks, the
 UA deciding to only use the author-specified completion values and then adding longer tick marks
 at the extremes.

 Note also how the invalid value ++50 was completely ignored.

 For another example, consider the following markup fragment:

 <input name=x type=range min=100 max=700 step=9.09090909 value=509.090909>

 A user agent could display in a variety of ways, for instance:

 [image: As a dial.]

 Or, alternatively, for instance:

 [image: As a long horizontal slider with tick marks.]

 The user agent could pick which one to display based on the dimensions given in the style
 sheet. This would allow it to maintain the same resolution for the tick marks, despite the
 differences in width.

 Finally, here is an example of a range control with two labeled values:

 <input type="range" name="a" list="a-values">
<datalist id="a-values">
 <option value="10" label="Low">
 <option value="90" label="High">
</datalist>

 With styles that make the control draw vertically, it might look as follows:

 [image: A vertical slider control with two tick marks, one near the top labeled 'High', and one near the bottom labeled 'Low'.]

 Color state (type=color)

 When an input element's type attribute is in
 the Color state, the rules in this section apply.

 The input element represents a color well control, for setting the
 element's value to a string representing a simple
 color.

 In this state, there is always a color picked, and there is no way to set the
 value to the empty string.

 If the element is mutable, the user agent should allow the
 user to change the color represented by its value, as
 obtained from applying the rules for parsing simple color values to it. User agents
 must not allow the user to set the value to a string that is
 not a valid lowercase simple color. If the user agent provides a user interface for
 selecting a color, then the value must be set to the result
 of using the rules for serializing simple color values to the user's selection. User
 agents must not allow the user to set the value to the empty
 string.

 Constraint validation: While the user interface describes input that the user
 agent cannot convert to a valid lowercase simple color, the control is
 suffering from bad input.

 The value attribute, if specified and not empty, must
 have a value that is a valid simple color.

 The value sanitization algorithm is as follows: If the value of the element is a valid simple color, then
 set it to the value of the element converted to ASCII
 lowercase; otherwise, set it to the string "#000000".

 The following common input element content
 attributes and IDL attributes apply to the element:
 autocomplete and
 list content attributes;
 list and
 value IDL attributes.

 The value IDL attribute is
 in mode value.

 The input and change events apply.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 Checkbox state (type=checkbox)

 When an input element's type attribute is in
 the Checkbox state, the rules in this section
 apply.

 The input element represents a two-state control that represents the
 element's checkedness state. If the element's checkedness state is true, the control represents a positive
 selection, and if it is false, a negative selection. If the element's indeterminate IDL attribute is set to true, then the
 control's selection should be obscured as if the control was in a third, indeterminate, state.

 The control is never a true tri-state control, even if the element's indeterminate IDL attribute is set to true. The indeterminate IDL attribute only gives the appearance of a
 third state.

 If the element is mutable, then: The pre-click
 activation steps consist of setting the element's checkedness to its opposite value (i.e. true if it is false,
 false if it is true), and of setting the element's indeterminate IDL attribute to false. The canceled
 activation steps consist of setting the checkedness
 and the element's indeterminate IDL attribute back to
 the values they had before the pre-click activation steps were run. The
 activation behavior is to fire a simple event that bubbles named change at the element.

 If the element is not mutable, it has no activation
 behavior.

 Constraint validation: If the element is required and its checkedness is false, then the element is suffering from
 being missing.

 	input . indeterminate [= value]

 	

 When set, overrides the rendering of checkbox
 controls so that the current value is not visible.

 The following common input element content
 attributes and IDL attributes apply to the element:
 checked, and
 required content attributes;
 checked and
 value IDL attributes.

 The value IDL attribute is
 in mode default/on.

 The change event applies.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input event does not apply.

 Radio Button state (type=radio)

 When an input element's type attribute is in
 the Radio Button state, the rules in this section
 apply.

 The input element represents a control that, when used in conjunction
 with other input elements, forms a radio button group in which only one
 control can have its checkedness state set to true. If the
 element's checkedness state is true, the control
 represents the selected control in the group, and if it is false, it indicates a control in the
 group that is not selected.

 The radio button group that contains an input element a also contains all the other input elements b
 that fulfill all of the following conditions:

 	The input element b's type attribute is in the Radio
 Button state.

 	Either a and b have the same form owner,
 or they both have no form owner.

 	Both a and b are in the same home
 subtree.

 	They both have a name attribute, their name attributes are not empty, and the value of a's name attribute is a compatibility
 caseless match for the value of b's name attribute.

 A document must not contain an input element whose radio button group
 contains only that element.

 When any of the following phenomena occur, if the element's checkedness state is true after the occurrence, the checkedness state of all the other elements in the same radio
 button group must be set to false:

 	The element's checkedness state is set to true (for
 whatever reason).

 	The element's name attribute is set, changed, or
 removed.

 	The element's form owner changes.

 If the element is mutable, then: The pre-click
 activation steps consist of setting the element's checkedness to true. The canceled activation steps
 consist of setting the element's checkedness to false. The
 activation behavior is to fire a simple event that bubbles named change at the element. .

 If the element is not mutable, it has no activation
 behavior.

 Constraint validation: If an element in the radio button group is required, and all of the input elements in the
 radio button group have a checkedness that is
 false, then the element is suffering from being missing.

 If none of the radio buttons in a radio button group are checked when
 they are inserted into the document, then they will all be initially unchecked in the interface,
 until such time as one of them is checked (either by the user or by script).

 The following common input element content
 attributes and IDL attributes apply to the element:
 checked and
 required content attributes;
 checked and
 value IDL attributes.

 The value IDL attribute is
 in mode default/on.

 The change event applies.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input event does not apply.

 File Upload state (type=file)

 When an input element's type attribute is in
 the File Upload state, the rules in this section
 apply.

 The input element represents a list of selected files, each file consisting of a file
 name, a file type, and a file body (the contents of the file).

 File names must not contain path components, even in the case that a user has selected an
 entire directory hierarchy or multiple files with the same name from different directories. Path
 components are those separated by "\" (U+005C) character characters.

 If the element is mutable, the user agent should allow the
 user to change the files on the list, e.g. adding or removing files. Files can be from the
 filesystem or created on the fly, e.g. a picture taken from a camera connected to the user's
 device.

 Constraint validation: If the element is required and the list of selected files is empty, then the element is
 suffering from being missing.

 Unless the multiple attribute is set, there must be no
 more than one file in the list of selected
 files.

 The accept attribute may be specified to
 provide user agents with a hint of what file types will be accepted.

 If specified, the attribute must consist of a set of comma-separated tokens, each
 of which must be an ASCII case-insensitive match for one of the following:

 	The string audio/*

 	Indicates that sound files are accepted.

 	The string video/*

 	Indicates that video files are accepted.

 	The string image/*

 	Indicates that image files are accepted.

 	A valid MIME type with no parameters

 	Indicates that files of the specified type are accepted.

 	A string whose first character is a "." (U+002E) character

 	Indicates that files with the specified file extension are accepted.

 The tokens must not be ASCII case-insensitive matches for any of the other tokens
 (i.e. duplicates are not allowed).

 User agents may use the value of this attribute to display a more appropriate user interface
 than a generic file picker. For instance, given the value image/*, a user
 agent could offer the user the option of using a local camera or selecting a photograph from their
 photo collection; given the value audio/*, a user agent could offer the user
 the option of recording a clip using a headset microphone.

 User agents should prevent the user from selecting files that are not accepted by one (or more)
 of these tokens.

 Authors are encouraged to specify both any MIME types and any corresponding
 extensions when looking for data in a specific format.

 For example, consider an application that converts Microsoft Word documents to Open Document
 Format files. Since Microsoft Word documents are described with a wide variety of MIME types and
 extensions, the site can list several, as follows:

 <input type="file" accept=".doc,.docx,.xml,application/msword,application/vnd.openxmlformats-officedocument.wordprocessingml.document">

 On platforms that only use file extensions to describe file types, the extensions listed here
 can be used to filter the allowed documents, while the MIME types can be used with the system's
 type registration table (mapping MIME types to extensions used by the system), if any, to
 determine any other extensions to allow. Similarly, on a system that does not have file names or
 extensions but labels documents with MIME types internally, the MIME types can be used to pick
 the allowed files, while the extensions can be used if the system has an extension registration
 table that maps known extensions to MIME types used by the system.

 Extensions tend to be ambiguous (e.g. there are an untold number of formats
 that use the ".dat" extension, and users can typically quite easily rename
 their files to have a ".doc" extension even if they are not Microsoft Word
 documents), and MIME types tend to be unreliable (e.g. many formats have no formally registered
 types, and many formats are in practice labeled using a number of different MIME types). Authors
 are reminded that, as usual, data received from a client should be treated with caution, as it may
 not be in an expected format even if the user is not hostile and the user agent fully obeyed the
 accept attribute's requirements.

 For historical reasons, the value IDL attribute prefixes
 the file name with the string "C:\fakepath\". Some legacy user agents
 actually included the full path (which was a security vulnerability). As a result of this,
 obtaining the file name from the value IDL attribute in a
 backwards-compatible way is non-trivial. The following function extracts the file name in a
 suitably compatible manner:

 function extractFilename(path) {
 if (path.substr(0, 12) == "C:\\fakepath\\")
 return path.substr(12); // modern browser
 var x;
 x = path.lastIndexOf('/');
 if (x >= 0) // Unix-based path
 return path.substr(x+1);
 x = path.lastIndexOf('\\');
 if (x >= 0) // Windows-based path
 return path.substr(x+1);
 return path; // just the file name
}

 This can be used as follows:

 <p><input type=file name=image onchange="updateFilename(this.value)"></p>
<p>The name of the file you picked is: (none)</p>
<script>
 function updateFilename(path) {
 var name = extractFilename(path);
 document.getElementById('filename').textContent = name;
 }
</script>

 The following common input element content
 attributes and IDL attributes apply to the element:
 accept,
 multiple, and
 required content attributes;
 files and
 value IDL attributes.

 The value IDL attribute is
 in mode filename.

 The change event applies.

 The following content attributes must not be specified and do not
 apply to the element:
 alt,
 autocomplete,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 pattern,
 placeholder,
 readonly,
 size,
 src,
 step, and
 width.

 The element's value
 attribute must be omitted.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input event does not apply.

 Submit Button state (type=submit)

 When an input element's type attribute is in
 the Submit Button state, the rules in this section
 apply.

 The input element represents a button that, when activated, submits
 the form. The element is a button, specifically a submit
 button.
 [image: (This is a fingerprinting vector.)]

 If the element is mutable, then the element's
 activation behavior is as follows: if the element has a form owner,
 submit the form owner from the
 input element; otherwise, do nothing.

 If the element is not mutable, it has no activation
 behavior.

 The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are attributes for form
 submission.

 The formnovalidate attribute can be
 used to make submit buttons that do not trigger the constraint validation.

 The following common input element content
 attributes and IDL attributes apply to the element:
 formaction,
 formenctype,
 formmethod,
 formnovalidate, and
 formtarget content attributes;
 value IDL attribute.

 The value IDL attribute is
 in mode default.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 checked,
 dirname,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input and change events do not apply.

 Image Button state (type=image)

 When an input element's type attribute is in
 the Image Button state, the rules in this section
 apply.

 The input element represents either an image from which a user can
 select a coordinate and submit the form, or alternatively a button from which the user can submit
 the form. The element is a button, specifically a submit button.

 The coordinate is sent to the server during form submission by sending two entries for the element, derived from the name
 of the control but with ".x" and ".y" appended to the
 name with the x and y components of the coordinate
 respectively.

 The image is given by the src attribute. The
 src attribute must be present, and must contain a valid
 non-empty URL potentially surrounded by spaces referencing a non-interactive, optionally
 animated, image resource that is neither paged nor scripted.

 When any of the following events occur, unless the user agent cannot support images, or its
 support for images has been disabled, or the user agent only fetches elements on demand, or the
 src attribute's value is the empty string, the user agent must
 resolve the value of the src attribute, relative to the element, and if that is successful,
 must fetch the resulting absolute URL:

 	The input element's type attribute is first
 set to the Image Button state (possibly when the
 element is first created), and the src attribute is
 present.

 	The input element's type attribute is
 changed back to the Image Button state, and the src attribute is present, and its value has changed since the last
 time the type attribute was in the Image Button state.

 	The input element's type attribute is in
 the Image Button state, and the src attribute is set or changed.

 Fetching the image must delay the load event of the element's document until the
 task that is queued by the
 networking task source once the resource has been fetched
 (defined below) has been run.

 If the image was successfully obtained, with no network errors, and the image's type is a
 supported image type, and the image is a valid image of that type, then the image is said to be
 available. If this is true before the image is
 completely downloaded, each task that is queued by the networking task source while the image is being fetched must update the presentation of the image appropriately.

 The user agent should apply the image sniffing
 rules to determine the type of the image, with the image's associated Content-Type headers giving the official
 type. If these rules are not applied, then the type of the image must be the type given by
 the image's associated Content-Type headers.

 User agents must not support non-image resources with the input element. User
 agents must not run executable code embedded in the image resource. User agents must only display
 the first page of a multipage resource. User agents must not allow the resource to act in an
 interactive fashion, but should honor any animation in the resource.

 The task that is queued by
 the networking task source once the resource has been fetched, must, if the download was successful and the image is available, queue a task to fire a simple
 event named load at the input element; and
 otherwise, if the fetching process fails without a response from the remote server, or completes
 but the image is not a valid or supported image, queue a task to fire a simple
 event named error on the input element.

 The alt attribute provides the textual label for
 the button for users and user agents who cannot use the image. The alt attribute must be present, and must contain a non-empty string
 giving the label that would be appropriate for an equivalent button if the image was
 unavailable.

 The input element supports dimension attributes.

 If the src attribute is set, and the image is available and the user agent is configured to display that image,
 then: The element represents a control for selecting a coordinate from the image specified by the
 src attribute; if the element is mutable, the user agent should allow the user to select this coordinate, and the element's activation
 behavior is as follows: if the element has a form owner, take the user's
 selected coordinate, and submit the input element's form owner
 from the input element. If the user activates the control without explicitly
 selecting a coordinate, then the coordinate (0,0) must be assumed.

 Otherwise, the element represents a submit button whose label is given by the
 value of the alt attribute; if the element is mutable, then the element's activation behavior is as
 follows: if the element has a form owner, set the selected coordinate to (0,0), and submit the input element's form owner
 from the input element.

 In either case, if the element is mutable but has no
 form owner, then its activation behavior must be to do nothing. If the
 element is not mutable, it has no activation
 behavior.

 The selected coordinate must consist of
 an x-component and a y-component. The coordinates
 represent the position relative to the edge of the image, with the coordinate space having the
 positive x direction to the right, and the positive y
 direction downwards.

 The x-component must be a valid integer representing a number
 x in the range , where width is the rendered width of the image, borderleft is the width of the border on the left of the image, paddingleft is the width of the padding on the left of the
 image, borderright is the width of the border on the right
 of the image, and paddingright is the width of the padding
 on the right of the image, with all dimensions given in CSS pixels.

 The y-component must be a valid integer representing a number
 y in the range , where
 height is the rendered height of the image, bordertop is the width of the border above the image, paddingtop is the width of the padding above the image, borderbottom is the width of the border below the image, and paddingbottom is the width of the padding below the image, with
 all dimensions given in CSS pixels.

 Where a border or padding is missing, its width is zero CSS pixels.

 The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are attributes for form
 submission.

 	image . width [= value]

 	image . height [= value]

 	

 These attributes return the actual rendered dimensions of the image, or zero if the
 dimensions are not known.

 They can be set, to change the corresponding content attributes.

 The following common input element content
 attributes and IDL attributes apply to the element:
 alt,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 src, and
 width content attributes;
 value IDL attribute.

 The value IDL attribute is
 in mode default.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 autocomplete,
 checked,
 dirname,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size, and
 step.

 The element's value
 attribute must be omitted.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input and change events do not apply.

 Many aspects of this state's behavior are similar to the behavior of the
 img element. Readers are encouraged to read that section, where many of the same
 requirements are described in more detail.

 Take the following form:

 <form action="process.cgi">
 <input type=image src=map.png name=where>
</form>

 If the user clicked on the image at coordinate (127,40) then the URL used to submit the form
 would be "process.cgi?where.x=127&where.y=40".

 Reset Button state (type=reset)

 When an input element's type attribute is in
 the Reset Button state, the rules in this section
 apply.

 The input element represents a button that, when activated, resets
 the form. The element is a button.
 [image: (This is a fingerprinting vector.)]

 If the element is mutable, then the element's
 activation behavior, if the element has a form owner, is to reset the form owner; otherwise, it is to do
 nothing.

 If the element is not mutable, it has no activation
 behavior.

 Constraint validation: The element is barred from constraint
 validation.

 The value IDL attribute
 applies to this element and is in mode default.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input and change events do not apply.

 Button state (type=button)

 When an input element's type attribute is in
 the Button state, the rules in this section apply.

 The input element represents a button with no default behavior. A
 label for the button must be provided in the value
 attribute, though it may be the empty string. The element is a button.

 If the element is mutable, the element's activation
 behavior is to do nothing.

 If the element is not mutable, it has no activation
 behavior.

 Constraint validation: The element is barred from constraint
 validation.

 The value IDL attribute
 applies to this element and is in mode default.

 The following content attributes must not be specified and do not
 apply to the element:
 accept,
 alt,
 autocomplete,
 checked,
 dirname,
 formaction,
 formenctype,
 formmethod,
 formnovalidate,
 formtarget,
 height,
 list,
 max,
 maxlength,
 min,
 multiple,
 pattern,
 placeholder,
 readonly,
 required,
 size,
 src,
 step, and
 width.

 The following IDL attributes and methods do not apply to the
 element:
 checked,
 files,
 list,
 selectionStart,
 selectionEnd,
 selectionDirection,
 valueAsDate, and
 valueAsNumber IDL attributes;
 select(),
 setRangeText(),
 setSelectionRange(),
 stepDown(), and
 stepUp() methods.

 The input and change events do not apply.

 Implemention notes regarding localization of form controls

 This section is non-normative.

 The formats shown to the user in date, time, and number controls is independent of the format
 used for form submission.

 Browsers are encouraged to use user interfaces that present dates, times, and numbers according
 to the conventions of either the locale implied by the input element's
 language or the user's preferred locale. Using the page's locale will ensure
 consistency with page-provided data.

For example, it would be confusing to users if an American English page claimed
 that a Cirque De Soleil show was going to be showing on 02/03, but their
 browser, configured to use the British English locale, only showed the date 03/02 in the ticket purchase date picker. Using the page's locale would at least ensure that the
 date was presented in the same format everywhere. (There's still a risk that the user would end up
 arriving a month late, of course, but there's only so much that can be done about such cultural
 differences...)

 Common input element attributes

 These attributes only apply to an input element if its type attribute is in a state whose definition declares that the
 attribute applies. When an attribute doesn't apply to an
 input element, user agents must ignore the attribute, regardless of the
 requirements and definitions below.

 The maxlength attribute

 The maxlength attribute is a form control maxlength attribute.

 If the input element has a maximum allowed value length, then the
 code-unit length of the value of the element's value attribute must be equal to or less than the element's
 maximum allowed value length.

 The following extract shows how a messaging client's text entry could be arbitrarily
 restricted to a fixed number of characters, thus forcing any conversation through this medium to
 be terse and discouraging intelligent discourse.

 <label>What are you doing? <input name=status maxlength=140></label>

 The size attribute

 The size attribute gives the number of
 characters that, in a visual rendering, the user agent is to allow the user to see while editing
 the element's value.

 The size attribute, if specified, must have a value that
 is a valid non-negative integer greater than zero.

 If the attribute is present, then its value must be parsed using the rules for parsing
 non-negative integers, and if the result is a number greater than zero, then the user agent
 should ensure that at least that many characters are visible.

 The size IDL attribute is limited to only
 non-negative numbers greater than zero and has a default value of 20.

 The readonly attribute

 The readonly attribute is a boolean
 attribute that controls whether or not the user can edit the form control.

 Constraint validation: If the readonly attribute is specified on an input
 element, the element is barred from constraint validation.

 The difference between disabled and readonly is that read-only controls are still focusable, so the
 user can still select the text and interact with it, whereas disabled controls are entirely
 non-interactive. (For this reason, only text controls can be made read-only: it wouldn't make
 sense for checkboxes or buttons, for instances.)

 In the following example, the existing product identifiers cannot be modified, but they are
 still displayed as part of the form, for consistency with the row representing a new product
 (where the identifier is not yet filled in).

 <form action="products.cgi" method="post" enctype="multipart/form-data">
 <table>
 <tr> <th> Product ID <th> Product name <th> Price <th> Action
 <tr>
 <td> <input readonly="readonly" name="1.pid" value="H412">
 <td> <input required="required" name="1.pname" value="Floor lamp Ulke">
 <td> $<input required="required" type="number" min="0" step="0.01" name="1.pprice" value="49.99">
 <td> <button formnovalidate="formnovalidate" name="action" value="delete:1">Delete</button>
 <tr>
 <td> <input readonly="readonly" name="2.pid" value="FG28">
 <td> <input required="required" name="2.pname" value="Table lamp Ulke">
 <td> $<input required="required" type="number" min="0" step="0.01" name="2.pprice" value="24.99">
 <td> <button formnovalidate="formnovalidate" name="action" value="delete:2">Delete</button>
 <tr>
 <td> <input required="required" name="3.pid" value="" pattern="[A-Z0-9]+">
 <td> <input required="required" name="3.pname" value="">
 <td> $<input required="required" type="number" min="0" step="0.01" name="3.pprice" value="">
 <td> <button formnovalidate="formnovalidate" name="action" value="delete:3">Delete</button>
 </table>
 <p> <button formnovalidate="formnovalidate" name="action" value="add">Add</button> </p>
 <p> <button name="action" value="update">Save</button> </p>
</form>

 The required attribute

 The required attribute is a boolean
 attribute. When specified, the element is required.

 Constraint validation: If the element is required, and its value
 IDL attribute applies and is in the mode value, and the
 element is mutable, and the element's value is the empty string, then the element is suffering
 from being missing.

 The following form has two required fields, one for an e-mail address and one for a password.
 It also has a third field that is only considered valid if the user types the same password in
 the password field and this third field.

 <h1>Create new account</h1>
<form action="/newaccount" method=post
 oninput="up2.setCustomValidity(up2.value != up.value ? 'Passwords do not match.' : '')">
 <p>
 <label for="username">E-mail address:</label>
 <input id="username" type=email required name=un>
 <p>
 <label for="password1">Password:</label>
 <input id="password1" type=password required name=up>
 <p>
 <label for="password2">Confirm password:</label>
 <input id="password2" type=password name=up2>
 <p>
 <input type=submit value="Create account">
</form>

 For radio buttons, the required attribute is
 satisfied if any of the radio buttons in the group is
 selected. Thus, in the following example, any of the radio buttons can be checked, not just the
 one marked as required:

 <fieldset>
 <legend>Did the movie pass the Bechdel test?</legend>
 <p><label><input type="radio" name="bechdel" value="no-characters"> No, there are not even two female characters in the movie. </label>
 <p><label><input type="radio" name="bechdel" value="no-names"> No, the female characters never talk to each other. </label>
 <p><label><input type="radio" name="bechdel" value="no-topic"> No, when female characters talk to each other it's always about a male character. </label>
 <p><label><input type="radio" name="bechdel" value="yes" required> Yes. </label>
 <p><label><input type="radio" name="bechdel" value="unknown"> I don't know. </label>
</fieldset>

 To avoid confusion as to whether a radio button group is required or not, authors
 are encouraged to specify the attribute on all the radio buttons in a group. Indeed, in general,
 authors are encouraged to avoid having radio button groups that do not have any initially checked
 controls in the first place, as this is a state that the user cannot return to, and is therefore
 generally considered a poor user interface.

 The multiple attribute

 The multiple attribute is a boolean
 attribute that indicates whether the user is to be allowed to specify more than one
 value.

 The following extract shows how an e-mail client's "Cc" field could accept multiple e-mail
 addresses.

 <label>Cc: <input type=email multiple name=cc></label>

 If the user had, amongst many friends in his user contacts database, two friends "Arthur Dent"
 (with address "art@example.net") and "Adam Josh" (with address "adamjosh@example.net"), then,
 after the user has typed "a", the user agent might suggest these two e-mail addresses to the
 user.

 [image: Form control group containing 'Send',
 'Save now' and 'Discard' buttons, a 'To:' combo box with an 'a' displayed in the text box and 2 list items below.]

 The page could also link in the user's contacts database from the site:

 <label>Cc: <input type=email multiple name=cc list=contacts></label>
...
<datalist id="contacts">
 <option value="hedral@damowmow.com">
 <option value="pillar@example.com">
 <option value="astrophy@cute.example">
 <option value="astronomy@science.example.org">
</datalist>

 Suppose the user had entered "bob@example.net" into this text field, and then started typing a
 second e-mail address starting with "a". The user agent might show both the two friends mentioned
 earlier, as well as the "astrophy" and "astronomy" values given in the datalist
 element.

 [image: Form control group containing 'send',
 'save now' and 'discard' buttons and a 'To:' combo box with 'bob@example.net,a' displayed in the text box and 4 list items below.]

 The following extract shows how an e-mail client's "Attachments" field could accept multiple
 files for upload.

 <label>Attachments: <input type=file multiple name=att></label>

 The pattern attribute

 The pattern attribute specifies a regular
 expression against which the control's value, or, when the
 multiple attribute applies and is set, the control's
 values, are to be checked.

 If specified, the attribute's value must match the JavaScript Pattern
 production. [ECMA262]

 If an input element has a pattern
 attribute specified, and the attribute's value, when compiled as a JavaScript regular expression
 with the global, ignoreCase, and multiline flags disabled (see ECMA262 Edition 5, sections 15.10.7.2
 through 15.10.7.4), compiles successfully, then the resulting regular expression is the element's
 compiled pattern regular expression. If the element has no such attribute, or if the
 value doesn't compile successfully, then the element has no compiled pattern regular
 expression. [ECMA262]

 Constraint validation: If the element's value is not the empty string, and either the element's multiple attribute is not specified or it does not apply to the
 input element given its type attribute's current
 state, and the element has a compiled pattern regular expression but that regular
 expression does not match the entirety of the element's value, then the element is suffering from a pattern
 mismatch.

 Constraint validation: If the element's value is not the empty string, and the element's multiple attribute is specified and applies to the
 input element, and the element has a compiled pattern regular expression
 but that regular expression does not match the entirety of each of the element's values, then the element is suffering from a
 pattern mismatch.

 The compiled pattern regular expression, when matched against a string, must have
 its start anchored to the start of the string and its end anchored to the end of the string.

 This implies that the regular expression language used for this attribute is the
 same as that used in JavaScript, except that the pattern
 attribute is matched against the entire value, not just any subset (somewhat as if it implied a
 ^(?: at the start of the pattern and a)$ at the
 end).

 When an input element has a pattern
 attribute specified, authors should provide a description of the pattern in text near the
 control. Authors may also include a title
 attribute to give a description of the pattern. User agents may use
 the contents of this attribute, if it is present, when informing the
 user that the pattern is not matched, or at any other suitable time,
 such as in a tooltip or read out by assistive technology when the
 control gains focus.

 Relying on the title
 attribute alone is currently discouraged as many user agents do not expose the attribute in an
 accessible manner as required by this specification (e.g. requiring a pointing device such as a
 mouse to cause a tooltip to appear, which excludes keyboard-only users and touch-only users,
 such as anyone with a modern phone or tablet).

 For example, the following snippet includes the pattern description in text below the input,
 the pattern description is also included in the title attribute:

 <label> Part number:
 <input pattern="[0-9][A-Z]{3}" name="part"
 title="A part number is a digit followed by three uppercase letters."/>
 </label>
 <p>A part number is a digit followed by three uppercase letters.</p>

 The presence of the pattern description in text makes the advice available to any user regardless of device.

 The presence of the pattern description in the title attribute, results in the description being announced by
 assistive technology such as screen readers when the input receives focus.

	If the user has attempted to submit the form with incorrect information, the presence of the title attribute text
	could also cause the UA to display an alert such as:

 A part number is a digit followed by three uppercase letters.
 You cannot submit this form when the field is incorrect.

 In this example, the pattern description is in text below the input,
 but not in the title attribute. The
 aria-describedby attribute
 is used to explicitly associate the text description with the control, the description is announced by
 assistive technology such as screen readers when the input receives focus:

 <label> Part number:
 <input pattern="[0-9][A-Z]{3}" name="part" aria-describedby="description">
 </label>
 <p id="description">A part number is a digit followed by three uppercase letters.</p>

 When a control has a pattern attribute, the title attribute, if used, must describe the pattern. Additional
 information could also be included, so long as it assists the user in filling in the control.
 Otherwise, assistive technology would be impaired.

 For instance, if the title attribute contained the caption of the control,
 assistive technology could end up saying something like The text you have entered does not
 match the required pattern. Birthday, which is not useful.

 UAs may still show the title in non-error situations (for
 example, as a tooltip when hovering over the control), so authors should be careful not to word
 titles as if an error has necessarily occurred.

 The min and max attributes

 The min and max attributes indicate the allowed range of values for
 the element.

 Their syntax is defined by the section that defines the type attribute's current state.

 If the element has a min attribute, and the result of
 applying the algorithm to convert a string to a
 number to the value of the min attribute is a number,
 then that number is the element's minimum; otherwise, if the
 type attribute's current state defines a default minimum, then that is the minimum; otherwise, the element has no minimum.

 Constraint validation: When the element has a minimum, and the result of applying the algorithm to convert a string to a number to the
 string given by the element's value is a number, and the
 number obtained from that algorithm is less than the minimum,
 the element is suffering from an underflow.

 The min attribute also defines the step base.

 If the element has a max attribute, and the result of
 applying the algorithm to convert a string to a
 number to the value of the max attribute is a number,
 then that number is the element's maximum; otherwise, if the
 type attribute's current state defines a default maximum, then that is the maximum; otherwise, the element has no maximum.

 Constraint validation: When the element has a maximum, and the result of applying the algorithm to convert a string to a number to the
 string given by the element's value is a number, and the
 number obtained from that algorithm is more than the maximum,
 the element is suffering from an overflow.

 The max attribute's value (the maximum) must not be less than the min attribute's value (its minimum).

 If an element has a maximum that is less than
 its minimum, then so long as the element has a value, it will either be suffering from an underflow
 or suffering from an overflow.

 An element has range limitations if it has a defined
 minimum or a defined maximum.

 The following date control limits input to dates that are before the 1980s:

 <input name=bday type=date max="1979-12-31">

 The following number control limits input to whole numbers greater than zero:

 <input name=quantity required="" type="number" min="1" value="1">

 The step attribute

 The step attribute indicates the granularity
 that is expected (and required) of the value, by limiting
 the allowed values.

 The step attribute, if specified, must either have a value
 that is a valid floating-point number that parses to a number that is greater than zero, or must have a
 value that is an ASCII case-insensitive match for the string "any".

 The attribute provides the allowed value step for the
 element, as follows:

 	If the attribute is absent, then the allowed value
 step is the default step multiplied by the
 step scale factor.

 	Otherwise, if the attribute's value is an ASCII case-insensitive match for the
 string "any", then there is no allowed
 value step.

 	Otherwise, if the rules for parsing floating-point number values, when they are
 applied to the attribute's value, return an error, zero, or a number less than zero, then the
 allowed value step is the default step multiplied by the step scale factor.

 	Otherwise, the allowed value step is the number
 returned by the rules for parsing floating-point number values when they are applied
 to the attribute's value, multiplied by the step scale
 factor.

 The step base is the value returned by the following
 algorithm:

 	If the element has a min content attribute, and the
 result of applying the algorithm to convert a
 string to a number to the value of the min content
 attribute is not an error, then return that result and abort these steps.

 	If the element has a value content attribute, and
 the result of applying the algorithm to convert a
 string to a number to the value of the value content
 attribute is not an error, then return that result and abort these steps.

 	If a default step base is defined for
 this element given its type attribute's state, then return
 it and abort these steps.

	Return zero.

 Constraint validation: When the element has an allowed value step, and the result of applying the algorithm to convert a string to a number to the
 string given by the element's value is a number, and that
 number subtracted from the step base is not an
 integral multiple of the allowed value step, the element
 is suffering from a step mismatch.

 The following range control only accepts values in the range 0..1, and allows 256 steps in
 that range:

 <input name=opacity type=range min=0 max=1 step=0.00392156863>

 The following control allows any time in the day to be selected, with any accuracy (e.g.
 thousandth-of-a-second accuracy or more):

 <input name=favtime type=time step=any>

 Normally, time controls are limited to an accuracy of one minute.

 The list attribute

 The list attribute is used to identify an
 element that lists predefined options suggested to the user.

 If present, its value must be the ID of a datalist
 element in the same document.

 The suggestions source element is the first element in
 the document in tree order to have an ID equal to the
 value of the list attribute, if that element is a
 datalist element. If there is no list attribute,
 or if there is no element with that ID, or if the first element
 with that ID is not a datalist element, then there is
 no suggestions source element.

 If there is a suggestions source element, then, when
 the user agent is allowing the user to edit the input element's value, the user agent should offer the suggestions represented by
 the suggestions source element to the user in a manner
 suitable for the type of control used. The user agent may use the suggestion's label to identify the suggestion if appropriate.

 How user selections of suggestions are handled depends on whether the element is a control
 accepting a single value only, or whether it accepts multiple values:

 	If the element does not have a multiple attribute
 specified or if the multiple attribute does

 	

 When the user selects a suggestion, the input element's value must be set to the selected suggestion's value, as if the user had written that value himself.

 	If the element does have a multiple
 attribute specified, and the multiple attribute does
 apply

 	

 When the user selects a suggestion, the user agent must either add a new entry to the
 input element's values, whose value
 is the selected suggestion's value, or change an
 existing entry in the input element's values to have the value given by the selected
 suggestion's value, as if the user had himself added
 an entry with that value, or edited an existing entry to be that value. Which behavior is to be
 applied depends on the user interface in a user-agent-defined manner.

 If the list attribute does not apply, there is no suggestions source element.

 This URL field offers some suggestions.

 <label>Homepage: <input name=hp type=url list=hpurls></label>
<datalist id=hpurls>
 <option value="http://www.google.com/" label="Google">
 <option value="http://www.reddit.com/" label="Reddit">
</datalist>

 Other URLs from the user's history might show also; this is up to the user agent.

 This example demonstrates how to design a form that uses the autocompletion list feature while
 still degrading usefully in legacy user agents.

 If the autocompletion list is merely an aid, and is not important to the content, then simply
 using a datalist element with children option elements is enough. To
 prevent the values from being rendered in legacy user agents, they need to be placed inside the
 value attribute instead of inline.

 <p>
 <label>
 Enter a breed:
 <input type="text" name="breed" list="breeds">
 <datalist id="breeds">
 <option value="Abyssinian">
 <option value="Alpaca">
 <!-- ... -->
 </datalist>
 </label>
</p>

 However, if the values need to be shown in legacy UAs, then fallback content can be placed
 inside the datalist element, as follows:

 <p>
 <label>
 Enter a breed:
 <input type="text" name="breed" list="breeds">
 </label>
 <datalist id="breeds">
 <label>
 or select one from the list:
 <select name="breed">
 <option value=""> (none selected)
 <option>Abyssinian
 <option>Alpaca
 <!-- ... -->
 </select>
 </label>
 </datalist>
</p>

 The fallback content will only be shown in UAs that don't support datalist. The
 options, on the other hand, will be detected by all UAs, even though they are not children of the
 datalist element.

 Note that if an option element used in a datalist is selected, it will be selected by default by legacy UAs
 (because it affects the select), but it will not have any effect on the
 input element in UAs that support datalist.

 The placeholder attribute

 The placeholder attribute represents a
 short hint (a word or short phrase) intended to aid the user with data entry when the
 control has no value. A hint could be a sample value or a brief description of the expected
 format. The attribute, if specified, must have a value that contains no "LF" (U+000A) or
 "CR" (U+000D) characters.

 The placeholder attribute should not be used as a
 replacement for a label. For a longer hint or other advisory text, place the text
 next to the control.

 Use of the placeholder
 attribute as a replacement for a label can reduce the
 accessibility and usability of the control for a range of users including older
 users and users with cognitive, mobility, fine motor skill or vision impairments.
 While the hint given by the control's label is shown at all times, the short
 hint given in the placeholder
 attribute is only shown before the user enters a value. Furthermore,
 placeholder text may be mistaken for
 a pre-filled value, and as commonly implemented the default color of the placeholder text
 provides insufficient contrast and the lack of a separate visible label
 reduces the size of the hit region available for setting focus on the control.

 User agents should present this hint to the user, after having
 stripped line breaks from it,
 when the element's value is
 the empty string and the control is not focused (i.e., by displaying
 it inside a blank unfocused control).

 Here is an example of a mail configuration user interface that uses the placeholder attribute:

 <fieldset>
 <legend>Mail Account</legend>
 <p><label>Name: <input type="text" name="fullname" placeholder="John Ratzenberger"></label></p>
 <p><label>Address: <input type="email" name="address" placeholder="john@example.net"></label></p>
 <p><label>Password: <input type="password" name="password"></label></p>
 <p><label>Description: <input type="text" name="desc" placeholder="My Email Account"></label></p>
</fieldset>

 In situations where the control's content has one directionality but the placeholder needs to
 have a different directionality, Unicode's bidirectional-algorithm formatting characters can be
 used in the attribute value:

 <input name=t1 type=tel placeholder="‫ رقم الهاتف 1 ‮">
<input name=t2 type=tel placeholder="‫ رقم الهاتف 2 ‮">

 For slightly more clarity, here's the same example using numeric character references instead of inline Arabic:

 <input name=t1 type=tel placeholder="‫رقم الهاتف 1‮">
<input name=t2 type=tel placeholder="‫رقم الهاتف 2‮">

 Common input element APIs

 	input . value [= value]

 	

 Returns the current value of the form control.

 Can be set, to change the value.

 Throws an InvalidStateError exception if it is set to any value other than the
 empty string when the control is a file upload control.

 	input . checked [= value]

 	

 Returns the current checkedness of the form
 control.

 Can be set, to change the checkedness.

 	input . files

 	

 Returns a FileList object listing the selected files of the form control.

 Returns null if the control isn't a file control.

 	input . valueAsDate [= value]

 	

 Returns a Date object representing the form control's value, if applicable; otherwise, returns null.

 Can be set, to change the value.

 Throws an InvalidStateError exception if the control isn't date- or
 time-based.

 	input . valueAsNumber [= value]

 	

 Returns a number representing the form control's value,
 if applicable; otherwise, returns NaN.

 Can be set, to change the value. Setting this to NaN will set the underlying value to the
 empty string.

 Throws an InvalidStateError exception if the control is neither date- or
 time-based nor numeric.

 	input . stepUp([n])

 	input . stepDown([n])

 	

 Changes the form control's value by the value given in
 the step attribute, multiplied by n.
 The default value for n is 1.

 Throws InvalidStateError exception if the control is neither date- or time-based
 nor numeric, or if the step attribute's value is "any".

 	input . list

 	

 Returns the datalist element indicated by the list attribute.

 The value IDL attribute allows scripts to
 manipulate the value of an input element. The
 attribute is in one of the following modes, which define its behavior:

 	value

	

 On getting, it must return the current value of the
 element. On setting, it must set the element's value to
 the new value, set the element's dirty value
 flag to true, invoke the value sanitization algorithm, if the element's
 type attribute's current state defines one, and then, if
 the element has a text entry cursor position, should move the text entry cursor position to the
 end of the text field, unselecting any selected text and resetting the selection direction to
 none.

 	default

	

 On getting, if the element has a value attribute, it
 must return that attribute's value; otherwise, it must return the empty string. On setting, it
 must set the element's value attribute to the new
 value.

 	default/on

	

 On getting, if the element has a value attribute, it
 must return that attribute's value; otherwise, it must return the string "on". On setting, it must set the element's value attribute to the new value.

 	filename

	

 On getting, it must return the string "C:\fakepath\" followed by the
 name of the first file in the list of selected
 files, if any, or the empty string if the list is empty. On setting, if the new value is
 the empty string, it must empty the list of selected files; otherwise, it must throw an
 InvalidStateError exception.

 This "fakepath" requirement is a sad accident of history. See the example in the File Upload state section for more
 information.

 The checked IDL attribute allows scripts to
 manipulate the checkedness of an input
 element. On getting, it must return the current checkedness of the element; and on setting, it must set the
 element's checkedness to the new value and set the
 element's dirty checkedness flag to
 true.

 The files IDL attribute allows scripts to
 access the element's selected files. On
 getting, if the IDL attribute applies, it must return a FileList object that
 represents the current selected files. The
 same object must be returned until the list of selected files changes. If the IDL attribute , then it must instead return null. [FILEAPI]

 The valueAsDate IDL attribute represents
 the value of the element, interpreted as a date.

 On getting, if the valueAsDate attribute , as defined for the input element's type
 attribute's current state, then return null. Otherwise, run the algorithm to convert a string to a Date
 object defined for that state; if the algorithm returned a Date object, then
 return it, otherwise, return null.

 On setting, if the valueAsDate attribute , as defined for the input element's type
 attribute's current state, then throw an InvalidStateError exception; otherwise, if
 the new value is null or a Date object representing the NaN time value, then set the
 value of the element to the empty string; otherwise, run the
 algorithm to convert a Date object to a
 string, as defined for that state, on the new value, and set the value of the element to the resulting string.

 The valueAsNumber IDL attribute
 represents the value of the element, interpreted as a
 number.

 On getting, if the valueAsNumber attribute , as defined for the input element's type attribute's current state, then return a Not-a-Number (NaN)
 value. Otherwise, if the valueAsDate attribute
 applies, run the algorithm to convert a string to a
 Date object defined for that state; if the algorithm returned a
 Date object, then return the time value of the object (the number of
 milliseconds from midnight UTC the morning of 1970-01-01 to the time represented by the
 Date object), otherwise, return a Not-a-Number (NaN) value. Otherwise, run the algorithm to convert a string to a number defined
 for that state; if the algorithm returned a number, then return it, otherwise, return a
 Not-a-Number (NaN) value.

 On setting, if the new value is infinite, then throw a TypeError exception.
 Otherwise, if the valueAsNumber attribute , as defined for the input element's type
 attribute's current state, then throw an InvalidStateError exception. Otherwise, if
 the new value is a Not-a-Number (NaN) value, then set the value of the element to the empty string. Otherwise, if the valueAsDate attribute applies, run the algorithm to convert a Date object to a
 string defined for that state, passing it a Date object whose time
 value is the new value, and set the value of the element
 to the resulting string. Otherwise, run the algorithm to convert a number to a string, as
 defined for that state, on the new value, and set the value
 of the element to the resulting string.

 The stepDown(n) and stepUp(n) methods, when invoked,
 must run the following algorithm:

 	If the stepDown() and stepUp() methods do not apply, as defined for the
 input element's type attribute's current state,
 then throw an InvalidStateError exception, and abort these steps.

 	If the element has no allowed value step, then
 throw an InvalidStateError exception, and abort these steps.

 	If the element has a minimum and a maximum and the minimum
 is greater than the maximum, then abort these steps.

	If the element has a minimum and a maximum and there is no value greater than or equal to the
 element's minimum and less than or equal to the element's
 maximum that, when subtracted from the step base, is an integral multiple of the allowed value step, then abort these steps.

	If applying the algorithm to convert a
 string to a number to the string given by the element's value does not result in an error, then let value be the result of that algorithm. Otherwise, let value be
 zero.

 	

 If value subtracted from the step
 base is not an integral multiple of the allowed value
 step, then set value to the nearest value that, when subtracted from
 the step base, is an integral multiple of the allowed value step, and that is less than value if the method invoked was the stepDown() and more than value
 otherwise.

 Otherwise (value subtracted from the step base is an integral multiple of the allowed value step), run the following substeps:

 	Let n be the argument.

 	Let delta be the allowed value
 step multiplied by n.

 	If the method invoked was the stepDown() method,
 negate delta.

 	Let value be the result of adding delta to value.

 	If the element has a minimum, and value is less than that minimum, then set
 value to the smallest value that, when subtracted from the step base, is an integral multiple of the allowed value step, and that is more than or equal to minimum.

 	If the element has a maximum, and value is greater than that maximum, then
 set value to the largest value that, when subtracted from the step base, is an integral multiple of the allowed value step, and that is less than or equal to maximum.

 	Let value as string be the result of running the algorithm to convert a number to a string, as
 defined for the input element's type
 attribute's current state, on value.

 	Set the value of the element to value
 as string.

 The list IDL attribute must return the current
 suggestions source element, if any, or null otherwise.

 Common event behaviors

 When the input event applies, any time the
 user causes the element's value to change, the user agent
 must queue a task to fire a simple event that bubbles named input at the input element. User agents may wait for a
 suitable break in the user's interaction before queuing the task; for example, a user agent could
 wait for the user to have not hit a key for 100ms, so as to only fire the event when the user
 pauses, instead of continuously for each keystroke.

 Examples of a user changing the element's value would include the user typing into a text field, pasting a
 new value into the field, or undoing an edit in that field. Some user interactions do not cause
 changes to the value, e.g. hitting the "delete" key in an empty text field, or replacing some text
 in the field with text from the clipboard that happens to be exactly the same text.

 When the change event applies, if the
 element does not have an activation behavior defined but uses a user interface that
 involves an explicit commit action, then any time the user commits a change to the element's value or list of selected files, the user agent must queue a
 task to fire a simple event that bubbles named change at the input element.

 An example of a user interface with a commit action would be a File Upload control that consists of a single button that
 brings up a file selection dialog: when the dialog is closed, if that the file selection changed as a result, then the user
 has committed a new file selection.

 Another example of a user interface with a commit action would be a Date control that allows both text-based user input and user
 selection from a drop-down calendar: while text input might not have an explicit commit step,
 selecting a date from the drop down calendar and then dismissing the drop down would be a commit
 action.

 A third example of a user interface with a commit action would be a Range controls that use a slider. While the user is dragging
 the control's knob, input events would fire whenever the position
 changed, whereas the change event would only fire when the user
 let go of the knob, committing to a specific value.

 When the user agent changes the element's value on behalf
 of the user (e.g. as part of a form prefilling feature), the user agent must follow these
 steps:

 	If the input event applies, queue a task
 to fire a simple event that bubbles named input at
 the input element.

 	If the change event applies, queue a
 task to fire a simple event that bubbles named change at the input element.

 In addition, when the change event
 applies, change events can also be fired as part of the
 element's activation behavior and as part of the unfocusing steps.

 The task source for these tasks is the
 user interaction task source.

 The button element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Listed, labelable, submittable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content, but there must be no interactive content descendant.

 	Content attributes:

 	Global attributes

 	autofocus

 	disabled

 	form

 	formaction

 	formenctype

 	formmethod

 	formnovalidate

 	formtarget

 	name

 	type

 	value

 	DOM interface:

 	
interface HTMLButtonElement : HTMLElement {
 attribute boolean autofocus;
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute DOMString formAction;
 attribute DOMString formEnctype;
 attribute DOMString formMethod;
 attribute boolean formNoValidate;
 attribute DOMString formTarget;
 attribute DOMString name;
 attribute DOMString type;
 attribute DOMString ;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;
};

 The button element represents a button labeled by its contents.

 The element is a button.

 The type
 attribute controls the behavior of the button when it is activated.
 It is an enumerated attribute. The following table
 lists the keywords and states for the attribute — the keywords
 in the left column map to the states in the cell in the second
 column on the same row as the keyword.

 	 Keyword
 	 State
 	 Brief description

 	submit
 	Submit Button
 	Submits the form.

 	reset
 	Reset Button
 	Resets the form.

 	button
 	Button
 	Does nothing.

 The missing value default is the Submit Button
 state.

 If the type attribute is in
 the Submit Button
 state, the element is specifically a submit button.

 Constraint validation: If the type attribute is in the Reset Button state, or
 the Button state,
 the element is barred from constraint validation.

 When a button element is not disabled, its activation
 behavior element is to run the steps defined in the following
 list for the current state of the element's type attribute:

 	 Submit Button

 	If the element has a form owner, the element
 must submit the form
 owner from the button element.

 	 Reset Button

 	If the element has a form owner, the element
 must reset the form
 owner.

 	 Button

	Do nothing.

 The form attribute is used to
 explicitly associate the button element with its
 form owner. The name
 attribute represents the element's name. The disabled attribute is used to make
 the control non-interactive and to prevent its value from being
 submitted. The autofocus
 attribute controls focus. The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are
 attributes for form submission.

 The formnovalidate attribute can
 be used to make submit buttons that do not trigger the constraint
 validation.

 The formaction, formenctype, formmethod, formnovalidate, and formtarget must not be specified
 if the element's type
 attribute is not in the Submit Button
 state.

 The value
 attribute gives the element's value for the purposes of form
 submission. The element's value is the value of the element's
 value attribute, if there is
 one, or the empty string otherwise.

 A button (and its value) is only included in the
 form submission if the button itself was used to initiate the form
 submission.

 The type IDL
 attribute must reflect the content attribute of the
 same name, limited to only known values.

 The willValidate, validity, and validationMessage IDL
 attributes, and the checkValidity() and setCustomValidity()
 methods, are part of the constraint validation API. The
 labels IDL attribute provides a
 list of the element's labels. The autofocus, disabled, form, and name IDL attributes are part of the
 element's forms API.

 The following button is labeled "Show hint" and pops up a dialog
 box when activated:

 <button type=button
 onclick="alert('This 15-20 minute piece was composed by George Gershwin.')">
 Show hint
</button>

 The select element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Listed, labelable, submittable, resettable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Zero or more option, optgroup, and script-supporting elements.

 	Content attributes:

 	Global attributes

 	autofocus

 	disabled

 	form

 	multiple

 	name

 	required

 	size

 	DOM interface:

 	
interface HTMLSelectElement : HTMLElement {
 attribute boolean autofocus;
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute boolean multiple;
 attribute DOMString name;
 attribute boolean required;
 attribute unsigned long size;

 readonly attribute DOMString type;

 readonly attribute HTMLOptionsCollection options;
 attribute unsigned long length;
 getter Element? item(unsigned long index);
 HTMLOptionElement? namedItem(DOMString name);
 void add((HTMLOptionElement or HTMLOptGroupElement) element, optional (HTMLElement or long)? before = null);
 void remove(long index);
 setter creator void (unsigned long index, HTMLOptionElement? option);

 readonly attribute HTMLCollection selectedOptions;
 attribute long selectedIndex;
 attribute DOMString value;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;
};

 The select element represents a control for selecting amongst a set of
 options.

 The multiple attribute is a boolean
 attribute. If the attribute is present, then the select element
 represents a control for selecting zero or more options from the list of options. If the attribute is absent, then the
 select element represents a control for selecting a single option from
 the list of options.

 The size attribute gives the number of options
 to show to the user. The size attribute, if specified, must
 have a value that is a valid non-negative integer greater than zero.

 The display size of a select element is the
 result of applying the rules for parsing non-negative integers to the value of
 element's size attribute, if it has one and parsing it is
 successful. If applying those rules to the attribute's value is not successful, or if the size attribute is absent, then the element's display size is 4 if the element's multiple content attribute is present, and 1 otherwise.

 The list of options for a select
 element consists of all the option element children of the select
 element, and all the option element children of all the optgroup element
 children of the select element, in tree order.

 The required attribute is a boolean
 attribute. When specified, the user will be required to select a value before submitting
 the form.

 If a select element has a required
 attribute specified, does not have a multiple attribute
 specified, and has a display size of 1; and if the value of the first option element in the
 select element's list of options (if
 any) is the empty string, and that option element's parent node is the
 select element (and not an optgroup element), then that
 option is the select element's placeholder label option.

 If a select element has a required
 attribute specified, does not have a multiple attribute
 specified, and has a display size of 1, then the
 select element must have a placeholder label option.

 Constraint validation: If the element has its required attribute specified, and either none of the
 option elements in the select element's list of options have their selectedness set to true, or the only
 option element in the select element's list of options with its selectedness set to true is the placeholder label
 option, then the element is suffering from being missing.

 If the multiple attribute is absent, and the element
 is not disabled, then the user agent should allow the
 user to pick an option element in its list
 of options that is itself not disabled. Upon
 this option element being picked (either
 through a click, or through unfocusing the element after changing its value, or through any other
 mechanism), and before the
 relevant user interaction event is queued (e.g. before the
 click event), the user agent must set the selectedness of the picked option element
 to true and then queue a task to fire a simple event that bubbles named
 change at the select element, using the user
 interaction task source as the task source.

 If the multiple attribute is absent, whenever an
 option element in the select element's list of options has its selectedness set to true, and whenever an
 option element with its selectedness
 set to true is added to the select element's list of options, the user agent must set the selectedness of all the other option
 elements in its list of options to false.

 If the multiple attribute is absent and the element's
 display size is greater than 1, then the user agent
 should also allow the user to request that the option whose selectedness is true, if any, be unselected. Upon this
 request being conveyed to the user agent, and before the relevant user interaction event is queued (e.g. before the click
 event), the user agent must set the selectedness
 of that option element to false and then queue a task to fire a
 simple event that bubbles named change at the
 select element, using the user interaction task source as the task
 source.

 If nodes are inserted or nodes are removed causing the list of options to gain or lose one or more
 option elements, or if an option element in the list of options asks for a
 reset, then, if the select element's multiple attribute is absent, the select
 element's display size is 1, and no option
 elements in the select element's list of
 options have their selectedness set to
 true, the user agent must set the selectedness of
 the first option element in the list of
 options in tree order that is not disabled, if any, to true.

 If the multiple attribute is present, and the element
 is not disabled, then the user agent should allow the
 user to toggle the selectedness of the option elements in its
 list of options that are themselves not disabled (either through a click, or any other mechanism). Upon the selectedness of one or more option
 elements being changed by the user, and before the relevant user interaction event is queued (e.g. before a related click event), the user agent must queue a task to
 fire a simple event that bubbles named change at
 the select element, using the user interaction task source as the task
 source.

 The reset algorithm for select
 elements is to go through all the option elements in the element's list of options, set their selectedness to true if the option element
 has a selected attribute, and false otherwise, and then
 have the option elements ask for a reset.

 The form attribute is used to explicitly associate the
 select element with its form owner. The name attribute represents the element's name. The disabled attribute is used to make the control non-interactive and
 to prevent its value from being submitted. The autofocus
 attribute controls focus.

 A select element that is not disabled is
 mutable.

 	select . type

 	

 Returns "select-multiple" if the element has a multiple attribute, and "select-one"
 otherwise.

 	select . options

 	

 Returns an HTMLOptionsCollection of the list of options.

 	select . length [= value]

 	

 Returns the number of elements in the list of
 options.

 When set to a smaller number, truncates the number of option elements in the
 select.

 When set to a greater number, adds new blank option elements to the
 select.

 	element = select . item(index)

 	select[index]

 	

 Returns the item with index index from the list of options. The items are sorted in tree
 order.

 	element = select . namedItem(name)

 	

 Returns the first item with ID or name name from the list of options.

 Returns null if no element with that ID could be found.

 	select . add(element [, before])

 	

 Inserts element before the node given by before.

 The before argument can be a number, in which case element is inserted before the item with that number, or an element from the
 list of options, in which case element is inserted before that element.

 If before is omitted, null, or a number out of range, then element will be added at the end of the list.

 This method will throw a HierarchyRequestError exception if element is an ancestor of the element into which it is to be inserted.

 	select . selectedOptions

 	

 Returns an HTMLCollection of the list
 of options that are selected.

 	select . selectedIndex [= value]

 	

 Returns the index of the first selected item, if any, or −1 if there is no selected
 item.

 Can be set, to change the selection.

 	select . value [= value]

 	

 Returns the value of the first selected item, if any,
 or the empty string if there is no selected item.

 Can be set, to change the selection.

 The type IDL attribute, on getting, must return
 the string "select-one" if the multiple attribute is absent, and the string "select-multiple" if the multiple
 attribute is present.

 The options IDL attribute must return an
 HTMLOptionsCollection rooted at the select node, whose filter matches
 the elements in the list of options.

 The options collection is also mirrored on the
 HTMLSelectElement object. The supported property indices at any instant
 are the indices supported by the object returned by the options attribute at that instant.

 The length IDL attribute must return the
 number of nodes represented by the options collection. On setting, it must act like the attribute
 of the same name on the options collection.

 The item(index) method must
 return the value returned by the method of the same
 name on the options collection, when invoked with
 the same argument.

 The namedItem(name)
 method must return the value returned by the
 method of the same name on the options collection,
 when invoked with the same argument.

 When the user agent is to set the value of a new
 indexed property for a given property index index to a new value value, it must instead set the value
 of a new indexed property with the given property index index to the
 new value value on the options
 collection.

 Similarly, the add() and remove() methods must act like their namesake methods
 on that same options collection.

 The selectedOptions IDL attribute
 must return an HTMLCollection rooted at the select node, whose filter
 matches the elements in the list of options that
 have their selectedness set to true.

 The selectedIndex IDL attribute, on
 getting, must return the index of the first
 option element in the list of options
 in tree order that has its selectedness set to true, if any. If there isn't one,
 then it must return −1.

 On setting, the selectedIndex attribute must set
 the selectedness of all the option
 elements in the list of options to false, and then
 the option element in the list of
 options whose index is the given new value, if
 any, must have its selectedness set to true.

 This can result in no element having a selectedness set to true even in the case of the
 select element having no multiple attribute
 and a display size of 1.

 The value IDL attribute, on getting, must
 return the value of the first option
 element in the list of options in tree
 order that has its selectedness set to
 true, if any. If there isn't one, then it must return the empty string.

 On setting, the value attribute must set the selectedness of all the option elements in
 the list of options to false, and then the first
 option element in the list of
 options, in tree order, whose value
 is equal to the given new value, if any, must have its selectedness set to true.

 This can result in no element having a selectedness set to true even in the case of the
 select element having no multiple attribute
 and a display size of 1.

 The multiple, required, and size IDL attributes must reflect the
 respective content attributes of the same name. The size IDL
 attribute has a default value of zero.

 For historical reasons, the default value of the size IDL attribute does not return the actual size used, which, in
 the absence of the size content attribute, is either 1 or 4
 depending on the presence of the multiple attribute.

 The willValidate, validity, and validationMessage IDL attributes, and the checkValidity() and setCustomValidity() methods, are part of the
 constraint validation API. The labels IDL
 attribute provides a list of the element's labels. The autofocus, disabled, form, and name IDL attributes are
 part of the element's forms API.

 The following example shows how a select element can be used to offer the user
 with a set of options from which the user can select a single option. The default option is
 preselected.

 <p>
 <label for="unittype">Select unit type:</label>
 <select id="unittype" name="unittype">
 <option value="1"> Miner </option>
 <option value="2"> Puffer </option>
 <option value="3" selected> Snipey </option>
 <option value="4"> Max </option>
 <option value="5"> Firebot </option>
 </select>
</p>

 When there is no default option, a placeholder can be used instead:

 <select name="unittype" required>
 <option value=""> Select unit type </option>
 <option value="1"> Miner </option>
 <option value="2"> Puffer </option>
 <option value="3"> Snipey </option>
 <option value="4"> Max </option>
 <option value="5"> Firebot </option>
</select>

 Here, the user is offered a set of options from which he can select any number. By default,
 all five options are selected.

 <p>
 <label for="allowedunits">Select unit types to enable on this map:</label>
 <select id="allowedunits" name="allowedunits" multiple>
 <option value="1" selected> Miner </option>
 <option value="2" selected> Puffer </option>
 <option value="3" selected> Snipey </option>
 <option value="4" selected> Max </option>
 <option value="5" selected> Firebot </option>
 </select>
</p>

 Sometimes, a user has to select one or more items. This example shows such an interface.

 <p>Select the songs from that you would like on your Act II Mix Tape:</p>
<select multiple required name="act2">
 <option value="s1">It Sucks to Be Me (Reprise)
 <option value="s2">There is Life Outside Your Apartment
 <option value="s3">The More You Ruv Someone
 <option value="s4">Schadenfreude
 <option value="s5">I Wish I Could Go Back to College
 <option value="s6">The Money Song
 <option value="s7">School for Monsters
 <option value="s8">The Money Song (Reprise)
 <option value="s9">There's a Fine, Fine Line (Reprise)
 <option value="s10">What Do You Do With a B.A. in English? (Reprise)
 <option value="s11">For Now
</select>

 The datalist element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Either: phrasing content.

 	Or: Zero or more option elements.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	
interface HTMLDataListElement : HTMLElement {
 readonly attribute HTMLCollection options;
};

 The datalist element represents a set of
 option elements that represent predefined options for
 other controls. In the rendering,
 the datalist element represents
 nothing.

 The datalist element can be used in two ways. In the simplest case, the
 datalist element has just option element children.

 <label>
 Sex:
 <input name=sex list=sexes>
 <datalist id=sexes>
 <option value="Female">
 <option value="Male">
 </datalist>
</label>

 In the more elaborate case, the datalist element can be given contents that are to
 be displayed for down-level clients that don't support datalist. In this case, the
 option elements are provided inside a select element inside the
 datalist element.

 <label>
 Sex:
 <input name=sex list=sexes>
</label>
<datalist id=sexes>
 <label>
 or select from the list:
 <select name=sex>
 <option value="">
 <option>Female
 <option>Male
 </select>
 </label>
</datalist>

 The datalist element is hooked up to an
 input element using the list attribute on the
 input element.

 Each option element that is a descendant of the
 datalist element, that is not disabled, and whose value is a string that isn't the
 empty string, represents a suggestion. Each suggestion has a value and a label.

 	datalist . options

 	
 Returns an HTMLCollection of the options elements of the
 datalist element.

 The options
 IDL attribute must return an HTMLCollection rooted at
 the datalist node, whose filter matches
 option elements.

 Constraint validation: If an element has a
 datalist element ancestor, it is barred from
 constraint validation.

 The optgroup element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a select element.

 	Content model:

 	Zero or more option and script-supporting elements.

 	Content attributes:

 	Global attributes

 	disabled

 	label

 	DOM interface:

 	
interface HTMLOptGroupElement : HTMLElement {
 attribute boolean disabled;
 attribute DOMString label;
};

 The optgroup element represents a group of
 option elements with a common label.

 The element's group of option elements consists of
 the option elements that are children of the
 optgroup element.

 When showing option elements in select
 elements, user agents should show the option elements
 of such groups as being related to each other and separate from
 other option elements.

 The disabled attribute
 is a boolean attribute and can be used to disable a group of
 option elements together.

 The label
 attribute must be specified. Its value gives the name of the group,
 for the purposes of the user interface.

 The disabled and label attributes must
 reflect the respective content attributes of the same
 name.

 The following snippet shows how a set of lessons from three
 courses could be offered in a select drop-down
 widget:

 <form action="courseselector.dll" method="get">
 <p>Which course would you like to watch today?
 <p><label>Course:
 <select name="c">
 <optgroup label="8.01 Physics I: Classical Mechanics">
 <option value="8.01.1">Lecture 01: Powers of Ten
 <option value="8.01.2">Lecture 02: 1D Kinematics
 <option value="8.01.3">Lecture 03: Vectors
 <optgroup label="8.02 Electricity and Magnestism">
 <option value="8.02.1">Lecture 01: What holds our world together?
 <option value="8.02.2">Lecture 02: Electric Field
 <option value="8.02.3">Lecture 03: Electric Flux
 <optgroup label="8.03 Physics III: Vibrations and Waves">
 <option value="8.03.1">Lecture 01: Periodic Phenomenon
 <option value="8.03.2">Lecture 02: Beats
 <option value="8.03.3">Lecture 03: Forced Oscillations with Damping
 </select>
 </label>
 <p><input type=submit value="▶ Play">
</form>

 The option element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As a child of a select element.

 	As a child of a datalist element.

 	As a child of an optgroup element.

 	Content model:

 	Text.

 	Content attributes:

 	Global attributes

 	disabled

 	label

 	selected

 	value

 	DOM interface:

 	
[NamedConstructor=Option(optional DOMString text = "", optional DOMString value, optional boolean defaultSelected = false, optional boolean selected = false)]
interface HTMLOptionElement : HTMLElement {
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute DOMString label;
 attribute boolean defaultSelected;
 attribute boolean selected;
 attribute DOMString value;

 attribute DOMString text;
 readonly attribute long index;
};

 The option element represents an option in a select
 element or as part of a list of suggestions in a datalist element.

 In certain circumstances described in the definition of the select element, an
 option element can be a select element's placeholder label
 option. A placeholder label option does not represent an actual option, but
 instead represents a label for the select control.

 The disabled attribute is a boolean
 attribute. An option element is disabled if its disabled attribute is present or if it is a child of an
 optgroup element whose disabled attribute
 is present.

 An option element that is disabled must
 prevent any click events that are queued on the user interaction task source from being dispatched on the
 element.

 The label attribute provides a label for
 element. The label of an option element is
 the value of the label content attribute, if there is one,
 or, if there is not, the value of the element's text IDL
 attribute.

 The label content attribute, if specified, must not be
 empty. If the attribute is not specified, then the element itself must not be empty.

 The value attribute provides a value for
 element. The value of an option element is
 the value of the value content attribute, if there is one,
 or, if there is not, the value of the element's text IDL
 attribute.

 The selected attribute is a boolean
 attribute. It represents the default selectedness of the element.

 The selectedness of an option
 element is a boolean state, initially false. Except where otherwise specified, when the element is
 created, its selectedness must be set to true if
 the element has a selected attribute. Whenever an
 option element's selected attribute is
 added, its selectedness must be set to true.

 The Option() constructor, when called with three
 or fewer arguments, overrides the initial state of the selectedness state to always be false even if the third
 argument is true (implying that a selected attribute is
 to be set). The fourth argument can be used to explicitly set the initial selectedness state when using the constructor.

 A select element whose multiple
 attribute is not specified must not have more than one descendant option element with
 its selected attribute set.

 An option element's index is the number of
 option element that are in the same list of
 options but that come before it in tree order. If the option
 element is not in a list of options, then the
 option element's index is zero.

 	option . selected

 	

 Returns true if the element is selected, and false otherwise.

 Can be set, to override the current state of the element.

 	option . index

 	

 Returns the index of the element in its select
 element's options
 list.

 	option . form

 	

 Returns the element's form element, if any, or
 null otherwise.

 	option . text

 	

 Same as textContent, except that spaces are collapsed and script elements are skipped.

 	option = new Option([text [, value [, defaultSelected [, selected]]]])

 	

 Returns a new option element.

 The text argument sets the contents of the element.

 The value argument sets the value attribute.

 The defaultSelected argument sets the selected attribute.

 The selected argument sets whether or not the element is selected. If it is omitted, even if the defaultSelected argument is true, the element is not selected.

 The disabled IDL attribute must
 reflect the content attribute of the same name. The defaultSelected IDL attribute must
 reflect the selected content attribute.

 The label IDL attribute, on getting, must
 return the element's label. On setting, the element's
 label content attribute must be set to the new value.

 The value IDL attribute, on getting, must
 return the element's value. On setting, the element's
 value content attribute must be set to the new value.

 The selected IDL attribute, on getting,
 must return true if the element's selectedness is
 true, and false otherwise. On setting, it must set the element's selectedness to the new value, and then cause the
 element to ask for a reset.

 The index IDL attribute must return the
 element's index.

 The text IDL attribute, on getting, must return
 the result of stripping and collapsing
 whitespace from the concatenation of data of all the
 Text node descendants of the option element, in tree order,
 excluding any that are descendants of descendants of the option element that are
 themselves script elements in the HTML namespace or script elements in the SVG namespace.

 On setting, the text attribute must act as if the
 textContent IDL attribute on the element had been set to the new value.

 The form IDL attribute's behavior depends on
 whether the option element is in a select element or not. If the
 option has a select element as its parent, or has an
 optgroup element as its parent and that optgroup element has a
 select element as its parent, then the form IDL
 attribute must return the same value as the form IDL attribute
 on that select element. Otherwise, it must return null.

 A constructor is provided for creating HTMLOptionElement objects (in addition to
 the factory methods from DOM such as createElement()): Option(text, value, defaultSelected, selected). When invoked as a
 constructor, it must return a new HTMLOptionElement object (a new option
 element). If the first argument is not the empty string, the new object must have as its only
 child a Text node whose data is the value of that argument. Otherwise, it must have
 no children. If the value argument is present, the new object must have a
 value attribute set with the value of the argument as its
 value. If the defaultSelected argument is true, the new object must have a
 selected attribute set with no value. If the selected argument is true, the new object must have its selectedness set to true; otherwise the selectedness must be set to false, even if the defaultSelected argument is true. The element's document must be the active
 document of the browsing context of the Window object on which
 the interface object of the invoked constructor is found.

 The textarea element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Listed, labelable, submittable, resettable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Text.

 	Content attributes:

 	Global attributes

 	autocomplete

 	autofocus

 	cols

 	dirname

 	disabled

 	form

 	maxlength

 	name

 	placeholder

 	readonly

 	required

 	rows

 	wrap

 	DOM interface:

 	
interface HTMLTextAreaElement : HTMLElement {
 attribute DOMString autocomplete;
 attribute boolean autofocus;
 attribute unsigned long cols;
 attribute DOMString dirName;
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute long maxLength;
 attribute DOMString name;
 attribute DOMString placeholder;
 attribute boolean readOnly;
 attribute boolean required;
 attribute unsigned long rows;
 attribute DOMString wrap;

 readonly attribute DOMString type;
 attribute DOMString defaultValue;
 [TreatNullAs=EmptyString] attribute DOMString value;
 readonly attribute unsigned long textLength;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;

 void select();
 attribute unsigned long selectionStart;
 attribute unsigned long selectionEnd;
 attribute DOMString selectionDirection;
 void setRangeText(DOMString replacement);
 void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode);
 void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction);
};

 The textarea element represents a
 multiline plain text edit control. The contents of the control represent the
 control's default value.

 The raw value of
 a textarea control must be initially the empty
 string.

 A newline in a textarea element, and in its raw value, should separate
 paragraphs for the purposes of the Unicode bidirectional algorithm.
 This requirement may be implemented indirectly through the style
 layer. For example, an HTML+CSS user agent could implement these
 requirements by implementing the CSS 'unicode-bidi' property. [BIDI] [CSS]

 The readonly attribute
 is a boolean attribute used to control whether the text
 can be edited by the user or not.

 In this example, a text field is marked read-only because it
 represents a read-only file:

 Filename: <code>/etc/bash.bashrc</code>
<textarea name="buffer" readonly>
System-wide .bashrc file for interactive bash(1) shells.

To enable the settings / commands in this file for login shells as well,
this file has to be sourced in /etc/profile.

If not running interactively, don't do anything
[-z "$PS1"] && return

...</textarea>

 Constraint validation: If the readonly attribute is
 specified on a textarea element, the element is
 barred from constraint validation.

 A textarea element is mutable if it is neither disabled nor has a readonly attribute
 specified.

 When a textarea is mutable, its raw value should be
 editable by the user: the user agent should allow the user to edit,
 insert, and remove text, and to insert and remove line breaks in the
 form of "LF" (U+000A) characters. Any time the user causes
 the element's raw
 value to change, the user agent must queue a
 task to fire a simple event that bubbles named
 input at the textarea
 element. User agents may wait for a suitable break in the user's
 interaction before queuing the task; for example, a user agent could
 wait for the user to have not hit a key for 100ms, so as to only
 fire the event when the user pauses, instead of continuously for
 each keystroke.

 A textarea element has a dirty value flag, which must be
 initially set to false, and must be set to true whenever the user
 interacts with the control in a way that changes the raw value.

 When the textarea element's textContent
 IDL attribute changes value, if the element's dirty value flag is false,
 then the element's raw
 value must be set to the value of the element's
 textContent IDL attribute.

 The reset
 algorithm for textarea elements is to set the
 element's value to
 the value of the element's textContent IDL
 attribute.

 If the element is mutable, the user agent
 should allow the user to change the writing direction of the
 element, setting it either to a left-to-right writing direction or a
 right-to-left writing direction. If the user does so, the user agent
 must then run the following steps:

 	Set the element's dir
 attribute to "ltr" if the user
 selected a left-to-right writing direction, and "rtl" if the user selected a
 right-to-left writing direction.

 	Queue a task to fire a simple
 event that bubbles named input at the textarea
 element.

 The cols
 attribute specifies the expected maximum number of characters per
 line. If the cols attribute
 is specified, its value must be a valid non-negative
 integer greater than zero.

 The user agent may use the textarea element's character width as a hint to
 the user as to how many characters the server prefers per line
 (e.g. for visual user agents by making the width of the control be
 that many characters). In visual renderings, the user agent should
 wrap the user's input in the rendering so that each line is no wider
 than this number of characters.

 The rows
 attribute specifies the number of lines to show. If the rows attribute is specified, its
 value must be a valid non-negative integer greater than
 zero.

 Visual user agents should set the height of the control to the
 number of lines given by character height.

 The wrap
 attribute is an enumerated attribute with two keywords
 and states: the soft keyword
 which maps to the Soft state, and the
 hard keyword
 which maps to the Hard state. The
 missing value default is the Soft state.

 The Soft state
 indicates that the text in the textarea is not to be
 wrapped when it is submitted (though it can still be wrapped in the
 rendering).

 The Hard state
 indicates that the text in the textarea is to have
 newlines added by the user agent so that the text is wrapped when it
 is submitted.

 If the element's wrap
 attribute is in the Hard state, the cols attribute must be
 specified.

 For historical reasons, the element's value is normalised in
 three different ways for three different purposes. The raw value is the value as
 it was originally set. It is not normalized. The API value is the value
 used in the value IDL
 attribute. It is normalized so that line breaks use "LF" (U+000A) characters. Finally, there is the form submission value. It is normalized so that line
 breaks use U+000D CARRIAGE RETURN "CRLF" (U+000A) character
 pairs, and in addition, if necessary given the element's wrap attribute, additional line
 breaks are inserted to wrap the text at the given width.

 The element's API
 value is defined to be the element's raw value with the
 following transformation applied:

 	Replace every U+000D CARRIAGE RETURN "CRLF" (U+000A)
 character pair from the raw value with a single
 "LF" (U+000A) character.

 	Replace every remaining U+000D CARRIAGE RETURN character from
 the raw value with
 a single "LF" (U+000A) character.

 The element's value is
 defined to be the element's raw value with the
 following transformation applied:

 	Replace every occurrence of a "CR" (U+000D)
 character not followed by a "LF" (U+000A) character, and
 every occurrence of a "LF" (U+000A) character not preceded
 by a "CR" (U+000D) character, by a two-character
 string consisting of a U+000D CARRIAGE RETURN "CRLF" (U+000A) character pair.

 	If the element's wrap attribute is in the Hard state, insert
 U+000D CARRIAGE RETURN "CRLF" (U+000A) character pairs
 into the string using a UA-defined algorithm so that each line has
 no more than character
 width characters. For the purposes of this requirement,
 lines are delimited by the start of the string, the end of the
 string, and U+000D CARRIAGE RETURN "CRLF" (U+000A)
 character pairs.

 The maxlength
 attribute is a form control maxlength attribute controlled by the
 textarea element's dirty value flag.

 If the textarea element has a maximum allowed
 value length, then the element's children must be such that
 the code-unit length of the value of the element's
 textContent IDL attribute is equal to or less than the
 element's maximum allowed value length.

 The required attribute
 is a boolean attribute. When specified, the user will
 be required to enter a value before submitting the form.

 Constraint validation: If the element has its
 required attribute
 specified, and the element is mutable, and the element's
 value is the empty string,
 then the element is suffering from being missing.

 The placeholder
 attribute represents a short hint (a word or short phrase)
 intended to aid the user with data entry when the control has no
 value. A hint could be a sample value or a brief description of the
 expected format. The attribute, if specified, must have a value that
 contains no "LF" (U+000A) or "CR" (U+000D)
 characters.

 The placeholder attribute
 should not be used as a replacement for a label. For a
 longer hint or other advisory text, place the text next to the control.

 Use of the placeholder
 attribute as a replacement for a label can reduce the
 accessibility and usability of the control for a range of users including older
 users and users with cognitive, mobility, fine motor skill or vision impairments.
 While the hint given by the control's label is shown at all times, the short
 hint given in the placeholder
 attribute is only shown before the user enters a value. Furthermore,
 placeholder text may be mistaken for
 a pre-filled value, and as commonly implemented the default color of the placeholder text
 provides insufficient contrast and the lack of a separate visible label
 reduces the size of the hit region available for setting focus on the control.

 User agents should present this hint to the user, after having
 stripped line breaks from it,
 when the element's value is
 the empty string and the control is not focused (i.e., by displaying
 it inside a blank unfocused control).

 The name attribute represents the element's name.
 The dirname attribute controls how the element's directionality is submitted.
 The disabled attribute is used to make the control non-interactive and to prevent its value from being submitted.
 The form attribute is used to explicitly associate the textarea element with its form owner.
 The autofocus attribute controls focus.
 The autocomplete attribute controls how the user agent provides autofill behavior.

 	textarea . type

 	

 Returns the string "textarea".

 	textarea . value

 	

 Returns the current value of the element.

 Can be set, to change the value.

 The cols, placeholder,
 required, rows, and wrap attributes must
 reflect the respective content attributes of the same
 name. The cols and rows attributes are limited
 to only non-negative numbers greater than zero. The cols attribute's default value is
 20. The rows attribute's
 default value is 2. The dirName IDL
 attribute must reflect the dirname content attribute. The maxLength IDL
 attribute must reflect the maxlength content attribute,
 limited to only non-negative numbers. The readOnly IDL
 attribute must reflect the readonly content
 attribute.

 The type IDL
 attribute must return the value "textarea".

 The defaultValue
 IDL attribute must act like the element's textContent
 IDL attribute.

 The value
 attribute must, on getting, return the element's API value; on setting, it
 must set the element's raw
 value to the new value, set the element's dirty value flag to true, and
 should then move the text entry cursor position to the end of the
 text field, unselecting any selected text and resetting the
 selection direction to none.

 The textLength IDL
 attribute must return the code-unit length of the
 element's API
 value.

 The willValidate, validity, and validationMessage IDL
 attributes, and the checkValidity() and setCustomValidity()
 methods, are part of the constraint validation API. The
 labels IDL attribute provides a
 list of the element's labels. The select(), selectionStart,
 selectionEnd,
 selectionDirection,
 setRangeText(),
 and setSelectionRange()
 methods and IDL attributes expose the element's text selection. The
 autofocus, disabled, form, and name IDL attributes are part of the
 element's forms API.

 Here is an example of a textarea being used for
 unrestricted free-form text input in a form:

 <p>If you have any comments, please let us know: <textarea cols=80 name=comments></textarea></p>

 To specify a maximum length for the comments, one can use
 the maxlength
 attribute:

 <p>If you have any short comments, please let us know: <textarea cols=80 name=comments maxlength=200></textarea></p>

 To give a default value, text can be included inside the element:

 <p>If you have any comments, please let us know: <textarea cols=80 name=comments>You rock!</textarea></p>

 To have the browser submit the directionality of
 the element along with the value, the dirname attribute can be
 specified:

 <p>If you have any comments, please let us know (you may use either English or Hebrew for your comments):
<textarea cols=80 name=comments dirname=comments.dir></textarea></p>

 The keygen element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Interactive content.

 	Listed, labelable, submittable, resettable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Empty.

 	Content attributes:

 	Global attributes

 	autofocus

 	challenge

 	disabled

 	form

 	keytype

 	name

 	DOM interface:

 	
interface HTMLKeygenElement : HTMLElement {
 attribute boolean autofocus;
 attribute DOMString challenge;
 attribute boolean disabled;
 readonly attribute HTMLFormElement? form;
 attribute DOMString keytype;
 attribute DOMString name;

 readonly attribute DOMString type;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;
};

 The keygen element represents a key
 pair generator control. When the control's form is submitted, the
 private key is stored in the local keystore, and the public key is
 packaged and sent to the server.

 The challenge attribute
 may be specified. Its value will be packaged with the submitted
 key.

 The keytype
 attribute is an enumerated attribute. The following
 table lists the keywords and states for the attribute — the
 keywords in the left column map to the states listed in the cell in
 the second column on the same row as the keyword. User agents are
 not required to support these values, and must only recognize values
 whose corresponding algorithms they support.

 	 Keyword 	 State

 	 rsa
 	 RSA

 The invalid value default state is the unknown state. The missing value default state
 is the RSA state, if it is supported, or the unknown state otherwise.

 This specification does not specify what key types
 user agents are to support — it is possible for a user agent
 to not support any key types at all.

 The user agent may expose a user interface for each
 keygen element to allow the user to configure settings
 of the element's key pair generator, e.g. the key length.

 The reset
 algorithm for keygen elements is to set these
 various configuration settings back to their defaults.

 The element's value is the
 string returned from the following algorithm:

 	

 Use the appropriate step from the following list:

 	If the keytype
 attribute is in the RSA state

 	

 Generate an RSA key pair using the settings given by the
 user, if appropriate, using the md5WithRSAEncryption RSA signature algorithm
 (the signature algorithm with MD5 and the RSA encryption
 algorithm) referenced in section 2.2.1 ("RSA Signature
 Algorithm") of RFC 3279, and defined in RFC 2313. [RFC3279] [RFC2313]

 	Otherwise, the keytype attribute is in the unknown state

 	

 The given key type is not supported. Return the empty string
 and abort this algorithm.

 Let private key be the generated private key.

 Let public key be the generated public key.

 Let signature algorithm be the selected
 signature algorithm.

 	

 If the element has a challenge attribute, then let
 challenge be that attribute's value.
 Otherwise, let challenge be the empty
 string.

 	

 Let algorithm be an ASN.1 AlgorithmIdentifier structure as defined by
 RFC 5280, with the algorithm field giving the
 ASN.1 OID used to identify signature
 algorithm, using the OIDs defined in section 2.2 ("Signature
 Algorithms") of RFC 3279, and the parameters
 field set up as required by RFC 3279 for AlgorithmIdentifier structures for that
 algorithm. [X690] [RFC5280] [RFC3279]

 	

 Let spki be an ASN.1 SubjectPublicKeyInfo structure as defined by
 RFC 5280, with the algorithm field set to the
 algorithm structure from the previous step,
 and the subjectPublicKey field set to the
 BIT STRING value resulting from ASN.1 DER encoding the public key. [X690] [RFC5280]

 	

 Let publicKeyAndChallenge be an ASN.1
 PublicKeyAndChallenge structure as defined below,
 with the spki field set to the spki structure from the previous step, and the
 challenge field set to the string challenge obtained earlier. [X690]

 	

 Let signature be the BIT STRING value
 resulting from ASN.1 DER encoding the signature generated by
 applying the signature algorithm to the byte
 string obtained by ASN.1 DER encoding the publicKeyAndChallenge structure, using private key as the signing key. [X690]

 	

 Let signedPublicKeyAndChallenge be an ASN.1
 SignedPublicKeyAndChallenge structure as defined
 below, with the publicKeyAndChallenge field
 set to the publicKeyAndChallenge structure,
 the signatureAlgorithm field set to the algorithm structure, and the signature field set to the BIT STRING signature from the previous step. [X690]

 	

 Return the result of base64 encoding the result of ASN.1 DER
 encoding the signedPublicKeyAndChallenge
 structure. [RFC4648] [X690]

 The data objects used by the above algorithm are defined as
 follows. These definitions use the same "ASN.1-like" syntax defined
 by RFC 5280. [RFC5280]

 PublicKeyAndChallenge ::= SEQUENCE {
 spki ,
 challenge IA5STRING
}

SignedPublicKeyAndChallenge ::= SEQUENCE {
 publicKeyAndChallenge PublicKeyAndChallenge,
 signatureAlgorithm ,
 signature BIT STRING
}

 Constraint validation: The keygen
 element is barred from constraint validation.

 The form attribute is used to
 explicitly associate the keygen element with its
 form owner. The name
 attribute represents the element's name. The disabled attribute is used to make
 the control non-interactive and to prevent its value from being
 submitted. The autofocus
 attribute controls focus.

 	keygen . type

 	

 Returns the string "keygen".

 The challenge IDL
 attribute must reflect the content attribute of the
 same name.

 The keytype
 IDL attribute must reflect the content attribute of the
 same name, limited to only known values.

 The type IDL
 attribute must return the value "keygen".

 The willValidate, validity, and validationMessage IDL
 attributes, and the checkValidity() and setCustomValidity()
 methods, are part of the constraint validation API. The
 labels IDL attribute provides a
 list of the element's labels. The autofocus, disabled, form, and name IDL attributes are part of the
 element's forms API.

 This specification does not specify how the private
 key generated is to be used. It is expected that after receiving the
 SignedPublicKeyAndChallenge (SPKAC) structure, the
 server will generate a client certificate and offer it back to the
 user for download; this certificate, once downloaded and stored in
 the key store along with the private key, can then be used to
 authenticate to services that use TLS and certificate
 authentication.

 To generate a key pair, add the private key to the user's key
 store, and submit the public key to the server, markup such as the
 following can be used:

 <form action="processkey.cgi" method="post" enctype="multipart/form-data">
 <p><keygen name="key"></p>
 <p><input type=submit value="Submit key..."></p>
</form>

 The server will then receive a form submission with a packaged
 RSA public key as the value of "key". This
 can then be used for various purposes, such as generating a client
 certificate, as mentioned above.

 The output element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Listed, labelable, resettable, and reassociateable form-associated element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	for

 	form

 	name

 	DOM interface:

 	
interface HTMLOutputElement : HTMLElement {
 [PutForwards=] readonly attribute DOMSettableTokenList htmlFor;
 readonly attribute HTMLFormElement? form;
 attribute DOMString name;

 readonly attribute DOMString type;
 attribute DOMString defaultValue;
 attribute DOMString value;

 readonly attribute boolean willValidate;
 readonly attribute ValidityState validity;
 readonly attribute DOMString validationMessage;
 boolean checkValidity();
 void setCustomValidity(DOMString error);

 readonly attribute NodeList labels;
};

 The output element represents the result of a
 calculation or user action.

 The for content
 attribute allows an explicit relationship to be made between the
 result of a calculation and the elements that represent the values
 that went into the calculation or that otherwise influenced the
 calculation. The for attribute,
 if specified, must contain a string consisting of an unordered
 set of unique space-separated tokens that are
 case-sensitive, each of which must have the value of an
 ID of an element in the same
 Document.

 The form attribute is used to
 explicitly associate the output element with its
 form owner. The name
 attribute represents the element's name.

 The element has a value mode
 flag which is either value or default. Initially, the
 value mode flag must be set
 to default.

 The element also has a default value. Initially,
 the default value
 must be the empty string.

 When the value mode flag
 is in mode default, the
 contents of the element represent both the value of the element and
 its default
 value. When the value mode
 flag is in mode value, the contents of the
 element represent the value of the element only, and the default value is only
 accessible using the defaultValue IDL
 attribute.

 Whenever the element's descendants are changed in any way, if the
 value mode flag is in mode
 default, the element's
 default value must
 be set to the value of the element's textContent IDL
 attribute.

 The reset
 algorithm for output elements is to set the
 element's value mode flag
 to default and then to
 set the element's textContent IDL attribute to the
 value of the element's default value (thus
 replacing the element's child nodes).

 	output . value [= value]

 	

 Returns the element's current value.

 Can be set, to change the value.

 	output . defaultValue [= value]

 	

 Returns the element's current default value.

 Can be set, to change the default value.

 	output . type

 	

 Returns the string "output".

 The value IDL
 attribute must act like the element's textContent IDL
 attribute, except that on setting, in addition, before the child
 nodes are changed, the element's value mode flag must be set to value.

 The defaultValue IDL
 attribute, on getting, must return the element's default value. On
 setting, the attribute must set the element's default value, and, if
 the element's value mode
 flag is in the mode default, set the element's
 textContent IDL attribute as well.

 The type
 attribute must return the string "output".

 The htmlFor
 IDL attribute must reflect the for content attribute.

 The willValidate, validity, and validationMessage IDL
 attributes, and the checkValidity() and setCustomValidity()
 methods, are part of the constraint validation API. The
 labels IDL attribute provides a
 list of the element's labels. The form and name IDL attributes are part of the
 element's forms API.

 A simple calculator could use output for its
 display of calculated results:

 <form onsubmit="return false" oninput="o.value = a.valueAsNumber + b.valueAsNumber">
 <input name=a type=number step=any> +
 <input name=b type=number step=any> =
 <output name=o></output>
</form>

 The progress element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Labelable element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content, but there must be no progress element descendants.

 	Content attributes:

 	Global attributes

 	value

 	max

 	DOM interface:

 	
interface HTMLProgressElement : HTMLElement {
 attribute double value;
 attribute double max;
 readonly attribute double position;
 readonly attribute NodeList labels;
};

 The progress element represents the
 completion progress of a task. The progress is either indeterminate,
 indicating that progress is being made but that it is not clear how
 much more work remains to be done before the task is complete (e.g.
 because the task is waiting for a remote host to respond), or the
 progress is a number in the range zero to a maximum, giving the
 fraction of work that has so far been completed.

 There are two attributes that determine the current task
 completion represented by the element. The value attribute
 specifies how much of the task has been completed, and the max attribute specifies
 how much work the task requires in total. The units are arbitrary
 and not specified.

 To make a determinate progress bar, add a value attribute with the current
 progress (either a number from 0.0 to 1.0, or, if the max attribute is specified, a
 number from 0 to the value of the max attribute). To make an
 indeterminate progress bar, remove the value attribute.

 Authors are encouraged to also include the current value and the
 maximum value inline as text inside the element, so that the
 progress is made available to users of legacy user agents.

 Here is a snippet of a Web application that shows the progress
 of some automated task:

 <section>
 <h2>Task Progress</h2>
 <p>Progress: <progress id="p" max=100>0%</progress></p>
 <script>
 var progressBar = document.getElementById('p');
 function updateProgress(newValue) {
 progressBar.value = newValue;
 progressBar.getElementsByTagName('span')[0].textContent = newValue;
 }
 </script>
</section>

 (The updateProgress() method in this example would
 be called by some other code on the page to update the actual
 progress bar as the task progressed.)

 The value and max attributes, when present, must
 have values that are valid
 floating-point numbers. The value attribute, if present, must
 have a value equal to or greater than zero, and less than or equal
 to the value of the max
 attribute, if present, or 1.0, otherwise. The max attribute, if present, must
 have a value greater than zero.

 The progress element is the wrong
 element to use for something that is just a gauge, as opposed to
 task progress. For instance, indicating disk space usage using
 progress would be inappropriate. Instead, the
 meter element is available for such use cases.

 User agent requirements: If the value attribute is omitted, then
 the progress bar is an indeterminate progress bar. Otherwise, it is
 a determinate progress bar.

 If the progress bar is a determinate progress bar and the element
 has a max attribute, the user
 agent must parse the max
 attribute's value according to the rules for parsing
 floating-point number values. If this does not result in an
 error, and if the parsed value is greater than zero, then the maximum value of the progress
 bar is that value. Otherwise, if the element has no max attribute, or if it has one but
 parsing it resulted in an error, or if the parsed value was less
 than or equal to zero, then the maximum value of the
 progress bar is 1.0.

 If the progress bar is a determinate progress bar, user agents
 must parse the value
 attribute's value according to the rules for parsing
 floating-point number values. If this does not result in an
 error, and if the parsed value is less than the maximum value and greater
 than zero, then the current
 value of the progress bar is that parsed value. Otherwise, if
 the parsed value was greater than or equal to the maximum value, then the
 current value of the
 progress bar is the maximum
 value of the progress bar. Otherwise, if parsing the value attribute's value resulted
 in an error, or a number less than or equal to zero, then the current value of the progress
 bar is zero.

 UA requirements for showing the progress bar:
 When representing a progress element to the user, the
 UA should indicate whether it is a determinate or indeterminate
 progress bar, and in the former case, should indicate the relative
 position of the current
 value relative to the maximum value.

 	progress . position

 	

 For a determinate progress bar (one with known current and
 maximum values), returns the result of dividing the current value
 by the maximum value.

 For an indeterminate progress bar, returns −1.

 If the progress bar is an indeterminate progress bar, then the
 position IDL
 attribute must return −1. Otherwise, it must return the
 result of dividing the current value by the maximum value.

 If the progress bar is an indeterminate progress bar, then the
 value IDL
 attribute, on getting, must return 0. Otherwise, it must return the
 current value. On
 setting, the given value must be converted to the best
 representation of the number as a floating-point number and
 then the value content
 attribute must be set to that string.

 Setting the value IDL attribute to itself when
 the corresponding content attribute is absent would change the
 progress bar from an indeterminate progress bar to a determinate
 progress bar with no progress.

 The max IDL
 attribute must reflect the content attribute of the
 same name, limited to numbers greater than zero. The
 default value for max is
 1.0.

 The labels IDL attribute
 provides a list of the element's labels.

 The meter element

 	Categories:

 	Flow content.

 	Phrasing content.

 	Labelable element.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where phrasing content is expected.

 	Content model:

 	Phrasing content, but there must be no meter element descendants.

 	Content attributes:

 	Global attributes

 	value

 	min

 	max

 	low

 	high

 	optimum

 	DOM interface:

 	
interface HTMLMeterElement : HTMLElement {
 attribute double value;
 attribute double min;
 attribute double max;
 attribute double low;
 attribute double high;
 attribute double optimum;
 readonly attribute NodeList labels;
};

 The meter element represents a scalar measurement within a known
 range, or a fractional value; for example disk usage, the relevance of a query result, or the
 fraction of a voting population to have selected a particular candidate.

 This is also known as a gauge.

 The meter element should not be used to indicate progress (as in a
 progress bar). For that role, HTML provides a separate progress element.

 The meter element also does not represent a scalar value of arbitrary
 range — for example, it would be wrong to use this to report a weight, or height, unless
 there is a known maximum value.

 There are six attributes that determine the semantics of the gauge represented by the
 element.

 The min attribute specifies the lower bound of
 the range, and the max attribute specifies the
 upper bound. The value attribute specifies the
 value to have the gauge indicate as the "measured" value.

 The other three attributes can be used to segment the gauge's range into "low", "medium", and
 "high" parts, and to indicate which part of the gauge is the "optimum" part. The low attribute specifies the range that is considered to
 be the "low" part, and the high attribute
 specifies the range that is considered to be the "high" part. The optimum attribute gives the position that is
 "optimum"; if that is higher than the "high" value then this indicates that the higher the value,
 the better; if it's lower than the "low" mark then it indicates that lower values are better, and
 naturally if it is in between then it indicates that neither high nor low values are good.

 The value attribute must be specified. The value, min, low, high, max, and optimum attributes,
 when present, must have values that are valid
 floating-point numbers.

 In addition, the attributes' values are further constrained:

 Let value be the value attribute's
 number.

 If the min attribute is specified, then let minimum be that attribute's value; otherwise, let it be zero.

 If the max attribute is specified, then let maximum be that attribute's value; otherwise, let it be 1.0.

 The following inequalities must hold, as applicable:

 	minimum ≤ value ≤ maximum

 	minimum ≤ low ≤ maximum (if low is specified)

 	minimum ≤ high ≤ maximum (if high is specified)

 	minimum ≤ optimum ≤ maximum (if optimum is specified)

 	low ≤ high (if both low and high are specified)

 If no minimum or maximum is specified, then the range is assumed to be 0..1, and
 the value thus has to be within that range.

 Authors are encouraged to include a textual representation of the gauge's state in the
 element's contents, for users of user agents that do not support the meter
 element.

 When used with , the meter element's value attribute provides the element's machine-readable value.

 The following examples show three gauges that would all be
 three-quarters full:

 Storage space usage: <meter value=6 max=8>6 blocks used (out of 8 total)</meter>
Voter turnout: <meter value=0.75></meter>
Tickets sold: <meter min="0" max="100" value="75"></meter>

 The following example is incorrect use of the element, because it doesn't give a range (and
 since the default maximum is 1, both of the gauges would end up looking maxed out):

 <p>The grapefruit pie had a radius of <meter value=12>12cm</meter>
and a height of <meter value=2>2cm</meter>.</p> <!-- BAD! -->

 Instead, one would either not include the meter element, or use the meter element with a
 defined range to give the dimensions in context compared to other pies:

 <p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>
</dl>

 There is no explicit way to specify units in the meter element, but the units may
 be specified in the title attribute in free-form text.

 The example above could be extended to mention the units:

 <dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12 title="centimeters">12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2 title="centimeters">2cm</meter>
</dl>

 User agent requirements: User agents must parse the min, max, value, low, high, and optimum
 attributes using the rules for parsing floating-point number values.

 User agents must then use all these numbers to obtain values for six points on the gauge, as
 follows. (The order in which these are evaluated is important, as some of the values refer to
 earlier ones.)

 	The minimum value

 	

 If the min attribute is specified and a value could be
 parsed out of it, then the minimum value is that value. Otherwise, the minimum value is
 zero.

 	The maximum value

 	

 If the max attribute is specified and a value could be
 parsed out of it, then the candidate maximum value is that value. Otherwise, the candidate
 maximum value is 1.0.

 If the candidate maximum value is greater than or equal to the minimum value, then the
 maximum value is the candidate maximum value. Otherwise, the maximum value is the same as the
 minimum value.

 	The actual value

 	

 If the value attribute is specified and a value could
 be parsed out of it, then that value is the candidate actual value. Otherwise, the candidate
 actual value is zero.

 If the candidate actual value is less than the minimum value, then the actual value is the
 minimum value.

 Otherwise, if the candidate actual value is greater than the maximum value, then the actual
 value is the maximum value.

 Otherwise, the actual value is the candidate actual value.

 	The low boundary

 	

 If the low attribute is specified and a value could be
 parsed out of it, then the candidate low boundary is that value. Otherwise, the candidate low
 boundary is the same as the minimum value.

 If the candidate low boundary is less than the minimum value, then the low boundary is the
 minimum value.

 Otherwise, if the candidate low boundary is greater than the maximum value, then the low
 boundary is the maximum value.

 Otherwise, the low boundary is the candidate low boundary.

 	The high boundary

 	

 If the high attribute is specified and a value could be
 parsed out of it, then the candidate high boundary is that value. Otherwise, the candidate high
 boundary is the same as the maximum value.

 If the candidate high boundary is less than the low boundary, then the high boundary is the
 low boundary.

 Otherwise, if the candidate high boundary is greater than the maximum value, then the high
 boundary is the maximum value.

 Otherwise, the high boundary is the candidate high boundary.

 	The optimum point

 	

 If the optimum attribute is specified and a value
 could be parsed out of it, then the candidate optimum point is that value. Otherwise, the
 candidate optimum point is the midpoint between the minimum value and the maximum value.

 If the candidate optimum point is less than the minimum value, then the optimum point is the
 minimum value.

 Otherwise, if the candidate optimum point is greater than the maximum value, then the optimum
 point is the maximum value.

 Otherwise, the optimum point is the candidate optimum point.

 All of which will result in the following inequalities all being true:

 	minimum value ≤ actual value ≤ maximum value

 	minimum value ≤ low boundary ≤ high boundary ≤ maximum value

 	minimum value ≤ optimum point ≤ maximum value

 UA requirements for regions of the gauge: If the optimum point is equal to the
 low boundary or the high boundary, or anywhere in between them, then the region between the low
 and high boundaries of the gauge must be treated as the optimum region, and the low and high
 parts, if any, must be treated as suboptimal. Otherwise, if the optimum point is less than the low
 boundary, then the region between the minimum value and the low boundary must be treated as the
 optimum region, the region from the low boundary up to the high boundary must be treated as a
 suboptimal region, and the remaining region must be treated as an even less good region. Finally,
 if the optimum point is higher than the high boundary, then the situation is reversed; the region
 between the high boundary and the maximum value must be treated as the optimum region, the region
 from the high boundary down to the low boundary must be treated as a suboptimal region, and the
 remaining region must be treated as an even less good region.

 UA requirements for showing the gauge: When representing a meter
 element to the user, the UA should indicate the relative position of the actual value to the
 minimum and maximum values, and the relationship between the actual value and the three regions of
 the gauge.

 User agents combine the value of the title attribute and the other attributes to provide context-sensitive
 help or inline text detailing the actual values.

 For example, the following snippet:

 <meter min=0 max=60 value=23.2 title=seconds></meter>

 ...might cause the user agent to display a gauge with a tooltip
 saying "Value: 23.2 out of 60." on one line and "seconds" on a
 second line.

 The value IDL attribute, on getting, must
 return the actual value. On setting, the given value
 must be converted to the best representation of the number as a floating-point number
 and then the value content attribute must be set to that
 string.

 The min IDL attribute, on getting, must return
 the minimum value. On setting, the given value must be
 converted to the best representation of the number as a floating-point number and
 then the min content attribute must be set to that string.

 The max IDL attribute, on getting, must return
 the maximum value. On setting, the given value must be
 converted to the best representation of the number as a floating-point number and
 then the max content attribute must be set to that string.

 The low IDL attribute, on getting, must return
 the low boundary. On setting, the given value must be
 converted to the best representation of the number as a floating-point number and
 then the low content attribute must be set to that string.

 The high IDL attribute, on getting, must return
 the high boundary. On setting, the given value must be
 converted to the best representation of the number as a floating-point number and
 then the high content attribute must be set to that
 string.

 The optimum IDL attribute, on getting, must
 return the optimum value. On setting, the given value
 must be converted to the best representation of the number as a floating-point number
 and then the optimum content attribute must be set to that
 string.

 The labels IDL attribute provides a list of the element's
 labels.

 The following example shows how a gauge could fall back to localized or pretty-printed
 text.

 <p>Disk usage: <meter min=0 value=170261928 max=233257824>170 261 928 bytes used
out of 233 257 824 bytes available</meter></p>

 Form control infrastructure

 A form control's value

 Form controls have a value
 and a checkedness. (The latter
 is only used by input elements.) These are used to
 describe how the user interacts with the control.

 To define the behaviour of constraint validation in the face of
 the input element's multiple attribute,
 input elements can also have separately defined values.

 Mutability

 A form control can be designated as mutable.

 This determines (by means of definitions and
 requirements in this specification that rely on whether an element
 is so designated) whether or not the user can modify the value or checkedness of a form control, or
 whether or not a control can be automatically prefilled.

 Association of controls and forms

 A form-associated element can have a relationship with a form
 element, which is called the element's form owner. If a form-associated
 element is not associated with a form element, its form owner is
 said to be null.

 A form-associated element is, by default, associated with its ancestor form element, but, if it is reassociateable, may have a
 form attribute specified to override this.

 This feature allows authors to work around the lack of support for nested
 form elements.

 If a reassociateable form-associated element has a form
 attribute specified, then that attribute's value must be the ID of
 a form element in the element's owner Document.

 The rules in this section are complicated by the fact that although conforming
 documents will never contain nested form elements, it is quite possible (e.g. using a
 script that performs DOM manipulation) to generate documents that have such nested elements. They
 are also complicated by rules in the HTML parser that, for historical reasons, can result in a
 form-associated element being associated with a form element that is not
 its ancestor.

 When a form-associated element is created, its form owner must be
 initialized to null (no owner).

 When a form-associated element is to be associated with a form, its form owner must be
 set to that form.

 When a form-associated element or one of its ancestors is inserted into a Document, then the user agent must
 reset the form owner of that form-associated element.

 When an element is removed from a
 Document resulting in a form-associated element and its
 form owner (if any) no longer being in the same home subtree, then the
 user agent must reset the form owner of that form-associated
 element.

 When a reassociateable form-associated element's form attribute
 is set, changed, or removed, then the user agent must reset the form owner of that
 element.

 When a reassociateable form-associated element has a form
 attribute and the ID of any of the elements in the
 Document changes, then the user agent must reset the form owner of that
 form-associated element.

 When a reassociateable form-associated element has a form
 attribute and an element with an ID is inserted into or removed from the Document, then the user agent must reset the
 form owner of that form-associated element.

 When the user agent is to reset the form owner of a form-associated
 element, it must run the following steps:

 	If the element's form owner is not null, and either the element is not reassociateable or its form content attribute is not present, and the element's form
 owner is its nearest form element ancestor after the change to the ancestor
 chain, then do nothing, and abort these steps.

 	Let the element's form owner be null.

 	

 If the element is reassociateable, has a form content attribute, and is itself
 in a Document, then run these substeps:

 	If the first element in the Document to
 have an ID that is case-sensitively equal to the element's form content attribute's value is a form element,
 then associate the form-associated
 element with that form element.

 	Abort the "reset the form owner" steps.

 	Otherwise, if the form-associated element in question has an ancestor
 form element, then associate the
 form-associated element with the nearest such ancestor form
 element.

 	Otherwise, the element is left unassociated.

 In the following non-conforming snippet:

 ...
 <form id="a">
 <div id="b"></div>
 </form>
 <script>
 document.getElementById('b').innerHTML =
 '<table><tr><td><form id="c"><input id="d"></table>' +
 '<input id="e">';
 </script>
...

 The form owner of "d" would be the inner nested form "c", while the form
 owner of "e" would be the outer form "a".

 This happens as follows: First, the "e" node gets associated with "c" in the HTML
 parser. Then, the innerHTML algorithm moves the nodes
 from the temporary document to the "b" element. At this point, the nodes see their ancestor chain
 change, and thus all the "magic" associations done by the parser are reset to normal ancestor
 associations.

 This example is a non-conforming document, though, as it is a violation of the content models
 to nest form elements.

 	element . form

 	

 Returns the element's form owner.

 Returns null if there isn't one.

 Reassociateable form-associated elements have a form IDL attribute, which, on getting, must return the
 element's form owner, or null if there isn't one.

 Attributes common to form controls

 Naming form controls: the name attribute

 The name content
 attribute gives the name of the form control, as used in form
 submission and in the form element's elements object. If the attribute
 is specified, its value must not be the empty string.

 Any non-empty value for name
 is allowed, but the names "_charset_" and "isindex" are special:

 	isindex

 	
 This value, if used as the name of a Text control that is the first
 control in a form that is submitted using the application/x-www-form-urlencoded
 mechanism, causes the submission to only include the value of this
 control, with no name.

 	charset

 	
 This value, if used as the name of a Hidden control with no value attribute, is automatically
 given a value during submission consisting of the submission
 character encoding.

 The name IDL
 attribute must reflect the name content attribute.

 Submitting element directionality: the dirname attribute

 The dirname attribute
 on a form control element enables the submission of the
 directionality of the element, and gives the name of the
 field that contains this value during form submission.
 If such an attribute is specified, its value must not be the empty
 string.

 In this example, a form contains a text field and a submission
 button:

 <form action="addcomment.cgi" method=post>
 <p><label>Comment: <input type=text name="comment" dirname="comment.dir" required></label></p>
 <p><button name="mode" type=submit value="add">Post Comment</button></p>
</form>

 When the user submits the form, the user agent includes three
 fields, one called "comment", one called "comment.dir", and one
 called "mode"; so if the user types "Hello", the submission body
 might be something like:

 comment=Hello&comment.dir=ltr&mode=add

 If the user manually switches to a right-to-left writing
 direction and enters "", the
 submission body might be something like:

 comment=%D9%85%D8%B1%D8%AD%D8%A8%D8%A7&comment.dir=rtl&mode=add

 Limiting user input length: the maxlength attribute

 A form control maxlength attribute, controlled by a dirty value flag, declares a limit on the number of
 characters a user can input.

 If an element has its form
 control maxlength attribute specified,
 the attribute's value must be a valid non-negative
 integer. If the attribute is specified and applying the
 rules for parsing non-negative integers to its value
 results in a number, then that number is the element's maximum
 allowed value length. If the attribute is omitted or parsing
 its value results in an error, then there is no maximum
 allowed value length.

 Constraint validation: If an element has a
 maximum allowed value length, its dirty
 value flag is true, its value was last changed by a user
 edit (as opposed to a change made by a script), and the
 code-unit length of the element's value is greater than the element's
 maximum allowed value length, then the element is
 suffering from being too long.

 User agents may prevent the user from causing the element's value to be set to a value whose
 code-unit length is greater than the element's
 maximum allowed value length.

 Enabling and disabling form controls: the disabled attribute

 The disabled
 content attribute is a boolean attribute.

 A form control is disabled
 if its disabled attribute is
 set, or if it is a descendant of a fieldset element
 whose disabled attribute
 is set and is not a descendant of that
 fieldset element's first legend element
 child, if any.

 A form control that is disabled must prevent any click events that are queued on the user interaction task
 source from being dispatched on the element.

 Constraint validation: If an element is disabled, it is barred from
 constraint validation.

 The disabled IDL
 attribute must reflect the disabled content attribute.

 Form submission

 Attributes for form submission can be specified both
 on form elements and on submit buttons (elements that
 represent buttons that submit forms, e.g. an input
 element whose type attribute is
 in the Submit Button
 state).

The attributes for form submission that may be
 specified on form elements are action, enctype, method, novalidate, and target.

 The corresponding attributes for form submission
 that may be specified on submit
 buttons are formaction, formenctype, formmethod, formnovalidate, and formtarget. When omitted, they
 default to the values given on the corresponding attributes on the
 form element.

 The action and
 formaction
 content attributes, if specified, must have a value that is a
 valid non-empty URL potentially surrounded by
 spaces.

 The action of an element is
 the value of the element's formaction attribute, if the
 element is a submit
 button and has such an attribute, or the value of its
 form owner's action
 attribute, if it has one, or else the empty string.

 The method and
 formmethod
 content attributes are enumerated
 attributes with the following keywords and states:

 	The keyword get, mapping
 to the state GET, indicating
 the HTTP GET method.

 	The keyword post, mapping
 to the state POST, indicating
 the HTTP POST method.

 The invalid value default for these attributes is the GET state. The missing value default for the method attribute is also the GET state. (There is no missing value default for the
 formmethod attribute.)

 The method of an element is
 one of those states. If the element is a submit button and has a formmethod attribute, then the
 element's method is that
 attribute's state; otherwise, it is the form owner's
 method attribute's state.

 The enctype and
 formenctype
 content attributes are enumerated
 attributes with the following keywords and states:

 	The "application/x-www-form-urlencoded" keyword and corresponding state.

 	The "multipart/form-data" keyword and corresponding state.

 	The "text/plain" keyword and corresponding state.

 The invalid value default for these attributes is the application/x-www-form-urlencoded state. The missing
 value default for the enctype attribute is also the application/x-www-form-urlencoded state. (There is no
 missing value default for the formenctype
 attribute.)

 The enctype of an element
 is one of those three states. If the element is a submit button and has a formenctype attribute, then the
 element's enctype is that
 attribute's state; otherwise, it is the form owner's
 enctype attribute's state.

 The target and
 formtarget
 content attributes, if specified, must have values that are valid browsing
 context names or keywords.

 The target of an element is
 the value of the element's formtarget attribute, if the
 element is a submit
 button and has such an attribute; or the value of its
 form owner's target
 attribute, if it has such an attribute; or, if the
 Document contains a base element with a
 target attribute, then the
 value of the target attribute
 of the first such base element; or, if there is no such
 element, the empty string.

 The novalidate
 and formnovalidate
 content attributes are boolean
 attributes. If present, they indicate that the form is not to
 be validated during submission.

 The no-validate state of
 an element is true if the element is a submit button and the element's
 formnovalidate attribute
 is present, or if the element's form owner's novalidate attribute is present,
 and false otherwise.

 This attribute is useful to include "save" buttons on forms that
 have validation constraints, to allow users to save their progress
 even though they haven't fully entered the data in the form. The
 following example shows a simple form that has two required
 fields. There are three buttons: one to submit the form, which
 requires both fields to be filled in; one to save the form so that
 the user can come back and fill it in later; and one to cancel the
 form altogether.

 <form action="editor.cgi" method="post">
 <p><label>Name: <input required name=fn></label></p>
 <p><label>Essay: <textarea required name=essay></textarea></label></p>
 <p><input type=submit name=submit value="Submit essay"></p>
 <p><input type=submit formnovalidate name=save value="Save essay"></p>
 <p><input type=submit formnovalidate name=cancel value="Cancel"></p>
</form>

 The action IDL
 attribute must reflect the content attribute of the
 same name, except that on getting, when the content attribute is
 missing or its value is the empty string, the document's
 address must be returned instead. The target IDL attribute must
 reflect the content attribute of the same name. The
 method and enctype IDL attributes
 must reflect the respective content attributes of the
 same name, limited to only known values. The encoding IDL attribute
 must reflect the enctype content attribute,
 limited to only known values. The noValidate IDL
 attribute must reflect the novalidate content attribute. The
 formAction IDL
 attribute must reflect the formaction content attribute,
 except that on getting, when the content attribute is missing or its
 value is the empty string, the document's address must
 be returned instead. The formEnctype IDL
 attribute must reflect the formenctype content attribute,
 limited to only known values. The formMethod IDL
 attribute must reflect the formmethod content attribute,
 limited to only known values. The formNoValidate IDL
 attribute must reflect the formnovalidate content
 attribute. The formTarget IDL
 attribute must reflect the formtarget content attribute.

 Autofocusing a form control: the autofocus attribute

 The autofocus
 content attribute allows the author to indicate that a control is to
 be focused as soon as the page is loaded or as soon as the
 dialog within which it finds itself is shown, allowing
 the user to just start typing without having to manually focus the
 main control.

 The autofocus attribute is
 a boolean attribute.

 An element's nearest ancestor autofocus scoping root
 element is the element itself if the element is a
 dialog element, or else is the element's nearest
 ancestor dialog element, if any, or else is the
 element's root element.

 There must not be two elements with the same nearest
 ancestor autofocus scoping root element that both have the
 autofocus attribute
 specified.

 When an element with the autofocus attribute specified is
 inserted into a
 document, user agents should run the following steps:

 	Let target be the element's
 Document.

 	If target has no browsing
 context, abort these steps.

 	If target's browsing
 context has no top-level browsing context (e.g.
 it is a nested browsing context with no parent
 browsing context), abort these steps.

 	If target's active sandboxing
 flag set has the sandboxed automatic features
 browsing context flag, abort these steps.

 	If target's origin is not
 the same as the
 origin of the Document of the currently
 focused element in target's top-level
 browsing context, abort these steps.

 	If target's origin is not
 the same as the
 origin of the active document of target's top-level browsing context,
 abort these steps.

 	If the user agent has already reached the last step of this
 list of steps in response to an element being inserted into a
 Document whose top-level browsing
 context's active document is the same as target's top-level browsing context's
 active document, abort these steps.

 	If the user has indicated (for example, by starting to type
 in a form control) that he does not wish focus to be changed, then
 optionally abort these steps.

 	Queue a task that checks to see if the element
 is focusable, and if so, runs the focusing
 steps for that element. User agents may also change the
 scrolling position of the document, or perform some other action
 that brings the element to the user's attention. The task
 source for this task is the DOM manipulation task
 source.

 This handles the automatic focusing during document
 load. The showModal()
 method of dialog elements also processes the autofocus attribute.

 Focusing the control does not imply that the user
 agent must focus the browser window if it has lost focus.

 The autofocus
 IDL attribute must reflect the content attribute of the
 same name.

 In the following snippet, the text control would be focused when
 the document was loaded.

 <input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">

 Autofilling form controls: the autocomplete attribute

 User agents sometimes have features for helping users fill forms
 in, for example prefilling the user's address based on earlier user
 input. The autocomplete content
 attribute can be used to hint to the user agent
 whether to provide such a feature.

 The "off" keyword
 indicates either that the control's input data is particularly
 sensitive (for example the activation code for a nuclear weapon); or
 that it is a value that will never be reused (for example a
 one-time-key for a bank login) and the user will therefore have to
 explicitly enter the data each time, instead of being able to rely
 on the UA to prefill the value for him; or that the document
 provides its own autocomplete mechanism and does not want the user
 agent to provide autocompletion values.

 The "on"
 keyword indicates that the user agent is allowed to provide the user
 with autocompletion values, but does not provide any further
 information about what kind of data the user might be expected to
 enter. User agents would have to use heuristics to decide what
 autocompletion values to suggest.

 The autofill fields names
 listed above indicate that the user agent is allowed to provide the
 user with autocompletion values, and specifies what kind of value is
 expected. The keywords relate to each other as described in the
 table below. Each field name listed on a row of this table
 corresponds to the meaning given in the cell for that row in the
 column labeled "Meaning". Some fields correspond to subparts of
 other fields; for example, a credit card expiry date can be
 expressed as one field giving both the month and year of expiry
 ("cc-exp"), or as
 two fields, one giving the month ("cc-exp-month") and
 one the year ("cc-exp-year"). In
 such cases, the names of the broader fields cover multiple rows, in
 which the narrower fields are defined.

 Generally, authors are encouraged to use the broader
 fields rather than the narrower fields, as the narrower fields tend
 to expose Western biases. For example, while it is common in some
 Western cultures to have a given name and a family name, in that
 order (and thus often referred to as a first name and a
 surname), many cultures put the family name first and the
 given name second, and many others simply have one name (a
 mononym). Having a single field is therefore more
 flexible.

 	 Field name
 	 Meaning
 	 Canonical Format
 	 Canonical Format Example

 	"name"
 	Full name
 	Free-form text, no newlines
 	Sir Timothy John Berners-Lee, OM, KBE, FRS, FREng, FRSA

 	
 	"honorific-prefix"
 	Prefix or title (e.g. "Mr.", "Ms.", "Dr.", "")
 	Free-form text, no newlines
 	Sir

 	"given-name"
 	Given name (in some Western cultures, also known as the first name)
 	Free-form text, no newlines
 	Timothy

 	"additional-name"
 	Additional names (in some Western cultures, also known as middle names, forenames other than the first name)
 	Free-form text, no newlines
 	John

 	"family-name"
 	Family name (in some Western cultures, also known as the last name or surname)
 	Free-form text, no newlines
 	Berners-Lee

 	"honorific-suffix"
 	Suffix (e.g. "Jr.", "B.Sc.", "MBASW", "II")
 	Free-form text, no newlines
 	OM, KBE, FRS, FREng, FRSA

 	"nickname"
 	Nickname, screen name, handle: a typically short name used instead of the full name
 	Free-form text, no newlines
 	Tim

 	"organization-title"
 	Job title (e.g. "Software Engineer", "Senior Vice President", "Deputy Managing Director")
 	Free-form text, no newlines
 	Professor

 	"organization"
 	Company name corresponding to the person, address, or contact information in the other fields associated with this field
 	Free-form text, no newlines
 	World Wide Web Consortium

 	"street-address"
 	Street address (multiple lines, newlines preserved)
 	Free-form text
 	32 Vassar Street

MIT Room 32-G524

 	
 	"address-line1"
 	Street address (one line per field)
 	Free-form text, no newlines
 	32 Vassar Street

 	"address-line2"
 	Free-form text, no newlines
 	MIT Room 32-G524

 	"address-line3"
 	Free-form text, no newlines
 	

 	"locality"
 	City, town, village, post town, or other locality within which the relevant street address is found
 	Free-form text, no newlines
 	Cambridge

 	"region"
 	Provice such as a state, county, or canton within which the locality is found
 	Free-form text, no newlines
 	MA

 	"country"
 	Country
 	Valid ISO 3166-1-alpha-2 country code [ISO3166]
 	US

 	"postal-code"
 	Postal code, post code, ZIP code, CEDEX code (if CEDEX, append "CEDEX" to the locality field)
 	Free-form text, no newlines
 	02139

 	"cc-name"
 	Full name as given on the payment instrument
 	Free-form text, no newlines
 	Tim Berners-Lee

 	
 	"cc-given-name"
 	Given name as given on the payment instrument (in some Western cultures, also known as the first name)
 	Free-form text, no newlines
 	Tim

 	"cc-additional-name"
 	Additional names given on the payment instrument (in some Western cultures, also known as middle names, forenames other than the first name)
 	Free-form text, no newlines
 	

 	"cc-family-name"
 	Family name given on the payment instrument (in some Western cultures, also known as the last name or surname)
 	Free-form text, no newlines
 	Berners-Lee

 	"cc-number"
 	Code identifying the payment instrument (e.g. the credit card number, bank account number)
 	ASCII digits
 	4114360123456785

 	"cc-exp"
 	Expiration date of the payment instrument
 	Valid month string
 	2014-12

 	
 	"cc-exp-month"
 	Month component of the expiration date of the payment instrument
 	Valid integer in the range 1..12
 	12

 	"cc-exp-year"
 	Year component of the expiration date of the payment instrument
 	Valid integer greater than zero
 	2014

 	"cc-csc"
 	Security code for the payment instrument (also known as the card security code (CSC), card validation code (CVC), card verification value (CVV), signature panel code (SPC), credit card ID (CCID), etc)
 	ASCII digits
 	419

 	"cc-type"
 	Type of payment instrument
 	Free-form text, no newlines
 	Visa

 	"language"
 	Preferred language
 	Valid BCP 47 language tag [BCP47]
 	en

 	"bday"
 	Birthday
 	Valid date string
 	1955-06-08

 	
 	"bday-day"
 	Day component of birthday
 	Valid integer in the range 1..31
 	8

 	"bday-month"
 	Month component of birthday
 	Valid integer in the range 1..12
 	6

 	"bday-year"
 	Year component of birthday
 	Valid integer greater than zero
 	1955

 	"sex"
 	Gender identity (e.g. Female, Fa'afafine)
 	Free-form text, no newlines
 	Male

 	"url"
 	Home page or other Web page corresponding to the company, person, address, or contact information in the other fields associated with this field
 	Valid URL
 	http://www.w3.org/People/Berners-Lee/

 	"photo"
 	Photograph, icon, or other image corresponding to the company, person, address, or contact information in the other fields associated with this field
 	File or Valid URL
 	http://www.w3.org/Press/Stock/Berners-Lee/2001-europaeum-eighth.jpg

 	"tel"
 	Full telephone number, including country code
 	ASCII digits and U+0020 SPACE characters, prefixed by a "+" (U+002B) character
 	+1 617 253 5702

 	
 	"tel-country-code"
 	Country code component of the telephone number
 	ASCII digits prefixed by a "+" (U+002B) character
 	+1

 	"tel-national"
 	Telephone number without the county code component
 	ASCII digits and U+0020 SPACE characters
 	617 253 5702

 	
 	"tel-area-code"
 	Area code component of the telephone number
 	ASCII digits
 	617

 	"tel-local"
 	Telephone number without the country code and area code components
 	ASCII digits
 	2535702

 	
 	"tel-local-prefix"
 	First part of the component of the telephone number that follows the area code, when that component is split into two components
 	ASCII digits
 	253

 	"tel-local-suffix"
 	Second part of the component of the telephone number that follows the area code, when that component is split into two components
 	ASCII digits
 	5702

 	"tel-extension"
 	Telephone number internal extension code
 	ASCII digits
 	1000

 	"email"
 	E-mail address
 	Valid e-mail address
 	timbl@w3.org

 	"impp"
 	URL representing an instant messaging protocol endpoint (for example, "aim:goim?screenname=example" or "xmpp:fred@example.net")
 	Valid URL
 	irc://example.org/timbl,isuser

 If the autocomplete
 attribute is omitted, the default value corresponding to the state
 of the element's form owner's autocomplete attribute is used
 instead (either "on" or
 "off"). If there is no
 form owner, then the value "on" is used.

 Each input, select, and textarea element has an
 autofill hint set, an autofill scope, an autofill field name, and
 an IDL-exposed autofill value whose values are defined as the result of running the
 following algorithm:

 	If the element has no autocomplete attribute, then
 jump to the step labeled default.

 	Let tokens be the result of splitting the attribute's value on
 spaces.

 	If tokens is empty, then jump to the
 step labeled default.

 	Let index be the index of the last token
 in tokens.

 	

 If the indexth token in tokens is not an ASCII
 case-insensitive match for one of the tokens given in the
 first column of the following table, or if the number of tokens in
 tokens is greater than the maximum number
 given in the cell in the second column of that token's row, then
 jump to the step labeled default. Otherwise, let field be the string given in the cell of the first
 column of the matching row, and let category
 be the value of the cell in the third column of that same row.

 	Token
 	Maximum number of tokens
 	Category

 	"off"
 	1
 	Off

 	"on"
 	1
 	Automatic

 	"name"
 	3
 	Normal

 	"honorific-prefix"
 	3
 	Normal

 	"given-name"
 	3
 	Normal

 	"additional-name"
 	3
 	Normal

 	"family-name"
 	3
 	Normal

 	"honorific-suffix"
 	3
 	Normal

 	"nickname"
 	3
 	Normal

 	"organization-title"
 	3
 	Normal

 	"organization"
 	3
 	Normal

 	"street-address"
 	3
 	Normal

 	"address-line1"
 	3
 	Normal

 	"address-line2"
 	3
 	Normal

 	"address-line3"
 	3
 	Normal

 	"locality"
 	3
 	Normal

 	"region"
 	3
 	Normal

 	"country"
 	3
 	Normal

 	"postal-code"
 	3
 	Normal

 	"cc-name"
 	3
 	Normal

 	"cc-given-name"
 	3
 	Normal

 	"cc-additional-name"
 	3
 	Normal

 	"cc-family-name"
 	3
 	Normal

 	"cc-number"
 	3
 	Normal

 	"cc-exp"
 	3
 	Normal

 	"cc-exp-month"
 	3
 	Normal

 	"cc-exp-year"
 	3
 	Normal

 	"cc-csc"
 	3
 	Normal

 	"cc-type"
 	3
 	Normal

 	"language"
 	3
 	Normal

 	"bday"
 	3
 	Normal

 	"bday-day"
 	3
 	Normal

 	"bday-month"
 	3
 	Normal

 	"bday-year"
 	3
 	Normal

 	"sex"
 	3
 	Normal

 	"url"
 	3
 	Normal

 	"photo"
 	3
 	Normal

 	"tel"
 	4
 	Contact

 	"tel-country-code"
 	4
 	Contact

 	"tel-national"
 	4
 	Contact

 	"tel-area-code"
 	4
 	Contact

 	"tel-local"
 	4
 	Contact

 	"tel-local-prefix"
 	4
 	Contact

 	"tel-local-suffix"
 	4
 	Contact

 	"tel-extension"
 	4
 	Contact

 	"email"
 	4
 	Contact

 	"impp"
 	4
 	Contact

 	If category is Off, let the element's
 autofill field name be the string "off", let its autofill hint set be
 empty, and let its IDL-exposed autofill value be the
 string "off". Then, abort these steps.

	If category is Automatic, let the
 element's autofill field name be the string "on", let its autofill hint set be
 empty, and let its IDL-exposed autofill value be the
 string "on". Then, abort these steps.

	Let scope tokens be an empty list.

 	Let hint tokens be an empty set.

 	Let IDL value have the same value as
 field.

 	If the indexth token in tokens is the first entry, then skip to the step
 labeled done.

 	Decrement index by one.

 	

 If category is Contact and the indexth token in tokens is an
 ASCII case-insensitive match for one of the strings
 in the following list, then run the substeps that follow:

 	"home"

	"work"

	"mobile"

	"fax"

	"pager"

 The substeps are:

 	Let contact be the matching
 string from the list above.

 	Insert contact at the start of scope tokens.

 	Add contact to hint
 tokens.

 	Let IDL value be the concatenation of
 contact, a U+0020 SPACE character, and the
 previous value of IDL value (which at this
 point will always be field).

 	If the indexth entry in tokens is the first entry, then skip to the step
 labeled done.

 	Decrement index by one.

 	

 If the indexth token in tokens is an
 ASCII case-insensitive match for one of the strings
 in the following list, then run the substeps that follow:

 	"shipping"

	"billing"

 The substeps are:

 	Let mode be the matching
 string from the list above.

 	Insert mode at the start of scope tokens.

 	Add mode to hint
 tokens.

 	Let IDL value be the concatenation of
 mode, a U+0020 SPACE character, and the
 previous value of IDL value (which at this
 point will either be field or the concatenation of
 contact, a space, and field).

 	If the indexth entry in tokens is the first entry, then skip to the step
 labeled done.

 	Decrement index by one.

 	If the indexth entry in tokens is not the first entry, then jump to the step
 labeled default.

 	If the first eight characters of the indexth
 token in tokens are not an ASCII
 case-insensitive match for the string "section-", then jump to
 the step labeled default.

 	Let section be the indexth token in tokens,
 converted to ASCII lowercase.

 	Insert section at the start of scope tokens.

 	Let IDL value be the concatenation of
 section, a U+0020 SPACE character, and the
 previous value of IDL value.

 	Done: Let the element's autofill hint
 set be hint tokens.

	Let the element's autofill scope be scope tokens.

	Let the element's autofill field name be
 field.

	Let the element's IDL-exposed autofill value be
 IDL value.

	Abort these steps.

 	Default: Let the element's IDL-exposed autofill value be the empty
 string, and its autofill hint set and autofill scope be empty.

 	Let form be the element's form
 owner, if any, or null otherwise.

 	

 If form is not null and form's autocomplete attribute is in
 the off
 state, then let the element's autofill field name be
 "off".

 Otherwise, let the element's autofill field name
 be "on".

 When an element's autofill field name is "off", the user agent should
 not remember the control's value, and should not offer past
 values to the user.

 In addition, when an element's autofill field
 name is "off",
 values are reset when traversing the history.

 Banks frequently do not want UAs to prefill login
 information:

 <p><label>Account: <input type="text" name="ac" autocomplete="off"></label></p>
<p><label>PIN: <input type="password" name="pin" autocomplete="off"></label></p>

 When an element's autofill field name is
 not "off",
 the user agent may store the control's value, and may offer previously
 stored values to the user.

 When the autofill field name is "on", the user agent should
 attempt to use heuristics to determine the most appropriate values
 to offer the user, e.g. based on the element's name value, the position of the element
 in the document's DOM, what other fields exist in the form, and so
 forth.

 When the autofill field name is one of the names of
 the autofill fields described
 above, the user agent should provide suggestions that match the
 meaning of the field name as given in the table earlier in this
 section. The autofill hint set should be used to select
 amongst multiple possible suggestions.

 For example, if a user once entered one address
 into fields that used the "shipping" keyword, and
 another address into fields that used the "billing" keyword, then
 in subsequent forms only the first address would be suggested for
 form controls whose autofill hint set contains the
 keyword "shipping". Both
 addresses might be suggested, however, for address-related form
 controls whose autofill hint set does not contain
 either keyword.

 When the user agent prefills form controls, elements with the same form owner and
 the same autofill scope must use data relating to the same person, address, payment
 instrument, and contact details.

 Suppose a user agent knows of two phone numbers,
 +1 555 123 1234 and +1 555 666 7777. It would not be conforming for
 the user agent to fill a field with autocomplete="shipping tel-local-prefix" with the
 value "123" and another field in the same form with autocomplete="shipping tel-local-suffix" with the
 value "7777". The only valid prefilled values given the
 aforementioned information would be "123" and "1234", or "666" and
 "7777", respectively.

 Similarly, if a form for some reason contained
 both a "cc-exp"
 field and a "cc-exp-month"
 field, and the user agent prefilled the form, then the month
 component of the former would have to match the latter.

 The autocompletion mechanism must be implemented by the user
 agent acting as if the user had modified the element's value, and must be done at a time
 where the element is mutable (e.g.
 just after the element has been inserted into the document, or when
 the user agent stops parsing).
 User agents must only prefill controls using values that the user
 could have entered.

 For example, if a select element
 only has option elements with values "Steve" and
 "Rebecca", "Jay", and "Bob", and has an autofill field
 name "given-name", but the
 user agent's only idea for what to prefill the field with is "Evan",
 then the user agent cannot prefill the field. It would not be
 conforming to somehow set the select element to the
 value "Evan", since the user could not have done so themselves.

 A user agent prefilling a form control's value must not cause that control to
 suffer from a type
 mismatch, suffer from a pattern mismatch, suffer from being too
 long, suffer from
 an underflow, suffer
 from an overflow, or suffer from a step mismatch. Where possible given the control's constraints, user
 agents must use the format given as canonical in the aforementioned table. Where it's not possible
 for the canonical format to be used, user agents should use heuristics to attempt to convert values so that
 they can be used.

 For example, if the user agent knows that the user's middle name
 is "Ines", and attempts to prefill a form control that looks like this:

 <input name=middle-initial maxlength=1 autocomplete="additional-name">

 ...then the user agent could convert "Ines" to "I" and prefill
 it that way.

 A more elaborate example would be with month values. If the user
 agent knows that the user's birthday is the 27th of July 2012, then
 it might try to prefill all of the following controls with slightly
 different values, all driven from this information:

 	
 <input name=b type=month autocomplete="bday">

 	
 2012-07
 	
 The day is dropped since the Month state only accepts a
 month/year combination.

 	
 <select name=c autocomplete="bday">
 <option>Jan
 <option>Feb
 ...
 <option>Jul
 <option>Aug
 ...
</select>

 	
 July
 	
 The user agent picks the month from the listed options, either
 by noticing there are twelve options and picking the 7th, or by
 recognising that one of the strings (three characters "Jul"
 followed by a newline and a space) is a close match for the name
 of the month (July) in one of the user agent's supported
 languages, or through some other similar mechanism.

 	
 <input name=a type=number min=1 max=12 autocomplete="bday-month">

 	
 7
 	
 User agent converts "July" to a month number in the range 1..12, like the field.

 	
 <input name=a type=number min=0 max=11 autocomplete="bday-month">

 	
 6
 	
 User agent converts "July" to a month number in the range 0..11, like the field.

 	
 <input name=a type=number min=1 max=11 autocomplete="bday-month">

 	
 	
 User agent doesn't fill in the field, since it can't make a good guess as to what the form expects.

 A user agent may allow the user to override an element's
 autofill field name, e.g. to change it from "off" to "on" to allow values to be
 remembered and prefilled despite the page author's objections, or to
 always "off", never
 remembering values. However, user agents should not allow users to
 trivially override the autofill field name from "off" to "on" or other values, as there
 are significant security implications for the user if all values are
 always remembered, regardless of the site's preferences.

 The autocomplete IDL
 attribute, on getting, must return the element's IDL-exposed
 autofill value, and on setting, must reflect the
 content attribute of the same name.

 APIs for the text field selections

 The input and textarea elements define
 the following members in their DOM interfaces for handling their
 selection:

 void select();
 attribute unsigned long selectionStart;
 attribute unsigned long selectionEnd;
 attribute DOMString selectionDirection;
 void setRangeText(DOMString replacement);
 void setRangeText(DOMString replacement, unsigned long start, unsigned long end, optional SelectionMode selectionMode);
 void setSelectionRange(unsigned long start, unsigned long end, optional DOMString direction = "preserve");

 The setRangeText method
 uses the following enumeration:

 enum SelectionMode {
 "select",
 "start",
 "end",
 "preserve",
};

 These methods and attributes expose and control the selection of
 input and textarea text fields.

 	element . select()

 	

 Selects everything in the text field.

 	element . selectionStart [= value]

 	

 Returns the offset to the start of the selection.

 Can be set, to change the start of the selection.

 	element . selectionEnd [= value]

 	

 Returns the offset to the end of the selection.

 Can be set, to change the end of the selection.

 	element . selectionDirection [= value]

 	

 Returns the current direction of the selection.

 Can be set, to change the direction of the selection.

 The possible values are "forward", "backward", and "none".

 	element . setSelectionRange(start, end [, direction])

 	

 Changes the selection to cover the given substring in the given direction. If the direction is omitted, it will be reset to be the platform default (none or forward).

 	element . setRangeText(replacement [, start, end [, selectionMode]])

 	

 Replaces a range of text with the new text. If the start and end arguments are not
 provided, the range is assumed to be the selection.

 The final argument determines how the selection should be set
 after the text has been replaced. The possible values are:

 	"select"

 	Selects the newly inserted text.

 	"start"

 	Moves the selection to just before the inserted text.

 	"end"

 	Moves the selection to just after the selected text.

 	"preserve"

 	Attempts to preserve the selection. This is the default.

 For input elements, calling these methods while they don't apply, and getting or setting these attributes while they don't apply, must throw an InvalidStateError exception. Otherwise, they
 must act as described below.

 For input elements, these methods and attributes must operate on the element's
 value. For textarea elements, these methods and
 attributes must operate on the element's raw
 value.

 Where possible, user interface features for changing the text selection in input
 and textarea elements must be implemented in terms of the DOM API described in this
 section, so that, e.g., all the same events fire.

 The selections of input and textarea elements have a
 direction, which is either forward, backward, or none. This direction
 is set when the user manipulates the selection. The exact meaning of the selection direction
 depends on the platform.

 On Windows, the direction indicates the position of the caret relative to the
 selection: a forward selection has the caret at the end of the selection and a
 backward selection has the caret at the start of the selection. Windows has no none
 direction. On Mac, the direction indicates which end of the selection is affected when the user
 adjusts the size of the selection using the arrow keys with the Shift modifier: the forward
 direction means the end of the selection is modified, and the backwards direction means the start
 of the selection is modified. The none direction is the default on Mac, it indicates that no
 particular direction has yet been selected. The user sets the direction implicitly when first
 adjusting the selection, based on which directional arrow key was used.

 The select() method must cause the
 contents of the text field to be fully selected, with the selection direction being none, if the
 platform support selections with the direction none, or otherwise forward. The user
 agent must then queue a task to fire a simple event that bubbles named
 select at the element, using the user interaction task
 source as the task source.

 The selectionStart attribute
 must, on getting, return the offset (in logical order) to the character that immediately follows
 the start of the selection. If there is no selection, then it must return the offset (in logical
 order) to the character that immediately follows the text entry cursor.

 On setting, it must act as if the setSelectionRange() method had been called,
 with the new value as the first argument; the current value of the selectionEnd attribute as the second argument,
 unless the current value of the selectionEnd
 is less than the new value, in which case the second argument must also be the new value; and the
 current value of the selectionDirection
 as the third argument.

 The selectionEnd attribute
 must, on getting, return the offset (in logical order) to the character that immediately follows
 the end of the selection. If there is no selection, then it must return the offset (in logical
 order) to the character that immediately follows the text entry cursor.

 On setting, it must act as if the setSelectionRange() method had been called,
 with the current value of the selectionStart attribute as the first argument,
 the new value as the second argument, and the current value of the selectionDirection as the third argument.

 The selectionDirection
 attribute must, on getting, return the string corresponding to the current selection direction: if
 the direction is forward, "forward"; if the direction is
 backward, "backward"; and otherwise, "none".

 On setting, it must act as if the setSelectionRange() method had been called,
 with the current value of the selectionStart attribute as the first argument,
 the current value of the selectionEnd
 attribute as the second argument, and the new value as the third argument.

 The setSelectionRange(start, end, direction) method
 must set the selection of the text field to the sequence of characters starting with the character
 at the startth position (in logical order) and ending with the character at
 the th position. Arguments greater than the
 length of the value of the text field must be treated as pointing at the end of the text field. If
 end is less than or equal to start then the start of the
 selection and the end of the selection must both be placed immediately before the character with
 offset end. In UAs where there is no concept of an empty selection, this must
 set the cursor to be just before the character with offset end. The direction
 of the selection must be set to backward if direction is a
 case-sensitive match for the string "backward", forward
 if direction is a case-sensitive match for the string "forward" or if the platform does not support selections with the direction
 none, and none otherwise (including if the argument is omitted). The user agent must
 then queue a task to fire a simple event that bubbles named select at the element, using the user interaction task
 source as the task source.

 The setRangeText(replacement, start, end, selectMode) method must run the following steps:

 	

 If the method has only one argument, then let start and end have the values of the selectionStart attribute and the selectionEnd attribute respectively.

 Otherwise, let start, end have the values of the
 second and third arguments respectively.

 	If start is greater than end, then throw an
 IndexSizeError exception and abort these steps.

 	If start is greater than the length of the value of the text field,
 then set it to the length of the value of the text field.

 	If end is greater than the length of the value of the text field,
 then set it to the length of the value of the text field.

 	Let selection start be the current value of the selectionStart attribute.

 	Let selection end be the current value of the selectionEnd attribute.

 	If start is less than end, delete the sequence of
 characters starting with the character at the startth position (in logical
 order) and ending with the character at the th
 position.

 	Insert the value of the first argument into the text of the value of the text field,
 immediately before the startth character.

 	Let new length be the length of the value of the first argument.

 	Let new end be the sum of start and new length.

 	

 Run the appropriate set of substeps from the following list:

 	If the fourth argument's value is "select"

 	

 Let selection start be start.

 Let selection end be new end.

 	If the fourth argument's value is "start"

 	

 Let selection start and selection end be start.

 	If the fourth argument's value is "end"

 	

 Let selection start and selection end be new end.

 	If the fourth argument's value is "preserve", or if the argument was omitted

 	

 	Let old length be end minus start.

	Let delta be new length minus old length.

	

 If selection start is greater than end, then
 increment it by delta. (If delta is negative, i.e.
 the new text is shorter than the old text, then this will decrease the value of
 selection start.)

 Otherwise: if selection start is greater than start, then set it to start. (This snaps the start of the
 selection to the start of the new text if it was in the middle of the text that it
 replaced.)

 	

 If selection end is greater than end, then
 increment it by delta in the same way.

 Otherwise: if selection end is greater than start, then set it to new end. (This snaps the end of the
 selection to the end of the new text if it was in the middle of the text that it
 replaced.)

 	

 Set the selection of the text field to the sequence of characters starting with the character
 at the selection startth position (in logical order) and ending with the
 character at the th position. In UAs
 where there is no concept of an empty selection, this must set the cursor to be just before the
 character with offset end. The direction of the selection must be set to
 forward if the platform does not support selections with the direction none, and
 none otherwise.

 	Queue a task to fire a simple event that bubbles named select at the element, using the user interaction task
 source as the task source.

 All elements to which this API applies have either a selection or a text entry cursor position
 at all times (even for elements that are not being rendered). User agents should
 follow platform conventions to determine their initial state.

 Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count as
 characters. Thus, for instance, the selection can include just an invisible character, and the
 text insertion cursor can be placed to one side or another of such a character.

 To obtain the currently selected text, the following JavaScript suffices:

 var selectionText = control.value.substring(control.selectionStart, control.selectionEnd);

 ...where control is the input or textarea
 element.

 To add some text at the start of a text control, while maintaining the text selection, the
 three attributes must be preserved:

 var oldStart = control.selectionStart;
var oldEnd = control.selectionEnd;
var oldDirection = control.selectionDirection;
var prefix = "http://";
control.value = prefix + control.value;
control.setSelectionRange(oldStart + prefix.length, oldEnd + prefix.length, oldDirection);

 ...where control is the input or textarea
 element.

 Constraints

 Definitions

 A submittable element is a candidate for constraint
 validation except when a condition has barred
 the element from constraint validation. (For example, an element is barred from
 constraint validation if it is an object element.)

 An element can have a custom validity error message defined. Initially, an element
 must have its custom validity error message set to the empty string. When its value
 is not the empty string, the element is suffering from a custom error. It can be set
 using the setCustomValidity() method. The user
 agent should use the custom validity error message when alerting the user to the
 problem with the control.

 An element can be constrained in various ways. The following is the list of validity
 states that a form control can be in, making the control invalid for the purposes of
 constraint validation. (The definitions below are non-normative; other parts of this specification
 define more precisely when each state applies or does not.)

 	 Suffering from being missing

 	 When a control has no value but has a required attribute (input required, select required, textarea required), or, in the case of an element in a radio
 button group, any of the other elements in the group has a required attribute.

 	 Suffering from a type mismatch

 	 When a control that allows arbitrary user input has a value that is not in the correct syntax (E-mail, URL).

 	 Suffering from a pattern mismatch

 	 When a control has a value that doesn't satisfy the
 pattern attribute.

 	 Suffering from being too long

 	 When a control has a value that is too long for the
 form control maxlength attribute
 (input maxlength, textarea
 maxlength).

 	 Suffering from an underflow

 	 When a control has a value that is too low for the
 min attribute.

 	 Suffering from an overflow

 	 When a control has a value that is too high for the
 max attribute.

 	 Suffering from a step mismatch

 	 When a control has a value that doesn't fit the
 rules given by the step attribute.

 	 Suffering from bad input

 	 When a control has incomplete input and the user agent does not think the user ought to
 be able to submit the form in its current state.

 	 Suffering from a custom error

 	 When a control's custom validity error message (as set by the element's
 setCustomValidity() method) is not the empty
 string.

 An element can still suffer from these states even when the element is disabled; thus these states can be represented in the DOM even
 if validating the form during submission wouldn't indicate a problem to the user.

 An element satisfies its constraints if it is not suffering
 from any of the above validity states.

 Constraint validation

 When the user agent is required to statically validate the constraints of
 form element form, it must run the following steps, which return
 either a positive result (all the controls in the form are valid) or a negative
 result (there are invalid controls) along with a (possibly empty) list of elements that are
 invalid and for which no script has claimed responsibility:

 	Let controls be a list of all the submittable elements whose form owner is form, in tree order.

 	Let invalid controls be an initially empty list of elements.

 	

 For each element field in controls, in tree
 order, run the following substeps:

 	If field is not a candidate for constraint validation,
 then move on to the next element.

 	Otherwise, if field satisfies its
 constraints, then move on to the next element.

 	Otherwise, add field to invalid
 controls.

 	If invalid controls is empty, then return a positive result and
 abort these steps.

 	Let unhandled invalid controls be an initially empty list of
 elements.

 	

 For each element field in invalid controls, if any,
 in tree order, run the following substeps:

 	Fire a simple event named invalid that
 is cancelable at field.

 	If the event was not canceled, then add field to unhandled invalid controls.

 	Return a negative result with the list of elements in the unhandled
 invalid controls list.

 If a user agent is to interactively validate the constraints of form
 element form, then the user agent must run the following steps:

 	Statically validate the constraints of form, and let unhandled invalid controls be the list of elements returned if the result was
 negative.

 	If the result was positive, then return that result and abort these steps.

 	Report the problems with the constraints of at least one of the elements given in unhandled invalid controls to the user. User agents may focus one of those
 elements in the process, by running the focusing steps for that element, and may
 change the scrolling position of the document, or perform some other action that brings the
 element to the user's attention. User agents may report more than one constraint violation. User
 agents may coalesce related constraint violation reports if appropriate (e.g. if multiple radio
 buttons in a group are marked as required, only one error
 need be reported). If one of the controls is not being rendered (e.g. it has the
 hidden attribute set) then user agents may report a script
 error.

 	Return a negative result.

 The constraint validation API

 	element . willValidate

 	

 Returns true if the element will be validated when the form is submitted; false otherwise.

 	element . setCustomValidity(message)

 	

 Sets a custom error, so that the element would fail to
 validate. The given message is the message to be shown to the user
 when reporting the problem to the user.

 If the argument is the empty string, clears the custom error.

 	element . validity . valueMissing

 	

 Returns true if the element has no value but is a required field; false otherwise.

 	element . validity . typeMismatch

 	

 Returns true if the element's value is not in the correct syntax; false otherwise.

 	element . validity . patternMismatch

 	

 Returns true if the element's value doesn't match the provided pattern; false otherwise.

 	element . validity . tooLong

 	

 Returns true if the element's value is longer than the provided maximum length; false otherwise.

 	element . validity . rangeUnderflow

 	

 Returns true if the element's value is lower than the provided minimum; false otherwise.

 	element . validity . rangeOverflow

 	

 Returns true if the element's value is higher than the provided maximum; false otherwise.

 	element . validity . stepMismatch

 	

 Returns true if the element's value doesn't fit the rules given by the step attribute; false otherwise.

 	element . validity . badInput

 	

 Returns true if the user has provided input in the user interface that the user agent is unable to convert to a value; false otherwise.

 	element . validity . customError

 	

 Returns true if the element has a custom error; false otherwise.

 	element . validity . valid

 	

 Returns true if the element's value has no validity problems; false otherwise.

 	valid = element . checkValidity()

 	

 Returns true if the element's value has no validity problems;
 false otherwise. Fires an invalid event at the element in the
 latter case.

 	element . validationMessage

 	

 Returns the error message that would be shown to the user if
 the element was to be checked for validity.

 The willValidate
 attribute must return true if an element is a candidate for
 constraint validation, and false otherwise (i.e. false if any
 conditions are barring it from constraint validation).

 The setCustomValidity(message), when invoked, must set the
 custom validity error message to the value of the given
 message argument.

 In the following example, a script checks the value of a form
 control each time it is edited, and whenever it is not a valid
 value, uses the setCustomValidity() method
 to set an appropriate message.

 <label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
 function check(input) {
 if (input.value == "good" ||
 input.value == "fine" ||
 input.value == "tired") {
 input.setCustomValidity('"' + input.value + '" is not a feeling.');
 } else {
 // input is fine -- reset the error message
 input.setCustomValidity('');
 }
 }
</script>

 The validity
 attribute must return a ValidityState object that
 represents the validity states of the element. This
 object is live, and the same object must be returned
 each time the element's validity attribute is retrieved.

interface ValidityState {
 readonly attribute boolean valueMissing;
 readonly attribute boolean typeMismatch;
 readonly attribute boolean patternMismatch;
 readonly attribute boolean tooLong;
 readonly attribute boolean rangeUnderflow;
 readonly attribute boolean rangeOverflow;
 readonly attribute boolean stepMismatch;
 readonly attribute boolean badInput;
 readonly attribute boolean customError;
 readonly attribute boolean valid;
};

 A ValidityState object has the following
 attributes. On getting, they must return true if the corresponding
 condition given in the following list is true, and false
 otherwise.

 	valueMissing

 	 The control is suffering from being missing.

 	typeMismatch

 	 The control is suffering from a type mismatch.

 	patternMismatch

 	 The control is suffering from a pattern mismatch.

 	tooLong

 	 The control is suffering from being too long.

 	rangeUnderflow

 	 The control is suffering from an underflow.

 	rangeOverflow

 	 The control is suffering from an overflow.

 	stepMismatch

 	 The control is suffering from a step mismatch.

 	badInput

 	 The control is suffering from bad input.

 	customError

 	 The control is suffering from a custom error.

 	valid

 	 None of the other conditions are true.

 When the checkValidity()
 method is invoked, if the element is a candidate for
 constraint validation and does not satisfy its constraints, the user
 agent must fire a simple event named invalid that is cancelable (but in this
 case has no default action) at the element and return
 false. Otherwise, it must only return true without doing anything
 else.

 The validationMessage
 attribute must return the empty string if the element is not a
 candidate for constraint validation or if it is one but
 it satisfies its constraints;
 otherwise, it must return a suitably localized message that the user
 agent would show the user if this were the only form control with a
 validity constraint problem. If the user agent would not actually
 show a textual message in such a situation (e.g. it would show a
 graphical cue instead), then the attribute must return a suitably
 localized message that expresses (one or more of) the validity
 constraint(s) that the control does not satisfy. If the element is a
 candidate for constraint validation and is
 suffering from a custom error, then the custom
 validity error message should be present in the return
 value.

 Security

 Servers should not rely on client-side
 validation. Client-side validation can be intentionally bypassed by
 hostile users, and unintentionally bypassed by users of older user
 agents or automated tools that do not implement these features. The
 constraint validation features are only intended to improve the user
 experience, not to provide any kind of security mechanism.

 Form submission

 Introduction

 This section is non-normative.

 When a form is submitted, the data in the form is converted into
 the structure specified by the enctype, and then sent to the
 destination specified by the action using the given method.

 For example, take the following form:

 <form action="/find.cgi" method=get>
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

 If the user types in "cats" in the first field and "fur" in the
 second, and then hits the submit button, then the user agent will
 load /find.cgi?t=cats&q=fur.

 On the other hand, consider this form:

 <form action="/find.cgi" method=post enctype="multipart/form-data">
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

 Given the same user input, the result on submission is quite
 different: the user agent instead does an HTTP POST to the given
 URL, with as the entity body something like the following text:

 ------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

fur
------kYFrd4jNJEgCervE--

 Implicit submission

 A form element's default button is the
 first submit button in
 tree order whose form owner is that
 form element.

 If the user agent supports letting the user submit a form
 implicitly (for example, on some platforms hitting the "enter" key
 while a text field is focused implicitly submits the form), then
 doing so for a form whose default button has a defined
 activation behavior must cause the user agent to
 run synthetic click activation steps on that
 default button.

 Consequently, if the default button is
 disabled, the form is not
 submitted when such an implicit submission mechanism is used. (A
 button has no activation behavior when disabled.)

 There are pages on the Web that are only usable if
 there is a way to implicitly submit forms, so user agents are
 strongly encouraged to support this.

 If the form has no submit button, then the
 implicit submission mechanism must do nothing if the form has more
 than one field that blocks implicit submission, and must
 submit the
 form element from the form element itself
 otherwise.

 For the purpose of the previous paragraph, an element is a
 field that blocks implicit submission of a form
 element if it is an input element whose form
 owner is that form element and whose type attribute is in one of the
 following states:
 Text,
 Search,
 URL,
 Telephone,
 E-mail,
 Password,
 Date and Time,
 Date,
 Month,
 Week,
 Time,
 Local Date and Time,
 Number

 Form submission algorithm

 When a form element form is submitted from an element submitter
 (typically a button), optionally with a submitted from submit() method flag set, the user agent must run the
 following steps:

 	Let form document be the form's
 Document.

 	If form document has no associated
 browsing context or its active sandboxing flag set has its
 sandboxed forms browsing context flag set, then abort these steps without doing
 anything.

 	Let form browsing context be the browsing context of form document.

 	If the submitted from submit()
 method flag is not set, and the submitter element's no-validate state is false, then interactively
 validate the constraints of form and examine the result: if the result
 is negative (the constraint validation concluded that there were invalid fields and probably
 informed the user of this) then fire a simple event named invalid at the form element and then abort these
 steps.

 	If the submitted from submit()
 method flag is not set, then fire a simple event that bubbles and is
 cancelable named submit, at form. If the
 event's default action is prevented (i.e. if the event is canceled) then abort these steps.
 Otherwise, continue (effectively the default action is to perform the submission).

 	Let form data set be the result of constructing the form data
 set for form in the context of submitter.

 	Let action be the submitter element's action.

 	

 If action is the empty string, let action be
 the document's address of the form document.

 	Resolve the URL action, relative to the submitter element. If this fails,
 abort these steps.

 	Let action be the resulting absolute URL.

 	Let action components be the resulting parsed
 URL.

 	Let scheme be the scheme of
 the resulting parsed URL.

 	Let enctype be the submitter element's enctype.

 	Let method be the submitter element's method.

 	Let target be the submitter element's target.

 	If the user indicated a specific browsing context to use when submitting the
 form, then let target browsing context be that browsing context.
 Otherwise, apply the rules for choosing a browsing context given a browsing context
 name using target as the name and form browsing
 context as the context in which the algorithm is executed, and let target
 browsing context be the resulting browsing context.

 	If target browsing context was created in the previous step, or,
 alternatively, if the form document has not yet completely
 loaded and the submitted from submit()
 method is set, then let replace be true. Otherwise, let it be
 false.

 	

 Otherwise, select the appropriate row in the table below based on the value of scheme as given by the first cell of each row. Then, select the appropriate cell
 on that row based on the value of method as given in the first cell of each
 column. Then, jump to the steps named in that cell and defined below the table.

 	
 	 GET
 	 POST

 	 http
 	 Mutate action URL
 	 Submit as entity body

 	 https
 	 Mutate action URL
 	 Submit as entity body

 	 ftp
 	 Get action URL
 	 Get action URL

 	 javascript
 	 Get action URL
 	 Get action URL

 	 data
 	 Get action URL
 	 Post to data:

 	 mailto
 	 Mail with headers
 	 Mail as body

 If scheme is not one of those listed in this table, then the behavior is
 not defined by this specification. User agents should, in the absence of another specification
 defining this, act in a manner analogous to that defined in this specification for similar
 schemes.

 Each form element has a planned navigation, which is either null or a
 task; when the form is first created, its
 planned navigation must be set to null. In the behaviours described below, when the
 user agent is required to plan to navigate to a particular resource destination, it must run the following steps:

 	If the form has a non-null planned navigation, remove it from
 its task queue.

 	

 Let the form's planned navigation be a new task that consists of running the following steps:

 	Let the form's planned navigation be null.

 	Navigate target browsing context to
 the particular resource destination. If replace is
 true, then target browsing context must be navigated with
 replacement enabled.

 For the purposes of this task, target browsing context and replace are the variables that were set up when the overall form submission
 algorithm was run, with their values as they stood when this planned navigation
 was queued.

 	

 Queue the task that is the form's new
 planned navigation.

 The task source for this task is the DOM manipulation task
 source.

 The behaviors are as follows:

 	Mutate action URL

	

 Let query be the result of encoding the form data
 set using the application/x-www-form-urlencoded encoding
 algorithm, interpreted as a US-ASCII string.

 Set parsed action's query
 component to query.

 Let destination be a new URL formed by applying the
 URL serializer algorithm to parsed action.

 Plan to navigate to destination.

 	Submit as entity body

	

 Let entity body be the result of encoding the form data
 set using the appropriate form encoding algorithm.

 Let MIME type be determined as follows:

 	If enctype is application/x-www-form-urlencoded

 	Let MIME type be "application/x-www-form-urlencoded".

 	If enctype is multipart/form-data

 	Let MIME type be the concatenation of the string "multipart/form-data;", a U+0020 SPACE character, the string "boundary=", and the multipart/form-data boundary
 string generated by the multipart/form-data encoding
 algorithm.

 	If enctype is text/plain

 	Let MIME type be "text/plain".

 Otherwise, plan to navigate to action using the HTTP
 method given by method and with entity body as the
 entity body, of type MIME type.

 	Get action URL

	

 Plan to navigate to action.

 The form data set is discarded.

 	Post to data:

	

 Let data be the result of encoding the form data
 set using the appropriate form encoding algorithm.

 If action contains the string "%%%%" (four U+0025
 PERCENT SIGN characters), then percent encode all bytes in data that, if interpreted as US-ASCII, are not characters in the URL
 default encode set, and then, treating the result as a US-ASCII string,
 UTF-8 percent encode all the U+0025 PERCENT SIGN characters in the resulting
 string and replace the first occurrence of "%%%%" in action with the resulting doubly-escaped string. [URL]

 Otherwise, if action contains the string "%%"
 (two U+0025 PERCENT SIGN characters in a row, but not four), then UTF-8 percent
 encode all characters in data that, if interpreted as US-ASCII, are
 not characters in the URL default encode set, and then, treating the result as a
 US-ASCII string, replace the first occurrence of "%%" in action with the resulting escaped string. [URL]

 Plan to navigate to the potentially modified action (which
 will be a data: URL).

 	Mail with headers

	

 Let headers be the resulting encoding the form data
 set using the application/x-www-form-urlencoded encoding
 algorithm, interpreted as a US-ASCII string.

 Replace occurrences of "+" (U+002B) characters in headers with
 the string "%20".

 Let destination consist of all the characters from the first character
 in action to the character immediately before the first "?" (U+003F) character, if any, or the end of the string if there are none.

 Append a single "?" (U+003F) character to destination.

 Append headers to destination.

 Plan to navigate to destination.

 	Mail as body

	

 Let body be the resulting of encoding the form data
 set using the appropriate form encoding algorithm and then percent encoding all the bytes in the resulting byte string
 that, when interpreted as US-ASCII, are not characters in the URL default encode
 set. [URL]

 Let destination have the same value as action.

 If destination does not contain a "?" (U+003F) character,
 append a single "?" (U+003F) character to destination.
 Otherwise, append a single U+0026 AMPERSAND character (&).

 Append the string "body=" to destination.

 Append body, interpreted as a US-ASCII string, to destination.

 Plan to navigate to destination.

 The appropriate form encoding algorithm is
 determined as follows:

 	If enctype is application/x-www-form-urlencoded

 	Use the application/x-www-form-urlencoded encoding
 algorithm.

 	If enctype is multipart/form-data

 	Use the multipart/form-data encoding algorithm.

 	If enctype is text/plain

 	Use the text/plain encoding algorithm.

 Constructing the form data set

 The algorithm to construct the form data set
 for a form form optionally in the context of a submitter submitter is as follows. If not specified otherwise, submitter
 is null.

 	Let controls be a list of all the submittable elements whose form owner is form, in tree order.

 	Let the form data set be a list of name-value-type tuples, initially
 empty.

 	

 Loop: For each element field in controls, in
 tree order, run the following substeps:

 	

 If any of the following conditions are met, then skip these substeps for this element:

 	The field element has a datalist element ancestor.

 	The field element is disabled.

 	The field element is a button but
 it is not submitter.

 	The field element is an input element whose type attribute is in the Checkbox state and whose checkedness is false.

 	The field element is an input element whose type attribute is in the Radio Button state and whose checkedness is false.

 	The field element is not an input element whose type attribute is in the Image Button state, and either the field element does not have a name attribute
 specified, or its name attribute's value is the empty
 string.

 	The field element is an object element that is not using
 a plugin.

 Otherwise, process field as follows:

 	Let type be the value of the type IDL
 attribute of field.

 	

 If the field element is an input element whose type attribute is in the Image Button state, then run these further nested
 substeps:

 	If the field element has a name
 attribute specified and its value is not the empty string, let name be
 that value followed by a single "." (U+002E) character. Otherwise, let name be the empty string.

 	Let namex be the string consisting of the
 concatenation of name and a single U+0078 LATIN SMALL LETTER X character
 (x).

 	Let namey be the string consisting of the
 concatenation of name and a single U+0079 LATIN SMALL LETTER Y character
 (y).

 	The field element is submitter, and before
 this algorithm was invoked the user indicated a coordinate. Let x be the x-component of the coordinate selected by the
 user, and let y be the y-component of the coordinate
 selected by the user.

 	Append an entry to the form data set with the name namex, the value x, and the type type.

 	Append an entry to the form data set with the name namey and the value y, and the type
 type.

 	Skip the remaining substeps for this element: if there are any more elements in controls, return to the top of the loop step, otherwise, jump to the
 end step below.

 	Let name be the value of the field element's
 name attribute.

 	If the field element is a select element, then for each
 option element in the select element's list of options whose selectedness is true and that is not disabled, append an entry to the form data
 set with the name as the name, the value of the option element as the value, and
 type as the type.

 	

 Otherwise, if the field element is an input element whose
 type attribute is in the Checkbox state or the Radio Button state, then run these further nested
 substeps:

 	If the field element has a value attribute specified, then let value
 be the value of that attribute; otherwise, let value be the string "on".

 	Append an entry to the form data set with name
 as the name, value as the value, and type as the
 type.

 	Otherwise, if the field element is an input element
 whose type attribute is in the File Upload state, then for each file selected in the input element,
 append an entry to the form data set with the name as
 the name, the file (consisting of the name, the type, and the body) as the value, and type as the type. If there are no selected files, then append an entry to the
 form data set with the name as the name, the empty
 string as the value, and application/octet-stream as the type.

 	Otherwise, if the field element is an object element:
 try to obtain a form submission value from the plugin, and if that is successful,
 append an entry to the form data set with name as the
 name, the returned form submission value as the value, and the string "object" as the type.

 	Otherwise, append an entry to the form data set with name as the name, the value of the field element as the value, and type as the type.

 	

 If the element has a dirname attribute, and that
 attribute's value is not the empty string, then run these substeps:

 	Let dirname be the value of the element's dirname attribute.

 	Let dir be the string "ltr" if the
 directionality of the element is 'ltr', and "rtl" otherwise (i.e. when the directionality of the element is
 'rtl').

 	Append an entry to the form data set with dirname as the name, dir as the value, and the string
 "direction" as the type.

 An element can only have a dirname
 attribute if it is a textarea element or an input element whose
 type attribute is in either the Text state or the Search state.

 	

 End: For the name of each entry in the form data set, and for the
 value of each entry in the form data set whose type is not "file" or "textarea", replace every occurrence of a "CR" (U+000D) character not followed by a "LF" (U+000A) character, and every
 occurrence of a "LF" (U+000A) character not preceded by a "CR" (U+000D)
 character, by a two-character string consisting of a U+000D CARRIAGE RETURN "CRLF" (U+000A) character pair.

 In the case of the value of
 textarea elements, this newline normalization is already performed during the
 conversion of the control's raw value into the
 control's value (which also performs any necessary line
 wrapping). In the case of input elements type
 attributes in the File Upload state, the value is not
 normalized.

 	Return the form data set.

 Selecting a form submission encoding

 If the user agent is to pick an encoding for a
 form, optionally with an allow non-ASCII-compatible encodings flag set, it must run
 the following substeps:

 	Let input be the value of the form element's accept-charset attribute.

 	Let candidate encoding labels be the result of splitting input on spaces.

 	Let candidate encodings be an empty list of character encodings.

 	For each token in candidate encoding labels in turn (in the order in
 which they were found in input), get an
 encoding for the token and, if this does not result in failure, append the
 encoding to candidate encodings.

 	If the allow non-ASCII-compatible encodings flag is not set, remove any encodings
 that are not ASCII-compatible character
 encodings from candidate encodings.

 	If candidate encodings is empty, return UTF-8 and abort these
 steps.

 	

 Each character encoding in candidate encodings can represent a finite
 number of characters. (For example, UTF-8 can represent all 1.1 million or so Unicode code
 points, while Windows-1252 can only represent 256.)

 For each encoding in candidate encodings, determine how many of the
 characters in the names and values of the entries in the form data set the
 encoding can represent (without ignoring duplicates). Let max be the
 highest such count. (For UTF-8, max would equal the number of characters
 in the names and values of the entries in the form data set.)

 Return the first encoding in candidate encodings that can encode max characters in the names and values of the entries in the form
 data set.

 URL-encoded form data

 This form data set encoding is in many ways an aberrant monstrosity, the result of
 many years of implementation accidents and compromises leading to a set of requirements necessary
 for interoperability, but in no way representing good design practices. In particular, readers are
 cautioned to pay close attention to the twisted details involving repeated (and in some cases
 nested) conversions between character encodings and byte sequences.

 The application/x-www-form-urlencoded encoding algorithm is as
 follows:

 	Let result be the empty string.

 	

 If the form element has an accept-charset attribute, let the selected character
 encoding be the result of picking an encoding for the form.

 Otherwise, if the form element has no accept-charset attribute, but the document's
 character encoding is an ASCII-compatible character encoding, then that is
 the selected character encoding.

 Otherwise, let the selected character encoding be UTF-8.

 	Let charset be the name of the
 selected character encoding.

 	

 For each entry in the form data set, perform these substeps:

 	If the entry's name is "_charset_" and its
 type is "hidden", replace its value with charset.

 	If the entry's type is "file", replace its value with the file's
 name only.

 	For each character in the entry's name and value that cannot be expressed using the
 selected character encoding, replace the character by a string consisting of a U+0026 AMPERSAND
 character (&), a "#" (U+0023) character, one or more ASCII digits
 representing the Unicode code point of the character in base ten, and finally a ";" (U+003B) character.

 	

 Encode the entry's name and value using the encoder for the selected character
 encoding. The entry's name and value are now byte strings.

 	

 For each byte in the entry's name and value, apply the appropriate subsubsteps from the
 following list:

 	If the byte is 0x20 (U+0020 SPACE if interpreted as ASCII)

 	Replace the byte with a single 0x2B byte ("+" (U+002B) character if interpreted
 as ASCII).

 	If the byte is in the range 0x2A, 0x2D, 0x2E, 0x30 to 0x39, 0x41 to 0x5A, 0x5F, 0x61 to
 0x7A

 	Leave the byte as is.

 	Otherwise

 	

 	Let s be a string consisting of a U+0025 PERCENT SIGN character
 (%) followed by uppercase ASCII hex digits representing the hexadecimal value
 of the byte in question (zero-padded if necessary).

 	Encode the string s as US-ASCII, so that it is now a byte
 string.

	Replace the byte in question in the name or value being processed by the bytes in
 s, preserving their relative order.

 	

 Interpret the entry's name and value as Unicode strings encoded in US-ASCII. (All of the
 bytes in the string will be in the range 0x00 to 0x7F; the high bit will be zero throughout.)
 The entry's name and value are now Unicode strings again.

 	If the entry's name is "isindex", its type is
 "text", and this is the first entry in the form data
 set, then append the value to result and skip the rest of the
 substeps for this entry, moving on to the next entry, if any, or the next step in the overall
 algorithm otherwise.

 	If this is not the first entry, append a single U+0026 AMPERSAND character (&) to
 result.

 	Append the entry's name to result.

 	Append a single "=" (U+003D) character to result.

 	Append the entry's value to result.

 	Encode result as US-ASCII and return the resulting byte
 stream.

 To decode
 application/x-www-form-urlencoded payloads, the following algorithm should be
 used. This algorithm uses as inputs the payload itself, payload, consisting of
 a Unicode string using only characters in the range U+0000 to U+007F; a default character encoding
 encoding; and optionally an isindex flag indicating that
 the payload is to be processed as if it had been generated for a form containing an isindex control. The output of this algorithm is a sorted list
 of name-value pairs. If the isindex flag is set and the first control really
 was an isindex control, then the first name-value pair
 will have as its name the empty string.

 	Let strings be the result of strictly splitting the
 string payload on U+0026 AMPERSAND
 characters (&).

 	If the isindex flag is set and the first string in strings does not contain a "=" (U+003D) character, insert a "=" (U+003D) character at the start of the first string in strings.

 	Let pairs be an empty list of name-value pairs.

 	

 For each string string in strings, run these
 substeps:

 	

 If string contains a "=" (U+003D) character, then let name be the substring of string from the start of string up to but excluding its first "=" (U+003D) character, and let
 value be the substring from the first character, if any, after the first
 "=" (U+003D) character up to the end of string. If the first
 "=" (U+003D) character is the first character, then name will be
 the empty string. If it is the last character, then value will be the
 empty string.

 Otherwise, string contains no "=" (U+003D) characters. Let
 name have the value of string and let value be the empty string.

 	

 Replace any "+" (U+002B) characters in name and value with U+0020 SPACE characters.

 	

 Replace any escape in name and value with the
 character represented by the escape. This replacement must not be recursive.

 An escape is a "%" (U+0025) character followed by two ASCII hex
 digits.

 The character represented by an escape is the Unicode character whose code point is equal
 to the value of the two characters after the "%" (U+0025) character, interpreted as
 a hexadecimal number (in the range 0..255).

 So for instance the string "A%2BC" would become
 "A+C". Similarly, the string "100%25AA%21" becomes
 the string "100%AA!".

 	Convert the name and value strings to their byte
 representation in ISO-8859-1 (i.e. convert the Unicode string to a byte string, mapping code
 points to byte values directly).

 	Add a pair consisting of name and value to pairs.

 	If any of the name-value pairs in pairs have a name component
 consisting of the string "_charset_" encoded in US-ASCII, and the value
 component of the first such pair, when decoded as US-ASCII, is the name of a supported character
 encoding, then let encoding be that character encoding (replacing the default
 passed to the algorithm).

 	Convert the name and value components of each name-value pair in pairs
 to Unicode by interpreting the bytes according to the encoding encoding.

 	Return pairs.

 Parameters on the application/x-www-form-urlencoded MIME type are
 ignored. In particular, this MIME type does not support the charset
 parameter.

 Multipart form data

 The multipart/form-data encoding
 algorithm is as follows:

 	Let result be the empty string.

 	

 If the algorithm was invoked with an explicit character
 encoding, let the selected character encoding be that encoding.
 (This algorithm is used by other specifications, which provide an
 explicit character encoding to avoid the dependency on the
 form element described in the next paragraph.)

 Otherwise, if the form element has an accept-charset attribute, let the selected character
 encoding be the result of picking an encoding for the form.

 Otherwise, if the form element has no accept-charset attribute, but the document's
 character encoding is an ASCII-compatible character encoding, then that is
 the selected character encoding.

 Otherwise, let the selected character encoding be UTF-8.

 	Let charset be the name of the
 selected character encoding.

 	

 For each entry in the form data set,
 perform these substeps:

 	If the entry's name is "_charset_" and its type is
 "hidden", replace its value with charset.

 	For each character in the entry's name and value that
 cannot be expressed using the selected character encoding,
 replace the character by a string consisting of a U+0026
 AMPERSAND character (&), a "#" (U+0023) character,
 one or more ASCII digits representing the Unicode code point of the
 character in base ten, and finally a U+003B SEMICOLON character
 (;).

 	

 Encode the (now mutated) form data set
 using the rules described by RFC 2388, Returning Values from
 Forms: multipart/form-data, and
 return the resulting byte stream. [RFC2388]

 Each entry in the form data set is a
 field, the name of the entry is the field name and
 the value of the entry is the field value.

 The order of parts must be the same as the order of fields in
 the form data set. Multiple entries with the
 same name must be treated as distinct fields.

 In particular, this means that multiple files
 submitted as part of a single <input type=file multiple> element
 will result in each file having its own field; the "sets of files"
 feature ("multipart/mixed") of RFC 2388 is
 not used.

 The parts of the generated multipart/form-data resource that correspond to
 non-file fields must not have a Content-Type header
 specified. Their names and values must be encoded using the
 character encoding selected above (field names in particular do
 not get converted to a 7-bit safe encoding as suggested in RFC
 2388).

 File names included in the generated multipart/form-data resource (as part of file
 fields) must use the character encoding selected above, though the
 precise name may be approximated if necessary (e.g. newlines could
 be removed from file names, quotes could be changed to "%22", and
 characters not expressible in the selected character encoding
 could be replaced by other characters). User agents must not use
 the RFC 2231 encoding suggested by RFC 2388.

 The boundary used by the user agent in generating the return
 value of this algorithm is the multipart/form-data boundary string. (This
 value is used to generate the MIME type of the form submission
 payload generated by this algorithm.)

 For details on how to interpret multipart/form-data
 payloads, see RFC 2388. [RFC2388]

 Plain text form data

 The text/plain encoding
 algorithm is as follows:

 	Let result be the empty string.

 	

 If the form element has an accept-charset attribute, let the selected character
 encoding be the result of picking an encoding for the form, with the allow
 non-ASCII-compatible encodings flag unset.

 Otherwise, if the form element has no accept-charset attribute, then that is the selected
 character encoding.

 	Let charset be the name of the
 selected character encoding.

 	If the entry's name is "_charset_" and its type is
 "hidden", replace its value with charset.

 	If the entry's type is "file", replace
 its value with the file's name only.

 	

 For each entry in the form data set,
 perform these substeps:

 	Append the entry's name to result.

 	Append a single "=" (U+003D) character to result.

 	Append the entry's value to result.

 	Append a "CR" (U+000D) "LF" (U+000A)
 character pair to result.

 	Encode result using the encoder for the selected
 character encoding and return the resulting byte stream.

 Payloads using the text/plain format are intended to
 be human readable. They are not reliably interpretable by computer,
 as the format is ambiguous (for example, there is no way to
 distinguish a literal newline in a value from the newline at the end
 of the value).

 Resetting a form

 When a form element form is reset, the user agent must fire a simple event named
 reset, that bubbles and is cancelable, at form, and then, if that event is not canceled, must invoke the reset algorithm of each resettable element whose form owner is form.

 Each resettable element
 defines its own reset
 algorithm. Changes made to form controls as part of these
 algorithms do not count as changes caused by the user (and thus,
 e.g., do not cause input events to
 fire).

 Interactive elements

 The details element

 	Categories:

 	Flow content.

 	Sectioning root.

 	Interactive content.

 	Palpable content.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	One summary element followed by flow content.

 	Content attributes:

 	Global attributes

 	open

 	DOM interface:

 	
interface HTMLDetailsElement : HTMLElement {
 attribute boolean open;
};

 The details element represents a
 disclosure widget from which the user can obtain additional
 information or controls.

 The details element is not appropriate
 for footnotes. Please see the section on
 footnotes for details on how to mark up footnotes.

 The summary element
 child of the element, if any, represents the summary or
 legend of the details.

 The rest of the element's contents represents the
 additional information or controls.

 The open
 content attribute is a boolean attribute. If present,
 it indicates that both the summary and the additional information is
 to be shown to the user. If the attribute is absent, only the
 summary is to be shown.

 When the element is created, if the attribute is absent, the
 additional information should be hidden; if the attribute is
 present, that information should be shown. Subsequently, if the
 attribute is removed, then the information should be hidden; if the
 attribute is added, the information should be shown.

 The user agent should allow the user to request that the
 additional information be shown or hidden. To honor a request for
 the details to be shown, the user agent must set the open attribute on the element to
 the value open. To honor a request for the
 information to be hidden, the user agent must remove the open attribute from the
 element.

 The open IDL
 attribute must reflect the open content attribute.

 The following example shows the details element
 being used to hide technical details in a progress report.

 <section class="progress window">
 <h1>Copying "Really Achieving Your Childhood Dreams"</h1>
 <details>
 <summary>Copying... <progress max="375505392" value="97543282"></progress> 25%</summary>
 <dl>
 <dt>Transfer rate:</dt> <dd>452KB/s</dd>
 <dt>Local filename:</dt> <dd>/home/rpausch/raycd.m4v</dd>
 <dt>Remote filename:</dt> <dd>/var/www/lectures/raycd.m4v</dd>
 <dt>Duration:</dt> <dd>01:16:27</dd>
 <dt>Color profile:</dt> <dd>SD (6-1-6)</dd>
 <dt>Dimensions:</dt> <dd>320×240</dd>
 </dl>
 </details>
</section>

 The following shows how a details element can be
 used to hide some controls by default:

 <details>
 <summary><label for=fn>Name & Extension:</label></summary>
 <p><input type=text id=fn name=fn value="Pillar Magazine.pdf">
 <p><label><input type=checkbox name=ext checked> Hide extension</label>
</details>

 One could use this in conjunction with other details
 in a list to allow the user to collapse a set of fields down to a
 small set of headings, with the ability to open each one.

 [image:][image:]

 In these examples, the summary really just summarises what the
 controls can change, and not the actual values, which is less than
 ideal.

 Because the open
 attribute is added and removed automatically as the user interacts
 with the control, it can be used in CSS to style the element
 differently based on its state. Here, a stylesheet is used to
 animate the color of the summary when the element is opened or
 closed:

 <style>
 details > summary { transition: color 1s; color: black; }
 details[open] > summary { color: red; }
</style>
<details>
 <summary>Automated Status: Operational</summary>
 <p>Velocity: 12m/s</p>
 <p>Direction: North</p>
</details>

 The summary element

 	Categories:

 	None.

 	Contexts in which this element can be used:

 	As the first child of a details element.

 	Content model:

 	Phrasing content.

 	Content attributes:

 	Global attributes

 	DOM interface:

 	Uses HTMLElement.

 The summary element represents a
 summary, caption, or legend for the rest of the contents of the
 summary element's parent details
 element.

 The dialog element

 	Categories:

 	Flow content.

 	Sectioning root.

 	Contexts in which this element can be used:

 	Where flow content is expected.

 	Content model:

 	Flow content.

 	Content attributes:

 	Global attributes

 	open

 	DOM interface:

 	
interface HTMLDialogElement : HTMLElement {
 attribute boolean open;
 attribute DOMString returnValue;
 void show(optional (MouseEvent or Element) anchor);
 void showModal(optional (MouseEvent or Element) anchor);
 void close(optional DOMString returnValue);
};

 The dialog element represents a part of an
 application that a user interacts with to perform a task, for
 example a dialog box, inspector, or window.

 The open
 attribute is a boolean attribute. When specified, it
 indicates that the dialog element is active and that
 the user can interact with it.

 A dialog element without an open attribute specified should not
 be shown to the user. This requirement may be implemented indirectly
 through the style layer. For example, user agents that support the suggested default rendering
 implement this requirement using the CSS rules described in the rendering section.

 	dialog . show([anchor])

 	

 Displays the dialog element.

 The argument, if provided, provides an anchor point to which
 the element will be fixed.

 	dialog . showModal([anchor])

 	

 Displays the dialog element and makes it the top-most modal dialog.

 The argument, if provided, provides an anchor point to which
 the element will be fixed.

 This method honors the autofocus attribute.

 	dialog . close([result])

 	

 Closes the dialog element.

 The argument, if provided, provides a return value.

 	dialog . returnValue [= result]

 	

 Returns the dialog's return value.

 Can be set, to update the return value.

 When the show()
 method is invoked, the user agent must run the following steps:

 	If the element already has an open attribute, then abort these
 steps.

 	Add an open attribute
 to the dialog element, whose value is the empty
 string.

 	If the show() method
 was invoked with an argument, set up the position of
 the dialog element, using that argument as the anchor.
 Otherwise, set up the default static position of the
 dialog element.

 Each Document has a stack of dialog
 elements known as the pending dialog stack. When a
 Document is created, this stack must be initialized to
 be empty.

 When an element is added to the pending dialog
 stack, it must also be added to the top layer
 layer. When an element is removed from the pending dialog
 stack, it must be removed from the top layer. [FULLSCREEN]

 When the showModal() method
 is invoked, the user agent must run the following steps:

 	Let subject be the dialog
 element on which the method was invoked.

 	If subject already has an open attribute, then throw an
 InvalidStateError exception and abort these
 steps.

 	If subject is not in a
 Document, then throw an
 InvalidStateError exception and abort these
 steps.

 	Add an open attribute
 to subject, whose value is the empty
 string.

 	If the showModal()
 method was invoked with an argument, set up the
 position of subject, using that argument
 as the anchor. Otherwise, set up the default static
 position of the dialog element.

 	Let subject's Document be
 blocked by the modal
 dialog subject.

 	Push subject onto subject's Document's pending
 dialog stack.

 	Let control be the first element in tree
 order whose nearest ancestor dialog element is subject and that has an autofocus attribute
 specified, if any.

 	If there is no control, then abort these
 steps.

 	Run the focusing steps for control.

 If at any time a dialog element is removed from a
 Document, then if that dialog is in
 that Document's pending dialog stack, the
 following steps must be run:

 	Let subject be that dialog
 element and document be the
 Document from which it is being removed.

 	Remove subject from document's pending dialog
 stack.

 	If document's pending dialog
 stack is not empty, then let document be
 blocked by the modal
 dialog that is at the top of document's
 pending dialog stack. Otherwise, let document be no longer blocked by a modal
 dialog at all.

 When the close()
 method is invoked, the user agent must close the dialog
 that the method was invoked on. If the method was invoked with an
 argument, that argument must be used as the return value; otherwise,
 there is no return value.

 When a dialog element subject is
 to be closed, optionally with a
 return value result, the user agent must run the
 following steps:

 	If subject does not have an open attribute, then throw an
 InvalidStateError exception and abort these
 steps.

 	Remove subject's open attribute.

 	If the argument was passed a result,
 then set the returnValue attribute to the
 value of result.

 	

 If subject is in its Document's
 pending dialog stack, then run these substeps:

 	Remove subject from that pending
 dialog stack.

 	If that pending dialog stack is not empty,
 then let subject's Document be
 blocked by the modal
 dialog that is at the top of the pending dialog
 stack. Otherwise, let document be no
 longer blocked by a modal dialog at all.

 	Queue a task to fire a simple
 event named close at subject.

 The returnValue IDL
 attribute, on getting, must return the last value to which it was
 set. On setting, it must be set to the new value. When the element
 is created, it must be set to the empty string.

 Canceling dialogs: When a
 Document's pending dialog stack is not
 empty, user agents may provide a user interface that, upon
 activation, queues a task to
 fire a simple event named cancel that is cancelable at
 the top dialog element on the Document's
 pending dialog stack. The default action of this event
 must be to close the dialog with no return value.

 An example of such a UI mechanism would be the user
 pressing the "Escape" key.

 The containing block of all dialog elements that are absolutely positioned
 must be the initial containing block.

 All dialog elements are always in one of two modes: mundanely aligned,
 or magically aligned. When a dialog element is created, it must be placed
 in the mundanely aligned mode and the user agent must set up the default static
 position for that element, without an anchor.

 When a user agent is to set up the default static
 position of an element subject without an
 anchor, if that element is being rendered, it must set up the element such that its top static
 position, for the purposes of calculating the used value of the
 'top' property, is the value that would place the element's top
 margin edge as far from the top of the viewport as the element's
 bottom margin edge from the bottom of the viewport, if the element's
 height is less than the height of the viewport, and otherwise is the
 value that would place the element's top margin edge at the top of
 the viewport.

 If there is a dialog element that is mundanely aligned and that is
 being rendered when its browsing context changes viewport width (as
 measured in CSS pixels), then the user agent must set up the default static position
 of all such elements in that browsing context again, still without anchors.

 When a dialog element that is mundanely aligned starts being
 rendered, the user agent must set up the default static position of that
 element, without an anchor.

 This top static position of a mundanely aligned dialog element must
 remain the element's top static position until the set up the default static position
 algorithm is once again invoked for that element. (The element's static position is only used in
 calculating the used value of the 'top' property in certain situations; it's not used, for
 instance, to position the element if its 'position' property is set to 'static'.)

 When a user agent is to set up the position of an
 element subject using an anchor anchor, it must run the following steps:

 	

 If anchor is a MouseEvent
 object, then run these substeps:

 	If anchor's target element does not
 have a rendered box, or is in a different document than subject, then let subject be , set up the default static
 position of subject without an anchor, and abort the set up the
 position steps.

 	Let anchor element be an anonymous
 element rendered as a box with zero height and width (so its
 margin and border boxes both just form a point), positioned so
 that its top and left are at the coordinate identified by the
 event, and whose properties all compute to their initial
 values.

 Otherwise, let anchor element be anchor.

 	Let subject be magically
 aligned to anchor element.

 While an element A is magically aligned to an element B, the following requirements apply:

 	

 If at any time either A or B cease having rendered
 boxes, A and B cease being in the same
 Document, or B ceases being earlier than A
 in tree order, let subject be , and set up the default static position of subject without an anchor.

 	

 A's 'position' property must compute to the keyword 'absolute-anchored' rather than whatever it would
 otherwise compute to (i.e. the 'position' property's specified value is ignored).

 The 'absolute-anchored'
 keyword's requirements are described below.

 	

 The anchor points for A and B are defined as per the
 appropriate entry in the following list:

 	If the computed value of 'anchor-point' is 'none' on both
 A and B

	

 The anchor points of A and B are the center points of their respective first
 boxes' border boxes.

	If the computed value of 'anchor-point' is 'none' on A and a specific point on B

	
 The anchor point of B is the point given
 by its 'anchor-point' property.

If the anchor point of B is the center
 point of B's first box's border box, then
 A's anchor point is the center point of its
 first box's margin box.

Otherwise, A's anchor point is on one of
 its margin edges. Consider four hypothetical half-infinite lines
 L1, L2, L3, and L4 that each start in the center of B's first box's border box, and that extend
 respectively through the top left corner, top right corner,
 bottom right corner, and bottom left corner of B's first box's border box. A's anchor point is determined by the location of
 B's anchor point relative to these four
 hypothetical lines, as follows:

If the anchor point of B lies on L1 or
 L2, or inside the area bounded by L1 and L2 that also contains
 the points above B's first box's border box,
 then let A's anchor point be the horizontal
 center of A's bottom margin edge.

 Otherwise, if the anchor point of B lies
 on L3 or L4, or inside the area bounded by L4 and L4 that also
 contains the points below B's first box's
 border box, then let A's anchor point be the
 horizontal center of A's top margin
 edge.

 Otherwise, if the anchor point of B lies
 inside the area bounded by L4 and L1 that also contains the
 points to the left of B's first box's border
 box, then let A's anchor point be the
 vertical center of A's right margin
 edge.

 Otherwise, the anchor point of B lies
 inside the area bounded by L2 and L3 that also contains the
 points to the right of B's first box's
 border box; let A's anchor point be the
 vertical center of A's left margin edge.

	If the computed value of 'anchor-point' is a specific point
 on A and 'none' on B

	
 The anchor point of A is the point given
 by its 'anchor-point' property.

If the anchor point of A is the center
 point of A's first box's margin box, then
 B's anchor point is the center point of its
 first box's border box.

Otherwise, B's anchor point is on one of
 its border edges. Consider four hypothetical half-infinite lines
 L1, L2, L3, and L4 that each start in the center of A's first box's margin box, and that extend
 respectively through the top left corner, top right corner,
 bottom right corner, and bottom left corner of A's first box's margin box. B's anchor point is determined by the location of
 A's anchor point relative to these four
 hypothetical lines, as follows:

If the anchor point of A lies on L1 or
 L2, or inside the area bounded by L1 and L2 that also contains
 the points above A's first box's margin box,
 then let B's anchor point be the horizontal
 center of B's bottom border edge.

 Otherwise, if the anchor point of A lies
 on L3 or L4, or inside the area bounded by L4 and L4 that also
 contains the points below A's first box's
 margin box, then let B's anchor point be the
 horizontal center of B's top border
 edge.

 Otherwise, if the anchor point of A lies
 inside the area bounded by L4 and L1 that also contains the
 points to the left of A's first box's margin
 box, then let B's anchor point be the
 vertical center of B's right border
 edge.

 Otherwise, the anchor point of A lies
 inside the area bounded by L2 and L3 that also contains the
 points to the right of A's first box's
 margin box; let B's anchor point be the
 vertical center of B's left border edge.

	If the computed value of 'anchor-point' is a specific point
 on both A and B

	
 The anchor points of A and B are the points given by their respective
 'anchor-point' properties.

 The rules above generally use A's margin box, but B's border box. This is because while A always has a margin box, and using the margin box
 allows for the dialog to be positioned offset from the box it is
 annotating, B sometimes does not have a margin
 box (e.g. if it is a table-cell), or has a margin box whose
 position may be not entirely clear (e.g. in the face of margin
 collapsing and 'clear' handling of in-flow blocks).

 In cases where B does not have a border box
 but its border box is used by the algorithm above, user agents
 must use its first box's content area instead. (This is in
 particular an issue with boxes in tables that have
 'border-collapse' set to 'collapse'.)

 	

 When an element's 'position' property computes to 'absolute-anchored', the 'float' property does not
 apply and must compute to 'none', the 'display' property must compute to a value as described by
 the table in the section of CSS
 2.1 describing the relationships between 'display', 'position', and 'float',
 and the element's box must be positioned using the rules for absolute positioning but with its
 static position set such that if the box is positioned in its static position, its anchor point
 is exactly aligned over the anchor point of the element to which it is magically
 aligned. Elements aligned in this way are absolutely positioned. For the purposes
 of determining the containing block of other elements, the 'absolute-anchored' keyword must be treated like
 the 'absolute' keyword.

 The trivial example of an element that does not have
 a rendered box is one whose 'display' property computes to 'none'.
 However, there are many other cases; e.g. table columns do not have
 boxes (their properties merely affect other boxes).

 If an element to which another element is anchored changes rendering, the anchored
 element will be be repositioned accordingly. (In other words, the requirements above are live,
 they are not just calculated once per anchored element.)

 The 'absolute-anchored'
 keyword is not a keyword that can be specified in CSS; the 'position' property can only compute to
 this value if the dialog element is positioned via the APIs described above.

 Elements positioned in this way are not clipped by the 'overflow' property of
 ancestors (nor moved by the resulting scrolling mechanisms), since the containing block is the initial containing block. Anchoring to an element that
 is so clipped (and shifted) can therefore result in unexpected effects (where the
 anchored element moves along with the clipped element, but isn't itself clipped).

 The open IDL
 attribute must reflect the open content attribute.

 Anchor points

 This section will eventually be moved to a CSS
 specification; it is specified here only on an interim basis until
 an editor can be found to own this.

 'anchor-point'

 	Value:
 	 none | <position>

 	Initial:
 	 none

 	Applies to:
 	 all elements

 	Inherited:
 	 no

 	Percentages:
 	 refer to width or height of box; see prose

 	Media:
 	 visual

 	Computed value:
 	 The specified value, but with any lengths replaced by their corresponding absolute length

 	Animatable:
 	 no

 	Canonical order:
 	 per grammar

 The 'anchor-point' property specifies a point to which dialog
 boxes are to be aligned.

 If the value is a <position>, the alignment point is the point
 given by the value, which must be interpreted relative to the
 element's first rendered box's margin box. Percentages must be
 calculated relative to the element's first rendered box's margin box
 (specifically, its width for the horizontal position and its height
 for the vertical position). [CSSVALUES]
 [CSS]

 If the value is the keyword 'none', then no explicit alignment
 point is defined. The user agent will pick an alignment point
 automatically if necessary (as described in the definition of the
 open() method above).

 Links

 Introduction

 Links are a conceptual construct, created by a,
 area, and link elements, that represent a connection between two
 resources, one of which is the current Document. There
 are two kinds of links in HTML:

 	Links to external
 resources

 	These are links to resources that are to be used to augment
 the current document, generally automatically processed by the user
 agent.

 	Hyperlinks

 	These are links to other resources that are generally
 exposed to the user by the user agent so that the user can cause
 the user agent to navigate to those resources, e.g. to
 visit them in a browser or download them.

 For link elements with an href attribute and a rel attribute, links must be created
 for the keywords of the rel
 attribute, as defined for those keywords in the link types section.

 Similarly, for a and area elements with
 an href attribute and a
 rel attribute, links must be
 created for the keywords of the rel attribute as defined for those
 keywords in the link types section. Unlike
 link elements, however, a and
 area element with an href attribute that either do not
 have a rel attribute, or
 whose rel attribute has no
 keywords that are defined as specifying hyperlinks, must also create a
 hyperlink. This implied hyperlink has no special
 meaning (it has no link type) beyond
 linking the element's document to the resource given by the
 element's href
 attribute.

 A hyperlink can have one or more hyperlink annotations that modify
 the processing semantics of that hyperlink.

 Links created by a and area elements

 The href
 attribute on a and area elements must have
 a value that is a valid URL potentially surrounded by
 spaces.

 The href
 attribute on a and area elements is not
 required; when those elements do not have href attributes they do not
 create hyperlinks.

 The target
 attribute, if present, must be a valid browsing context name
 or keyword. It gives the name of the browsing
 context that will be used.

 When an a or area element's
 activation behavior is invoked, the user agent may
 allow the user to indicate a preference regarding whether the
 hyperlink is to be used for navigation
 or whether the resource it specifies is to be downloaded.

 In the absence of a user preference, the default should be
 navigation if the element has no download attribute, and
 should be to download the specified resource if it does.

 Whether determined by the user's preferences or via the presence
 or absence of the attribute, if the decision is to use the hyperlink
 for navigation then the user agent
 must follow the hyperlink,
 and if the decision is to use the hyperlink to download a resource,
 the user agent must download
 the hyperlink. These terms are defined in subsequent sections
 below.

 The download
 attribute, if present, indicates that the author intends the
 hyperlink to be used for downloading a resource. The attribute may
 have a value; the value, if any, specifies the default file name that
 the author recommends for use in labeling the resource in a local
 file system. There are no restrictions on allowed values, but
 authors are cautioned that most file systems have limitations with
 regard to what punctuation is supported in file names, and user
 agents are likely to adjust file names accordingly.

 The rel
 attribute on a and area elements controls
 what kinds of links the elements create. The attribute's value must
 be a set of space-separated tokens. The allowed keywords and their meanings are
 defined below.

 The rel attribute has
 no default value. If the attribute is omitted or if none of the
 values in the attribute are recognized by the user agent, then the
 document has no particular relationship with the destination
 resource other than there being a hyperlink between the two.

 The hreflang
 attribute on a and area elements that
 create hyperlinks, if present, gives
 the language of the linked resource. It is purely advisory. The
 value must be a valid BCP 47 language tag. [BCP47]

 The type
 attribute, if present, gives the MIME type of the
 linked resource. It is purely advisory. The value must be a
 valid MIME type.

 Following hyperlinks

 When a user follows a hyperlink created by an element
 subject, the user agent must run the following steps:

 	Let replace be false.

 	Let source be the browsing context that contains the
 Document object with which subject in question is
 associated.

 	

 If the user indicated a specific browsing context when following the hyperlink,
 or if the user agent is configured to follow hyperlinks by navigating a particular browsing
 context, then let target be that browsing context.

 Otherwise, if subject is an a or area element
 that has a target attribute, then let target be the browsing context that is chosen by applying the
 rules for choosing a browsing context given a browsing context name, using the value of
 the target attribute as the browsing context name. If
 these rules result in the creation of a new browsing context, set replace to true.

 Otherwise, if target is an a or area element
 with no target attribute, but the
 Document contains a base element with a target attribute, then let target be the
 browsing context that is chosen by applying the rules for choosing a browsing
 context given a browsing context name, using the value of the target attribute of the first such base element as
 the browsing context name. If these rules result in the creation of a new browsing
 context, set replace to true.

 Otherwise, let target be the browsing context that subject itself is in.

 	Resolve the URL given by the href attribute of that element, relative to that
 element.

 	

 If that is successful, let URL be the resulting absolute
 URL.

 Otherwise, if resolving the URL failed, the
 user agent may report the error to the user in a user-agent-specific manner, may queue a
 task to navigate the target
 browsing context to an error page to report the error, or may ignore the error and
 do nothing. In any case, the user agent must then abort these steps.

 	In the case of server-side image maps, append the hyperlink suffix to URL.

 	

 Queue a task to navigate the target browsing context to URL. If replace is true, the navigation must be performed with replacement
 enabled. The source browsing context must be source.

 The task source for the tasks mentioned above is the DOM manipulation task
 source.

 Downloading resources

 In some cases, resources are intended for later use rather than
 immediate viewing. To indicate that a resource is intended to be
 downloaded for use later, rather than immediately used, the download attribute can be
 specified on the a or area element that
 creates the hyperlink to that resource.

 The attribute can furthermore be given a value, to specify the
 file name that user agents are to use when storing the resource in a
 file system. This value can be overridden by the Content-Disposition HTTP
 header's filename parameters. [RFC6266]

 In cross-origin situations, the download attribute has to be
 combined with the Content-Disposition HTTP
 header, specifically with the attachment
 disposition type, to avoid the user being warned of possibly
 nefarious activity. (This is to protect users from being made to
 download sensitive personal or confidential information without
 their full understanding.)

 When a user downloads a
 hyperlink created by an element, the user agent must run the
 following steps:

 	Resolve the
 URL given by the href attribute of that element,
 relative to that element.

 	If resolving the
 URL fails, the user agent may report the error to the
 user in a user-agent-specific manner, may
 navigate to an error page
 to report the error, or may ignore the error and do nothing. In
 either case, the user agent must abort these steps.

	Otherwise, let URL be the resulting
 absolute URL.

 	In the case of server-side image maps, append the
 hyperlink suffix to URL.

 	Return to whatever algorithm invoked these steps and continue
 these steps asynchronously.

 	Fetch URL and
 handle the resulting resource as a download.

 When a user agent is to handle a resource obtained from a
 fetch algorithm as a download, it should
 provide the user with a way to save the resource for later use, if a
 resource is successfully obtained; or otherwise should report any
 problems downloading the file to the user.

 If the user agent needs a file name for a resource being handled
 as a download, it should select one using the following
 algorithm.

 This algorithm is intended to mitigate security dangers involved in downloading
 files from untrusted sites, and user agents are strongly urged to follow it.

 	Let filename be the void value.

 	If the resource has a Content-Disposition header,
 that header specifies the attachment
 disposition type, and the header includes file name information,
 then let filename have the value specified by
 the header, and jump to the step labeled sanitize below. [RFC6266]

 	Let interface origin be the origin of the
 Document in which the download or
 navigate action resulting in the download was initiated, if any.

 	Let resource origin be the origin of the URL of the
 resource being downloaded, unless that URL's scheme
 component is data, in which case let resource origin be
 the same as the interface origin, if any.

 	If there is no interface origin, then let trusted
 operation be true. Otherwise, let trusted operation be true if resource origin is the same origin as interface
 origin, and false otherwise.

 	If trusted operation is true and the
 resource has a Content-Disposition header
 and that header includes file name information, then let filename have the value specified by the header, and
 jump to the step labeled sanitize below. [RFC6266]

 	If the download was not initiated from a
 hyperlink created by an a or
 area element, or if the element of the
 hyperlink from which it was initiated did not have a
 download attribute
 when the download was initiated, or if there was such an attribute
 but its value when the download was initiated was the empty string,
 then jump to the step labeled no proposed file name.

 	Let proposed filename have the value of
 the download attribute
 of the element of the hyperlink that initiated the
 download at the time the download was initiated.

 	If trusted operation is true, let filename have the value of proposed
 filename, and jump to the step labeled sanitize
 below.

 	If the resource has a Content-Disposition header
 and that header specifies the attachment
 disposition type, let filename have the value
 of proposed filename, and jump to the step
 labeled sanitize below. [RFC6266]

 	No proposed file name: If trusted
 operation is true, or if the user indicated a preference for
 having the resource in question downloaded, let filename have a value derived from the
 URL of the resource in a user-agent-defined manner,
 and jump to the step labeled sanitize below.

 	

 Act in a user-agent-defined manner to safeguard the user from a
 potentially hostile cross-origin download. If the download is not
 to be aborted, then let filename be set to the
 user's preferred file name or to a file name selected by the user
 agent, and jump to the step labeled sanitize below.

 If the algorithm reaches this step, then a download was begun
 from a different origin than the resource being downloaded, and
 the origin did not mark the file as suitable for downloading, and
 the download was not initiated by the user. This could be because
 a download attribute
 was used to trigger the download, or because the resource in
 question is not of a type that the user agent supports.

 This could be dangerous, because, for instance, a hostile
 server could be trying to get a user to unknowingly download
 private information and then re-upload it to the hostile server,
 by tricking the user into thinking the data is from the hostile
 server.

 Thus, it is in the user's interests that the user be somehow
 notified that the resource in question comes from quite a
 different source, and to prevent confusion, any suggested
 file name from the potentially hostile interface
 origin should be ignored.

 	Sanitize: Optionally, allow the user to influence filename. For example, a user agent could prompt the
 user for a file name, potentially providing the value of filename as determined above as a default
 value.

 	

 Adjust filename to be suitable for the
 local file system.

 For example, this could involve removing
 characters that are not legal in file names, or trimming leading
 and trailing whitespace.

 	If the platform conventions do not in any way use extensions to determine the types
 of file on the file system, then return filename as the file name and abort these
 steps.

 	Let claimed type be the type given by
 the resource's Content-Type
 metadata, if any is known. Let named
 type be the type given by filename's
 extension, if any is known.
 For the purposes of this step, a type is a mapping of a
 MIME type to an extension.

 	If named type is consistent with the
 user's preferences (e.g. because the value of filename was determined by prompting the user), then
 return filename as the file name and abort
 these steps.

 	If claimed type and named
 type are the same type (i.e. the type given by the resource's
 Content-Type metadata is
 consistent with the type given by filename's
 extension), then return filename as the file name and abort these
 steps.

 	

 If the claimed type is known, then alter
 filename to add an extension corresponding to claimed type.

 Otherwise, if named type is known to be
 potentially dangerous (e.g. it will be treated by the platform
 conventions as a native executable, shell script, HTML
 application, or executable-macro-capable document) then optionally
 alter filename to add a known-safe extension (e.g. ".txt").

 This last step would make it impossible to
 download executables, which might not be desirable. As always,
 implementors are forced to balance security and usability in this
 matter.

 	Return filename as the file
 name.

 For the purposes of this algorithm, a file extension consists of any part of
 the file name that platform conventions dictate will be used for
 identifying the type of the file. For example, many operating
 systems use the part of the file name following the last dot (".") in the file name to determine the type of the
 file, and from that the manner in which the file is to be opened or
 executed.

 User agents should ignore any directory or path information
 provided by the resource itself, its URL, and any download attribute, in
 deciding where to store the resulting file in the user's file
 system.

 Link types

 The following table summarizes the link types that are defined by
 this specification. This table is non-normative; the actual
 definitions for the link types are given in the next few
 sections.

 In this section, the term referenced document refers to
 the resource identified by the element representing the link, and
 the term current document refers to the resource within
 which the element representing the link finds itself.

 To determine which link types apply to a link,
 a, or area element, the element's rel attribute must be split on spaces. The resulting tokens are the link
 types that apply to that element.

 Except where otherwise specified, a keyword must not be specified
 more than once per rel
 attribute.

 Link types are always ASCII case-insensitive.

 Thus, rel="next" is the
 same as rel="NEXT".

 	Link type
 	Effect on...
 	Brief description

 	link
 	a and area

 	alternate
 	Hyperlink
 	Hyperlink
 	Gives alternate representations of the current document.

 	author
 	Hyperlink
 	Hyperlink
 	Gives a link to the author of the current document or article.

 	bookmark
 	not allowed
 	Hyperlink
 	Gives the permalink for the nearest ancestor section.

 	help
 	Hyperlink
 	Hyperlink
 	Provides a link to context-sensitive help.

 	icon
 	External Resource
 	not allowed
 	Imports an icon to represent the current document.

 	license
 	Hyperlink
 	Hyperlink
 	Indicates that the main content of the current document is covered by the copyright license described by the referenced document.

 	next
 	Hyperlink
 	Hyperlink
 	Indicates that the current document is a part of a series, and that the next document in the series is the referenced document.

 	nofollow
 	not allowed
 	Annotation
 	Indicates that the current document's original author or publisher does not endorse the referenced document.

 	noreferrer
 	not allowed
 	Annotation
 	Requires that the user agent not send an HTTP Referer (sic) header if the user follows the hyperlink.

 	prefetch
 	External Resource
 	External Resource
 	Specifies that the target resource should be preemptively cached.

 	prev
 	Hyperlink
 	Hyperlink
 	Indicates that the current document is a part of a series, and that the previous document in the series is the referenced document.

 	search
 	Hyperlink
 	Hyperlink
 	Gives a link to a resource that can be used to search through the current document and its related pages.

 	stylesheet
 	External Resource
 	not allowed
 	Imports a stylesheet.

 	tag
 	not allowed
 	Hyperlink
 	Gives a tag (identified by the given address) that applies to the current document.

 Some of the types described below list synonyms for these
 values. These must not be used in
 documents.

 Link type "alternate"

 The alternate keyword may be
 used with link, a, and area
 elements.

 The meaning of this keyword depends on the values of the other
 attributes.

 	If the element is a link element and the rel attribute also contains the
 keyword stylesheet

 	

 The alternate keyword
 modifies the meaning of the stylesheet keyword in the way
 described for that keyword. The alternate keyword does not create a
 link of its own.

 	If the alternate keyword is
 used with the type
 attribute set to the value application/rss+xml or the value application/atom+xml

 	

 The keyword creates a hyperlink referencing a
 syndication feed (though not necessarily syndicating exactly the
 same content as the current page).

 The first link, a, or area
 element in the document (in tree order) with the alternate keyword used with the type attribute set to the value
 application/rss+xml or the value application/atom+xml must be treated as the default
 syndication feed for the purposes of feed autodiscovery.

 The following link element gives the syndication
 feed for the current page:

 <link rel="alternate" type="application/atom+xml" href="data.xml">

 The following extract offers various different syndication
 feeds:

 <p>You can access the planets database using Atom feeds:</p>

 Recently Visited Planets
 Known Bad Planets
 Unexplored Planets

 	Otherwise

 	

 The keyword creates a hyperlink referencing an
 alternate representation of the current document.

 The nature of the referenced document is given by the hreflang, and type attributes.

 If the alternate keyword is
 used with the hreflang
 attribute, and that attribute's value differs from the root
 element's language, it indicates that the
 referenced document is a translation.

 If the alternate keyword is
 used with the type
 attribute, it indicates that the referenced document is a
 reformulation of the current document in the specified format.

 The hreflang and type attributes can be combined when specified with the alternate keyword.

 For example, the following link is a French translation that
 uses the PDF format:

 <link rel=alternate type=application/pdf hreflang=fr href=manual-fr>

 This relationship is transitive — that is, if a document
 links to two other documents with the link type "alternate", then, in addition to
 implying that those documents are alternative representations of
 the first document, it is also implying that those two documents
 are alternative representations of each other.

 Link type "author"

 The author keyword may be
 used with link, a, and area
 elements. This keyword creates a hyperlink.

 For a and area elements, the author keyword indicates that the
 referenced document provides further information about the author of
 the nearest article element ancestor of the element
 defining the hyperlink, if there is one, or of the page as a whole,
 otherwise.

 For link elements, the author keyword indicates that the
 referenced document provides further information about the author
 for the page as a whole.

 The "referenced document" can be, and often is, a
 mailto: URL giving the e-mail address of the
 author. [MAILTO]

 Synonyms: For historical reasons, user agents
 must also treat link, a, and
 area elements that have a rev
 attribute with the value "made" as having the author keyword specified as a link
 relationship.

 Link type "bookmark"

 The bookmark keyword may be
 used with a and area elements. This
 keyword creates a hyperlink.

 The bookmark keyword gives a
 permalink for the nearest ancestor article element of
 the linking element in question, or of the section the linking element is most
 closely associated with, if there are no ancestor
 article elements.

 The following snippet has three permalinks. A user agent could
 determine which permalink applies to which part of the spec by
 looking at where the permalinks are given.

 ...
 <body>
 <h1>Example of permalinks</h1>
 <div id="a">
 <h2>First example</h2>
 <p>This permalink applies to
 only the content from the first H2 to the second H2. The DIV isn't
 exactly that section, but it roughly corresponds to it.</p>
 </div>
 <h2>Second example</h2>
 <article id="b">
 <p>This permalink applies to
 the outer ARTICLE element (which could be, e.g., a blog post).</p>
 <article id="c">
 <p>This permalink applies to
 the inner ARTICLE element (which could be, e.g., a blog comment).</p>
 </article>
 </article>
 </body>
 ...

 Link type "help"

 The help keyword may be used with
 link, a, and area
 elements. This keyword creates a hyperlink.

 For a and area elements, the help keyword indicates that the referenced
 document provides further help information for the parent of the
 element defining the hyperlink, and its children.

 In the following example, the form control has associated
 context-sensitive help. The user agent could use this information,
 for example, displaying the referenced document if the user presses
 the "Help" or "F1" key.

 <p><label> Topic: <input name=topic> (Help)</label></p>

 For link elements, the help keyword indicates that the referenced
 document provides help for the page as a whole.

 For a and area elements, on some
 browsers, the help keyword causes the
 link to use a different cursor.

 Link type "icon"

 The icon keyword may be used with
 link elements. This keyword creates an external resource link.

 The specified resource is an icon representing the page or site,
 and should be used by the user agent when representing the page in
 the user interface.

 Icons could be auditory icons, visual icons, or other kinds of
 icons.

 User agents are not required to update icons when
 the list of icons changes, but are encouraged to do so.

 There is no default type for resources given by the icon keyword. However, for the purposes of
 determining the type of the
 resource, user agents must expect the resource to be an image.

 The sizes
 attribute gives the sizes of icons for visual media. Its value, if
 present, is merely advisory. User agents may use the value to decide
 which icon(s) to use if multiple icons are available.

 If specified, the attribute must have a value that is an
 unordered set of unique space-separated tokens which
 are ASCII case-insensitive. Each value must be either
 an ASCII case-insensitive match for the string "any", or a value that consists of
 two valid non-negative
 integers that do not have a leading "0" (U+0030)
 character and that are separated by a single U+0078 LATIN SMALL
 LETTER X or U+0058 LATIN CAPITAL LETTER X character.

 The keywords represent icon sizes.

 To parse and process the attribute's value, the user agent must
 first split the attribute's
 value on spaces, and must then parse each resulting keyword
 to determine what it represents.

 The any keyword
 represents that the resource contains a scalable icon, e.g. as
 provided by an SVG image.

 Other keywords must be further parsed as follows to determine
 what they represent:

 	If the keyword doesn't contain exactly one U+0078 LATIN
 SMALL LETTER X or U+0058 LATIN CAPITAL LETTER X character, then
 this keyword doesn't represent anything. Abort these steps for that
 keyword.

 	Let width string be the string before
 the "x" or "X".

 	Let height string be the string after
 the "x" or "X".

 	If either width string or height string start with a "0" (U+0030)
 character or contain any characters other than ASCII digits, then this
 keyword doesn't represent anything. Abort these steps for that
 keyword.

 	Apply the rules for parsing non-negative
 integers to width string to obtain width.

 	Apply the rules for parsing non-negative
 integers to height string to obtain height.

 	The keyword represents that the resource contains a bitmap
 icon with a width of width device pixels and a
 height of height device pixels.

 The keywords specified on the sizes attribute must not represent
 icon sizes that are not actually available in the linked
 resource.

 In the absence of a link with the icon keyword, for Documents
 obtained over HTTP or HTTPS, user agents may instead attempt to
 fetch and use an icon with the
 absolute URL obtained by resolving the URL
 "/favicon.ico" against the document's
 address, as if the page had declared that icon using the
 icon keyword.

 The following snippet shows the top part of an application with
 several icons.

 <!DOCTYPE HTML>
<html>
 <head>
 <title>lsForums — Inbox</title>
 <link rel=icon href=favicon.png sizes="16x16" type="image/png">
 <link rel=icon href=windows.ico sizes="32x32 48x48" type="image/vnd.microsoft.icon">
 <link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192 32768x32768">
 <link rel=icon href=iphone.png sizes="57x57" type="image/png">
 <link rel=icon href=gnome.svg sizes="any" type="image/svg+xml">
 <link rel=stylesheet href=lsforums.css>
 <script src=lsforums.js></script>
 <meta name=application-name content="lsForums">
 </head>
 <body>
 ...

 For historical reasons, the icon
 keyword may be preceded by the keyword "shortcut". If the "shortcut"
 keyword is present, it must be come immediately before the icon keyword and the two keywords must be
 separated by only a single U+0020 SPACE character.

 Link type "license"

 The license keyword may be used
 with link, a, and area
 elements. This keyword creates a hyperlink.

 The license keyword indicates
 that the referenced document provides the copyright license terms
 under which the main content of the current document is
 provided.

 This specification defines the main content of a document and content that
 is not deemed to be part of that main content via the main element.
 The distinction should be made clear to the user.

 Consider a photo sharing site. A page on that site might
 describe and show a photograph, and the page might be marked up as
 follows:

 <!DOCTYPE HTML>
<html>
 <head>
 <title>Exampl Pictures: Kissat</title>
 <link rel="stylesheet" href="/style/default">
 </head>
 <body>
 <h1>Kissat</h1>
 <nav>
 Return to photo index
 </nav>

 <main>
 <figure>

 <figcaption>Kissat</figcaption>
 </figure>
 <p>One of them has six toes!</p>
 <p><small>This photograph is MIT Licensed</small></p>
 </main>
 <footer>
 Home | Photo index
 <p><small>© copyright 2009 Exampl Pictures. All Rights Reserved.</small></p>
 </footer>
 </body>
</html>

 In this case the license
 applies to just the photo (the main content of the document), not
 the whole document. In particular not the design of the page
 itself, which is covered by the copyright given at the bottom of
 the document. This should be made clear in the text referencing the licensing
 link and could also be made clearer in the styling
 (e.g. making the license link prominently positioned near the
 photograph, while having the page copyright in light small text at
 the foot of the page, or adding a border to the main element.)

 Synonyms: For historical reasons, user agents
 must also treat the keyword "copyright" like
 the license keyword.

 Link type "nofollow"

 The nofollow keyword may be
 used with a and area elements. This
 keyword does not create a hyperlink, but annotates any other hyperlinks
 created by the element (the implied hyperlink, if no other keywords
 create one).

 The nofollow keyword indicates
 that the link is not endorsed by the original author or publisher of
 the page, or that the link to the referenced document was included
 primarily because of a commercial relationship between people
 affiliated with the two pages.

 Link type "noreferrer"

 The noreferrer keyword may be
 used with a and area elements. This
 keyword does not create a hyperlink, but annotates any other hyperlinks
 created by the element (the implied hyperlink, if no other keywords
 create one).

 It indicates that no referrer information is to be leaked when
 following the link.

 If a user agent follows a link defined by an a or
 area element that has the noreferrer keyword, the user agent
 must not include a Referer (sic)
 HTTP header (or
 equivalent for other protocols) in the request.

 This keyword also causes the opener attribute to remain null if the
 hyperlink creates a new browsing context.

 Link type "prefetch"

 The prefetch keyword may be
 used with link, a, and area
 elements. This keyword creates an external resource link.

 The prefetch keyword indicates
 that preemptively fetching and caching the specified resource is
 likely to be beneficial, as it is highly likely that the user will
 require this resource.

 There is no default type for resources given by the prefetch keyword.

 Link type "search"

 The search keyword may be used
 with link, a, and area
 elements. This keyword creates a hyperlink.

 The search keyword indicates that
 the referenced document provides an interface specifically for
 searching the document and its related resources.

 OpenSearch description documents can be used with
 link elements and the search link type to enable user agents to
 autodiscover search interfaces. [OPENSEARCH]

 Link type "stylesheet"

 The stylesheet keyword may be
 used with link elements. This keyword creates an external resource link that
 contributes to the styling processing model.

 The specified resource is a resource that describes how to
 present the document. Exactly how the resource is to be processed
 depends on the actual type of the resource.

 If the alternate keyword is
 also specified on the link element, then the link
 is an alternative stylesheet; in this case, the title attribute must be specified on the
 link element, with a non-empty value.

 The default type for resources given by the stylesheet keyword is text/css.

 The appropriate time to obtain the resource is when the
 external resource link
 is created or when its element is inserted into a document, whichever happens
 last. If the resource is an alternative stylesheet then the user agent may
 defer obtaining the resource until it is part of the preferred
 style sheet set. [CSSOM]

 Quirk: If the document has been set to
 quirks mode, has the same origin as the
 URL of the external resource, and
 the Content-Type metadata of the
 external resource is not a supported style sheet type, the user
 agent must instead assume it to be text/css.

 Link type "tag"

 The tag keyword may be used with
 a and area elements. This keyword creates
 a hyperlink.

 The tag keyword indicates that the
 tag that the referenced document represents applies to the
 current document.

 Since it indicates that the tag applies to the
 current document, it would be inappropriate to use this keyword
 in the markup of a tag cloud, which lists
 the popular tags across a set of pages.

 This document is about some gems, and so it is tagged
 with "http://en.wikipedia.org/wiki/Gemstone"
 to unambiguously categorise it as applying to the "jewel" kind of
 gems, and not to, say, the towns in the US, the Ruby package
 format, or the Swiss locomotive class:

 <!DOCTYPE HTML>
<html>
 <head>
 <title>My Precious</title>
 </head>
 <body>
 <header><h1>My precious</h1> <p>Summer 2012</p></header>
 <p>Recently I managed to dispose of a red gem that had been
 bothering me. I now have a much nicer blue sapphire.</p>
 <p>The red gem had been found in a bauxite stone while I was digging
 out the office level, but nobody was willing to haul it away. The
 same red gem stayed there for literally years.</p>
 <footer>
 Tags: Gemstone
 </footer>
 </body>
</html>

 In this document, there are two articles. The "tag" link, however, applies to the whole
 page (and would do so wherever it was placed, including if it was
 within the article elements).

 <!DOCTYPE HTML>
<html>
 <head>
 <title>Gem 4/4</title>
 </head>
 <body>
 <article>
 <h1>801: Steinbock</h1>
 <p>The number 801 Gem 4/4 electro-diesel has an ibex and was rebuilt in 2002.</p>
 </article>
 <article>
 <h1>802: Murmeltier</h1>
 <figure>
 <img src="http://upload.wikimedia.org/wikipedia/commons/b/b0/Trains_de_la_Bernina_en_hiver_2.jpg"
 alt="The 802 was red with pantographs and tall vents on the side.">
 <figcaption>The 802 in the 1980s, above Lago Bianco.</figcaption>
 </figure>
 <p>The number 802 Gem 4/4 electro-diesel has a marmot and was rebuilt in 2003.</p>
 </article>
 <p class="topic">Gem 4/4</p>
 </body>
</html>

 Sequential link types

 Some documents form part of a sequence of documents.

 A sequence of documents is one where each document can have a
 previous sibling and a next sibling. A document
 with no previous sibling is the start of its sequence, a document
 with no next sibling is the end of its sequence.

 A document may be part of multiple sequences.

 Link type "next"

 The next keyword may be used with
 link, a, and area
 elements. This keyword creates a hyperlink.

 The next keyword indicates that the
 document is part of a sequence, and that the link is leading to the
 document that is the next logical document in the sequence.

 Link type "prev"

 The prev keyword may be used with
 link, a, and area
 elements. This keyword creates a hyperlink.

 The prev keyword indicates that the
 document is part of a sequence, and that the link is leading to the
 document that is the previous logical document in the sequence.

 Synonyms: For historical reasons, user agents
 must also treat the keyword "previous" like
 the prev keyword.

 Other link types

 Extensions to the predefined
 set of link types may be registered in the microformats wiki existing-rel-values page. [MFREL]

 Anyone is free to edit the at any time to add a type. Extension
 types must be specified with the following information:

 	Keyword

 	

 The actual value being defined. The value should not be
 confusingly similar to any other defined value (e.g. differing
 only in case).

 If the value contains a ":" (U+003A) character, it must
 also be an absolute URL.

 	Effect on... link

 	

 One of the following:

 	Not allowed

 	The keyword must not be specified on link
 elements.

 	Hyperlink

 	The keyword may be specified on a link element;
 it creates a hyperlink.

 	External Resource

 	The keyword may be specified on a link element;
 it creates an external resource link.

 	Effect on... a and area

 	

 One of the following:

 	Not allowed

 	The keyword must not be specified on a and
 area elements.

 	Hyperlink

 	The keyword may be specified on a and
 area elements; it creates a
 hyperlink.

 	External Resource

 	The keyword may be specified on a and
 area elements; it creates an external resource
 link.

 	Hyperlink Annotation

 	The keyword may be specified on a and
 area elements; it annotates other hyperlinks created by the element.

 	Brief description

 	A short non-normative description of what the keyword's
 meaning is.

 	Specification

 	A link to a more detailed description of the keyword's
 semantics and requirements. It could be another page on the Wiki,
 or a link to an external page.

 	Synonyms

 	A list of other keyword values that have exactly the same
 processing requirements. Authors should not use the values defined
 to be synonyms, they are only intended to allow user agents to
 support legacy content. Anyone may remove synonyms that are not
 used in practice; only names that need to be processed as synonyms
 for compatibility with legacy content are to be registered in this
 way.

 	Status

 	

 One of the following:

 	Proposed

 	The keyword has not received wide peer review and
 approval. Someone has proposed it and is, or soon will be, using
 it.

 	Ratified

 	The keyword has received wide peer review and approval. It
 has a specification that unambiguously defines how to handle
 pages that use the keyword, including when they use it in
 incorrect ways.

 	Discontinued

 	The keyword has received wide peer review and it has been
 found wanting. Existing pages are using this keyword, but new
 pages should avoid it. The "brief description" and
 "specification" entries will give details of what authors should
 use instead, if anything.

 If a keyword is found to be redundant with existing values, it
 should be removed and listed as a synonym for the existing
 value.

 If a keyword is registered in the "proposed" state for a
 period of a month or more without being used or specified, then it
 may be removed from the registry.

 If a keyword is added with the "proposed" status and found to
 be redundant with existing values, it should be removed and listed
 as a synonym for the existing value. If a keyword is added with
 the "proposed" status and found to be harmful, then it should be
 changed to "discontinued" status.

 Anyone can change the status at any time, but should only do so
 in accordance with the definitions above.

 Conformance checkers may use the information given on the to
 establish if a value is allowed or not: values defined in this
 specification or marked as "proposed" or "ratified" must be accepted
 when used on the elements for which they apply as described in the
 "Effect on..." field, whereas values marked as "discontinued" or
 values not containing a U+003A COLON character but not listed in
 either this specification or on the aforementioned page must be
 reported as invalid. The remaining values must be accepted as valid
 if they are absolute URLs containing US-ASCII characters only and
 rejected otherwise. Conformance checkers may cache this
 information (e.g. for performance reasons or to avoid the use of
 unreliable network connectivity).

 Note: Even URL-valued link types are compared
 ASCII-case-insensitively. Validators might choose to warn about
 characters U+0041 (LATIN CAPITAL LETTER A) through
 U+005A (LATIN CAPITAL LETTER Z) (inclusive) in the pre-case-folded
 form of link types that contain a colon.

 When an author uses a new type not defined by either this
 specification or the Wiki page, conformance checkers should offer to
 add the value to the Wiki, with the details described above, with
 the "proposed" status.

 Types defined as extensions in the microformats
 wiki existing-rel-values page with the status "proposed" or
 "ratified" may be used with the rel attribute
 on link, a, and area elements
 in accordance to the "Effect on..." field. [MFREL]

 Common idioms without dedicated elements

 Subheadings, subtitles, alternative titles and taglines

 HTML does not have a dedicated mechanism for marking up subheadings, alternative titles or taglines. Here are the suggested alternatives.

 h1–h6 elements must not be used to markup subheadings, subtitles, alternative titles and taglines unless intended to be the heading for a new section or subsection.

 In the following example the title and subtitles of a web page are grouped using a header element.
 As the author does not want the subtitles to be included the table of contents and they are not intended to signify
 the start of a new section, they are marked up using p elements. A sample CSS styled rendering of the
 title and subtitles is provided below the code example.

 <header>
 <h1>HTML 5.1 Nightly</h1>
 <p>A vocabulary and associated APIs for HTML and XHTML</p>
 <p>Editor's Draft 9 May 2013</p>
 </header>

 [image: Title:'HTML 5.1 Nightly' in a mid blue Sans Serif font.
 Subtitle 1:'A vocabulary and associated APIs for HTML and XHTML' on a new line, same style smaller font size.
 Subtitle 2:'Editor's Draft 9 May 2013' on a new line, same style and size as subtitle 1.]

 In the following example the subtitle of a book is on the same line as the title separated by a colon. A sample CSS styled rendering of the
 title and subtitle is provided below the code example.

 <h1>The Lord of the Rings: The Two Towers</h1>

 [image: Title and subtitle:'The Lord of the Rings: The Two Towers' in a gold coloured Gothic style Serif font on a black background.]

 In the following example part of an album title is included in a span element,
 allowing it to be styled differently from the rest of the title. A br element is used to
 place the album title on a new line. A sample CSS styled rendering of the heading is provided
 below the code example.

 <h1>Ramones

 Hey! Ho! Let's Go
 </h1>

 [image: Line 1:'Ramones' displayed in a large bold angular hand writing style font with a spray can paint effect. Line 2:'Hey! Ho! Let's Go' displayed in a smaller, standard sans serif style font.]

 In the following example the title and tagline for a news article are grouped using a header element.
 The title is marked up using a h2 element and the tagline is in a p element. A sample CSS styled rendering of the
 title and tagline is provided below the code example.

 <header>
 <h2>3D films set for popularity slide </h2>
 <p>First drop in 3D box office projected for this year despite hotly tipped summer blockbusters,
 according to Fitch Ratings report</p>
 </header>

 [image: Title:'3D films set for popularity slide' in a large, bold, dark blue Serif font style. Paragraph: 'First drop in 3D box office projected for this year despite...' in a smaller, dark grey, Sans Serif font style.]

 In this last example the title and taglines for a news magazine are grouped using a header element.
 The title is marked up using a h1 element and the taglines are each in a p element. A sample CSS styled rendering of the
 title and taglines is provided below the code example.

 <header>
 <p>Magazine of the Decade</p>
 <h1>THE MONTH</h1>
 <p>The Best of UK and Foreign Media</p>
 </header>

 [image: Tagline above the heading:'Magazine of the Decade'. Tagline below the heading 'The Best of UK and Foreign Media' both in a small,all caps, sans-serif font style. Heading:'The Month' in a large, Serif font style. All text is black against a red background.]

 Bread crumb navigation

 This specification does not provide a machine-readable way of describing bread-crumb navigation
 menus. Authors are encouraged to just use a series of links in a paragraph. The nav
 element can be used to mark the section containing these paragraphs as being navigation
 blocks.

 In the following example, the current page can be reached via two paths. (">" is the ">" character.)

 <nav>
 <p>

 Main >
 Products >
 Dishwashers >
 <a>Second hand
 </p>
 <p>
 Main >
 Second hand >
 <a>Dishwashers
 </p>
</nav>

 Tag clouds

 This specification does not define any markup specifically for marking up lists
 of keywords that apply to a group of pages (also known as tag clouds). In general, authors
 are encouraged to either mark up such lists using ul elements with explicit inline
 counts that are then hidden and turned into a presentational effect using a style sheet, or to use
 SVG.

 Here, three tags are included in a short tag cloud:

 <style>
@media screen, print, handheld, tv {
 /* should be ignored by non-visual browsers */
 .tag-cloud > li > span { display: none; }
 .tag-cloud > li { display: inline; }
 .tag-cloud-1 { font-size: 0.7em; }
 .tag-cloud-2 { font-size: 0.9em; }
 .tag-cloud-3 { font-size: 1.1em; }
 .tag-cloud-4 { font-size: 1.3em; }
 .tag-cloud-5 { font-size: 1.5em; }
}
</style>
...
<ul class="tag-cloud">
 <li class="tag-cloud-4">apple (popular)
 <li class="tag-cloud-2">kiwi (rare)
 <li class="tag-cloud-5">pear (very popular)

 The actual frequency of each tag is given using the title
 attribute. A CSS style sheet is provided to convert the markup into a cloud of differently-sized
 words, but for user agents that do not support CSS or are not visual, the markup contains
 annotations like "(popular)" or "(rare)" to categorize the various tags by frequency, thus
 enabling all users to benefit from the information.

 The ul element is used (rather than ol) because the order is not
 particularly important: while the list is in fact ordered alphabetically, it would convey the
 same information if ordered by, say, the length of the tag.

 The tag rel-keyword is
 not used on these a elements because they do not represent tags that apply
 to the page itself; they are just part of an index listing the tags themselves.

 Conversations

 This specification does not define a specific element for marking
 up conversations, meeting minutes, chat transcripts, dialogues in
 screenplays, instant message logs, and other situations where
 different players take turns in discourse.

 Instead, authors are encouraged to mark up conversations using
 p elements and punctuation. Authors who need to mark
 the speaker for styling purposes are encouraged to use
 span or b. Paragraphs with their text
 wrapped in the i element can be used for marking up
 stage directions.

 This example demonstrates this using an extract from Abbot and
 Costello's famous sketch, Who's on first:

<p> Costello: Look, you gotta first baseman?
<p> Abbott: Certainly.
<p> Costello: Who's playing first?
<p> Abbott: That's right.
<p> Costello becomes exasperated.
<p> Costello: When you pay off the first baseman every month, who gets the money?
<p> Abbott: Every dollar of it.

 The following extract shows how an IM conversation log could be
 marked up, using the data element to provide Unix
 timestamps for each line. Note that the timestamps are provided in
 a format that the time element does not support, so
 the data element is used instead (namely, Unix time_t timestamps). Had the author wished to mark
 up the data using one of the date and time formats supported by the
 time element, that element could have been used
 instead of data. This could be advantageous as it
 would allow data analysis tools to detect the timestamps
 unambiguously, without coordination with the page author.

 <p> <data value="1319898155">14:22</data> egof I'm not that nerdy, I've only seen 30% of the star trek episodes
<p> <data value="1319898192">14:23</data> kaj if you know what percentage of the star trek episodes you have seen, you are inarguably nerdy
<p> <data value="1319898200">14:23</data> egof it's unarguably
<p> <data value="1319898228">14:23</data> <i>* kaj blinks</i>
<p> <data value="1319898260">14:24</data> kaj you are not helping your case

 HTML does not have a good way to mark up graphs, so descriptions
 of interactive conversations from games are more difficult to mark
 up. This example shows one possible convention using
 dl elements to list the possible responses at each
 point in the conversation. Another option to consider is describing
 the conversation in the form of a DOT file, and outputting the
 result as an SVG image to place in the document. [DOT]

 <p> Next, you meet a fisherman. You can say one of several greetings:
<dl>
 <dt> "Hello there!"
 <dd>
 <p> He responds with "Hello, how may I help you?"; you can respond with:
 <dl>
 <dt> "I would like to buy a fish."
 <dd> <p> He sells you a fish and the conversation finishes.
 <dt> "Can I borrow your boat?"
 <dd>
 <p> He is surprised and asks "What are you offering in return?".
 <dl>
 <dt> "Five gold." (if you have enough)
 <dt> "Ten gold." (if you have enough)
 <dt> "Fifteen gold." (if you have enough)
 <dd> <p> He lends you his boat. The conversation ends.
 <dt> "A fish." (if you have one)
 <dt> "A newspaper." (if you have one)
 <dt> "A pebble." (if you have one)
 <dd> <p> "No thanks", he replies. Your conversation options
 at this point are the same as they were after asking to borrow
 his boat, minus any options you've suggested before.
 </dl>
 </dd>
 </dl>
 </dd>
 <dt> "Vote for me in the next election!"
 <dd> <p> He turns away. The conversation finishes.
 <dt> "Sir, are you aware that your fish are running away?"
 <dd>
 <p> He looks at you skeptically and says "Fish cannot run, sir".
 <dl>
 <dt> "You got me!"
 <dd> <p> The fisherman sighs and the conversation ends.
 <dt> "Only kidding."
 <dd> <p> "Good one!" he retorts. Your conversation options at this
 point are the same as those following "Hello there!" above.
 <dt> "Oh, then what are they doing?"
 <dd> <p> He looks at his fish, giving you an opportunity to steal
 his boat, which you do. The conversation ends.
 </dl>
 </dd>
</dl>

 In some games, conversations are simpler: each character merely has a fixed set of lines that
 they say. In this example, a game FAQ/walkthrough lists some of the known possible responses for
 each character:

 <section>
 <h1>Dialogue</h1>
 <p><small>Some characters repeat their lines in order each time you interact
 with them, others randomly pick from amongst their lines. Those who respond in
 order have numbered entries in the lists below.</small>
 <h2>The Shopkeeper</h2>

 How may I help you?
 Fresh apples!
 A loaf of bread for madam?

 <h2>The pilot</h2>
 <p>Before the accident:

 I'm about to fly out, sorry!
 Sorry, I'm just waiting for flight clearance and then I'll be off!

 <p>After the accident:

 I'm about to fly out, sorry!
 Ok, I'm not leaving right now, my plane is being cleaned.
 Ok, it's not being cleaned, it needs a minor repair first.
 Ok, ok, stop bothering me! Truth is, I had a crash.

 <h2>Clan Leader</h2>
 <p>During the first clan meeting:

 Hey, have you seen my daughter? I bet she's up to something nefarious again...
 Nice weather we're having today, eh?
 The name is Bailey, Jeff Bailey. How can I help you today?
 A glass of water? Fresh from the well!

 <p>After the earthquake:

 Everyone is safe in the shelter, we just have to put out the fire!
 I'll go and tell the fire brigade, you keep hosing it down!

</section>

 Footnotes

 HTML does not have a dedicated mechanism for marking up
 footnotes. Here are the suggested alternatives.

 For

 annotations, the a element should be used, pointing to
 an element later in the document. The convention is that the
 contents of the link be a number in square brackets.

 In this example, a footnote in the dialogue links to a paragraph
 below the dialogue. The paragraph then reciprocally links back to the
 dialogue, allowing the user to return to the location of the
 footnote.

 <p> Announcer: Number 16: The <i>hand</i>.
<p> Interviewer: Good evening. I have with me in the studio tonight
Mr Norman St John Polevaulter, who for the past few years has been
contradicting people. Mr Polevaulter, why do you
contradict people?
<p> Norman: I don't. ^{[1]}
<p> Interviewer: You told me you did!
...
<section>
 <p id="fn1">[1] This is, naturally, a lie,
 but paradoxically if it were true he could not say so without
 contradicting the interviewer and thus making it false.</p>
</section>

 For side notes, longer annotations that apply to entire sections
 of the text rather than just specific words or sentences, the
 aside element should be used.

 In this example, a sidebar is given after a dialogue, giving it
 some context.

 <p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: I'm sorry?
<p> Customer: I will not buy this record, it is scratched.
<p> Shopkeeper: No no no, this's'a tobacconist's.
<aside>
 <p>In 1970, the British Empire lay in ruins, and foreign
 nationalists frequented the streets — many of them Hungarians
 (not the streets — the foreign nationals). Sadly, Alexander
 Yalt has been publishing incompetently-written phrase books.
</aside>

 For figures or tables, footnotes can be included in the relevant
 figcaption or caption element, or in
 surrounding prose.

 In this example, a table has cells with footnotes
 that are given in prose. A figure element is used to
 give a single legend to the combination of the table and its
 footnotes.

 <figure>
 <figcaption>Table 1. Alternative activities for knights.</figcaption>
 <table>
 <tr>
 <th> Activity
 <th> Location
 <th> Cost
 <tr>
 <td> Dance
 <td> Wherever possible
 <td> £0^{1}
 <tr>
 <td> Routines, chorus scenes^{2}
 <td> Undisclosed
 <td> Undisclosed
 <tr>
 <td> Dining^{3}
 <td> Camelot
 <td> Cost of ham, jam, and spam^{4}
 </table>
 <p id="fn1">1. Assumed.</p>
 <p id="fn2">2. Footwork impeccable.</p>
 <p id="fn3">3. Quality described as "well".</p>
 <p id="fn4">4. A lot.</p>
</figure>

 Disabled elements

 An element is said to be actually disabled if it
 falls into one of the following categories:

 	button elements that are disabled

 	input elements that are disabled

 	select elements that are disabled

 	textarea elements that are disabled

 	optgroup elements that have a disabled attribute

 	option elements that are disabled

 	fieldset elements that have a disabled attribute

 This definition is used to determine what elements can be focused and which elements match the :disabled pseudo-class.

 Matching HTML elements using selectors

 Case-sensitivity

 The Selectors specification leaves the case-sensitivity of IDs, classes, element names,
 attribute names, and attribute values to be defined by the host language. [SELECTORS]

 The unique identifier of HTML elements in
 documents that are in quirks mode must be treated as ASCII
 case-insensitive for the purposes of selector matching.

 Classes from the class attribute of HTML elements
 in documents that are in quirks mode must be treated as ASCII
 case-insensitive for the purposes of selector matching.

 Attribute and element names of HTML elements in HTML
 documents must be treated as ASCII case-insensitive for the purposes of
 selector matching.

 Everything else (attribute values on HTML elements, IDs and classes in
 no-quirks mode and limited-quirks mode, and element names, attribute
 names, and attribute values in XML documents) must be treated as
 case-sensitive for the purposes of selector matching.

 Pseudo-classes

 There are a number of dynamic selectors that can be used with HTML. This section defines when
 these selectors match HTML elements. [SELECTORS] [CSSUI]

 	:link

 	:visited

 	

 All a elements that have an href
 attribute, all area elements that have an href attribute, and all link elements that have
 an href attribute, must match one of :link and :visited.

 Other specifications might apply more specific rules regarding how these elements are to
 match these pseudo-classes, to mitigate some privacy concerns that apply with straightforward
 implementations of this requirement.

 	:active

 	

 The :active pseudo-class is defined to match an element
 while an
 element is being activated by the user. For the purposes of defining the :active pseudo-class only, an HTML user agent must consider an
 element as being activated if it is:

 	

 An element falling into one of the following categories between the time the user begins to
 indicate an intent to trigger the element's activation behavior and either the
 time the user stops indicating an intent to trigger the element's activation
 behavior, or the time the element's activation behavior has finished
 running, which ever comes first:

 	a elements that have an href
 attribute

 	area elements that have an href
 attribute

 	link elements that have an href
 attribute

 	button elements that are not disabled

 	input elements whose type attribute is
 in the Submit Button, Image Button, Reset
 Button, or Button state

 	elements that have their tabindex focus flag set

 For example, if the user is using a keyboard to push a button
 element by pressing the space bar, the element would match this pseudo-class in between the
 time that the element received the keydown event and the
 time the element received the keyup event.

 	

 An element that the user indicates using a pointing device while that pointing device is in
 the "down" state (e.g. for a mouse, between the time the mouse button is pressed and the time
 it is depressed).

 	

 An element that has a descendant that is currently matching the :active pseudo-class.

 	:hover

 	

 The :hover pseudo-class is
 defined to match an element while
 the user designates an element with a pointing device.
 For the purposes of defining the :hover pseudo-class only, an HTML
 user agent must consider an element as being one that the user
 designates if it is:

 	

 An element that the user indicates using a pointing device.

 	

 An element that has a descendant that the user indicates
 using a pointing device.

 	

 An element that is the labeled control of a
 label element that is currently matching :hover.

 Consider in particular a fragment such as:

 <p> <label for=c> <input id=a> </label> <input id=c> </p>

 If the user designates the element with ID "a" with their pointing device, then the
 p element (and all its ancestors not shown in the
 snippet above), the label element, the element with
 ID "a", and the element with ID "c" will match the :hover pseudo-class. The element
 with ID "a" matches it from condition 1,
 the label and p elements match it
 because of condition 2 (one of their descendants is designated),
 and the element with ID "c" matches it
 through condition 3 (its label element matches :hover). However, the element with
 ID "b" does not match :hover: its descendant is not
 designated, even though it matches :hover.

 	:enabled

 	

 The :enabled pseudo-class
 must match any element falling into one of the following
 categories:

 	a elements that have an href attribute

 	area elements that have an href attribute

 	link elements that have an href attribute

 	button elements that are not disabled

 	input elements that are not disabled

 	select elements that are not disabled

 	textarea elements that are not disabled

 	optgroup elements that do not have a disabled attribute

 	option elements that are not disabled

 	fieldset elements that do not have a disabled attribute

 	:disabled

 	

 The :disabled pseudo-class must match any element that
 is actually disabled.

 	:checked

 	

 The :checked pseudo-class
 must match any element falling into one of the following
 categories:

 	input elements whose type attribute is in the Checkbox state and whose
 checkedness state is
 true

 	input elements whose type attribute is in the Radio Button state and whose
 checkedness state is
 true

 	option elements whose selectedness is
 true

 	:indeterminate

 	

 The :indeterminate
 pseudo-class must match any element falling into one of the
 following categories:

 	input elements whose type attribute is in the Checkbox state and whose
 indeterminate IDL
 attribute is set to true

 	input elements whose type attribute is in
 the Radio Button state and whose radio button
 group contains no input elements whose checkedness state is true.

 	progress elements with no value content attribute

 	:default

 	

 The :default pseudo-class
 must match any element falling into one of the following
 categories:

 	button elements that are their form's
 default button

 	input elements whose type attribute is in the Submit Button or Image Button state, and that
 are their form's default button

 	input elements to which the checked attribute applies and
 that have a checked
 attribute

 	option elements that have a selected attribute

 	:valid

 	

 The :valid pseudo-class
 must match any element falling into one of the following
 categories:

 	elements that are candidates for constraint validation and that
 satisfy their
 constraints

 	form elements that are not the form
 owner of any elements that themselves are candidates for
 constraint validation but do not satisfy their constraints

 	:invalid

 	

 The :invalid pseudo-class
 must match any element falling into one of the following
 categories:

 	elements that are candidates for constraint validation but that
 do not satisfy their
 constraints

 	form elements that are the form
 owner of one or more elements that themselves are candidates for
 constraint validation but do not satisfy their constraints

 	fieldset elements that have of one or more descendant elements that themselves
 are but do not satisfy their constraints

 	:in-range

 	

 The :in-range
 pseudo-class must match all elements that are candidates for
 constraint validation, have range limitations,
 and that are neither suffering from an underflow nor
 suffering from an overflow.

 	:out-of-range

 	

 The :out-of-range
 pseudo-class must match all elements that are candidates for
 constraint validation, have range limitations,
 and that are either suffering from an underflow or
 suffering from an overflow.

 	:required

 	

 The :required
 pseudo-class must match any element falling into one of the
 following categories:

 	input elements that are required

 	select elements that have a required
 attribute

 	textarea elements that have a required
 attribute

 	:optional

 	

 The :optional
 pseudo-class must match any element falling into one of the
 following categories:

 	input elements to which the required attribute applies
 that are not required

 	select elements that do not have a required attribute

 	textarea elements that do not have a required
 attribute

 	:read-only

 	:read-write

 	

 The :read-write pseudo-class must match any element
 falling into one of the following categories, which for the purposes of Selectors are thus
 considered user-alterable: [SELECTORS]

 	input elements to which the readonly attribute applies,
 and that are mutable (i.e. that
 do not have the readonly
 attribute specified and that are not disabled)

 	textarea elements that do not have a readonly attribute, and
 that are not disabled

 	elements that are editing
 hosts or editable and are neither
 input elements nor textarea
 elements

 The :read-only
 pseudo-class must match all other HTML elements.

 	:dir(ltr)

 	

 The :dir(ltr) pseudo-class must
 match all elements whose directionality is 'ltr'.

 	:dir(rtl)

 	

 The :dir(rtl) pseudo-class must
 match all elements whose directionality is 'rtl'.

 Another section of this specification defines the
 target element used with the :target pseudo-class.

 This specification does not define when an element
 matches the :focus or :lang() dynamic pseudo-classes, as
 those are all defined in sufficient detail in a language-agnostic
 fashion in the Selectors specification. [SELECTORS]

Loading Web pages

 This section describes features that apply most directly to Web browsers. Having said that,
 except where specified otherwise, the requirements defined in this section do apply to
 all user agents, whether they are Web browsers or not.

 Browsing contexts

 A browsing context is an environment in which Document objects are
 presented to the user.

 A tab or window in a Web browser typically contains a browsing
 context, as does an iframe.

 Each browsing context has a corresponding WindowProxy object.

 A browsing context has a session history, which lists the
 Document objects that that browsing context has presented, is
 presenting, or will present. At any time, one Document in each browsing
 context is designated the active document. A Document's
 browsing context is that browsing context whose session
 history contains the Document, if any. (A Document created using
 an API such as createDocument() has no
 browsing context.)

 Each Document is associated with a Window object. A browsing
 context's WindowProxy object forwards everything to the browsing
 context's active document's Window object.

 In general, there is a 1-to-1 mapping from the Window object to the
 Document object. There are two exceptions. First, a Window can be reused
 for the presentation of a second Document in the same browsing context,
 such that the mapping is then 1-to-2. This occurs when a browsing context is navigated from the initial about:blank Document
 to another, with replacement enabled. Second, a Document can end up
 being reused for several Window objects when the document.open() method is used, such that the mapping is then
 many-to-1.

 A Document does not necessarily have a browsing context
 associated with it. In particular, data mining tools are likely to never instantiate browsing
 contexts.

 A browsing context can have a creator browsing context, the
 browsing context that was responsible for its creation. If a browsing
 context has a parent browsing context, then that is its creator browsing
 context. Otherwise, if the browsing context has an opener browsing
 context, then that is its creator browsing context. Otherwise, the
 browsing context has no creator browsing context.

 If a browsing context A has a creator browsing
 context, then the Document that was the active document of that
 creator browsing context at the time A was created is the
 creator Document.

 When a browsing context is first created, it must be created with a single
 Document in its session history, whose address is about:blank, which is marked as being an HTML document, whose character
 encoding is UTF-8, and which is both ready for post-load tasks and
 completely loaded immediately. The Document must have a single child
 html node, which itself has a single child body node. As soon as this
 Document is created, the user agent must implement the sandboxing for
 it. If the browsing context has a creator Document, then
 the browsing context's Document's referrer must be set to the address
 of that creator Document at the time of the browsing
 context's creation.

 If the browsing context is created specifically to be immediately
 navigated, then that initial navigation will have replacement enabled.

 The origin and effective script origin of the
 about:blank Document are set when the Document is created.
 If the new browsing context has a creator browsing context, then the
 origin of the about:blank Document is an alias to the origin of the creator
 Document and the effective script origin of the
 about:blank Document is initially an alias to the effective script origin of the
 creator Document. Otherwise, the origin of the
 about:blank Document is a globally unique identifier assigned when the
 new browsing context is created and the effective script origin of the
 about:blank Document is initially an alias to its origin.

 Nested browsing contexts

 Certain elements (for example, iframe elements) can instantiate further browsing contexts. These are called nested browsing contexts. If a browsing context P has a
 Document D with an element E that nests
 another browsing context C inside it, then C is said to be
 nested through D, and E is said to be the browsing context container of C.
 If the browsing context container element E is in the Document D, then P is
 said to be the parent browsing context of C and C is said to be a child browsing context of P.
 Otherwise, the nested browsing context C has no parent
 browsing context.

 A browsing context A is said to be an ancestor of a browsing context B if there exists a browsing
 context A' that is a child browsing context of A and that is itself an ancestor of
 B, or if there is a browsing context P that is a
 child browsing context of A and that is the parent browsing
 context of B.

 A browsing context that is not a nested browsing context has no parent
 browsing context, and is the top-level browsing context of all the browsing
 contexts for which it is an ancestor browsing context.

 The transitive closure of parent browsing contexts
 for a nested browsing context gives the list of ancestor browsing contexts.

 The list of the descendant browsing contexts of a Document d is the (ordered) list returned by the following algorithm:

 	Let list be an empty list.

 	

 For each child browsing context of d that is nested through an element that is in the Document d, in the tree
 order of the elements nesting those browsing
 contexts, run these substeps:

 	Append that child browsing context to the list list.

	Append the list of the descendant browsing contexts of the active
 document of that child browsing context to the list list.

 	Return the constructed list.

 A Document is said to be fully active when it is the active
 document of its browsing context, and either its browsing context is a
 top-level browsing context, or it has a parent browsing context and the
 Document through which it is
 nested is itself fully active.

 Because they are nested through an element, child browsing
 contexts are always tied to a specific Document in their parent browsing
 context. User agents must not allow the user to interact with child browsing contexts of elements that are in Documents that are
 not themselves fully active.

 A nested browsing context can have a seamless browsing context flag
 set, if it is embedded through an iframe element with a seamless attribute.

 A nested browsing context can be put into a delaying load events mode. This is used when it is navigated, to delay the load event of the browsing
 context container iframe element before the new Document is
 created.

 The document family of a browsing context consists of the union of all
 the Document objects in that browsing context's session
 history and the document families of all those
 Document objects. The document family of a Document object
 consists of the union of all the document families of the
 browsing contexts that are nested through the Document object.

 Navigating nested browsing contexts in the DOM

 	window . top

 	

 Returns the WindowProxy for the top-level browsing context.

 	window . parent

 	

 Returns the WindowProxy for the parent browsing context.

 	window . frameElement

 	

 Returns the Element for the browsing context container.

 Returns null if there isn't one.

 Throws a SecurityError exception in cross-origin situations.

 The top IDL attribute on the Window object
 of a Document in a browsing context b must return
 the WindowProxy object of its top-level browsing context (which would be
 its own WindowProxy object if it was a top-level browsing context
 itself), if it has one, or its own WindowProxy object otherwise (e.g. if it was a
 detached nested browsing context).

 The parent IDL attribute on the Window
 object of a Document in a browsing context b must
 return the WindowProxy object of the parent browsing context, if there
 is one (i.e. if b is a child browsing context), or the
 WindowProxy object of the browsing context b itself,
 otherwise (i.e. if it is a top-level browsing context or a detached nested
 browsing context).

 The frameElement IDL attribute on the
 Window object of a Document d, on getting, must run
 the following algorithm:

 	If d is not a Document in a nested browsing
 context, return null and abort these steps.

 	If the browsing context container's Document does not have the
 same effective script origin as the entry
 script, then throw a SecurityError exception and abort these steps.

 	Return the browsing context container for b.

 Auxiliary browsing contexts

 It is possible to create new browsing contexts that are related to a top-level browsing
 context without being nested through an element. Such browsing contexts are called auxiliary browsing contexts. Auxiliary browsing contexts
 are always top-level browsing contexts.

 An auxiliary browsing context has an opener browsing context, which is
 the browsing context from which the auxiliary browsing context was
 created.

 Navigating auxiliary browsing contexts in the DOM

 The opener IDL attribute on the Window
 object, on getting, must return the WindowProxy object of the browsing
 context from which the current browsing context was created (its opener
 browsing context), if there is one, if it is still available, and if the current
 browsing context has not disowned its opener; otherwise, it must return null.
 On setting, if the new value is null then the current browsing context must disown its opener; if the new value is anything else then the
 user agent must ignore the new value.

 Secondary browsing contexts

 User agents may support secondary browsing
 contexts, which are browsing contexts that form part
 of the user agent's interface, apart from the main content area.

 Security

 A browsing context A is allowed to
 navigate a second browsing context B if one of the
 following conditions is true:

 	Either the origin of the active document of A
 is the same as the origin of the active
 document of B, or

 	The browsing context A is a nested browsing context with a
 top-level browsing context, and its top-level browsing context is B, or

 	The browsing context B is an auxiliary browsing context and
 A is allowed to navigate B's opener
 browsing context, or

 	The browsing context B is not a top-level browsing context,
 but there exists an ancestor browsing context of B whose
 active document has the same origin as
 the active document of A (possibly in fact being A itself).

 Sandboxing (in particular the sandboxed navigation browsing context
 flag) can further restrict the above in certain cases, but it does so indirectly via other
 algorithms and doesn't affect whether a browsing context is considered to be allowed to
 navigate another as defined above.

 An element has a browsing context scope origin if its Document's
 browsing context is a top-level browsing context or if all of its
 Document's ancestor browsing contexts
 all have active documents whose origin are the
 same origin as the element's Document's origin. If an
 element has a browsing context scope origin, then its value is the
 origin of the element's Document.

 Groupings of browsing contexts

 Each browsing context is defined as having a list of one or more directly
 reachable browsing contexts. These are:

 	The browsing context itself.

 	All the browsing context's child browsing
 contexts.

 	The browsing context's parent browsing context.

 	All the browsing contexts that have the browsing
 context as their opener browsing context.

 	The browsing context's opener browsing context.

 The transitive closure of all the browsing contexts that
 are directly reachable browsing contexts forms a unit of related browsing
 contexts.

 Each unit of related browsing contexts is then further divided into the smallest
 number of groups such that every member of each group has an active document with an
 effective script origin that, through appropriate manipulation of the document.domain attribute, could be made to be the same as
 other members of the group, but could not be made the same as members of any other group. Each
 such group is a unit of related similar-origin browsing contexts.

 There is also at most one event loop per unit of related
 similar-origin browsing contexts (though several units of related similar-origin browsing contexts can
 have a shared event loop).

 Browsing context names

 Browsing contexts can have a browsing context name. By default, a browsing context
 has no name (its name is not set).

 A valid browsing context name is any string with at least one character that does
 not start with a U+005F LOW LINE character. (Names starting with an underscore are reserved for
 special keywords.)

 A valid browsing context name or keyword is any string that is either a valid
 browsing context name or that is an ASCII case-insensitive match for one of:
 _blank, _self, _parent, or _top.

 These values have different meanings based on whether the page is sandboxed or not, as
 summarized in the following (non-normative) table. In this table, "current" means the
 browsing context that the link or script is in, "parent" means the parent
 browsing context of the one the link or script is in, "master" means the nearest
 ancestor browsing context of the one the link or script is in that is not itself in a
 seamless iframe, "top" means the top-level
 browsing context of the one the link or script is in, "new" means a new top-level
 browsing context or auxiliary browsing context is to be created, subject to
 various user preferences and user agent policies, "none" means that nothing will happen, and
 "maybe new" means the same as "new" if the "allow-popups" keyword is also specified on the
 sandbox attribute (or if the user overrode the
 sandboxing), and the same as "none" otherwise.

 	Keyword
 	Ordinary effect
 	Effect in an iframe with...

 	seamless=""
 	sandbox=""
 	sandbox="" seamless=""
 	sandbox="allow-top-navigation"
 	sandbox="allow-top-navigation" seamless=""

 	none specified, for links and form submissions
 	current
 	master
 	current
 	master
 	current
 	master

 	empty string
 	current
 	master
 	current
 	master
 	current
 	master

 	_blank
 	new
 	new
 	maybe new
 	maybe new
 	maybe new
 	maybe new

 	_self
 	current
 	current
 	current
 	current
 	current
 	current

 	_parent if there isn't a parent
 	current
 	current
 	current
 	current
 	current
 	current

 	_parent if parent is also top
 	parent/top
 	parent/top
 	none
 	none
 	parent/top
 	parent/top

 	_parent if there is one and it's not top
 	parent
 	parent
 	none
 	none
 	none
 	none

 	_top if top is current
 	current
 	current
 	current
 	current
 	current
 	current

 	_top if top is not current
 	top
 	top
 	none
 	none
 	top
 	top

 	name that doesn't exist
 	new
 	new
 	maybe new
 	maybe new
 	maybe new
 	maybe new

 	name that exists and is a descendant
 	specified descendant
 	specified descendant
 	specified descendant
 	specified descendant
 	specified descendant
 	specified descendant

 	name that exists and is current
 	current
 	current
 	current
 	current
 	current
 	current

 	name that exists and is an ancestor that is top
 	specified ancestor
 	specified ancestor
 	none
 	none
 	specified ancestor/top
 	specified ancestor/top

 	name that exists and is an ancestor that is not top
 	specified ancestor
 	specified ancestor
 	none
 	none
 	none
 	none

 	other name that exists with common top
 	specified
 	specified
 	none
 	none
 	none
 	none

 	name that exists with different top, if allowed to navigate and one permitted sandboxed navigator
 	specified
 	specified
 	specified
 	specified
 	specified
 	specified

 	name that exists with different top, if allowed to navigate but not one permitted sandboxed navigator
 	specified
 	specified
 	none
 	none
 	none
 	none

 	name that exists with different top, not allowed to navigate
 	new
 	new
 	maybe new
 	maybe new
 	maybe new
 	maybe new

 Most of the restrictions on sandboxed browsing contexts are applied by
 other algorithms, e.g. the navigation algorithm, not the rules
 for choosing a browsing context given a browsing context name given below.

 An algorithm is allowed to show a popup if, in the task in which the algorithm is running, either:

 	an activation behavior is currently being processed whose click event was trusted,
 or

 	the event listener for a trusted click event is being handled.

 The rules for choosing a browsing context given a browsing context name are as
 follows. The rules assume that they are being applied in the context of a browsing
 context, as part of the execution of a task.

 	

 If the given browsing context name is the empty string or _self, then
 the chosen browsing context must be the current one.

 If the given browsing context name is _self, then this is an
 explicit self-navigation override, which overrides the behavior of the
 seamless browsing context flag set by the seamless attribute on iframe elements.

 	If the given browsing context name is _parent, then the chosen
 browsing context must be the parent browsing context of the current one,
 unless there isn't one, in which case the chosen browsing context must be the current browsing
 context.

 	If the given browsing context name is _top, then the chosen browsing
 context must be the top-level browsing context of the current one, if there is one,
 or else the current browsing context.

 	

 If the given browsing context name is not _blank and there exists a
 browsing context whose name is the same as the given
 browsing context name, and the current browsing context is allowed to navigate that
 browsing context, and the user agent determines that the two browsing contexts are related
 enough that it is ok if they reach each other, then that browsing context must be the chosen
 one. If there are multiple matching browsing contexts, the user agent should select one in some
 arbitrary consistent manner, such as the most recently opened, most recently focused, or more
 closely related.

 If the browsing context is chosen by this step to be the current browsing context, then this
 is also an explicit self-navigation override.

 	

 Otherwise, a new browsing context is being requested, and what happens depends on the user
 agent's configuration and abilities — it is determined by the rules given for the first
 applicable option from the following list:

 	If the algorithm is not allowed to show a popup and the
 user agent has been configured to not show popups (i.e. the user agent has a "popup blocker"
 enabled)

 	

 There is no chosen browsing context. The user agent may inform the user that a popup has
 been blocked.

 	If the current browsing context's active document's
 active sandboxing flag set has the sandboxed auxiliary navigation browsing
 context flag set.

 	

 Typically, there is no chosen browsing context.

 The user agent may offer to create a new top-level browsing context or reuse
 an existing top-level browsing context. If the user picks one of those options,
 then the designated browsing context must be the chosen one (the browsing context's name isn't
 set to the given browsing context name). The default behaviour (if the user agent doesn't
 offer the option to the user, or if the user declines to allow a browsing context to be used)
 must be that there must not be a chosen browsing context.

 If this case occurs, it means that an author has explicitly sandboxed the
 document that is trying to open a link.

 	If the user agent has been configured such that in this instance it will
 create a new browsing context, and the browsing context is being requested as part of following a hyperlink whose link
 types include the noreferrer keyword

 	A new top-level browsing context must be created. If the given browsing
 context name is not _blank, then the new top-level browsing context's
 name must be the given browsing context name (otherwise, it has no name). The chosen browsing
 context must be this new browsing context. The creation of such a browsing context
 is a new start for session storage.

 If it is immediately navigated, then the
 navigation will be done with replacement enabled.

 	If the user agent has been configured such that in this instance it will create a new
 browsing context, and the noreferrer keyword doesn't
 apply

 	A new auxiliary browsing context must be created, with the opener
 browsing context being the current one. If the given browsing context name is not _blank, then the new auxiliary browsing context's name must be the given
 browsing context name (otherwise, it has no name). The chosen browsing context must be this new
 browsing context.

 If it is immediately navigated, then the
 navigation will be done with replacement enabled.

 	If the user agent has been configured such that in this instance it will reuse the current
 browsing context

 	The chosen browsing context is the current browsing context.

 	If the user agent has been configured such that in this instance it will not find a
 browsing context

 	There must not be a chosen browsing context.

 User agent implementors are encouraged to provide a way for users to configure the user agent
 to always reuse the current browsing context.

 If the current browsing context's active document's active sandboxing flag
 set has the sandboxed navigation browsing context flag set and the chosen
 browsing context picked above, if any, is a new browsing context (whether top-level or
 auxiliary), then all the flags that are set in the current browsing context's active
 document's active sandboxing flag set when the new browsing context is
 created must be set in the new browsing context's popup sandboxing flag set, and
 the current browsing context must be set as the new browsing context's one permitted
 sandboxed navigator.

 The Window object

 [NamedPropertiesObject]
/*sealed*/ interface Window : EventTarget {
 // the current browsing context
 [Unforgeable] readonly attribute WindowProxy window;
 [Replaceable] readonly attribute WindowProxy self;
 [Unforgeable] readonly attribute Document document;
 attribute DOMString name;
 [PutForwards=href, Unforgeable] readonly attribute Location location;
 readonly attribute History history;
 [Replaceable] readonly attribute BarProp locationbar;
 [Replaceable] readonly attribute BarProp menubar;
 [Replaceable] readonly attribute BarProp personalbar;
 [Replaceable] readonly attribute BarProp scrollbars;
 [Replaceable] readonly attribute BarProp statusbar;
 [Replaceable] readonly attribute BarProp toolbar;
 attribute DOMString status;
 void close();
 readonly attribute boolean closed;
 void stop();
 void focus();
 void blur();

 // other browsing contexts
 [Replaceable] readonly attribute WindowProxy frames;
 [Replaceable] readonly attribute unsigned long length;
 [Unforgeable] readonly attribute WindowProxy top;
 attribute WindowProxy? opener;
 readonly attribute WindowProxy parent;
 readonly attribute Element? frameElement;
 WindowProxy open(optional DOMString url = "about:blank", optional DOMString target = "_blank", optional DOMString features = "", optional boolean replace = false);
 getter WindowProxy (unsigned long index);
 getter object (DOMString name);

 // the user agent
 readonly attribute Navigator navigator;
 readonly attribute External external;
 readonly attribute ApplicationCache applicationCache;

 // user prompts
 void alert(optional DOMString message = "");
 boolean confirm(optional DOMString message = "");
 DOMString? prompt(optional DOMString message = "", optional DOMString default = "");
 void print();
 any showModalDialog(DOMString url, optional any argument);

};
Window implements GlobalEventHandlers;
Window implements WindowEventHandlers;

 	window . window

 	window . frames

 	window . self

 	

 These attributes all return window.

 	window . document

 	

 Returns the Document associated with window.

 	document . defaultView

 	

 Returns the Window object of the active document.

 The Window interface must only be exposed to JavaScript if the
 JavaScript global environment is a document environment.

 The window, frames, and self
 IDL attributes must all return the Window object's browsing context's
 WindowProxy object.

 The document IDL attribute must return the
 Window object's Document object.

 The defaultView IDL attribute of the
 Document interface must return the Document's browsing
 context's WindowProxy object, if there is one, or null otherwise.

 For historical reasons, Window objects must also have a writable, configurable,
 non-enumerable property named HTMLDocument whose value is the
 Document interface object.

 Security

 User agents must throw a SecurityError exception whenever any
 properties of a Window object are accessed when the incumbent script has
 an effective script origin that is not the same as
 the Window object's Document's effective script origin,
 with the following exceptions:

 	The location attribute

	The postMessage() method

	The window attribute

	The frames attribute

	The self attribute

	The top attribute

	The parent attribute

	The opener attribute

	The closed attribute

	The close() method

	The blur() method

	The focus() method

	The dynamic nested browsing context properties

 When the incumbent script's effective script origin is different than
 a Window object's Document's effective script origin, the
 user agent must act as if any changes to that Window object's properties, getters,
 setters, etc, were not present, and as if all the properties of that Window object
 had their [[Enumerable]] attribute set to false.

 For members that return objects (including function objects), each distinct effective
 script origin that is not the same as the Window object's
 Document's effective script origin must be provided with a separate set
 of objects. These objects must have the prototype chain appropriate for the script for which the
 objects are created (not those that would be appropriate for scripts whose script's global
 object is the Window object in question).

 For instance, if two frames containing Documents from different origins access the same Window object's postMessage() method, they will get distinct objects that
 are not equal.

 APIs for creating and navigating browsing contexts by name

 	window = window . open([url [, target [, features [, replace]]]])

 	

 Opens a window to show url (defaults to about:blank), and
 returns it. The target argument gives the name of the new window. If a
 window exists with that name already, it is reused. The replace attribute,
 if true, means that whatever page is currently open in that window will be removed from the
 window's session history. The features argument is ignored.

 	window . name [= value]

 	

 Returns the name of the window.

 Can be set, to change the name.

 	window . close()

 	

 Closes the window.

 	window . closed

 	

 Returns true if the window has been closed, false otherwise.

 	window . stop()

 	

 Cancels the document load.

 The open() method on Window objects
 provides a mechanism for navigating an existing browsing
 context or opening and navigating an auxiliary browsing context.

 The method has four arguments, though they are all optional.

 The first argument, url, must be a valid non-empty URL for a
 page to load in the browsing context. If the first argument is the empty string, then the url argument must be interpreted as "about:blank". Otherwise, the
 argument must be resolved to an absolute URL (or
 an error), relative to the entry script's base
 URL, when the method is invoked.

 The second argument, target, specifies the name of the browsing context that is to be navigated. It must be a valid
 browsing context name or keyword.

 The third argument, features, has no defined effect and is mentioned for
 historical reasons only. User agents may interpret this argument as instructions to set the size
 and position of the browsing context, but are encouraged to instead ignore the argument
 entirely.

 The fourth argument, replace, specifies whether or not the new page will
 replace the page currently loaded in the browsing
 context, when target identifies an existing browsing context (as opposed to
 leaving the current page in the browsing context's session history).

 When the method is invoked, the user agent must first select a browsing context to
 navigate by applying the rules for choosing a browsing context given a browsing context
 name using the target argument as the name and the browsing
 context of the script as the context in which the algorithm is executed, unless the user
 has indicated a preference, in which case the browsing context to navigate may instead be the one
 indicated by the user.

 For example, suppose there is a user agent that supports control-clicking a
 link to open it in a new tab. If a user clicks in that user agent on an element whose onclick handler uses the window.open() API to open a page in an iframe, but, while doing so, holds
 the control key down, the user agent could override the selection of the target browsing context
 to instead target a new tab.

 If applying the rules for choosing a browsing context given a browsing context
 name using the target argument would result in there not being a chosen
 browsing context, then throw an InvalidAccessError exception and abort these
 steps.

 Otherwise, if url is not "about:blank", the user agent must
 navigate the selected browsing context to the
 absolute URL obtained from resolving url earlier. If the replace is true or if the browsing
 context was just created as part of the rules for choosing a browsing context given a
 browsing context name, then replacement must be
 enabled. The navigation must be done with the browsing context of the as the source browsing
 context. If the resolve a URL algorithm failed, then the user agent may either
 instead navigate to an inline error page, using the same replacement behavior and
 source browsing context behavior as described earlier in this paragraph; or treat the url as "about:blank", acting as described in the next paragraph.

 If url is "about:blank", and the browsing
 context was just created as part of the rules for choosing a browsing context given a
 browsing context name, then the user agent must instead queue a task to
 fire a simple event named load at the selected
 browsing context's Window object, but with its target set to the selected browsing context's
 Window object's Document object (and the currentTarget set to the Window object).

 The method must return the WindowProxy object of the browsing context
 that was navigated, or null if no browsing context was navigated.

 The name attribute of the Window object
 must, on getting, return the current name of the
 browsing context, and, on setting, set the name of the browsing context to the new value.

 The name gets reset when the browsing context is
 navigated to another domain.

 The close() method on Window
 objects should, if all the following conditions are met, close the browsing context A:

 	The corresponding browsing context A is
 script-closable.

 	The browsing context of the incumbent
 script is allowed to navigate the browsing context A.

 	The active sandboxing flag set of the document of the incumbent script does not have its sandboxed
 top-level navigation browsing context flag set.

 A browsing context is script-closable if it is an auxiliary
 browsing context that was created by a script (as opposed to by an action of the user), or
 if it is a browsing context whose session history contains only one
 Document.

 The closed attribute on Window
 objects must return true if the Window object's browsing context has
 been discarded, and false otherwise.

 The stop() method on Window
 objects should, if there is an existing attempt to navigate the browsing
 context and that attempt is not currently running the unload a document
 algorithm, cancel that navigation; then, it must abort the active document of the browsing context of
 the Window object on which it was invoked.

 Accessing other browsing contexts

 	window . length

 	

 Returns the number of child browsing
 contexts.

 	window[index]

 	

 Returns the indicated child browsing context.

 The length IDL attribute on the Window
 interface must return the number of child browsing
 contexts that are nested through
 elements that are in the Document that is the
 active document of that Window object, if that Window's
 browsing context shares the same event loop as the script's
 browsing context of the entry script accessing the IDL attribute; otherwise,
 it must return zero.

 The supported property indices on the Window object at any instant
 are the numbers in the range 0 .. , where n is the number returned by the length IDL
 attribute. If n is zero then there are no supported property
 indices.

 To determine the value of an indexed property index of a Window object, the user agent must return the
 WindowProxy object of the indexth child browsing
 context of the Document that is nested through an element that is in the Document, sorted in the tree order
 of the elements nesting those browsing contexts.

 These properties are the dynamic nested browsing context properties.

 Named access on the Window object

 	window[name]

 	

 Returns the indicated element or collection of elements.

 The Window interface supports named
 properties. The supported property names at any moment consist of the
 following, in tree order, ignoring later duplicates:

 	the browsing context name of any child browsing context of the
 active document whose name is not the empty string,

 	the value of the name content attribute for all a,
 applet, area, embed, form,
 frameset, img, and object elements in the active
 document that have a non-empty name content attribute, and

 	the value of the id content attribute of any HTML element in the active document with a non-empty id content attribute.

 To determine the value of a named property name when the Window object is indexed for property
 retrieval, the user agent must return the value obtained using the following steps:

 	

 Let objects be the list of named objects with the name name
 in the active document.

There will be at least one such object, by definition.

 	

 If objects contains a nested browsing context, then return
 the WindowProxy object of the nested browsing context corresponding to
 the first browsing context container in tree order whose
 browsing context is in objects, and abort these steps.

 	

 Otherwise, if objects has only one element, return that element and
 abort these steps.

 	

 Otherwise return an HTMLCollection rooted at the Document node,
 whose filter matches only named objects with
 the name name. (By definition, these will all be elements.)

 Named objects with the name name, for the purposes of the above algorithm, are those that are either:

 	child browsing contexts of the active
 document whose name is name,

 	a, applet, area, embed,
 form, frameset, img, or object elements that
 have a name content attribute whose value is name, or

 	HTML elements that have an id content attribute
 whose value is name.

 Garbage collection and browsing contexts

 A browsing context has a strong reference to each of its Documents
 and its WindowProxy object, and the user agent itself has a strong reference to its
 top-level browsing contexts.

 A Document has a strong reference to its Window object.

 A Window object has a strong
 reference to its Document object through its document attribute. Thus, references from other scripts to either of
 those objects will keep both alive. Similarly, both Document and Window
 objects have implied strong references to the
 WindowProxy object.

 Each script has a strong reference to its browsing context and its document.

 When a browsing context is to discard a Document, the user
 agent must run the following steps:

 	Set the Document's salvageable state to false.

 	Run any unloading document cleanup steps for the Document that
 are defined by this specification and other applicable specifications.

 	Abort the Document.

 	Remove any tasks associated with the
 Document in any task source, without running those tasks.

 	Discard all the child browsing contexts of the Document.

 	Lose the strong reference from the Document's browsing context
 to the Document.

 Whenever a Document object is discarded, it is also removed from the list of of each worker whose list contains that Document.

 When a is discarded, the strong reference
 from the user agent itself to the browsing context must be severed, and all the
 Document objects for all the entries in the browsing context's session
 history must be discarded as well.

 User agents may discard top-level browsing contexts at any time (typically, in
 response to user requests, e.g. when a user force-closes a window containing one or more top-level browsing contexts). Other browsing contexts must be discarded once their
 WindowProxy object is eligible for garbage collection.

 Closing browsing contexts

 When the user agent is required to close a browsing context, it must run the
 following steps:

 	Let specified browsing context be the browsing context
 being closed.

 	Prompt to unload the active
 document of the specified browsing context. If the user refused
 to allow the document to be unloaded, then abort these steps.

 	Unload the active document of the specified browsing context with the recycle parameter set to
 false.

 	Remove the specified browsing context from the user interface (e.g.
 close or hide its tab in a tabbed browser).

 	Discard the specified
 browsing context.

 User agents should offer users the ability to arbitrarily close any top-level browsing context.

 Browser interface elements

 To allow Web pages to integrate with Web browsers, certain Web
 browser interface elements are exposed in a limited way to scripts
 in Web pages.

 Each interface element is represented by a BarProp
 object:

 interface BarProp {
 attribute boolean visible;
};

 	window . locationbar . visible

 	
 Returns true if the location bar is visible; otherwise, returns false.

 	window . menubar . visible

 	
 Returns true if the menu bar is visible; otherwise, returns false.

 	window . personalbar . visible

 	
 Returns true if the personal bar is visible; otherwise, returns false.

 	window . scrollbars . visible

 	
 Returns true if the scroll bars are visible; otherwise, returns false.

 	window . statusbar . visible

 	
 Returns true if the status bar is visible; otherwise, returns false.

 	window . toolbar . visible

 	
 Returns true if the toolbar is visible; otherwise, returns false.

 The visible attribute, on getting, must return either
 true or a value determined by the user agent to most accurately represent the visibility state of
 the user interface element that the object represents, as described below. On setting, the new
 value must be discarded.

 The following BarProp objects exist for each Document object in a
 browsing context. Some of the user interface elements represented by these objects
 might have no equivalent in some user agents; for those user agents, except when otherwise
 specified, the object must act as if it was present and visible (i.e. its visible attribute must return true).

 	The location bar BarProp object

 	Represents the user interface element that contains a control that displays the
 URL of the active document, or some similar interface concept.

 	The menu bar BarProp object

 	Represents the user interface element that contains a list of commands in menu form, or some
 similar interface concept.

 	The personal bar BarProp object

 	Represents the user interface element that contains links to the user's favorite pages, or
 some similar interface concept.

 	The scrollbar BarProp object

 	Represents the user interface element that contains a scrolling
 mechanism, or some similar interface concept.

 	The status bar BarProp object

 	Represents a user interface element found immediately below or after the document, as
 appropriate for the user's media. If the user agent has no such user interface element, then the
 object may act as if the corresponding user interface element was absent (i.e. its visible attribute may return false).

 	The toolbar BarProp object

 	Represents the user interface element found immediately above or before the document, as
 appropriate for the user's media. If the user agent has no such user interface element, then the
 object may act as if the corresponding user interface element was absent (i.e. its visible attribute may return false).

 The locationbar attribute must return
 the location bar BarProp object.

 The menubar attribute must return the
 menu bar BarProp object.

 The personalbar attribute must return
 the personal bar BarProp object.

 The scrollbars attribute must return
 the scrollbar BarProp object.

 The statusbar attribute must return
 the status bar BarProp object.

 The toolbar attribute must return the
 toolbar BarProp object.

 For historical reasons, the status attribute
 on the Window object must, on getting, return the last string it was set to, and on
 setting, must set itself to the new value. When the Window object is created, the
 attribute must be set to the empty string. It does not do anything else.

 The WindowProxy object

 As mentioned earlier, each browsing context has a
 WindowProxy object. This object is unusual in that all operations that
 would be performed on it must be performed on the Window object of the browsing
 context's active document instead. It is thus indistinguishable from that
 Window object in every way until the browsing context is navigated.

 There is no WindowProxy interface object.

 The WindowProxy object allows scripts to act as if each
 browsing context had a single Window object, while still keeping
 separate Window objects for each Document.

 In the following example, the variable x is set to the
 WindowProxy object returned by the window accessor
 on the global object. All of the expressions following the assignment return true, because in
 every respect, the WindowProxy object acts like the underlying Window
 object.

 var x = window;
x instanceof Window; // true
x === this; // true

 Origin

 Origins are the fundamental currency of the Web's security model. Two actors in the Web
 platform that share an origin are assumed to trust each other and to have the same authority.
 Actors with differing origins are considered potentially hostile versus each other, and are
 isolated from each other to varying degrees.

 For example, if Example Bank's Web site, hosted at bank.example.com, tries to examine the DOM of Example Charity's Web site, hosted
 at charity.example.org, a SecurityError exception will be
 raised.

 The origin of a resource and the effective script origin of a resource
 are both either opaque identifiers or tuples consisting of a scheme component, a host component, a
 port component, and optionally extra data.

 The extra data could include the certificate of the
 site when using encrypted connections, to ensure that if the site's
 secure certificate changes, the origin is considered to change as
 well.

 An origin or effective script origin can be defined as an alias to another origin or effective script
 origin. The value of the origin or effective script origin is
 then the value of the origin or effective script origin to which it is
 an alias.

 These characteristics are defined as follows:

 	For URLs

 	

 The origin and effective script origin of the URL are
 the origin defined in The Web Origin Concept. [ORIGIN]

 	For Document objects

 	

 	If a Document's active sandboxing flag set has
 its sandboxed origin browsing context flag set

 	

 The origin is a globally unique identifier assigned when the
 Document is created.

 The effective script origin is initially an alias to the origin of the
 Document.

 	If a Document was generated from a javascript:
 URL

 	

 The origin is an alias to the
 origin of the script of that javascript: URL.

 The effective script origin is initially an alias to the origin of the
 Document.

 	If a Document was served over the network and has an address that uses a URL
 scheme with a server-based naming authority

 	

 The origin is an alias to the
 origin of the Document's address.

 The effective script origin is initially an alias to the origin of the
 Document.

 	If a Document was generated from a data: URL found in another Document or in a script

 	

 The origin is an alias to the
 origin of the incumbent script when
 the navigate algorithm was invoked, or, if no script
 was involved, of the Document of the element that initiated the navigation to that URL.

 The effective script origin is initially an alias to the effective script origin of that same script or
 Document.

 	If a Document has the address
 "about:blank"

 	

 The origin and effective script origin of the
 Document are those it was assigned when its
 browsing context was created.

 	If a Document is an iframe srcdoc document

 	

 The origin of the Document is an alias to the origin of the
 Document's browsing context's browsing context
 container's Document.

 The effective script origin is initially an alias to the effective script origin of the
 Document's browsing context's browsing context
 container's Document.

 	If a Document was obtained in some other manner (e.g. a data: URL typed in by the user or that was returned as
 the location of an HTTP redirect (or
 equivalent in other protocols), a Document created using the createDocument() API, etc)

 	

 The default behavior as defined in the DOM standard applies. [DOM].

 The origin is a globally unique identifier assigned when the
 Document is created, and the effective script origin is initially an
 alias to the origin of the
 Document.

 The effective script origin of a Document can be
 manipulated using the document.domain IDL
 attribute.

 	For images

 	

 	If an image is the image of an img element and its image data is
 CORS-cross-origin

 	The origin is a globally unique identifier assigned when the image is
 created.

 	If an image is the image of an img element and its image data is
 CORS-same-origin

 	The origin is an alias to the
 origin of the img element's Document.

 Images do not have an effective script origin.

 	For audio and video elements

 	

 	If the media data is CORS-cross-origin

 	The origin is a globally unique identifier assigned when the image is
 created.

 	If the media data is CORS-same-origin

 	The origin is an alias to the
 origin of the media element's Document.

 Media elements do not have an effective script
 origin.

 	For fonts

 	

 The origin of a downloadable Web font is an alias to the
 origin of the absolute URL used to
 obtain the font (after any redirects). [CSSFONTS]

 The origin of a locally installed system font is an alias to the origin of the
 Document in which that font is being used.

 Fonts do not have an effective script origin.

 	For scripts

 	

 The origin and effective script origin of a script are determined
 from another resource, called the owner:

 	If a script is in a script element

 	The owner is the Document to which the script element
 belongs.

 	If a script is in an event handler content
 attribute

 	The owner is the Document to which the attribute node belongs.

 	If a script is a function or other code reference created by another script

 	The owner is the incumbent script when the function or other code reference was created.

 	If a script is a javascript:
 URL that was returned as the location of an HTTP redirect (or equivalent in other protocols)

 	The owner is the URL that redirected to the javascript: URL.

 	If a script is a javascript:
 URL in an attribute

 	The owner is the Document of the element on which the attribute is found.

 	If a script is a javascript:
 URL in a style sheet

 	The owner is the URL of the style sheet.

 	If a script is a javascript:
 URL to which a browsing context is being navigated, the URL having been provided by the user (e.g. by using a
 bookmarklet)

 	The owner is the Document of the browsing context's active
 document.

 	If a script is a javascript:
 URL to which a browsing context is being navigated, the URL having been declared in markup

 	The owner is the Document of the element (e.g. an a or
 area element) that declared the URL.

 	If a script is a javascript:
 URL to which a browsing context is being navigated, the URL having been provided by script

 	The owner is the incumbent script when the navigate algorithm was invoked.

 The origin of the script is then an alias to the origin of the owner, and the
 effective script origin of the script is an alias to the effective script origin of the
 owner.

 Other specifications can override the above definitions by themselves specifying the origin of
 a particular URL, Document, image, media element, font, or
 script.

 The Unicode serialization of an origin is the string obtained by applying the
 following algorithm to the given origin:

 	If the origin in question is not a scheme/host/port tuple, then return the
 literal string "null" and abort these steps.

 	Otherwise, let result be the scheme part of the origin
 tuple.

 	Append the string "://" to result.

 	Apply the IDNA ToUnicode algorithm to each component of the host part of the
 origin tuple, and append the results — each component, in the same order,
 separated by "." (U+002E) characters — to result. [RFC3490]

 	If the port part of the origin tuple gives a port that is different from the
 default port for the protocol given by the scheme part of the origin tuple, then
 append a ":" (U+003A) character and the given port, in base ten, to result.

 	Return result.

 The ASCII serialization of an origin is the string obtained by applying the
 following algorithm to the given origin:

 	If the origin in question is not a scheme/host/port tuple, then return the
 literal string "null" and abort these steps.

 	Otherwise, let result be the scheme part of the origin
 tuple.

 	Append the string "://" to result.

 	

 Apply the IDNA ToASCII algorithm to the host part of the origin tuple, with both
 the AllowUnassigned and UseSTD3ASCIIRules flags set, and append the results to result.

 If ToASCII fails to convert one of the components of the string, e.g. because it is too long
 or because it contains invalid characters, then return the empty string and abort these steps.
 [RFC3490]

 	If the port part of the origin tuple gives a port that is different from the
 default port for the protocol given by the scheme part of the origin tuple, then
 append a ":" (U+003A) character and the given port, in base ten, to result.

 	Return result.

 Two origins are said to be the same origin if the
 following algorithm returns true:

 	Let A be the first origin being compared, and B be the second origin being compared.

 	If A and B are both opaque identifiers, and their
 value is equal, then return true.

 	Otherwise, if either A or B or both are opaque
 identifiers, return false.

 	If A and B have scheme components that are not
 identical, return false.

 	If A and B have host components that are not
 identical, return false.

 	If A and B have port components that are not
 identical, return false.

 	If either A or B have additional data, but that
 data is not identical for both, return false.

 	Return true.

 Relaxing the same-origin restriction

 	document . domain [= domain]

 	

 Returns the current domain used for security checks.

 Can be set to a value that removes subdomains, to change the effective script
 origin to allow pages on other subdomains of the same domain (if they do the same thing)
 to access each other.

 The domain attribute on
 Document objects must be initialized to the document's domain, if it has
 one, and the empty string otherwise. If the document's domain starts with a "[" (U+005B) character and ends with a "]" (U+005D) character, it is an IPv6 address;
 these square brackets must be omitted when initializing the attribute's value.

 On getting, the attribute must return its current value, unless the Document has
 no browsing context, in which case it must return the empty string.

 On setting, the user agent must run the following algorithm:

 	

 If the Document has no browsing context, throw a
 SecurityError exception and abort these steps.

 	

 If the new value is an IPv4 or IPv6 address, let new value be the new value.
 Otherwise, apply the IDNA ToASCII algorithm to the new value, with both the AllowUnassigned and
 UseSTD3ASCIIRules flags set, and let new value be the result of the ToASCII
 algorithm.

 If ToASCII fails to convert one of the components of the string, e.g. because it is too long
 or because it contains invalid characters, then throw a SecurityError exception and
 abort these steps. [RFC3490]

 	

 If new value is not exactly equal to the current value of the document.domain attribute, then run these substeps:

 	

 If the current value is an IPv4 or IPv6 address, throw a SecurityError exception and
 abort these steps.

 	

 If new value, prefixed by a "." (U+002E), does not exactly
 match the end of the current value, throw a SecurityError exception and abort
 these steps.

 If the new value is an IPv4 or IPv6 address, it cannot
 match the new value in this way and thus an exception will be thrown
 here.

 	

 If new value matches a suffix in the Public Suffix List, or, if new value, prefixed by a "." (U+002E), matches the end of a suffix in
 the Public Suffix List, then throw a SecurityError exception and abort these
 steps. [PSL]

 Suffixes must be compared after applying the IDNA ToASCII algorithm to them, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, in an ASCII case-insensitive
 manner. [RFC3490]

 	Release the storage mutex.

 	

 Set the attribute's value to new value.

 	

 If the effective script origin of the Document is an alias, set it to the value of the effective script
 origin (essentially de-aliasing the effective script origin).

 	

 If new value is not the empty string, then run these substeps:

 	

 Set the host part of the effective script origin tuple of the
 Document to new value.

 	

 Set the port part of the effective script origin tuple of the
 Document to "manual override" (a value that, for the purposes of comparing origins, is identical to "manual override" but not
 identical to any other value).

 The domain of a Document is the host part
 of the document's origin, if the value of that origin is a
 scheme/host/port tuple. If it isn't, then the document does not have a domain.

 The domain attribute is used to enable
 pages on different hosts of a domain to access each others' DOMs.

 Do not use the document.domain
 attribute when using shared hosting. If an untrusted third party is able to host an HTTP server at
 the same IP address but on a different port, then the same-origin protection that normally
 protects two different sites on the same host will fail, as the ports are ignored when comparing
 origins after the document.domain attribute has been
 used.

 Sandboxing

 A sandboxing flag set is a set of zero or more of the following flags, which are
 used to restrict the abilities that potentially untrusted resources have:

 	The sandboxed navigation browsing context flag

 	

 This flag prevents content from navigating browsing contexts other
 than the sandboxed browsing context itself (or browsing contexts further nested inside it),
 auxiliary browsing contexts (which are protected
 by the sandboxed auxiliary navigation browsing context flag defined next), and the
 top-level browsing context (which is protected by the sandboxed top-level
 navigation browsing context flag defined below).

 If the sandboxed auxiliary navigation browsing context flag is not set, then in
 certain cases the restrictions nonetheless allow popups (new top-level browsing contexts) to be opened. These browsing contexts always have one permitted sandboxed navigator, set
 when the browsing context is created, which allows the browsing context that
 created them to actually navigate them. (Otherwise, the sandboxed navigation browsing
 context flag would prevent them from being navigated even if they were opened.)

 	The sandboxed auxiliary navigation browsing context flag

 	

 This flag prevents content from creating new auxiliary browsing
 contexts, e.g. using the target attribute, the
 window.open() method, or the showModalDialog() method.

 	The sandboxed top-level navigation browsing context flag

 	

 This flag prevents content from navigating their and prevents content from closing their
 .

 When the sandboxed top-level navigation browsing context flag is not
 set, content can navigate its top-level browsing context, but other browsing contexts are still protected by the sandboxed
 navigation browsing context flag and possibly the sandboxed auxiliary navigation
 browsing context flag.

 	The sandboxed plugins browsing context flag

 	

 This flag prevents content from instantiating plugins, whether
 using the embed element, the object element, the applet element, or through navigation of a nested browsing context, unless
 those plugins can be secured.

 	The sandboxed seamless iframes flag

 	

 This flag prevents content from using the seamless
 attribute on descendant iframe elements.

 This prevents a page inserted using the allow-same-origin keyword from using a
 CSS-selector-based method of probing the DOM of other pages on the same site (in particular,
 pages that contain user-sensitive information).

 	The sandboxed origin browsing context flag

 	

 This flag forces content into a unique origin, thus preventing
 it from accessing other content from the same origin.

 This flag also prevents script from reading from or writing to the
 document.cookie IDL attribute, and blocks access to
 localStorage.
 [WEBSTORAGE]

 	The sandboxed forms browsing context flag

 	

 This flag blocks form submission.

 	The sandboxed pointer lock browsing context flag

 	

 This flag disables the Pointer Lock API. [POINTERLOCK]

 	The sandboxed scripts browsing context flag

 	

 This flag blocks script execution.

 	The sandboxed automatic features browsing context
 flag

 	

 This flag blocks features that trigger automatically, such as automatically playing a video or automatically focusing a form control.

 	The sandboxed fullscreen browsing context flag

 	

 This flag prevents content from using the requestFullscreen() method.

 When the user agent is to parse a sandboxing directive, given a string input, a sandboxing flag set output, and
 optionally an allow fullscreen flag, it must run the following steps:

 	Split input on spaces, to obtain tokens.

 	Let output be empty.

 	

 Add the following flags to output:

 	The sandboxed navigation browsing context flag.

 	The sandboxed auxiliary navigation browsing context flag, unless tokens contains the allow-popups keyword.

 	The sandboxed top-level navigation browsing context flag, unless tokens contains the allow-top-navigation
 keyword.

 	The sandboxed plugins browsing context flag.

 	The sandboxed seamless iframes flag.

 	

 The sandboxed origin browsing context flag, unless the tokens contains the allow-same-origin
 keyword.

 The allow-same-origin keyword
 is intended for two cases.

 First, it can be used to allow content from the same site to be sandboxed to disable
 scripting, while still allowing access to the DOM of the sandboxed content.

 Second, it can be used to embed content from a third-party site, sandboxed to prevent that
 site from opening pop-up windows, etc, without preventing the embedded page from communicating
 back to its originating site, using the database APIs to store data, etc.

 	The sandboxed forms browsing context flag, unless tokens contains the allow-forms keyword.

 	The sandboxed pointer lock browsing context flag, unless tokens contains the allow-pointer-lock
 keyword.

 	The sandboxed scripts browsing context flag, unless tokens contains the allow-scripts keyword.

 	

 The sandboxed automatic features browsing context flag, unless tokens contains the allow-scripts keyword (defined above).

 This flag is relaxed by the same keyword as scripts, because when scripts are
 enabled these features are trivially possible anyway, and it would be unfortunate to force
 authors to use script to do them when sandboxed rather than allowing them to use the
 declarative features.

 	The sandboxed fullscreen browsing context flag, unless the allow fullscreen flag was passed to the parse a sandboxing
 directive flag.

 Every top-level browsing context has a popup
 sandboxing flag set, which is a sandboxing flag
 set. When a browsing context is created, its
 popup sandboxing flag set must be empty. It is
 populated by the rules for choosing a browsing context given a
 browsing context name.

 Every nested browsing context has an
 iframe sandboxing flag set, which is a
 sandboxing flag set. Which flags in a nested
 browsing context's iframe sandboxing flag
 set are set at any particular time is determined by the
 iframe element's sandbox attribute.

 Every Document has an active sandboxing flag
 set, which is a sandboxing flag set. When the
 Document is created, its active sandboxing flag
 set must be empty. It is populated by the navigation algorithm.

 Every resource that is obtained by the navigation algorithm has a forced
 sandboxing flag set, which is a sandboxing flag
 set. A resource by default has no flags set in its
 forced sandboxing flag set, but other
 specifications can define that certain flags are set.

 In particular, the forced sandboxing flag
 set is used by the Content Security Policy specification.
 [CSP]

 When a user agent is to implement the sandboxing for a Document, it
 must populate Document's active sandboxing flag set with the union of
 the flags that are present in the following sandboxing flag
 sets at the time the Document object is created:

 	If the Document's browsing context is a top-level browsing
 context, then: the flags set on the browsing context's popup sandboxing
 flag set.

 	If the Document's browsing context is a nested browsing
 context, then: the flags set on the browsing context's
 iframe sandboxing flag set.

 	If the Document's browsing context is a nested browsing
 context, then: the flags set on the browsing context's parent browsing
 context's active document's active sandboxing flag set.

 	The flags set on the Document's resource's forced sandboxing flag
 set, if it has one.

 Session history and navigation

 The session history of browsing contexts

 The sequence of Documents in a browsing
 context is its session history.

 History objects provide a representation of the
 pages in the session history of browsing contexts. Each browsing
 context, including nested browsing contexts, has a distinct session
 history.

 Each Document object in a browsing
 context's session history is associated with a
 unique instance of the History object, although they
 all must model the same underlying session history.

 The history attribute
 of the Window interface must return the object
 implementing the History interface for that
 Window object's Document.

 History objects represent their browsing
 context's session history as a flat list of session history entries. Each
 session history entry consists of a URL and
 optionally a state object.

 This does not imply that the user interface need be
 linear. See the notes below.

 Titles associated with session history entries need not have any relation
 with the current title of the
 Document. The title of a session history
 entry is intended to explain the state of the document at
 that point, so that the user can navigate the document's
 history.

 URLs without associated state
 objects are added to the session history as the user (or
 script) navigates from page to page.

 A state object is an object representing a user
 interface state.

 Pages can add state
 objects to the session history. These are then returned to the
 script when the user (or script) goes back in the history, thus enabling authors to use the
 "navigation" metaphor even in one-page applications.

 State objects are intended to
 be used for two main purposes: first, storing a preparsed
 description of the state in the URL so that in the
 simple case an author doesn't have to do the parsing (though one
 would still need the parsing for handling URLs passed around by users, so it's only a minor
 optimization), and second, so that the author can store state that
 one wouldn't store in the URL because it only applies to the current
 Document instance and it would have to be reconstructed
 if a new Document were opened.

 An example of the latter would be something like keeping track of
 the precise coordinate from which a pop-up div was made
 to animate, so that if the user goes back, it can be made to animate
 to the same location. Or alternatively, it could be used to keep a
 pointer into a cache of data that would be fetched from the server
 based on the information in the URL, so that when going
 back and forward, the information doesn't have to be fetched
 again.

 At any point, one of the entries in the session history is the
 current entry. This is the entry representing the
 active document of the browsing context.
 Which entry is the current entry is changed by the
 algorithms defined in this specification, e.g. during session history traversal.

 The current entry is usually an entry
 for the address of the
 Document. However, it can also be one of the entries
 for state objects added to the
 history by that document.

 An entry with persisted user state is one that also
 has user-agent defined state. This specification does not specify
 what kind of state can be stored.

 For example, some user agents might want to
 persist the scroll position, or the values of form controls.

 User agents that persist the value of form controls
 are encouraged to also persist their directionality (the value of
 the element's dir attribute). This
 prevents values from being displayed incorrectly after a history
 traversal when the user had originally entered the values with an
 explicit, non-default directionality.

 Entries that consist of state
 objects share the same Document as the entry for
 the page that was active when they were added.

 Contiguous entries that differ just by fragment identifier also
 share the same Document.

 All entries that share the same
 Document (and that are therefore merely different
 states of one particular document) are contiguous by definition.

 Each Document in a browsing context can
 also have a latest entry. This is the entry or that
 Document that was most the recently traversed to. When
 a Document is created, it initially has no latest
 entry.

 User agents may discard
 the Document objects of entries other than the
 current entry that are not referenced from any script,
 reloading the pages afresh when the user or script navigates back to
 such pages. This specification does not specify when user agents
 should discard Document objects and when they should
 cache them.

 Entries that have had their Document objects
 discarded must, for the purposes of the algorithms given below, act
 as if they had not. When the user or script navigates back or
 forwards to a page which has no in-memory DOM objects, any other
 entries that shared the same Document object with it
 must share the new object as well.

 The History interface

 interface History {
 readonly attribute long length;
 readonly attribute any state;
 void go(optional long delta);
 void back();
 void forward();
 void pushState(any data, DOMString title, optional DOMString? url = null);
 void replaceState(any data, DOMString title, optional DOMString? url = null);
};

 	window . history . length

 	

 Returns the number of entries in the joint session history.

 	window . history . state

 	

 Returns the current state object.

 	window . history . go([delta])

 	

 Goes back or forward the specified number of steps in the joint session history.

 A zero delta will reload the current page.

 If the delta is out of range, does nothing.

 	window . history . back()

 	

 Goes back one step in the joint session history.

 If there is no previous page, does nothing.

 	window . history . forward()

 	

 Goes forward one step in the joint session history.

 If there is no next page, does nothing.

 	window . history . pushState(data, title [, url])

 	

 Pushes the given data onto the session history, with the given title, and, if provided and not null, the given URL.

 	window . history . replaceState(data, title [, url])

 	

 Updates the current entry in the session history to have the given data, title, and, if provided and not null, URL.

 The joint session history of a History object is the union of all the
 session histories of all browsing contexts of all the fully active Document
 objects that share the History object's top-level browsing context, with
 all the entries that are current entries in their respective
 session histories removed except for the current entry
 of the joint session history.

 The current entry of the joint session history is the entry that most recently
 became a current entry in its session history.

 Entries in the joint session history are ordered chronologically by the time they
 were added to their respective session histories. (Since all
 these browsing contexts by definition share an event
 loop, there is always a well-defined sequential order in which their session histories had their entries added.) Each entry has an index; the earliest
 entry has index 0, and the subsequent entries are numbered with consecutively increasing integers
 (1, 2, 3, etc).

 The length attribute of the
 History interface must return the number of entries in the joint session
 history.

 The actual entries are not accessible from script.

 The state attribute of the
 History interface must return the last value it was set to by the user agent.
 Initially, its value must be null.

 When the go(delta) method is
 invoked, if the argument to the method was omitted or has the value zero, the user agent must act
 as if the location.reload() method was called instead.
 Otherwise, the user agent must traverse the history by a delta whose value is the
 value of the method's argument.

 When the back() method is invoked, the user
 agent must traverse the history by a delta −1.

 When the forward()method is invoked, the
 user agent must traverse the history by a delta +1.

 To traverse the history by a delta delta, the user agent must
 queue a task to run the following steps. The task source for the queued
 task is the history traversal task source.

 	Let delta be the argument to the method.

 	If the index of the current entry of the joint session history plus delta is less than zero or greater than or equal to the number of items in the
 joint session history, then abort these steps.

	If the Document's unload a document algorithm is currently
 running, abort these steps.

 	If there is an ongoing attempt to navigate the browsing context that has not
 yet matured (i.e. it has not passed the point of
 making its Document the active document), then cancel that attempt to
 navigate the browsing context.

 	Let specified entry be the entry in the joint session
 history whose index is the sum of delta and the index of the
 current entry of the joint session history.

 	Let specified browsing context be the browsing context of
 the specified entry.

 	

 If the specified browsing context's active document is not
 the same Document as the Document of the specified
 entry, then run these substeps:

 	Fully exit fullscreen.

 	Prompt to unload the active
 document of the specified browsing context. If the user
 refused to allow the document to be unloaded, then abort these steps.

 	Unload the active document of the
 specified browsing context with the recycle parameter
 set to false.

 	Traverse the history of the specified browsing context to
 the specified entry.

 When the user navigates through a browsing context, e.g. using a browser's back
 and forward buttons, the user agent must traverse the history by a delta equivalent
 to the action specified by the user.

 The pushState(data, title, url) method adds a state object entry to
 the history.

 The replaceState(data, title, url) method updates the state object,
 title, and optionally the URL of the current entry in the history.

 When either of these methods is invoked, the user agent must run the following steps:

 	Let cloned data be a structured clone of the specified
 data. If this throws an exception, then rethrow that exception and abort
 these steps.

 	

 If the third argument is not null, run these substeps:

 	Resolve the value of the third argument, relative to the
 entry script's base URL.

 	If that fails, throw a SecurityError exception and abort these steps.

 	Compare the resulting parsed URL to the result of applying the URL
 parser algorithm to the document's address. If any component of these two
 URLs differ other than the path,
 query, and fragment components, then throw a
 SecurityError exception and abort these steps.

 	If the origin of the resulting absolute URL is not the same as
 the origin of the entry script's document, and either the path or query components of the two parsed
 URLs compared in the previous step differ, throw a SecurityError exception
 and abort these steps. (This prevents sandboxed content from spoofing other pages on the same
 origin.)

 	Let new URL be the resulting absolute URL.

 For the purposes of the comparisons in the above substeps, the path and query components
 can only be the same if the scheme component of both
 parsed URLs are relative schemes.

 	

 If the third argument is null, then let new URL be the URL
 of the current entry.

	

 If the method invoked was the pushState()
 method:

 	

 Remove all the entries in the browsing context's session history
 after the current entry. If the current entry is the last entry in
 the session history, then no entries are removed.

 This doesn't necessarily have to affect the user
 agent's user interface.

 	Remove any tasks queued by the history traversal
 task source that are associated with any Document objects in the
 top-level browsing context's document family.

 	If appropriate, update the current entry to reflect any state that the user
 agent wishes to persist. The entry is then said to be an entry with persisted user
 state.

 	Add a state object entry to the session history, after the current
 entry, with cloned data as the state object, the given
 title as the title, and new URL as the URL
 of the entry.

 	Update the current entry to be this newly added entry.

 Otherwise, if the method invoked was the replaceState() method:

 	Update the current entry in the session history so that cloned data is the entry's new state object, the given title
 is the new title, and new URL is the entry's new URL.

 	If the current entry in the session history represents a non-GET request
 (e.g. it was the result of a POST submission) then update it to instead represent a GET request
 (or equivalent).

 	

 Set the document's address to new URL.

 Since this is neither a navigation of the
 browsing context nor a history traversal,
 it does not cause a hashchange event to be fired.

 	

 Set history.state to a structured clone
 of cloned data.

 	

 Let the latest entry of the Document of the current
 entry be the current entry.

 The title is purely advisory. User agents might use the title
 in the user interface.

 User agents may limit the number of state objects added to the session history per page. If a
 page hits the UA-defined limit, user agents must remove the entry immediately after the first
 entry for that Document object in the session history after having added the new
 entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for
 navigation.)

 Consider a game where the user can navigate along a line, such that the user is always at some
 coordinate, and such that the user can bookmark the page corresponding to a particular
 coordinate, to return to it later.

 A static page implementing the x=5 position in such a game could look like the following:

 <!DOCTYPE HTML>
<!-- this is http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
 Advance to 6 or
 retreat to 4?
</p>

 The problem with such a system is that each time the user clicks, the whole page has to be
 reloaded. Here instead is another way of doing it, using script:

 <!DOCTYPE HTML>
<!-- this starts off as http://example.com/line?x=5 -->
<title>Line Game - 5</title>
<p>You are at coordinate 5 on the line.</p>
<p>
 Advance to 6 or
 retreat to 4?
</p>
<script>
 var currentPage = 5; // prefilled by server
 function go(d) {
 setupPage(currentPage + d);
 history.pushState(currentPage, document.title, '?x=' + currentPage);
 }
 onpopstate = function(event) {
 setupPage(event.state);
 }
 function setupPage(page) {
 currentPage = page;
 document.title = 'Line Game - ' + currentPage;
 document.getElementById('coord').textContent = currentPage;
 document.links[0].href = '?x=' + (currentPage+1);
 document.links[0].textContent = 'Advance to ' + (currentPage+1);
 document.links[1].href = '?x=' + (currentPage-1);
 document.links[1].textContent = 'retreat to ' + (currentPage-1);
 }
</script>

 In systems without script, this still works like the previous example. However, users that
 do have script support can now navigate much faster, since there is no network access
 for the same experience. Furthermore, contrary to the experience the user would have with just a
 naïve script-based approach, bookmarking and navigating the session history still work.

 In the example above, the data argument to the pushState() method is the same information as would be sent
 to the server, but in a more convenient form, so that the script doesn't have to parse the URL
 each time the user navigates.

 Applications might not use the same title for a session history entry as the
 value of the document's title element at that time. For example, here is a simple
 page that shows a block in the title element. Clearly, when navigating backwards to
 a previous state the user does not go back in time, and therefore it would be inappropriate to
 put the time in the session history title.

 <!DOCTYPE HTML>
<TITLE>Line</TITLE>
<SCRIPT>
 setInterval(function () { document.title = 'Line - ' + new Date(); }, 1000);
 var i = 1;
 function inc() {
 set(i+1);
 history.pushState(i, 'Line - ' + i);
 }
 function set(newI) {
 i = newI;
 document.forms.F.I.value = newI;
 }
</SCRIPT>
<BODY ONPOPSTATE="set(event.state)">
<FORM NAME=F>
State: <OUTPUT NAME=I>1</OUTPUT> <INPUT VALUE="Increment" TYPE=BUTTON ONCLICK="inc()">
</FORM>

 The Location interface

 Each Document object in a browsing context's session history is
 associated with a unique instance of a Location object.

 	document . location [= value]

 	window . location [= value]

 	

 Returns a Location object with the current page's location.

 Can be set, to navigate to another page.

 The location attribute of the
 Document interface must return the Location object for that
 Document object, if it is in a browsing context, and null otherwise.

 The location attribute of the Window
 interface must return the Location object for that Window object's
 Document.

 Location objects provide a representation of the address of the active document of their Document's
 browsing context, and allow the current entry of the browsing
 context's session history to be changed, by adding or replacing entries in the history object.

 [Unforgeable] interface Location {
 void assign(DOMString url);
 void replace(DOMString url);
 void reload();
};
Location implements URLUtils;

 	location . assign(url)

 	

 Navigates to the given page.

 	location . replace(url)

 	

 Removes the current page from the session history and navigates to the given page.

 	location . reload()

 	

 Reloads the current page.

 The relevant Document is the Location object's associated
 Document object's browsing context's active document.

 When the assign(url)
 method is invoked, the UA must resolve the argument, relative
 to the entry script's base URL, and if that is
 successful, must navigate the browsing
 context to the specified url. If the browsing context's
 session history contains only one Document, and that was the
 about:blank Document created when the browsing context was
 created, then the navigation must be done with replacement enabled.

 When the replace(url)
 method is invoked, the UA must resolve the argument, relative
 to the entry script's base URL, and if that is
 successful, navigate the browsing
 context to the specified url with replacement enabled.

 Navigation for the assign() and replace() methods must be done with the browsing context of the incumbent script as the
 source browsing context.

 If the resolving step of the assign() and replace() methods is not successful, then the user agent must
 instead throw a SyntaxError exception.

 When the reload() method is invoked, the
 user agent must run the appropriate steps from the following list:

 	If the currently executing task is the dispatch of a resize event in response to the user resizing the browsing
 context

 	Repaint the browsing context and abort these steps.

 	If the browsing context's active document is an
 iframe srcdoc document

 	Reprocess the iframe
 attributes of the browsing context's browsing context
 container.

 	If the browsing context's active document has its reload
 override flag set

 	Perform an overridden reload.

 	Otherwise

 	Navigate the
 browsing context to the document's
 address with replacement enabled. The
 source browsing context must be the browsing
 context being navigated.

 When a user requests that the active document of a browsing context
 be reloaded through a user interface element, the user agent should navigate the browsing context to the same resource as that
 Document, with replacement enabled. In the case of non-idempotent
 methods (e.g. HTTP POST), the user agent should prompt the user to confirm the operation first,
 since otherwise transactions (e.g. purchases or database modifications) could be repeated. User
 agents may allow the user to explicitly override any caches when reloading. If browsing
 context's active document's reload override flag is set, then the
 user agent may instead perform an overridden reload rather than the navigation
 described in this paragraph.

 The Location interface also supports the URLUtils interface. [URL]

 When the object is created, and whenever the the
 address of the relevant Document changes, the user agent must invoke
 the element's URLUtils interface's set the
 input algorithm with the address of the
 relevant Document as the given value.

 The element's URLUtils interface's get the
 base algorithm must return the entry script's base URL, if there is one, or null otherwise.

 The element's URLUtils interface's query
 encoding is the document's character encoding.

 When the element's URLUtils interface invokes its update steps with the string value, the user
 agent must run the following steps:

 	

 If any of the following conditions are met, let mode be normal
 navigation; otherwise, let it be replace navigation:

 	The Location object's relevant Document has
 completely loaded, or

 	In the task in which the algorithm is running, an
 activation behavior is currently being processed whose click event was trusted,
 or

 	In the task in which the algorithm is running, the event
 listener for a trusted click event is being handled.

 	If mode is normal navigation, then act as if the assign() method had been called with value as its
 argument. Otherwise, act as if the replace() method had
 been called with value as its argument.

 Security

 User agents must throw a SecurityError exception whenever any
 properties of a Location object are accessed when the entry script has an
 effective script origin that is not the same as the
 Location object's associated Document's browsing context's
 active document's effective script origin, with the following
 exceptions:

 	The href setter, if the entry script's
 script's browsing context is allowed to navigate the browsing
 context with which the Location object is associated

	The replace() method, if the entry
 script's script's browsing context is allowed to navigate the
 browsing context with which the Location object is associated

	Any properties not defined in the IDL for the Location object or indirectly via
 one of those properties (e.g. toString(), which is defined via the stringifier keyword), if the entry script's effective script
 origin is the same origin as the Location object's associated
 Document's effective script origin

 When the entry script's effective script origin is different than a
 Location object's associated Document's effective script
 origin, the user agent must act as if any changes to that Location object's
 properties, getters, setters, etc, were not present, and as if all the properties of that
 Location object had their [[Enumerable]] attribute set to false.

 For members that return objects (including function objects), each distinct effective
 script origin that is not the same origin as the Location object's
 Document's effective script origin must be provided with a separate set
 of objects. These objects must have the prototype chain appropriate for the script for which the
 objects are created (not those that would be appropriate for scripts whose script's global
 object is the Location object's Document's Window
 object).

 Implementation notes for session history

 This section is non-normative.

 The History interface is not meant to place
 restrictions on how implementations represent the session history to
 the user.

 For example, session history could be implemented in a tree-like
 manner, with each page having multiple "forward" pages. This
 specification doesn't define how the linear list of pages in the
 history object are derived from the
 actual session history as seen from the user's perspective.

 Similarly, a page containing two iframes has a history object distinct from the
 iframes' history
 objects, despite the fact that typical Web browsers present the user
 with just one "Back" button, with a session history that interleaves
 the navigation of the two inner frames and the outer page.

 Security: It is suggested that to avoid letting
 a page "hijack" the history navigation facilities of a UA by abusing
 pushState(), the UA
 provide the user with a way to jump back to the previous page
 (rather than just going back to the previous state). For example,
 the back button could have a drop down showing just the pages in the
 session history, and not showing any of the states. Similarly, an
 aural browser could have two "back" commands, one that goes back to
 the previous state, and one that jumps straight back to the previous
 page.

 In addition, a user agent could ignore calls to pushState() that are invoked on
 a timer, or from event listeners that are not triggered in response
 to a clear user action, or that are invoked in rapid succession.

 Browsing the Web

 Navigating across documents

 Certain actions cause the browsing context to navigate to a new resource.
 Navigation always involves source browsing context, which is the browsing context which
 was responsible for starting the navigation.

 For example, following a hyperlink,
 form submission, and the window.open() and location.assign() methods can all cause a browsing context to
 navigate.

 A user agent may provide various ways for the user to explicitly cause a browsing context to
 navigate, in addition to those defined in this specification.

 When a browsing context is navigated to a new resource, the user
 agent must run the following steps:

 	Release the storage mutex.

 	

 If the source browsing context is not the same as the browsing
 context being navigated, and the source browsing context is not one of the
 ancestor browsing contexts of the browsing
 context being navigated, and the browsing context being navigated is not a
 top-level browsing context, and the source browsing context's
 active document's active sandboxing flag set has its sandboxed
 navigation browsing context flag set, then abort these steps.

 Otherwise, if the browsing context being navigated is a top-level browsing
 context, and is one of the ancestor browsing
 contexts of the source browsing context, and the source browsing
 context's Document's active sandboxing flag set has its
 sandboxed top-level navigation browsing context flag set, then abort these
 steps.

 Otherwise, if the browsing context being navigated is a top-level browsing
 context, and is not one of the ancestor browsing
 contexts of the source browsing context, and the source browsing
 context's Document's active sandboxing flag set has its
 sandboxed navigation browsing context flag set, and the source browsing
 context is not the one permitted sandboxed navigator of the browsing
 context being navigated, then abort these steps.

 In all of these cases, the user agent may additionally offer to open the new resource in a
 new top-level browsing context or in the top-level browsing context of
 the source browsing context, at the user's option, in which case the user agent
 must navigate that designated top-level
 browsing context to the new resource as if the user had requested it independently.

 Doing so, however, can be dangerous, as it means that the user is overriding the
 author's explicit request to sandbox the content.

 	If the source browsing context is the same as the
 browsing context being navigated, and this browsing context has its seamless
 browsing context flag set, and the browsing context being navigated was not
 chosen using an explicit self-navigation override, then find the nearest
 ancestor browsing context that does not have its seamless browsing context
 flag set, and continue these steps as if that browsing context was
 the one that was going to be navigated instead.

 	If there is a preexisting attempt to navigate the browsing context, and the
 source browsing context is the same as the browsing context being
 navigated, and that attempt is currently running the unload a document algorithm,
 and the origin of the URL of the resource being loaded in that
 navigation is not the same origin as the origin of the URL
 of the resource being loaded in this navigation, then abort these steps without
 affecting the preexisting attempt to navigate the browsing context.

 	If a task queued by the traverse the history by a
 delta algorithm is running the unload a document algorithm for the
 active document of the browsing context being navigated, then abort
 these steps without affecting the unload a document algorithm or the aforementioned
 history traversal task.

 	If the prompt to unload a document algorithm is being run for the
 active document of the browsing context being navigated, then abort
 these steps without affecting the prompt to unload a document algorithm.

 	Let gone async be false.

 	Fragment identifiers: Apply the URL parser
 algorithm to the absolute URL of the new resource and the address of the active document of the browsing
 context being navigated. If all the components of the resulting parsed URLs, ignoring any fragment
 components, are identical, and the new resource is to be fetched using HTTP GET or equivalent, and the parsed URL of the
 new resource has a fragment component that is not null
 (even if it is empty), then navigate to that fragment
 identifier and abort these steps.

 	If gone async is false, cancel any preexisting but not yet mature attempt to navigate the browsing
 context, including canceling any instances of the fetch algorithm started by
 those attempts. If one of those attempts has already created a new Document object, abort that Document also. (Navigation attempts that have matured already have session history entries, and are
 therefore handled during the update the session history with the new page algorithm,
 later.)

 	If the new resource is to be handled using a mechanism that does not affect the browsing
 context, e.g. ignoring the navigation request altogether because the specified scheme is not one
 of the supported protocols, then abort these steps and proceed with that mechanism
 instead.

 	

 If gone async is false, prompt
 to unload the Document object. If the user refused to allow the
 document to be unloaded, then abort these steps.

 If this instance of the navigation algorithm gets canceled
 while this step is running, the prompt to unload a document algorithm must
 nonetheless be run to completion.

 	If gone async is false, abort the active document of the browsing
 context.

 	

 If the new resource is to be handled by displaying some sort of inline content, e.g. an error
 message because the specified scheme is not one of the supported protocols, or an inline prompt
 to allow the user to select a registered
 handler for the given scheme, then display the inline
 content and abort these steps.

 In the case of a registered handler being used, the algorithm will be reinvoked
 with a new URL to handle the request.

 	

 If the resource has already been obtained (e.g. because it is being used to populate an
 object element's new child browsing context), then skip this step.

 Otherwise:

 If the new resource is to be fetched using HTTP GET or equivalent, and there are relevant application caches that are identified by a URL with the
 same origin as the URL in question, and that have this URL as one of their entries,
 excluding entries marked as foreign, and whose
 mode is fast, and the user agent is not in a mode where it
 will avoid using application caches then
 fetch the resource from the most
 appropriate application cache of those that match.

 For example, imagine an HTML page with an associated application cache
 displaying an image and a form, where the image is also used by several other application
 caches. If the user right-clicks on the image and chooses "View Image", then the user agent
 could decide to show the image from any of those caches, but it is likely that the most useful
 cache for the user would be the one that was used for the aforementioned HTML page. On the other
 hand, if the user submits the form, and the form does a POST submission, then the user agent
 will not use an application cache at all; the submission will be made to the network.

 Otherwise, fetch the new resource, with the manual redirect
 flag set.

 If the resource is being fetched using a method other than one equivalent to HTTP's GET, or, if the navigation algorithm was invoked as a
 result of the form submission algorithm, then the fetching algorithm must be invoked from the origin of the
 active document of the source browsing context, if any.

 If the browsing context being navigated is a child browsing context
 for an iframe or object element, then the fetching
 algorithm must be invoked from the iframe or object element's
 browsing context scope origin, if it has one.

 If the browsing context is a nested browsing context, then in the
 time between the fetch algorithm being started by this step, and either the
 creation of a Document object or the canceling of the fetch or navigation algorithms, the browsing context must be put in
 the delaying load events mode.

 	

 If gone async is false, return to whatever algorithm invoked the
 navigation steps and continue running these steps asynchronously.

 	Let gone async be true.

 	

 If fetching the resource results in a redirect, and either the URL of the target
 of the redirect has the same origin as the original resource, or the resource is
 being obtained using the POST method or a safe method (in HTTP terms), return to the step labeled fragment identifiers with the new resource,
 except that if the URL of the target of the redirect does not have a fragment
 identifier and the URL of the resource that led to the redirect does, then the
 fragment identifier of the resource that led to the redirect must be propagated to the
 URL of the target of the redirect.

 So for instance, if the original URL was "http://example.com/#!sample" and "http://example.com/" is
 found to redirect to "https://example.com/", the URL of the new resource
 will be "https://example.com/#!sample".

 Otherwise, if fetching the resource results in a redirect but the URL of the
 target of the redirect does not have the same origin as the original resource and
 the resource is being obtained using a method that is neither the POST method nor a safe method
 (in HTTP terms), then abort these steps. The user agent may indicate to the user that the
 navigation has been aborted for security reasons.

 	Wait for one or more bytes to be available or for the user agent to establish that the
 resource in question is empty. During this time, the user agent may allow the user to cancel this
 navigation attempt or start other navigation attempts.

 	

 Fallback in prefer-online mode: If the resource was not fetched from an
 application cache, and was to be fetched using HTTP GET or equivalent, and there are relevant application caches that are identified by a URL with the
 same origin as the URL in question, and that have this URL as one of their entries,
 excluding entries marked as foreign, and whose
 mode is prefer-online, and the user didn't cancel the
 navigation attempt during the earlier step, and the navigation attempt failed (e.g. the server
 returned a 4xx or 5xx status code or
 equivalent, or there was a DNS error), then:

 Let candidate be the resource identified by the URL in question from the
 most appropriate application cache of those that
 match.

 If candidate is not marked as foreign, then the user agent must discard the failed
 load and instead continue along these steps using candidate as the resource.
 The user agent may indicate to the user that the original page load failed, and that the page
 used was a previously cached resource.

 This does not affect the address of the resource from which Request-URIs are
 obtained, as used to set the document's referrer in the create a Document
 object steps below; they still use the value as computed by the original
 fetch algorithm.

 	

 Fallback for fallback entries: If the resource was not fetched from an
 application cache, and was to be fetched using HTTP GET or equivalent, and its URL matches the fallback namespace of one or more
 relevant application caches, and the most appropriate application cache of those that match
 does not have an entry in its online
 whitelist that has the same origin as the resource's URL and that is a
 prefix match for the resource's URL, and the user didn't cancel the navigation
 attempt during the previous step, and the navigation attempt failed (e.g. the server returned a
 4xx or 5xx status code or equivalent, or
 there was a DNS error), then:

 Let candidate be the fallback
 resource specified for the fallback
 namespace in question. If multiple application caches match, the user agent must use the
 fallback of the most appropriate application
 cache of those that match.

 If candidate is not marked as foreign, then the user agent must discard the failed
 load and instead continue along these steps using candidate as the resource.
 The document's address, if appropriate, will still be the originally requested URL,
 not the fallback URL, but the user agent may indicate to the user that the original page load
 failed, that the page used was a fallback resource, and what the URL of the fallback resource
 actually is.

 This does not affect the address of the resource from which Request-URIs are
 obtained, as used to set the document's referrer in the create a Document
 object steps below; they still use the value as computed by the original
 fetch algorithm.

 	

 Resource handling: If the resource's out-of-band metadata (e.g. HTTP headers), not
 counting any type information (such as the Content-Type HTTP
 header), requires some sort of processing that will not affect the browsing context, then
 perform that processing and abort these steps.

 Such processing might be triggered by, amongst other things, the following:

 	HTTP status codes (e.g. 204 No Content or 205 Reset Content)

 	Network errors (e.g. the network interface being unavailable)

 	Cryptographic protocol failures (e.g. an incorrect TLS certificate)

 Responses with HTTP Content-Disposition headers
 specifying the attachment disposition type must be handled as a
 download.

 HTTP 401 responses that do not include a challenge recognized by the user agent must be
 processed as if they had no challenge, e.g. rendering the entity body as if the response had
 been 200 OK.

 User agents may show the entity body of an HTTP 401 response even when the response does
 include a recognized challenge, with the option to login being included in a non-modal fashion,
 to enable the information provided by the server to be used by the user before authenticating.
 Similarly, user agents should allow the user to authenticate (in a non-modal fashion) against
 authentication challenges included in other responses such as HTTP 200 OK responses, effectively
 allowing resources to present HTTP login forms without requiring their use.

 	Let type be the sniffed type of
 the resource.

 	If the user agent has been configured to process resources of the given type using some mechanism other than rendering the content in a browsing
 context, then skip this step. Otherwise, if the type is one of the
 following types, jump to the appropriate entry in the following list, and process the resource as
 described there:

 	"text/html"

 	Follow the steps given in the HTML document section, and
 abort these steps.

 	"application/xml"

 	"text/xml"

 	"image/svg+xml"

 	"application/xhtml+xml"

 	Any other type ending in "+xml" that is not an explicitly supported XML type

 	Follow the steps given in the XML document section. If
 that section determines that the content is not to be displayed as a generic XML
 document, then proceed to the next step in this overall set of steps. Otherwise, abort these
 steps.

 	"text/plain"

 	Follow the steps given in the plain text file section,
 and abort these steps.

 	"multipart/x-mixed-replace"

 	Follow the steps given in the multipart/x-mixed-replace section, and abort
 these steps.

 	A supported image, video, or audio type

 	Follow the steps given in the media section, and abort
 these steps.

 	A type that will use an external application to render the content in the browsing
 context

 	Follow the steps given in the plugin section, and
 abort these steps.

 An explicitly supported XML type is one for which the user agent is configured to
 use an external application to render the content (either a plugin rendering
 directly in the browsing context, or a separate application), or one for which the
 user agent has dedicated processing rules (e.g. a Web browser with a built-in Atom feed viewer
 would be said to explicitly support the application/atom+xml MIME type), or one for
 which the user agent has a dedicated handler (e.g. one registered using registerContentHandler()).

 Setting the document's address: If there is no
 override URL, then any Document created by these steps must have its
 address set to the URL that was
 originally to be fetched, ignoring any other data that was used to
 obtain the resource (e.g. the entity body in the case of a POST submission is not part of
 the document's address, nor is the URL of the fallback resource in the case of the
 original load having failed and that URL having been found to match a fallback namespace). However, if there is
 an override URL, then any Document created by these steps must have
 its address set to that URL
 instead.

 An override URL is set when dereferencing a javascript: URL and when performing
 an overridden reload.

 Creating a new Document object: when
 a Document is created as part of the above steps, the user agent must additionally
 run the following algorithm as part of creating the new object:

 	Create a new Window object, and associate it with the
 Document, with one exception: if the browsing context's only entry in
 its session history is the about:blank Document that was
 added when the browsing context was created, and navigation is occurring with
 replacement enabled, and that Document has the same
 origin as the new Document, then use the Window object of that
 Document instead, and change the document
 attribute of the Window object to point to the new Document.

	Set the document's referrer to the address of the resource from which
 Request-URIs are obtained as determined when the fetch algorithm obtained the
 resource, if that algorithm was used and determined such a value; otherwise, set it to the
 empty string.

 	Implement the sandboxing for the Document.

 	

 If the active sandboxing flag set of the Document's
 browsing context or any of its ancestor
 browsing contexts (if any) have the sandboxed fullscreen browsing context
 flag set, then skip this step.

 If the Document's browsing context has a browsing context
 container and either it is not an iframe element, or its
 Document does not have the fullscreen enabled flag set, then also
 skip this step.

 Otherwise, set the Document's fullscreen enabled flag.

 	

 Non-document content: If, given type, the new resource is to be
 handled by displaying some sort of inline content, e.g. a native rendering of the content, an
 error message because the specified type is not supported, or an inline prompt to allow the user
 to select a registered handler for the
 given type, then display the inline content and abort
 these steps.

 In the case of a registered handler being used, the algorithm will be reinvoked
 with a new URL to handle the request.

 	Otherwise, the document's type is such that the resource will not
 affect the browsing context, e.g. because the resource is to be handed to an external application
 or because it is an unknown type that will be processed as a download. Process the
 resource appropriately.

 Some of the sections below, to which the above algorithm defers in certain cases, require the
 user agent to update the session history with the new page. When a user agent is
 required to do this, it must queue a task (associated with the Document
 object of the current entry, not the new one) to run the following steps:

 	

 Unload the Document object of the
 current entry, with the recycle parameter set to false.

 If this instance of the navigation algorithm is canceled while
 this step is running the unload a document algorithm, then the unload a
 document algorithm must be allowed to run to completion, but this instance of the navigation algorithm must not run beyond this step. (In particular, for
 instance, the cancelation of this algorithm does not abort any event dispatch or script
 execution occurring as part of unloading the document or its descendants.)

 	

 	If the navigation was initiated for entry update of an entry

 	

 	Replace the Document of the entry being updated, and any other entries
 that referenced the same document as that entry, with the new Document.

 	Traverse the history to the new entry.

 This can only happen if the entry being updated is not the current
 entry, and can never happen with replacement enabled. (It happens when the
 user tried to traverse to a session history entry that no longer had a Document
 object.)

 	Otherwise

 	

 	

 Remove all the entries in the browsing context's session
 history after the current entry. If the current entry is
 the last entry in the session history, then no entries are removed.

 This doesn't necessarily have to affect the
 user agent's user interface.

 	Append a new entry at the end of the History object representing the new
 resource and its Document object and related state.

 	Traverse the history to the new entry. If
 the navigation was initiated with replacement
 enabled, then the traversal must itself be initiated
 with replacement enabled.

 	The navigation algorithm has now matured.

 	Fragment identifier loop: Spin the event loop for a user-agent-defined
 amount of time, as desired by the user agent implementor. (This is intended to allow the user
 agent to optimize the user experience in the face of performance concerns.)

 	If the Document object has no parser, or its parser has stopped parsing, or the user agent has reason to believe the user is no longer
 interested in scrolling to the fragment identifier, then abort these steps.

 	Scroll to the fragment identifier given in the document's
 address. If this fails to find an
 indicated part of the document, then return to the fragment identifier loop
 step.

 The task source for this task is the
 networking task source.

 Page load processing model for HTML files

 When an HTML document is to be loaded in a browsing context, the user agent must
 queue a task to create a Document object, mark it as being
 an HTML document, set its content type to "text/html",
 create an HTML parser, and associate it with the document. Each task that the networking task source places on the
 task queue while the fetching algorithm runs must then
 fill the parser's input byte stream with the fetched bytes and cause the HTML
 parser to perform the appropriate processing of the input stream.

 The input byte stream converts bytes into characters for use in the
 tokenizer. This process relies, in part, on character encoding
 information found in the real Content-Type metadata of the
 resource; the "sniffed type" is not used for this purpose.

 When no more bytes are available, the user agent must queue a task for the parser
 to process the implied EOF character, which eventually causes a load event to be fired.

 After creating the Document object, but before any script execution, certainly
 before the parser stops, the user agent must update the
 session history with the new page.

 Application cache selection happens in the HTML parser.

 The task source for the two tasks mentioned in this section must be the
 networking task source.

 Page load processing model for XML files

 When faced with displaying an XML file inline, user agents must first create a
 Document object, following the requirements of the XML and Namespaces in XML
 recommendations, RFC 3023, DOM, and other relevant specifications. [XML] [XMLNS] [RFC3023] [DOM]

 The actual HTTP headers and other metadata, not the headers as mutated or implied by the
 algorithms given in this specification, are the ones that must be used when determining the
 character encoding according to the rules given in the above specifications. Once the character
 encoding is established, the document's character encoding must be set to that
 character encoding.

 If the root element, as parsed according to the XML specifications cited above, is found to be
 an html element with an attribute manifest
 whose value is not the empty string, then, as soon as the element is inserted into the document, the user agent must resolve the value of that attribute relative to that element, and if
 that is successful, must apply the URL serializer algorithm to the resulting
 parsed URL with the exclude fragment flag set to obtain manifest
 URL, and then run the application cache selection
 algorithm with manifest URL as the manifest URL, passing in the
 newly-created Document. Otherwise, if the attribute is absent, its value is the empty
 string, or resolving its value fails, then as soon as the root element is inserted into the document, the user agent must run the application cache selection algorithm with no manifest, and
 passing in the Document.

 Because the processing of the manifest
 attribute happens only once the root element is parsed, any URLs referenced by processing
 instructions before the root element (such as <?xml-stylesheet?> and
 <?xbl?> PIs) will be fetched from the network and cannot be
 cached.

 User agents may examine the namespace of the root Element node of this
 Document object to perform namespace-based dispatch to alternative processing tools,
 e.g. determining that the content is actually a syndication feed and passing it to a feed handler.
 If such processing is to take place, abort the steps in this section, and jump to the next step (labeled non-document content) in the
 navigate steps above.

 Otherwise, then, with the newly created Document, the user agent must update
 the session history with the new page. User agents may do this before the complete document
 has been parsed (thus achieving incremental rendering), and must do this before any scripts
 are to be executed.

 Error messages from the parse process (e.g. XML namespace well-formedness errors) may be
 reported inline by mutating the Document.

 Many existing user agents support the 'text/xsl' (or
 'application/xslt+xml') style sheet type, with XSLT
 [XSLT10] as the relevant supported styling
 language. When the browsing context has a style sheet of that type,
 such agents transform the current XML document using the XSLT stylesheet
 retrieved from the style sheet location (typically supplied via an xml-stylesheet
 processing instruction) and rendering (or otherwise processing) the
 document that results from that transformation. The precise details
 of this process are not defined yet.

 Page load processing model for text files

 When a plain text document is to be loaded in a browsing context, the user agent
 must queue a task to create a Document object, mark it as
 being an HTML document, set its content type to "text/plain",
 create an HTML parser, associate it with the document, act as if the tokenizer had
 emitted a start tag token with the tag name "pre" followed by a single "LF" (U+000A)
 character, and switch the HTML parser's tokenizer to the PLAINTEXT
 state. Each task that the networking task
 source places on the task queue while the fetching
 algorithm runs must then fill the parser's input byte stream with the fetched
 bytes and cause the HTML parser to perform the appropriate processing of the input
 stream.

 The rules for how to convert the bytes of the plain text document into actual characters, and
 the rules for actually rendering the text to the user, are defined in RFC 2046, RFC 3676, and
 subsequent versions thereof. [RFC2046] [RFC3676]

 The document's character encoding must be set to the character encoding used to
 decode the document.

 Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and
 passing in the newly-created Document.

 When no more bytes are available, the user agent must queue a task for the parser
 to process the implied EOF character, which eventually causes a load event to be fired.

 After creating the Document object, but potentially before the page has finished
 parsing, the user agent must update the session history with the new page.

 User agents may add content to the head element of the Document, e.g.
 linking to a style sheet or an XBL binding, providing script, giving the document a
 title, etc.

 In particular, if the user agent supports the Format=Flowed
 feature of RFC 3676 then the user agent would need to apply extra styling to cause the text to
 wrap correctly and to handle the quoting feature. This could be performed using, e.g., an XBL
 binding or a CSS extension.

 The task source for the two tasks mentioned in this section must be the
 networking task source.

 Page load processing model for multipart/x-mixed-replace resources

 When a resource with the type multipart/x-mixed-replace is to be loaded in a
 browsing context, the user agent must parse the resource using the rules for
 multipart types. [RFC2046]

 For each body part obtained from the resource, the user agent must run a new instance of the
 navigate algorithm, starting from the resource handling step, using the new
 body part as the resource being navigated, with replacement enabled if a previous
 body part from the same resource resulted in a Document object being created, and otherwise using the same setup as the
 navigate attempt that caused this section to be invoked in the first place.

 For the purposes of algorithms processing these body parts as if they were complete stand-alone
 resources, the user agent must act as if there were no more bytes for those resources whenever the
 boundary following the body part is reached.

 Thus, load events (and for that matter unload events) do fire for each body part loaded.

 Page load processing model for media

 When an image, video, or audio resource is to be loaded in a browsing context, the
 user agent should create a Document object, mark it as being an HTML document, set its content type to the sniffed MIME type of the resource
 (type in the navigate algorithm), append an html
 element to the Document, append a head element and a body
 element to the html element, append an element host element for
 the media, as described below, to the body element, and set the appropriate attribute
 of the element host element, as described below, to the address of the image,
 video, or audio resource.

 The element host element to create for the media is the element given in
 the table below in the second cell of the row whose first cell describes the media. The
 appropriate attribute to set is the one given by the third cell in that same row.

 	 Type of media
 	 Element for the media
 	 Appropriate attribute

 	 Image
 	 img
 	 src

 	 Video
 	 video
 	 src

 	 Audio
 	 audio
 	 src

 Then, the user agent must act as if it had stopped
 parsing.

 Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and
 passing in the newly-created Document.

 After creating the Document object, but potentially before the page has finished
 fully loading, the user agent must update the session history with the new page.

 User agents may add content to the head element of the Document, or
 attributes to the element host element, e.g. to link to a style sheet or an
 XBL binding, to provide a script, to give the document a title, to make the media
 autoplay, etc.

 Page load processing model for content that uses plugins

 When a resource that requires an external resource to be rendered is to be loaded in a
 browsing context, the user agent should create a Document
 object, mark it as being an HTML document and mark it
 as being a plugin document, set its content
 type to the sniffed MIME type of the resource (type in the
 navigate algorithm), append an html element to the
 Document, append a head element and a body element to the
 html element, append an embed to the body element, and set
 the src attribute of the embed element to the
 address of the resource.

 The term plugin document is used by the Content Security Policy
 specification as part of the mechanism that ensures iframes can't be used to evade
 plugin-types directives. [CSP]

 Then, the user agent must act as if it had stopped
 parsing.

 Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest, and
 passing in the newly-created Document.

 After creating the Document object, but potentially before the page has finished
 fully loading, the user agent must update the session history with the new page.

 User agents may add content to the head element of the Document, or
 attributes to the embed element, e.g. to link to a style sheet or an XBL binding, or
 to give the document a title.

 If the Document's active sandboxing
 flag set has its sandboxed plugins browsing context flag set, the synthesized
 embed element will fail to render the content if
 the relevant plugin cannot be secured.

 Page load processing model for inline content that doesn't have a DOM

 When the user agent is to display a user agent page inline in a browsing context,
 the user agent should create a Document object, mark it as being an
 HTML document, set its content type to "text/html",
 and then either associate that Document with a custom rendering that is not rendered
 using the normal Document rendering rules, or mutate that Document until
 it represents the content the user agent wants to render.

 Once the page has been set up, the user agent must act as if it had stopped parsing.

 Upon creation of the Document object, the user agent must run the application cache selection algorithm with no manifest,
 passing in the newly-created Document.

 After creating the Document object, but potentially before the page has been
 completely set up, the user agent must update the session history with the new
 page.

 Navigating to a fragment identifier

 When a user agent is supposed to navigate to a fragment identifier, then the user agent must
 run the following steps:

 	

 Remove all the entries in the browsing context's session history
 after the current entry. If the current entry is the last entry in the
 session history, then no entries are removed.

 This doesn't necessarily have to affect the user
 agent's user interface.

 	Remove any tasks queued by the history traversal
 task source that are associated with any Document objects in the
 top-level browsing context's document family.

 	Append a new entry at the end of the History object representing the new
 resource and its Document object and related state. Its URL must be set
 to the address to which the user agent was navigating. The title
 must be left unset.

 	Traverse the history to the new entry, with the asynchronous events flag
 set. This will scroll to the fragment
 identifier given in what is now the document's address.

 If the scrolling fails because the relevant ID has
 not yet been parsed, then the original navigation algorithm will
 take care of the scrolling instead, as the last few steps of its update the session history
 with the new page algorithm.

 When the user agent is required to scroll to the fragment identifier and the
 indicated part of the document, if any, is being rendered, the user agent must
 either change the scrolling position of the document using the following algorithm, or perform
 some other action such that the indicated part of the document is brought to the
 user's attention. If there is no indicated part, or if the indicated part is not being
 rendered, then the user agent must do nothing. The aforementioned algorithm is as
 follows:

 	Let target be the indicated part of the
 document, as defined below.

 	If target is the top of the document, then scroll to the
 beginning of the document for the Document. [CSSOMVIEW]

 	Otherwise, use the scroll an element into view algorithm to scroll target into view, with the align to top flag set. [CSSOMVIEW]

 The indicated part of the document is the one that the fragment identifier, if any,
 identifies. The semantics of the fragment identifier in terms of mapping it to a specific DOM Node
 is defined by the specification that defines the MIME type used by the
 Document (for example, the processing of fragment identifiers for XML MIME types is the responsibility of RFC3023). [RFC3023]

 For HTML documents (and HTML MIME types), the following
 processing model must be followed to determine what the indicated part of the
 document is.

 	Apply the URL parser algorithm to the URL, and let fragid be the fragment component of the
 resulting parsed URL.

 	If fragid is the empty string, then the indicated part of the
 document is the top of the document; stop the algorithm here.

 	Let fragid bytes be the result of percent-decoding fragid.

 	Let decoded fragid be the result of applying the UTF-8
 decoder algorithm to fragid bytes. If the UTF-8 decoder
 emits a decoder error, abort the decoder and instead jump to the step labeled no
 decoded fragid.

 	If there is an element in the DOM that has an ID exactly
 equal to decoded fragid, then the first such element in tree order is
 the indicated part of the document; stop the algorithm here.

 	No decoded fragid: If there is an a element in the DOM that has a name attribute whose value is exactly equal to fragid (not decoded fragid), then the first such
 element in tree order is the indicated part of the document; stop the algorithm
 here.

 	If fragid is an ASCII case-insensitive match for the
 string top, then the indicated part of the document is the top
 of the document; stop the algorithm here.

 	Otherwise, there is no indicated part of
 the document.

 For the purposes of the interaction of HTML with Selectors' :target pseudo-class, the target element is
 the indicated part of the document, if that is an element; otherwise there is no
 target element. [SELECTORS]

 The task source for the task mentioned in this section must be the DOM
 manipulation task source.

 History traversal

 When a user agent is required to traverse the history to a specified
 entry, optionally with replacement enabled, and optionally with the
 asynchronous events flag set, the user agent must act as follows.

 This algorithm is not just invoked when explicitly going back or forwards in the session history — it is also invoked
 in other situations, for example when navigating a browsing context,
 as part of updating the session history
 with the new page.

 	If there is no longer a Document object for the entry in question,
 navigate the browsing context to the
 location for that entry to perform an entry update of that entry, and abort these
 steps. The "navigate" algorithm reinvokes this "traverse" algorithm to complete the
 traversal, at which point there is a Document object and so this step gets
 skipped. The navigation must be done using the same source browsing context as was
 used the first time this entry was created. (This can never happen with replacement
 enabled.)

 	If the current entry's title was not set by the pushState() or replaceState() methods, then set its title to the value
 returned by the document.title IDL attribute.

 	If appropriate, update the current entry in the browsing
 context's Document object's History object to reflect any state
 that the user agent wishes to persist. The entry is then said to be an entry with persisted
 user state.

 	If the specified entry has a different Document object
 than the current entry, then run the following substeps:

 	Remove any tasks queued by the history traversal
 task source that are associated with any Document objects in the
 top-level browsing context's document family.

 	

 If the origin of the Document of the specified
 entry is not the same as the origin of the
 Document of the current entry, then run the following
 sub-sub-steps:

 	The current browsing context name must be stored with all the entries in
 the history that are associated with Document objects with the same
 origin as the active document and that are contiguous with the
 current entry.

 	If the browsing context is a top-level browsing context,
 but not an auxiliary browsing context, then the browsing context's
 browsing context name must be unset.

 	Make the specified entry's
 Document object the active document of the browsing
 context.

 	

 If the specified entry has a browsing context name stored
 with it, then run the following sub-sub-steps:

 	Set the browsing context's browsing context name to the name stored with
 the specified entry.

 	Clear any browsing context names stored
 with all entries in the history that are associated with Document objects with
 the same origin as the new active document and that are contiguous
 with the specified entry.

 	If the specified entry's
 Document has any form controls whose autofill field name is "off", invoke the reset algorithm of each of those elements.

 	

 If the current document readiness of the specified entry's
 Document is "complete", queue a task to run
 the following sub-sub-steps:

 	If the Document's page showing flag is true, then abort this
 task (i.e. don't fire the event below).

 	Set the Document's page showing flag to true.

 	Fire a trusted event with the name pageshow at the Window object of that
 Document, but with its target set to the
 Document object (and the currentTarget set to the Window object),
 using the PageTransitionEvent interface, with the persisted attribute initialized to true.
 This event must not bubble, must not be cancelable, and has no default action.

 	Set the document's address to the URL of the specified
 entry.

 	If the specified entry has a URL whose fragment identifier differs
 from that of the current entry's when compared in a case-sensitive
 manner, and the two share the same Document object, then let hash
 changed be true, and let old URL be the URL of the current
 entry and new URL be the URL of the specified
 entry. Otherwise, let hash changed be false.

 	If the traversal was initiated with replacement enabled, remove the entry
 immediately before the specified entry in the session history.

	If the specified entry is not an entry with persisted user
 state, but its URL has a fragment identifier, scroll to the fragment
 identifier.

 	

 If the entry is an entry with persisted user state, the user agent may update
 aspects of the document and its rendering, for instance the scroll position or values of form
 fields, that it had previously recorded.

 This can even include updating the dir attribute
 of textarea elements or input elements whose type attribute is in either the Text state or the Search state, if the persisted state includes the
 directionality of user input in such controls.

 	If the entry is a state object entry, let state be a
 structured clone of that state object. Otherwise, let state be
 null.

 	Set history.state to state.

 	Let state changed be true if the Document of the specified entry has a latest entry, and that entry is not the specified entry; otherwise let it be false.

	Let the latest entry of the Document of the specified entry be the specified entry.

 	

 If the asynchronous events flag is not set, then run the following steps
 synchronously. Otherwise, the asynchronous events flag is set; queue a task
 to run the following substeps.

 	If state changed is true, fire
 a trusted event with the name popstate at the Window object of the
 Document, using the PopStateEvent interface, with the state attribute initialized to the value of state. This event must bubble but not be cancelable and has no default
 action.

 	If hash changed is true, then fire a trusted
 event with the name hashchange at the browsing
 context's Window object, using the HashChangeEvent interface,
 with the oldURL attribute initialized to old URL and the newURL attribute
 initialized to new URL. This event must bubble but not be cancelable and has
 no default action.

 	The current entry is now the specified entry.

 The task source for the tasks mentioned above is the DOM manipulation task
 source.

 Event definitions

 The popstate event
 is fired in certain cases when navigating to a session history
 entry.

 [Constructor(DOMString type, optional PopStateEventInit eventInitDict)]
interface PopStateEvent : Event {
 readonly attribute any state;
};

dictionary PopStateEventInit : EventInit {
 any state;
};

 	event . state

 	

 Returns a copy of the information that was provided to pushState() or replaceState().

 The state attribute must return the
 value it was initialized to. When the object is created, this attribute must be initialized to
 null. It represents the context information for the event, or null, if the state represented is
 the initial state of the Document.

 The hashchange event is fired when navigating
 to a session history entry whose URL differs from that of the previous
 one only in the fragment identifier.

 [Constructor(DOMString type, optional HashChangeEventInit eventInitDict)]
interface HashChangeEvent : Event {
 readonly attribute DOMString oldURL;
 readonly attribute DOMString newURL;
};

dictionary HashChangeEventInit : EventInit {
 DOMString oldURL;
 DOMString newURL;
};

 	event . oldURL

 	

 Returns the URL of the session history entry that was previously
 current.

 	event . newURL

 	

 Returns the URL of the session history entry that is now
 current.

 The oldURL attribute must return the
 value it was initialized to. When the object is created, this attribute must be initialized to
 null. It represents context information for the event, specifically the URL of the session
 history entry that was traversed from.

 The newURL attribute must return the
 value it was initialized to. When the object is created, this attribute must be initialized to
 null. It represents context information for the event, specifically the URL of the session
 history entry that was traversed to.

 The pageshow event is fired when traversing
 to a session history entry. The pagehide event is fired when traversing from a
 session history entry. The specification uses the page showing flag to
 ensure that scripts receive these events in a consistent manner (e.g. that they never receive two
 pagehide events in a row without an intervening pageshow, or vice versa).

 [Constructor(DOMString type, optional PageTransitionEventInit eventInitDict)]
interface PageTransitionEvent : Event {
 readonly attribute boolean persisted;
};

dictionary PageTransitionEventInit : EventInit {
 boolean persisted;
};

 	event . persisted

 	

 Returns false if the page is newly being loaded (and the load
 event will fire). Otherwise, returns true.

 The persisted attribute must
 return the value it was initialized to. When the object is created, this attribute must be
 initialized to false. It represents the context information for the event.

 Unloading documents

 A Document has a salvageable state, which must initially be
 true, a fired unload flag, which must initially be false, and a page showing
 flag, which must initially be false.

 Event loops have a termination nesting level
 counter, which must initially be zero.

 When a user agent is to prompt to unload a document, it must run the following
 steps.

 	Increase the event loop's termination nesting level by
 one.

 	Increase the Document's ignore-opens-during-unload counter by
 one.

 	Let event be a new trusted
 BeforeUnloadEvent event object with the name beforeunload, which does not bubble but is cancelable.

 	Dispatch: Dispatch event at the Document's Window object.

 	Decrease the event loop's termination nesting level by
 one.

 	Release the storage mutex.

 	If any event listeners were triggered by the earlier dispatch step, then set the
 Document's salvageable state to
 false.

 	

 If the returnValue attribute of the
 event object is not the empty string, or if the event was canceled, then the
 user agent should ask the user to confirm that they wish to unload the document.

 The prompt shown by the user agent may include the string of the returnValue attribute, or some leading subset
 thereof. (A user agent may want to truncate the string to 1024 characters for display, for
 instance.)

 The user agent must pause while waiting for the user's response.

 If the user did not confirm the page navigation, then the user agent refused to allow
 the document to be unloaded.

 	If this algorithm was invoked by another instance of the "prompt to unload a document"
 algorithm (i.e. through the steps below that invoke this algorithm for all descendant browsing
 contexts), then jump to the step labeled end.

 	Let descendants be the list of the descendant browsing
 contexts of the Document.

 	

 If descendants is not an empty list, then for each browsing
 context b in descendants run the following
 substeps:

 	Prompt to unload the active
 document of the browsing context b. If the user
 refused to allow the document to be unloaded, then the user implicitly also refused to allow this document to
 be unloaded; jump to the step labeled end.

	If the salvageable state of the active
 document of the browsing context b is false, then set
 the salvageable state of this document
 to false also.

 	End: Decrease the Document's ignore-opens-during-unload
 counter by one.

 When a user agent is to unload a document, it must run the following steps. These
 steps are passed an argument, recycle, which is either true or false,
 indicating whether the Document object is going to be re-used. (This is set by the
 document.open() method.)

 	Increase the event loop's termination nesting level by
 one.

 	Increase the Document's ignore-opens-during-unload counter by
 one.

 	If the Document's page showing flag is false, then jump to the
 step labeled unload event below (i.e. skip firing the pagehide event and don't rerun the unloading document
 visibility change steps).

 	Set the Document's page showing flag to false.

 	Fire a trusted event with the name pagehide at the Window object of the
 Document, but with its target set to the
 Document object (and the currentTarget
 set to the Window object), using the PageTransitionEvent interface,
 with the persisted attribute initialized
 to true. This event must not bubble, must not be cancelable, and has no default action.

 	

 Run any unloading document visibility change steps for Document that
 are defined by other applicable specifications.

 This is specifically intended for use by the Page Visibility specification. [PAGEVIS]

 	Unload event: If the Document's fired unload flag is
 false, fire a simple event named unload at the
 Document's Window object.

 	Decrease the event loop's termination nesting level by
 one.

 	Release the storage mutex.

 	If any event listeners were triggered by the earlier unload event step, then set
 the Document object's salvageable
 state to false and set the Document's fired unload flag to
 true.

 	Run any unloading document cleanup steps for Document that are
 defined by this specification and other applicable specifications.

 	If this algorithm was invoked by another instance of the "unload a document" algorithm
 (i.e. by the steps below that invoke this algorithm for all descendant browsing contexts), then
 jump to the step labeled end.

 	Let descendants be the list of the descendant browsing
 contexts of the Document.

 	

 If descendants is not an empty list, then for each browsing
 context b in descendants run the following
 substeps:

 	Unload the active document of the
 browsing context b with the recycle
 parameter set to false.

 	If the salvageable state of the active
 document of the browsing context b is false, then set
 the salvageable state of this document
 to false also.

 	If both the Document's salvageable state and recycle are false, then the Document's browsing
 context must discard the
 Document.

 	End: Decrease the Document's ignore-opens-during-unload
 counter by one.

 This specification defines the following unloading document cleanup steps. Other
 specifications can define more.

 	

 any WebSocket objects that were created by the WebSocket() constructor whose global object is the
 Document's Window object.

 If this affected any WebSocket objects, then set Document's salvageable state to false.

 	If the Document's salvageable
 state is false, any
 EventSource objects that whose constructor was invoked from the
 Document's Window object.

 	If the Document's salvageable
 state is false, empty the Document's Window's list of active
 timers.

 Event definition

 interface BeforeUnloadEvent : Event {
 attribute DOMString returnValue;
};

 	event . returnValue [= value]

 	

 Returns the current return value of the event (the message to show the user).

 Can be set, to update the message.

 There are no BeforeUnloadEvent-specific
 initialization methods.

 The returnValue
 attribute represents the message to show the user. When the event is
 created, the attribute must be set to the empty string. On getting,
 it must return the last value it was set to. On setting, the
 attribute must be set to the new value.

 Aborting a document load

 If a Document is aborted, the user agent must run the following
 steps:

 	Abort the active
 documents of every child browsing context. If this results in any of those
 Document objects having their salvageable state set to false, then set this
 Document's salvageable state to
 false also.

 	Cancel any instances of the fetch algorithm in the context of
 this Document, discarding any tasks queued for them, and discarding any further data received from the
 network for them. If this resulted in any instances of the fetch
 algorithm being canceled or any queued tasks or any network data getting discarded, then set the
 Document's salvageable state to
 false.

 	If the Document has an active parser, then abort that parser and set the Document's salvageable state to false.

 User agents may allow users to explicitly invoke the abort a document algorithm for a
 Document. If the user does so, then, if that
 Document is an active document, the user
 agent should queue a task to fire a simple
 event named abort at that
 Document's Window object before invoking
 the abort algorithm.

 Offline Web applications

 Introduction

 This section is non-normative.

 In order to enable users to continue interacting with Web
 applications and documents even when their network connection is
 unavailable — for instance, because they are traveling outside
 of their ISP's coverage area — authors can provide a manifest
 which lists the files that are needed for the Web application to
 work offline and which causes the user's browser to keep a copy of
 the files for use offline.

 To illustrate this, consider a simple clock applet consisting of
 an HTML page "clock.html", a CSS style sheet
 "clock.css", and a JavaScript script "clock.js".

 Before adding the manifest, these three files might look like
 this:

 EXAMPLE offline/clock/clock1.html

 EXAMPLE offline/clock/clock1.css

 EXAMPLE offline/clock/clock1.js

 If the user tries to open the "clock.html"
 page while offline, though, the user agent (unless it happens to
 have it still in the local cache) will fail with an error.

 The author can instead provide a manifest of the three files, say
 "clock.appcache":

 EXAMPLE offline/clock/clock2.appcache

 With a small change to the HTML file, the manifest (served as
 text/cache-manifest) is linked to the application:

 EXAMPLE offline/clock/clock2.html

 Now, if the user goes to the page, the browser will cache the
 files and make them available even when the user is offline.

 Authors are encouraged to include the main page in
 the manifest also, but in practice the page that referenced the
 manifest is automatically cached even if it isn't explicitly
 mentioned.

 With the exception of "no-store" directive, HTTP
 cache headers and restrictions on caching pages served over TLS
 (encrypted, using https:) are overridden by
 manifests. Thus, pages will not expire from an application cache
 before the user agent has updated it, and even applications served
 over TLS can be made to work offline.

 View this example online.

 Supporting offline caching for legacy applications

 This section is non-normative.

 The application cache feature works best if the application logic is separate from the
 application and user data, with the logic (markup, scripts, style sheets, images, etc) listed in
 the manifest and stored in the application cache, with a finite number of static HTML pages for
 the application, and with the application and user data stored in Web Storage or a client-side
 Indexed Database, updated dynamically using Web Sockets, XMLHttpRequest, server-sent
 events, or some other similar mechanism.

 This model results in a fast experience for the user: the application immediately loads, and
 fresh data is obtained as fast as the network will allow it (possibly while stale data shows).

 Legacy applications, however, tend to be designed so that the user data and the logic are mixed
 together in the HTML, with each operation resulting in a new HTML page from the server.

 For example, consider a news application. The typical architecture of such an application,
 when not using the application cache feature, is that the user fetches the main page, and the
 server returns a dynamically-generated page with the current headlines and the user interface
 logic mixed together.

 A news application designed for the application cache feature, however, would instead have the
 main page just consist of the logic, and would then have the main page fetch the data separately
 from the server, e.g. using XMLHttpRequest.

 The mixed-content model does not work well with the application cache feature: since the
 content is cached, it would result in the user always seeing the stale data from the previous time
 the cache was updated.

 While there is no way to make the legacy model work as fast as the separated model, it
 can at least be retrofitted for offline use using the prefer-online application cache mode. To do so, list all the static
 resources used by the HTML page you want to have work offline in an application cache manifest, use the manifest attribute to select that manifest from the HTML file,
 and then add the following line at the bottom of the manifest:

 SETTINGS:
prefer-online
NETWORK:
*

 This causes the application cache to only be used for master entries when the user is offline, and causes the
 application cache to be used as an atomic HTTP cache (essentially pinning resources listed in the
 manifest), while allowing all resources not listed in the manifest to be accessed normally when
 the user is online.

 Event summary

 This section is non-normative.

 When the user visits a page that declares a manifest, the browser
 will try to update the cache. It does this by fetching a copy of the
 manifest and, if the manifest has changed since the user agent last
 saw it, redownloading all the resources it mentions and caching them
 anew.

 As this is going on, a number of events get fired on the
 ApplicationCache object to keep the script updated as
 to the state of the cache update, so that the user can be notified
 appropriately. The events are as follows:

 	 Event name
 	 Interface
 	 Fired when...
 	 Next events

 	 checking
 	 Event
 	 The user agent is checking for an update, or attempting to download the manifest for the first time. This is always the first event in the sequence.
 	 noupdate, downloading, obsolete, error

 	 noupdate
 	 Event
 	 The manifest hadn't changed.
 	 Last event in sequence.

 	 downloading
 	 Event
 	 The user agent has found an update and is fetching it, or is downloading the resources listed by the manifest for the first time.
 	 progress, error, cached, updateready

 	 progress
 	 ProgressEvent
 	 The user agent is downloading resources listed by the manifest.
 The event object's total attribute returns the total number of files to be downloaded.
 The event object's loaded attribute returns the number of files processed so far.
 	 progress, error, cached, updateready

 	 cached
 	 Event
 	 The resources listed in the manifest have been downloaded, and the application is now cached.
 	 Last event in sequence.

 	 updateready
 	 Event
 	 The resources listed in the manifest have been newly redownloaded, and the script can use swapCache() to switch to the new cache.
 	 Last event in sequence.

 	 obsolete
 	 Event
 	 The manifest was found to have become a 404 or 410 page, so the application cache is being deleted.
 	 Last event in sequence.

 	 error
 	 Event
 	 The manifest was a 404 or 410 page, so the attempt to cache the application has been aborted.
 	 Last event in sequence.

 	 The manifest hadn't changed, but the page referencing the manifest failed to download properly.

 	 A fatal error occurred while fetching the resources listed in the manifest.

 	 The manifest changed while the update was being run.
 	 The user agent will try fetching the files again momentarily.

 These events are cancelable; their default action is for the user agent to show download
 progress information. If the page shows its own update UI, canceling the events will prevent the
 user agent from showing redundant progress information.

 Application caches

 An application cache is a set of cached resources
 consisting of:

 	

 One or more resources (including their out-of-band metadata,
 such as HTTP headers, if any), identified by URLs, each falling
 into one (or more) of the following categories:

 	Master entries

	These are documents that were added to the
 cache because a browsing context was navigated to that document and the
 document indicated that this was its cache, using the manifest attribute.

	The manifest

	This is the resource corresponding to the URL
 that was given in a master entry's html element's
 manifest attribute. The
 manifest is fetched and processed during the application
 cache download process. All the master entries have the
 same origin as the manifest.

	Explicit entries

	These are the resources that were listed in
 the cache's manifest in an explicit
 section.

	Fallback entries

	These are the resources that were listed in
 the cache's manifest in a fallback
 section.

 Explicit entries
 and Fallback
 entries can be marked as foreign, which means that
 they have a manifest
 attribute but that it doesn't point at this cache's manifest.

 A URL in the list can be flagged with multiple
 different types, and thus an entry can end up being categorized as
 multiple entries. For example, an entry can be a manifest entry
 and an explicit entry at the same time, if the manifest is listed
 within the manifest.

 	

 Zero or more fallback
 namespaces, each of which is mapped to a fallback entry.

 These are URLs used as prefix match
 patterns for resources that are to be fetched from the
 network if possible, or to be replaced by the corresponding fallback entry if not.
 Each namespace URL has the same origin as the manifest.

 	

 Zero or more URLs that form the online whitelist
 namespaces.

 These are used as prefix match patterns, and
 declare URLs for which the user agent will ignore the application
 cache, instead fetching them normally (i.e. from the network or
 local HTTP cache as appropriate).

 	

 An online whitelist
 wildcard flag, which is either open or blocking.

 The open state indicates that any
 URL not listed as cached is to be implicitly treated as being in
 the online
 whitelist namespaces; the blocking state
 indicates that URLs not listed explicitly in the manifest are to
 be treated as unavailable.

 	

 A cache mode flag, which is either in the fast state or the prefer-online state.

 Each application cache has a completeness flag, which is
 either complete or incomplete.

 An application cache group is a group of application caches, identified by
 the absolute URL of a resource manifest which is used to
 populate the caches in the group.

 An application cache is newer than another if it was
 created after the other (in other words, application caches in an application cache
 group have a chronological order).

 Only the newest application cache in an
 application cache group can have its completeness flag set to
 incomplete; the others are always all complete.

 Each application cache group has an update status, which is one of
 the following: idle, checking, downloading.

 A relevant application cache is an application
 cache that is the newest in its group to be
 complete.

 Each application cache group has a list of pending master
 entries. Each entry in this list consists of a resource and a
 corresponding Document object. It is used during the
 application cache download process to ensure that new
 master entries are cached even if the application cache
 download process was already running for their
 application cache group when they were loaded.

 An application cache group can be marked as obsolete, meaning that it
 must be ignored when looking at what application cache groups exist.

 A cache host is a Document or a
 SharedWorkerGlobalScope object. A cache
 host can be associated with an application
 cache.
 [WEBWORKERS]

 A Document initially is not associated with an
 application cache, but can become associated with one
 early during the page load process, when steps in the parser and in the navigation sections cause cache selection to occur.

 A SharedWorkerGlobalScope can be associated with an
 application cache when it is created.
 [WEBWORKERS]

 Each cache host has an associated
 ApplicationCache object.

 Multiple application
 caches in different application cache groups can contain the same
 resource, e.g. if the manifests all reference that resource. If the
 user agent is to select an
 application cache from a list of relevant application caches that contain a
 resource, the user agent must use the application cache that the
 user most likely wants to see the resource from, taking into account
 the following:

 	which application cache was most recently updated,

	which application cache was being used to display the
 resource from which the user decided to look at the new resource,
 and

	which application cache the user prefers.

 A URL matches a
 fallback namespace if there exists a relevant
 application cache whose manifest's URL has the
 same origin as the URL in question, and that has a
 fallback namespace
 that is a prefix match for the URL being examined. If
 multiple fallback namespaces match the same URL, the longest one is
 the one that matches. A URL looking for a fallback namespace can
 match more than one application cache at a time, but only matches
 one namespace in each cache.

 If a manifest http://example.com/app1/manifest declares that
 http://example.com/resources/images is a
 fallback namespace, and the user navigates to HTTP://EXAMPLE.COM:80/resources/images/cat.png,
 then the user agent will decide that the application cache
 identified by http://example.com/app1/manifest contains a
 namespace with a match for that URL.

 The cache manifest syntax

 Some sample manifests

 This section is non-normative.

 This example manifest requires two images and a style sheet to be
 cached and whitelists a CGI script.

 CACHE MANIFEST
the above line is required

this is a comment
there can be as many of these anywhere in the file
they are all ignored
 # comments can have spaces before them
 # but must be alone on the line

blank lines are ignored too

these are files that need to be cached they can either be listed
first, or a "CACHE:" header could be put before them, as is done
lower down.
images/sound-icon.png
images/background.png
note that each file has to be put on its own line

here is a file for the online whitelist -- it isn't cached, and
references to this file will bypass the cache, always hitting the
network (or trying to, if the user is offline).
NETWORK:
comm.cgi

here is another set of files to cache, this time just the CSS file.
CACHE:
style/default.css

 It could equally well be written as follows:

 CACHE MANIFEST
NETWORK:
comm.cgi
CACHE:
style/default.css
images/sound-icon.png
images/background.png

 Offline application cache manifests can use absolute paths or
 even absolute URLs:

 CACHE MANIFEST

/main/home
/main/app.js
/settings/home
/settings/app.js
http://img.example.com/logo.png
http://img.example.com/check.png
http://img.example.com/cross.png

 The following manifest defines a catch-all error page that is
 displayed for any page on the site while the user is offline. It
 also specifies that the online whitelist
 wildcard flag is open, meaning that accesses
 to resources on other sites will not be blocked. (Resources on the
 same site are already not blocked because of the catch-all fallback
 namespace.)

 So long as all pages on the site reference this manifest, they
 will get cached locally as they are fetched, so that subsequent hits
 to the same page will load the page immediately from the
 cache. Until the manifest is changed, those pages will not be
 fetched from the server again. When the manifest changes, then all
 the files will be redownloaded.

 Subresources, such as style sheets, images, etc, would only be
 cached using the regular HTTP caching semantics, however.

 CACHE MANIFEST
FALLBACK:
/ /offline.html
NETWORK:
*

 Writing cache manifests

 Manifests must be served using the text/cache-manifest MIME type. All
 resources served using the text/cache-manifest MIME type must follow the
 syntax of application cache manifests, as described in this section.

 An application cache manifest is a text file, whose text is encoded using UTF-8. Data in
 application cache manifests is line-based. Newlines must be represented by "LF" (U+000A)
 characters, "CR" (U+000D) characters, or "CR" (U+000D) "LF" (U+000A) pairs. [RFC3629]

 This is a willful violation of RFC 2046, which requires all text/* types to only allow CRLF line breaks. This requirement, however, is
 outdated; the use of CR, LF, and CRLF line breaks is commonly supported and indeed sometimes CRLF
 is not supported by text editors. [RFC2046]

 The first line of an application cache manifest must consist of the string "CACHE", a single
 U+0020 SPACE character, the string "MANIFEST", and either a U+0020 SPACE character, a "tab" (U+0009) character, a "LF" (U+000A) character, or a "CR" (U+000D) character. The first line may optionally be preceded by a "BOM" (U+FEFF)
 character. If any other text is found on the first line, it is ignored.

 Subsequent lines, if any, must all be one of the following:

 	A blank line

	
 Blank lines must consist of zero or more U+0020 SPACE and
 "tab" (U+0009) characters only.

	A comment

	
 Comment lines must consist of zero or more U+0020 SPACE and "tab" (U+0009)
 characters, followed by a single "#" (U+0023) character, followed by zero or more
 characters other than "LF" (U+000A) and "CR" (U+000D) characters.

 Comments must be on a line on their own. If they were to be included on a line
 with a URL, the "#" would be mistaken for part of a fragment identifier.

	A section header

	

 Section headers change the current section. There are four possible section headers:

 	CACHE:

	Switches to the explicit section.

	FALLBACK:

	Switches to the fallback section.

	NETWORK:

	Switches to the online whitelist section.

	SETTINGS:

	Switches to the settings section.

 Section header lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, followed by one of the names above (including the ":)" (U+003A) character followed by zero or more U+0020 SPACE and "tab" (U+0009)
 characters.

 Ironically, by default, the current section is the explicit section.

	Data for the current section

	

 The format that data lines must take depends on the current section.

 When the current section is the explicit
 section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a valid URL identifying a resource other than the
 manifest itself, and then zero or more U+0020 SPACE and "tab" (U+0009)
 characters.

 When the current section is the fallback
 section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a valid URL identifying a resource other than the
 manifest itself, one or more U+0020 SPACE and "tab" (U+0009) characters,
 another valid URL identifying a resource other than the manifest itself, and then
 zero or more U+0020 SPACE and "tab" (U+0009) characters.

 When the current section is the online
 whitelist section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, either a single "*" (U+002A) character or a valid URL identifying a resource
 other than the manifest itself, and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

 When the current section is the settings
 section, data lines must consist of zero or more U+0020 SPACE and "tab" (U+0009) characters, a setting,
 and then zero or more U+0020 SPACE and "tab" (U+0009) characters.

 Currently only one setting is
 defined:

 	The cache mode setting

 	This consists of the string "prefer-online". It sets the cache mode to prefer-online. (The cache mode defaults to fast.)

 Within a settings section, each setting must occur no more than once.

 Manifests may contain sections more than once. Sections may be empty.

 URLs that are to be fallback pages associated with fallback namespaces, and those namespaces themselves,
 must be given in fallback sections, with
 the namespace being the first URL of the data line, and the corresponding fallback page being the
 second URL. All the other pages to be cached must be listed in explicit sections.

 Fallback namespaces and fallback entries must have the same origin
 as the manifest itself.

 A fallback namespace must not be listed more
 than once.

 Namespaces that the user agent is to put into the online whitelist must all be specified in online whitelist sections. (This is needed for
 any URL that the page is intending to use to communicate back to the server.) To specify that all
 URLs are automatically whitelisted in this way, a "*" (U+002A) character may be specified
 as one of the URLs.

 Authors should not include namespaces in the online whitelist for which another namespace in
 the online whitelist is a prefix
 match.

 Relative URLs must be given relative to the manifest's own
 URL. All URLs in the manifest must have the same scheme as
 the manifest itself (either explicitly or implicitly, through the use of relative URLs). [URL]

 URLs in manifests must not have fragment identifiers (i.e. the U+0023 NUMBER SIGN character
 isn't allowed in URLs in manifests).

 Fallback namespaces and namespaces in the
 online whitelist are matched by prefix
 match.

 Parsing cache manifests

 When a user agent is to parse a manifest, it means that the user agent must run the
 following steps:

 	

 UTF-8 decode the byte stream corresponding with the manifest to be parsed.

 The UTF-8 decode algorithm strips a leading BOM, if any.

 	Let base URL be the absolute URL representing the
 manifest.

 	Apply the URL parser steps to the base URL, so that the
 components from its parsed URL can be used by the subseqent steps of this
 algorithm.

 	Let explicit URLs be an initially empty list of absolute URLs for explicit
 entries.

 	Let fallback URLs be an initially empty mapping of fallback namespaces to absolute URLs for fallback
 entries.

 	Let online whitelist namespaces be an initially empty list of absolute URLs for an online whitelist.

 	Let online whitelist wildcard flag be blocking.

 	Let cache mode flag be fast.

 	Let input be the decoded text of the manifest's byte stream.

 	Let position be a pointer into input, initially
 pointing at the first character.

 	If the characters starting from position are "CACHE", followed by a
 U+0020 SPACE character, followed by "MANIFEST", then advance position to the
 next character after those. Otherwise, this isn't a cache manifest; abort this algorithm with a
 failure while checking for the magic signature.

 	If the character at position is neither a U+0020 SPACE character, a
 "tab" (U+0009) character, "LF" (U+000A) character, nor a "CR" (U+000D) character, then this isn't a cache manifest; abort this algorithm with a
 failure while checking for the magic signature.

 	This is a cache manifest. The algorithm cannot fail beyond
 this point (though bogus lines can get ignored).

 	Collect a sequence of characters that are not "LF" (U+000A)
 or "CR" (U+000D) characters, and ignore those characters. (Extra text on the first
 line, after the signature, is ignored.)

 	Let mode be "explicit".

 	Start of line: If position is past the end of input, then jump to the last step. Otherwise, collect a sequence of
 characters that are "LF" (U+000A), "CR" (U+000D), U+0020 SPACE, or
 "tab" (U+0009) characters.

 	Now, collect a sequence of characters that are not "LF" (U+000A) or "CR" (U+000D) characters, and let the result be line.

 	Drop any trailing U+0020 SPACE and "tab" (U+0009) characters at the end
 of line.

 	If line is the empty string, then jump back to the step labeled start
 of line.

 	If the first character in line is a "#" (U+0023) character,
 then jump back to the step labeled start of line.

 	If line equals "CACHE:" (the word "CACHE" followed by a ":)" (U+003A) character, then set mode to "explicit" and jump back to the step labeled
 start of line.

 	If line equals "FALLBACK:" (the word "FALLBACK" followed by a ":)" (U+003A) character, then set mode to "fallback" and jump back to the step
 labeled start of line.

 	If line equals "NETWORK:" (the word "NETWORK" followed by a ":)" (U+003A) character, then set mode to "online whitelist" and jump back to
 the step labeled start of line.

 	If line equals "SETTINGS:" (the word "SETTINGS" followed by a ":)" (U+003A) character, then set mode to "settings" and jump back to the step
 labeled start of line.

 	If line ends with a ":" (U+003A) character, then set mode to "unknown" and jump back to the step labeled start of line.

 	This is either a data line or it is syntactically incorrect.

 	Let position be a pointer into line, initially
 pointing at the start of the string.

 	Let tokens be a list of strings, initially empty.

 	

 While position doesn't point past the end of line:

 	Let current token be an empty string.

 	While position doesn't point past the end of line and the character at position is neither a U+0020 SPACE
 nor a "tab" (U+0009) character, add the character at position to current token and advance position to the next character in input.

 	Add current token to the tokens list.

 	While position doesn't point past the end of line and the character at position is either a U+0020 SPACE
 or a "tab" (U+0009) character, advance position to the
 next character in input.

 	

 Process tokens as follows:

 	If mode is "explicit"

 	

 Resolve the first item in tokens,
 relative to base URL; ignore the rest.

 If this fails, then jump back to the step labeled start of line.

 If the resulting parsed URL has a different scheme component than base URL (the
 manifest's URL), then jump back to the step labeled start of line.

 Let new URL be the result of applying the URL serializer
 algorithm to the resulting parsed URL, with the exclude fragment flag
 set.

 Add new URL to the explicit URLs.

 	If mode is "fallback"

 	

 Let part one be the first token in tokens, and let
 part two be the second token in tokens.

 Resolve part one and part two, relative to base URL.

 If either fails, then jump back to the step labeled start of line.

 If the absolute URL corresponding to either part one or
 part two does not have the same origin as the manifest's URL,
 then jump back to the step labeled start of line.

 Let part one be the result of applying the URL serializer
 algorithm to the first resulting parsed URL, with the exclude fragment
 flag set.

 Let part two be the result of applying the URL serializer
 algorithm to the second resulting parsed URL, with the exclude fragment
 flag set.

 If part one is already in the fallback URLs mapping
 as a fallback namespace, then jump back to
 the step labeled start of line.

 Otherwise, add part one to the fallback URLs
 mapping as a fallback namespace, mapped to
 part two as the fallback
 entry.

 	If mode is "online whitelist"

 	

 If the first item in tokens is a "*" (U+002A) character, then
 set online whitelist wildcard flag to open and jump back
 to the step labeled start of line.

 Otherwise, resolve the first item in tokens, relative to base URL; ignore the rest.

 If this fails, then jump back to the step labeled start of line.

 If the resulting parsed URL has a different scheme component than base URL (the
 manifest's URL), then jump back to the step labeled start of line.

 Let new URL be the result of applying the URL serializer
 algorithm to the resulting parsed URL, with the exclude fragment flag
 set.

 Add new URL to the online whitelist namespaces.

 	If mode is "settings"

 	

 If tokens contains a single token, and that token is a
 case-sensitive match for the string "prefer-online", then
 set cache mode flag to prefer-online and jump back to the
 step labeled start of line.

 Otherwise, the line is an unsupported setting: do nothing; the line is ignored.

 	If mode is "unknown"

 	

 Do nothing. The line is ignored.

 	Jump back to the step labeled start of line. (That step jumps to the next, and last,
 step when the end of the file is reached.)

 	Return the explicit URLs list, the fallback URLs
 mapping, the online whitelist namespaces, the online whitelist
 wildcard flag, and the cache mode flag.

 The resource that declares the manifest (with the manifest attribute) will always get taken from the cache,
 whether it is listed in the cache or not, even if it is listed in an online whitelist namespace.

 If a resource is listed in the explicit
 section or as a fallback entry in the fallback section, the resource will always be
 taken from the cache, regardless of any other matching entries in the fallback namespaces or online whitelist namespaces.

 When a fallback namespace and an online whitelist namespace overlap, the online whitelist namespace has priority.

 The online whitelist wildcard
 flag is applied last, only for URLs that match neither the online whitelist namespace nor the fallback namespace and that are not listed in the
 explicit section.

 Downloading or updating an application cache

 When the user agent is required (by other parts of this specification) to start the
 application cache download process for an absolute URL purported to
 identify a manifest, or for an application
 cache group, potentially given a particular cache host, and potentially given
 a master resource, the user agent must run the steps
 below. These steps are always run asynchronously, in parallel with the event loop
 tasks.

 Some of these steps have requirements that only apply if the user agent shows caching
 progress. Support for this is optional. Caching progress UI could consist of a progress bar
 or message panel in the user agent's interface, or an overlay, or something else. Certain events
 fired during the application cache download process allow the script to override the
 display of such an interface. (Such events are delayed until after the load event has fired.)

 The goal of this is to allow Web applications to provide more
 seamless update mechanisms, hiding from the user the mechanics of the application cache mechanism.
 User agents may display user interfaces independent of this, but are encouraged to not show
 prominent update progress notifications for applications that cancel the relevant events.

 The application cache download process steps are as follows:

 	Optionally, wait until the permission to start the application cache download
 process has been obtained from the user and until the user agent is confident that the
 network is available. This could include doing nothing until the user explicitly opts-in to
 caching the site, or could involve prompting the user for permission. The algorithm might never
 get past this point. (This step is particularly intended to be used by user agents running on
 severely space-constrained devices or in highly privacy-sensitive environments).

 	

 Atomically, so as to avoid race conditions, perform the following substeps:

 	

 Pick the appropriate substeps:

 	If these steps were invoked with an absolute URL purported to identify a
 manifest

 	

 Let manifest URL be that absolute URL.

 If there is no application cache group identified by manifest
 URL, then create a new application cache group identified by manifest URL. Initially, it has no application caches. One will be created later in this algorithm.

 	If these steps were invoked with an application cache group

 	

 Let manifest URL be the absolute URL of the manifest used to identify the application
 cache group to be updated.

 If that application cache group is obsolete, then abort this instance of the
 application cache download process. This can happen if another instance of this
 algorithm found the manifest to be 404 or 410 while this algorithm was waiting in the first
 step above.

 	Let cache group be the application cache group
 identified by manifest URL.

 	If these steps were invoked with a master
 resource, then add the resource, along with the resource's Document, to cache group's list of pending
 master entries.

 	If these steps were invoked with a cache host, and the status of cache group is
 checking or downloading, then queue a post-load task to fire a
 simple event named checking that is
 cancelable at the ApplicationCache singleton of that cache host. The
 default action of this event must be, if the user agent shows caching progress,
 the display of some sort of user interface indicating to the user that the user agent is
 checking to see if it can download the application.

 	If these steps were invoked with a cache host, and the status of cache group is
 downloading, then also queue a post-load task to fire a simple
 event named downloading that is
 cancelable at the ApplicationCache singleton of that cache host. The
 default action of this event must be, if the user agent shows caching progress,
 the display of some sort of user interface indicating to the user the application is being
 downloaded.

 	If the status of the cache
 group is either checking or downloading, then abort this instance of the
 application cache download process, as an update is already in progress.

 	Set the status of cache
 group to checking.

	For each cache host associated with an application cache in
 cache group, queue a post-load task to fire a simple
 event that is cancelable named checking at
 the ApplicationCache singleton of the cache host. The default action
 of these events must be, if the user agent shows caching progress, the display of
 some sort of user interface indicating to the user that the user agent is checking for the
 availability of updates.

 The remainder of the steps run asynchronously.

 If cache group already has an application cache in it, then
 this is an upgrade attempt. Otherwise, this is a
 cache attempt.

 	If this is a cache attempt, then this
 algorithm was invoked with a cache host; queue a post-load task to
 fire a simple event named checking that
 is cancelable at the ApplicationCache singleton of that cache host. The
 default action of this event must be, if the user agent shows caching progress, the
 display of some sort of user interface indicating to the user that the user agent is checking for
 the availability of updates.

 	

 Fetching the manifest: Fetch the resource from manifest URL with the synchronous flag set, and let manifest be that resource. HTTP caching semantics should be honored for this
 request.

 Parse manifest according to the rules for
 parsing manifests, obtaining a list of explicit
 entries, fallback entries and the fallback namespaces that map to them, entries for
 the online whitelist, and values for the
 online whitelist wildcard flag
 and the cache mode flag.

 The MIME type of the resource is ignored — it is assumed to
 be text/cache-manifest. In the future, if new manifest formats are supported, the
 different types will probably be distinguished on the basis of the file signatures (for the
 current format, that is the "CACHE MANIFEST" string at the top of the
 file).

 	

 If fetching the manifest fails due to a 404 or 410 response or equivalent, then run these substeps:

 	Mark cache group as obsolete. This cache group no
 longer exists for any purpose other than the processing of Document objects
 already associated with an application cache in the cache
 group.

 	Let task list be an empty list of tasks.

	For each cache host associated with an application cache in
 cache group, create a task to fire
 a simple event named obsolete that is
 cancelable at the ApplicationCache singleton of the cache host, and
 append it to task list. The default action of these events must be, if the
 user agent shows caching progress, the display of some sort of user interface
 indicating to the user that the application is no longer available for offline use.

 	For each entry in cache group's list of pending master entries, create a task to fire a simple event that is cancelable named
 error (not obsolete!) at the ApplicationCache
 singleton of the Document for this entry, if there still is one, and append it to
 task list. The default action of this event must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to
 the user that the user agent failed to save the application for offline use.

 	If cache group has an application cache whose completeness flag is incomplete, then
 discard that application cache.

	If appropriate, remove any user interface indicating that an update for this cache is in
 progress.

 	Let the status of cache
 group be idle.

 	For each task in task list, queue that task as a post-load task.

 	Abort the application cache download process.

 	

 Otherwise, if fetching the manifest fails in some other way (e.g. the server returns
 another 4xx or 5xx response or equivalent, or
 there is a DNS error, or the connection times out, or the user cancels the download, or the
 parser for manifests fails when checking the magic signature), or if the server returned a
 redirect, then run the cache failure steps. [HTTP]

 	

 If this is an upgrade attempt and the newly
 downloaded manifest is byte-for-byte identical to the manifest found in the
 newest application cache in cache group, or the server reported it as "304 Not Modified" or equivalent, then run these substeps:

 	Let cache be the newest
 application cache in cache group.

 	Let task list be an empty list of tasks.

	

 For each entry in cache group's list of pending master entries, wait for the
 resource for this entry to have either completely downloaded or failed.

 If the download failed (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, the
 connection times out, or the user cancels the download), or if the resource is labeled with
 the "no-store" cache directive, then create a task to
 fire a simple event that is cancelable named error at the ApplicationCache singleton of
 the Document for this entry, if there still is one, and append it to task list. The default action of this event must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to
 the user that the user agent failed to save the application for offline use.

 Otherwise, associate the Document for this entry with cache; store the resource for this entry in cache, if it
 isn't already there, and categorize its entry as a master entry. If applying the URL parser
 algorithm to the resource's URL results in a parsed URL that has a
 non-null fragment component, the URL
 used for the entry in cache must instead be the absolute URL
 obtained from applying the URL serializer algorithm to the parsed
 URL with the exclude fragment flag set (application caches never include
 fragment identifiers).

 	For each cache host associated with an application cache in
 cache group, create a task to fire
 a simple event that is cancelable named noupdate at the ApplicationCache singleton
 of the cache host, and append it to task list. The default
 action of these events must be, if the user agent shows caching progress, the
 display of some sort of user interface indicating to the user that the application is up to
 date.

 	Empty cache group's list of pending master entries.

 	If appropriate, remove any user interface indicating that an update for this cache is in
 progress.

 	Let the status of cache
 group be idle.

 	For each task in task list, queue that task as a post-load task.

 	Abort the application cache download process.

 	Let new cache be a newly created application cache in
 cache group. Set its completeness
 flag to incomplete.

 	For each entry in cache group's list of pending master entries, associate the
 Document for this entry with new cache.

 	Set the status of cache
 group to downloading.

 	For each cache host associated with an application cache in cache group, queue a post-load task to fire a simple
 event that is cancelable named downloading
 at the ApplicationCache singleton of the cache host. The default action
 of these events must be, if the user agent shows caching progress, the display of
 some sort of user interface indicating to the user that a new version is being
 downloaded.

 	Let file list be an empty list of URLs with flags.

 	Add all the URLs in the list of explicit
 entries obtained by parsing manifest to file list,
 each flagged with "explicit entry".

 	Add all the URLs in the list of fallback
 entries obtained by parsing manifest to file list,
 each flagged with "fallback entry".

 	If this is an upgrade attempt, then add all
 the URLs of master entries in the newest application cache in cache group whose completeness
 flag is complete to file list, each flagged with "master
 entry".

 	If any URL is in file list more than once, then merge the entries into
 one entry for that URL, that entry having all the flags that the original entries had.

 	

 For each URL in file list, run the following steps. These steps may be
 run in parallel for two or more of the URLs at a time. If, while running these steps, the
 ApplicationCache object's abort() method
 sends a signal to this instance of the application
 cache download process algorithm, then run the cache failure steps
 instead.

 	

 If the resource URL being processed was flagged as neither an "explicit entry" nor or a
 "fallback entry", then the user agent may skip this URL.

 This is intended to allow user agents to expire resources not listed in the
 manifest from the cache. Generally, implementors are urged to use an approach that expires
 lesser-used resources first.

 	For each cache host associated with an application cache in
 cache group, queue a post-load task to fire a trusted
 event with the name progress, which does not
 bubble, which is cancelable, and which uses the ProgressEvent interface, at the
 ApplicationCache singleton of the cache host. The lengthComputable attribute must be set to
 true, the total attribute must be set to the
 number of files in file list, and the loaded attribute must be set to the number of files in
 file list that have been either downloaded or skipped so far. The default
 action of these events must be, if the user agent shows caching progress, the
 display of some sort of user interface indicating to the user that a file is being downloaded
 in preparation for updating the application. [XHR]

 	

 Fetch the resource, from the origin of the
 URL manifest URL, with the synchronous flag set and
 the manual redirect flag set. If this is an upgrade attempt, then use the newest application cache in cache group as an HTTP cache, and honor HTTP caching semantics (such as
 expiration, ETags, and so forth) with respect to that cache. User agents may also have other
 caches in place that are also honored.

 If the resource in question is already being downloaded for other reasons then
 the existing download process can sometimes be used for the purposes of this step, as defined
 by the fetching algorithm.

 An example of a resource that might already be being downloaded is a large
 image on a Web page that is being seen for the first time. The image would get downloaded to
 satisfy the img element on the page, as well as being listed in the cache
 manifest. According to the rules for fetching that image only need
 be downloaded once, and it can be used both for the cache and for the rendered Web page.

 	

 If the previous step fails (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, or the
 connection times out, or the user cancels the download), or if the server returned a redirect,
 or if the resource is labeled with the "no-store" cache directive, then run the first
 appropriate step from the following list: [HTTP]

 	If the URL being processed was flagged as an "explicit entry" or a "fallback entry"

 	

 If these steps are being run in parallel for any other URLs in file
 list, then abort these steps for those other URLs. Run the cache failure
 steps.

 Redirects are fatal because they are either indicative of a network problem
 (e.g. a captive portal); or would allow resources to be added to the cache under URLs that
 differ from any URL that the networking model will allow access to, leaving orphan entries;
 or would allow resources to be stored under URLs different than their true URLs. All of
 these situations are bad.

 	If the error was a 404 or 410 HTTP response or equivalent

 	If the resource was labeled with the "no-store" cache directive

 	

 Skip this resource. It is dropped from the cache.

 	Otherwise

 	

 Copy the resource and its metadata from the newest application cache in cache group whose completeness
 flag is complete, and act as if that was the fetched resource, ignoring the
 resource obtained from the network.

 User agents may warn the user of these errors as an aid to development.

 These rules make errors for resources listed in the manifest fatal, while
 making it possible for other resources to be removed from caches when they are removed from
 the server, without errors, and making non-manifest resources survive server-side errors.

 Except for the "no-store" directive, HTTP caching rules that would cause a
 file to be expired or otherwise not cached are ignored for the purposes of the
 application cache download process.

 	

 Otherwise, the fetching succeeded. Store the resource in the new
 cache.

 If the user agent is not able to store the resource (e.g. because of quota restrictions),
 the user agent may prompt the user or try to resolve the problem in some other manner (e.g.
 automatically pruning content in other caches). If the problem cannot be resolved, the user
 agent must run the cache failure steps.

 	If the URL being processed was flagged as an "explicit entry" in file
 list, then categorize the entry as an explicit
 entry.

 	If the URL being processed was flagged as a "fallback entry" in file
 list, then categorize the entry as a fallback
 entry.

 	If the URL being processed was flagged as an "master entry" in file
 list, then categorize the entry as a master
 entry.

 	As an optimization, if the resource is an HTML or XML file whose root element is an
 html element with a manifest attribute
 whose value doesn't match the manifest URL of the application cache being processed, then the
 user agent should mark the entry as being foreign.

 	For each cache host associated with an application cache in cache group, queue a post-load task to fire a trusted
 event with the name progress, which does not bubble,
 which is cancelable, and which uses the ProgressEvent interface, at the
 ApplicationCache singleton of the cache host. The lengthComputable attribute must be set to
 true, the total and the loaded attributes must be set to the number of files in
 file list. The default action of these events must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to the
 user that all the files have been downloaded. [XHR]

 	Store the list of fallback namespaces,
 and the URLs of the fallback entries that they map
 to, in new cache.

 	Store the URLs that form the new online
 whitelist in new cache.

 	Store the value of the new online
 whitelist wildcard flag in new cache.

 	Store the value of the new cache mode flag in
 new cache.

 	

 For each entry in cache group's list of pending master entries, wait for the
 resource for this entry to have either completely downloaded or failed.

 If the download failed (e.g. the server returns a 4xx or 5xx response or equivalent, or there is a DNS error, the
 connection times out, or the user cancels the download), or if the resource is labeled with the
 "no-store" cache directive, then run these substeps:

 	Unassociate the Document for this entry from new
 cache.

 	Queue a post-load task to fire a simple event that is
 cancelable named error at the
 ApplicationCache singleton of the Document for this entry, if there
 still is one. The default action of this event must be, if the user agent shows caching
 progress, the display of some sort of user interface indicating to the user that the
 user agent failed to save the application for offline use.

	

 If this is a cache attempt and this entry is
 the last entry in cache group's list of pending master entries, then run these
 further substeps:

 	Discard cache group and its only application cache,
 new cache.

	If appropriate, remove any user interface indicating that an update for this cache is
 in progress.

 	Abort the application cache download process.

 	Otherwise, remove this entry from cache group's list of pending master entries.

 Otherwise, store the resource for this entry in new cache, if it isn't
 already there, and categorize its entry as a master
 entry.

 	

 Fetch the resource from manifest URL again, with
 the synchronous flag set, and let second manifest be that resource.
 HTTP caching semantics should again be honored for this request.

 Since caching can be honored, authors are encouraged to avoid setting the cache
 headers on the manifest in such a way that the user agent would simply not contact the network
 for this second request; otherwise, the user agent would not notice if the cache had changed
 during the cache update process.

 	

 If the previous step failed for any reason, or if the fetching attempt involved a redirect,
 or if second manifest and manifest are not byte-for-byte
 identical, then schedule a rerun of the entire algorithm with the same parameters after a short
 delay, and run the cache failure steps.

 	

 Otherwise, store manifest in new cache, if it's not
 there already, and categorize its entry as the
 manifest.

 	Set the completeness flag of new cache to complete.

 	Let task list be an empty list of tasks.

	

 If this is a cache attempt, then for each
 cache host associated with an application cache in cache
 group, create a task to fire a simple event
 that is cancelable named cached at the
 ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to
 the user that the application has been cached and that they can now use it offline.

 Otherwise, it is an upgrade attempt. For each
 cache host associated with an application cache in cache
 group, create a task to fire a simple event
 that is cancelable named updateready at the
 ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to
 the user that a new version is available and that they can activate it by reloading the
 page.

 	If appropriate, remove any user interface indicating that an update for this cache is in
 progress.

 	Set the update status of cache
 group to idle.

 	For each task in task list, queue that task as a post-load task.

 The cache failure steps are as follows:

 	Let task list be an empty list of tasks.

	

 For each entry in cache group's list of pending master entries, run the
 following further substeps. These steps may be run in parallel for two or more entries at a
 time.

 	Wait for the resource for this entry to have either completely downloaded or failed.

	Unassociate the Document for this entry from its application
 cache, if it has one.

 	Create a task to fire a simple event that
 is cancelable named error at the
 ApplicationCache singleton of the Document for this entry, if there
 still is one, and append it to task list. The default action of these
 events must be, if the user agent shows caching progress, the display of some sort
 of user interface indicating to the user that the user agent failed to save the application for
 offline use.

 	For each cache host still associated with an application cache
 in cache group, create a task to fire
 a simple event that is cancelable named error at
 the ApplicationCache singleton of the cache host, and append it to task list. The default action of these events must be, if the user agent
 shows caching progress, the display of some sort of user interface indicating to the
 user that the user agent failed to save the application for offline use.

 	Empty cache group's list of pending master entries.

 	If cache group has an application cache whose completeness flag is incomplete, then discard
 that application cache.

	If appropriate, remove any user interface indicating that an update for this cache is in
 progress.

 	Let the status of cache
 group be idle.

 	If this was a cache attempt, discard cache group altogether.

	For each task in task list, queue that task as a post-load task.

 	Abort the application cache download process.

 Attempts to fetch resources as part of the application cache download
 process may be done with cache-defeating semantics, to avoid problems with stale or
 inconsistent intermediary caches.

 User agents may invoke the application cache download process, in the background,
 for any application cache group, at any time (with no cache host). This
 allows user agents to keep caches primed and to update caches even before the user visits a
 site.

 Each Document has a list of pending application cache download process
 tasks that is used to delay events fired by the algorithm above until the document's load event has fired. When the Document is created, the
 list must be empty.

 When the steps above say to queue a post-load task task, where
 task is a task that dispatches an event on a
 target ApplicationCache object target, the user agent must run
 the appropriate steps from the following list:

 	If target's Document is
 ready for post-load tasks

 	Queue the task task.

 	Otherwise

 	Add task to target's Document's list
 of pending application cache download process tasks.

 The task source for these tasks is the
 networking task source.

 The application cache selection algorithm

 When the application cache
 selection algorithm algorithm is invoked with a
 Document document and optionally a
 manifest URL manifest URL, the user
 agent must run the first applicable set of steps from the following
 list:

 	If there is a manifest URL, and document was loaded from an application
 cache, and the URL of the manifest of that cache's
 application cache group is not the same as
 manifest URL

 	

 Mark the entry for the resource from which document was taken in the application
 cache from which it was loaded as foreign.

 Restart the current navigation from the top of the navigation algorithm, undoing any changes
 that were made as part of the initial load (changes can be avoided
 by ensuring that the step to update the session history with
 the new page is only ever completed after this
 application cache selection
 algorithm is run, though this is not required).

 The navigation will not result in the same
 resource being loaded, because "foreign" entries are never picked
 during navigation.

 User agents may notify the user of the inconsistency between
 the cache manifest and the document's own metadata, to aid in
 application development.

 	If document was loaded from an
 application cache, and that application
 cache still exists (it is not now obsolete)

 	

 Associate document with the
 application cache from which it was loaded. Invoke,
 in the background, the application cache download
 process for that application cache's
 application cache group, with document as the cache host.

 	If document was loaded using
 HTTP GET or
 equivalent, and, there is a manifest
 URL, and manifest URL has the same
 origin as document

 	

 Invoke, in the background, the application cache download
 process for manifest URL, with document as the cache host and with
 the resource from which document was parsed as
 the master
 resource.

 If there are relevant
 application caches that are identified by a URL with the
 same origin as the URL of document, and that have this URL as one of their
 entries, excluding entries marked as foreign, then the user
 agent should use the most
 appropriate application cache of those that match as an
 HTTP cache for any subresource loads. User agents may also have
 other caches in place that are also honored.

 	Otherwise

 	

 The Document is not associated with any
 application cache.

 If there was a manifest URL, the user agent
 may report to the user that it was ignored, to aid in application
 development.

 Changes to the networking model

 When a cache host is associated with an
 application cache whose completeness flag is
 complete, any and all loads for resources related to that
 cache host other than those for child browsing contexts must go through the
 following steps instead of immediately invoking the mechanisms
 appropriate to that resource's scheme:

 	If the resource is not to be fetched using the HTTP GET
 mechanism or
 equivalent, or if applying the URL parser algorithm to both its URL and the
 application cache's manifest's URL results in two parsed URLs with different scheme components, then
 fetch the resource normally and abort these
 steps.

 	If the resource's URL is a master entry, the manifest, an explicit entry, or
 a fallback entry in
 the application cache, then get the resource from the
 cache (instead of fetching it), and abort these steps.

 	If there is an entry in the application cache's
 online
 whitelist that has the same origin as the
 resource's URL and that is a prefix match for the
 resource's URL, then fetch the resource normally and
 abort these steps.

 	

 If the resource's URL has the same origin as the
 manifest's URL, and there is a fallback namespace
 f in the application cache that
 is a prefix match for the resource's URL, then:

 Fetch the resource normally. If this results in a
 redirect to a resource with another origin
 (indicative of a captive portal), or a 4xx or 5xx status code
 or equivalent,
 or if there were network errors (but not if the user canceled the
 download), then instead get, from the cache, the resource of the
 fallback entry
 corresponding to the fallback namespace
 f. Abort these steps.

 	If the application cache's online whitelist
 wildcard flag is open, then
 fetch the resource normally and abort these
 steps.

 	Fail the resource load as if there had been a generic
 network error.

 The above algorithm ensures that so long as the
 online
 whitelist wildcard flag is blocking,
 resources that are not present in the manifest will always fail
 to load (at least, after the application cache has been
 primed the first time), making the testing of offline applications
 simpler.

 Expiring application caches

 As a general rule, user agents should not expire application
 caches, except on request from the user, or after having been left
 unused for an extended period of time.

 Application caches and cookies have similar implications with
 respect to privacy (e.g. if the site can identify the user when
 providing the cache, it can store data in the cache that can be used
 for cookie resurrection). Implementors are therefore encouraged to
 expose application caches in a manner related to HTTP cookies,
 allowing caches to be expunged together with cookies and other
 origin-specific data.

 For example, a user agent could have a "delete
 site-specific data" feature that clears all cookies, application
 caches, local storage, databases, etc, from an origin all at
 once.

 Disk space

 User agents should consider applying constraints on disk usage of
 application caches, and care
 should be taken to ensure that the restrictions cannot be easily
 worked around using subdomains.

 User agents should allow users to see how much space each domain
 is using, and may offer the user the ability to delete specific
 application caches.

 How quotas are presented to the user is not defined
 by this specification. User agents are encouraged to provide
 features such as allowing a user to indicate that certain sites are
 trusted to use more than the default quota, e.g. by asynchronously
 presenting a user interface while a cache is being updated, or by
 having an explicit whitelist in the user agent's configuration
 interface.

 Application cache API

 interface ApplicationCache : EventTarget {

 // update status
 const unsigned short UNCACHED = 0;
 const unsigned short IDLE = 1;
 const unsigned short CHECKING = 2;
 const unsigned short DOWNLOADING = 3;
 const unsigned short UPDATEREADY = 4;
 const unsigned short OBSOLETE = 5;
 readonly attribute unsigned short status;

 // updates
 void update();
 void abort();
 void swapCache();

 // events
 attribute EventHandler onchecking;
 attribute EventHandler onerror;
 attribute EventHandler onnoupdate;
 attribute EventHandler ondownloading;
 attribute EventHandler onprogress;
 attribute EventHandler onupdateready;
 attribute EventHandler oncached;
 attribute EventHandler onobsolete;
};

 	cache = window . applicationCache

 	

 (In a window.) Returns the ApplicationCache object that applies to the active document of that Window.

 	cache = self . applicationCache

 	

 (In a shared worker.) Returns the ApplicationCache object that applies to the current shared worker.
 [WEBWORKERS]

 	cache . status

 	

 Returns the current status of the application cache, as given by the constants defined below.

 	cache . update()

 	

 Invokes the application cache download process.

 Throws an InvalidStateError exception if there is no application cache to update.

 Calling this method is not usually necessary, as user agents
 will generally take care of updating application caches automatically.

 The method can be useful in situations such as long-lived
 applications. For example, a Web mail application might stay open
 in a browser tab for weeks at a time. Such an application could
 want to test for updates each day.

 	cache . abort()

 	

 Cancels the application cache download process.

 This method is intended to be used by Web application showing
 their own caching progress UI, in case the user wants to stop the
 update (e.g. because bandwidth is limited).

 	cache . swapCache()

 	

 Switches to the most recent application cache, if there is a
 newer one. If there isn't, throws an
 InvalidStateError exception.

 This does not cause previously-loaded resources to be reloaded;
 for example, images do not suddenly get reloaded and style sheets
 and scripts do not get reparsed or reevaluated. The only change is
 that subsequent requests for cached resources will obtain the
 newer copies.

 The updateready
 event will fire before this method can be called. Once it fires,
 the Web application can, at its leisure, call this method to
 switch the underlying cache to the one with the more recent
 updates. To make proper use of this, applications have to be able
 to bring the new features into play; for example, reloading
 scripts to enable new features.

 An easier alternative to swapCache() is just to
 reload the entire page at a time suitable for the user, using
 location.reload().

 There is a one-to-one mapping from cache
 hosts to ApplicationCache objects. The applicationCache
 attribute on Window objects must return the
 ApplicationCache object associated with the
 Window object's active document. The applicationCache
 attribute on SharedWorkerGlobalScope objects must
 return the ApplicationCache object associated with the
 worker.
 [WEBWORKERS]

 A Window or
 SharedWorkerGlobalScope object has an associated
 ApplicationCache object even if that cache
 host has no actual application cache.

 The status
 attribute, on getting, must return the current state of the
 application cache that the
 ApplicationCache object's cache host is
 associated with, if any. This must be the appropriate value from the
 following list:

 	UNCACHED
 (numeric value 0)

 	The ApplicationCache object's cache
 host is not associated with an application
 cache at this time.

 	IDLE
 (numeric value 1)

 	The ApplicationCache object's cache
 host is associated with an application cache
 whose application cache group's update status is
 idle, and that application cache is the newest cache in its
 application cache group, and the application
 cache group is not marked as obsolete.

 	CHECKING
 (numeric value 2)

 	The ApplicationCache object's cache
 host is associated with an application cache
 whose application cache group's update status is
 checking.

 	DOWNLOADING
 (numeric value 3)

 	The ApplicationCache object's cache
 host is associated with an application cache
 whose application cache group's update status is
 downloading.

 	UPDATEREADY
 (numeric value 4)

 	The ApplicationCache object's cache
 host is associated with an application cache
 whose application cache group's update status is
 idle, and whose application cache group is not
 marked as obsolete,
 but that application cache is not the newest cache in its
 group.

 	OBSOLETE
 (numeric value 5)

 	The ApplicationCache object's cache
 host is associated with an application cache
 whose application cache group is marked as obsolete.

 If the update() method is
 invoked, the user agent must invoke the application cache
 download process, in the background, for the
 application cache group of the application
 cache with which the ApplicationCache object's
 cache host is associated, but without giving that
 cache host to the algorithm. If there is no such
 application cache, or if its application cache
 group is marked as obsolete, then the method
 must throw an InvalidStateError exception instead.

 If the abort()
 method is invoked, the user agent must send a signal to
 the current application cache download process for the
 application cache group of the application
 cache with which the ApplicationCache object's
 cache host is associated, if any. If there is no such
 application cache, or it does not have a current
 application cache download process, then do
 nothing.

 If the swapCache() method
 is invoked, the user agent must run the following steps:

 	Check that ApplicationCache object's
 cache host is associated with an application
 cache. If it is not, then throw an
 InvalidStateError exception and abort these
 steps.

 	Let cache be the application
 cache with which the ApplicationCache object's
 cache host is associated. (By definition, this is the
 same as the one that was found in the previous step.)

 	If cache's application cache
 group is marked as obsolete, then unassociate
 the ApplicationCache object's cache host
 from cache and abort these steps. (Resources
 will now load from the network instead of the cache.)

 	Check that there is an application cache in the same
 application cache group as cache
 whose completeness
 flag is complete and that is newer than cache. If there is not, then throw an
 InvalidStateError exception and abort these
 steps.

 	Let new cache be the newest application
 cache in the same application cache group as
 cache whose completeness flag is
 complete.

 	Unassociate the ApplicationCache object's
 cache host from cache and instead
 associate it with new cache.

 The following are the event handlers (and their
 corresponding event handler
 event types) that must be supported, as IDL attributes, by
 all objects implementing the ApplicationCache
 interface:

 	Event handler 	Event handler event type

 	onchecking 	 checking

	onerror 	 error

	onnoupdate 	 noupdate

	ondownloading 	 downloading

	onprogress 	 progress

	onupdateready 	 updateready

	oncached 	 cached

	onobsolete 	 obsolete

 Browser state

 [NoInterfaceObject]
interface NavigatorOnLine {
 readonly attribute boolean onLine;
};

 	window . navigator . onLine

 	

 Returns false if the user agent is definitely offline
 (disconnected from the network). Returns true if the user agent
 might be online.

 The events online and offline are fired when the value of
 this attribute changes.

 The navigator.onLine
 attribute must return false if the user agent will not contact the
 network when the user follows links or when a script requests a
 remote page (or knows that such an attempt would fail), and must
 return true otherwise.

 When the value that would be returned by the navigator.onLine attribute of a
 Window or WorkerGlobalScope changes from
 true to false, the user agent must queue a task to
 fire a simple event named offline at the
 Window or WorkerGlobalScope object.

 On the other hand, when the value that would be returned by the
 navigator.onLine attribute
 of a Window or WorkerGlobalScope changes
 from false to true, the user agent must queue a task to
 fire a simple event named online at the
 Window or WorkerGlobalScope object.

 The task source for these tasks is the networking task
 source.

 This attribute is inherently unreliable. A computer
 can be connected to a network without having Internet access.

 In this example, an indicator is updated as the browser goes
 online and offline.

 <!DOCTYPE HTML>
<html>
 <head>
 <title>Online status</title>
 <script>
 function updateIndicator() {
 document.getElementById('indicator').textContent = navigator.onLine ? 'online' : 'offline';
 }
 </script>
 </head>
 <body onload="updateIndicator()" ononline="updateIndicator()" onoffline="updateIndicator()">
 <p>The network is: (state unknown)
 </body>
</html>

Web application APIs

 Scripting

 Introduction

 Various mechanisms can cause author-provided executable code to
 run in the context of a document. These mechanisms include, but are
 probably not limited to:

 	Processing of script elements.

 	Processing of inline javascript: URLs (e.g. the src attribute of img
 elements, or an @import rule in a CSS
 style element block).

 	Event handlers, whether registered through the DOM using addEventListener(), by explicit event handler
 content attributes, by event handler IDL
 attributes, or otherwise.

 	Processing of technologies like XBL or SVG that have their own
 scripting features.

 Enabling and disabling scripting

 Scripting is enabled in a
 when all of the
 following conditions are true:

 	The user agent supports scripting.

 	The user has not disabled scripting for this browsing
 context at this time. (User agents may provide users with
 the option to disable scripting globally, or in a finer-grained
 manner, e.g. on a per-origin basis.)
 [image: (This is a fingerprinting vector.)]

 	The browsing context's
 active document's active sandboxing flag
 set does not have its sandboxed scripts browsing
 context flag set.

 Scripting is disabled in a
 browsing context when any of the above conditions are
 false (i.e. when scripting is not enabled).

 Scripting is enabled for a
 node if the Document object of the node (the
 node itself, if it is itself a Document object) has an
 associated browsing context, and scripting is enabled in that
 browsing context.

 Scripting is disabled for a
 node if there is no such browsing context, or if scripting is disabled in that
 browsing context.

 Processing model

 Definitions

 This specification describes three kinds of JavaScript global environments: the document environment, the
 dedicated worker environment, and the shared worker environment. The
 dedicated worker environment and the shared worker environment are both
 types of worker environments.

 Except where otherwise specified, a JavaScript global environment is a
 document environment.

 A script has:

 	A script execution environment

 	

 The characteristics of the script execution environment depend on the language, and are not
 defined by this specification.

 In JavaScript, the script execution environment consists of the interpreter,
 the stack of execution contexts, the global code and function code and the
 Function objects resulting, and so forth.

 	A list of code entry-points

 	

 Each code entry-point represents a block of executable code that the script exposes to other
 scripts and to the user agent.

 Each Function object in a JavaScript script execution
 environment has a corresponding code entry-point, for instance.

 The main program code of the script, if any, is the initial code
 entry-point. Typically, the code corresponding to this entry-point is executed
 immediately after the script is parsed.

 In JavaScript, this corresponds to the execution context of the global
 code.

 	A relationship with the script's global object

 	

 An object that provides the APIs that the code can use.

 This is typically a Window object. In JavaScript, this
 corresponds to the global object.

 When a script's global object is an empty object, it can't do
 anything that interacts with the environment.

 If the script's global object is a Window object, then in
 JavaScript, the ThisBinding of the global execution context for this script must be the
 Window object's WindowProxy object, rather than the global object. [ECMA262]

 This is a willful violation of the JavaScript specification current
 at the time of writing (ECMAScript edition 5, as defined in section 10.4.1.1 Initial Global
 Execution Context, step 3). The JavaScript specification requires that the this keyword in the global scope return the global object, but this is not
 compatible with the security design prevalent in implementations as specified herein. [ECMA262]

 	A relationship with the script's browsing context

 	

 A browsing context that is assigned responsibility for actions taken by the
 script.

 When a script creates and navigates a new
 top-level browsing context, the opener attribute of
 the new browsing context's Window object will be set to the
 script's browsing context's WindowProxy object.

 	A relationship with the script's document

 	

 A Document that is assigned responsibility for actions taken by the script.

 For example, the address of the
 script's document is used to set the address of any Document elements created using createDocument().

 	The script's referrer source

 	

 Either a Document (specifically, the script's document), or a
 URL, which is used by some APIs to determine what value to use for the Referer (sic) header in calls to the fetching algorithm.

 	A URL character encoding

 	

 A character encoding, set when the script is created, used to encode URLs.

 	A base URL

 	

 A URL, set when the script is created, used to resolve relative URLs.

 	Optionally, a muted errors flag

 	

 A flag which, if set, means that error information will not be provided for errors in this
 script (used to mute errors for cross-origin scripts, since that can leak private
 information).

 Calling scripts

 When a user agent is to jump to a code entry-point for a script, for example to invoke an event listener defined in that
 script, the user agent must run the following steps:

 	If the script's global object is a Window object whose
 Document object is not fully active, then abort these steps without
 doing anything. The callback is not run.

	If scripting is disabled for script's
 browsing context, then abort these steps.

	Set the entry script to be the script
 being invoked.

 	Make the script execution environment
 for the script execute the code for the given code
 entry-point.

 	Set the entry script back to whatever it was when this algorithm
 started (possibly nothing).

 	If there is no longer an entry script, run the global script clean-up
 jobs. (These cannot run scripts.)

 	If there is no longer an entry script, perform a microtask
 checkpoint. (If this runs scripts, it will result in this algorithm being invoked
 reentrantly.)

 This algorithm is not invoked by one script directly calling another, but it can be invoked
 reentrantly in an indirect manner, e.g. if a script dispatches an event which has event listeners
 registered.

 Each unit of related similar-origin browsing contexts can have an entry
 script which is used to obtain, amongst other things, the script's base URL to
 resolve relative URLs used in scripts
 running in that unit of related similar-origin browsing contexts. Initially, there is
 no entry script. It is changed by the jump to a code entry-point
 algorithm above.

 The incumbent script is the script corresponding
 to the most-recently evaluated SourceElements JavaScript production whose evaluation
 directly resulted in the invocation of the current API (method, attribute getter or setter,
 constructor, etc).

 Each unit of related similar-origin browsing contexts has a running mutation
 observers flag, which must initially be false. It is used to prevent reentrant invocation of
 the algorithm to invoke MutationObserver
 objects. For the purposes of MutationObserver objects, each unit of
 related similar-origin browsing contexts is a distinct scripting environment.

 Each unit of related similar-origin browsing contexts has a global script
 clean-up jobs list, which must initially be empty. A global script clean-up job cannot run
 scripts, and cannot be sensitive to the order in which other clean-up jobs are executed. The File
 API uses this to release blob: URLs. [FILEAPI]

 When the user agent is to run the global script clean-up jobs, the user agent must
 perform each of the jobs in the global script clean-up jobs list and then empty the
 list.

 Creating scripts

 When the specification says that a script is to be created, given some script source, a script source URL, its
 scripting language, a global object, a browsing context, a document, a referrer source, a URL
 character encoding, a base URL, and optionally a muted errors flag, the user
 agent must run the following steps:

 	If scripting is
 disabled for browsing context passed to this
 algorithm, then abort these steps, as if the script did nothing but
 return void.

	Set up a script execution environment as
 appropriate for the scripting language.

 	Parse/compile/initialize the source of the script using the
 script execution environment, as appropriate for the
 scripting language, and thus obtain the list of code
 entry-points for the script. If the semantics of the
 scripting language and the given source code are such that there is
 executable code to be immediately run, then the initial code
 entry-point is the entry-point for that code.

 	Set up the script's global object, the
 script's browsing context, the script's
 document, the script's referrer source, the
 script's URL character encoding, and the
 script's base URL from the settings passed to this
 algorithm.

 	If the muted errors flag was set, then set the script's muted
 errors flag also.

 	

 If all the steps above succeeded (in particular, if the script
 was compiled successfully), Jump to the script's initial code
 entry-point.

 Otherwise, report the error for the script,
 with the problematic position (line number and column number), using script's global object as the target. If the
 error is still not handled after this, then the error
 may be reported to the user.

 When the user agent is to create an impotent script,
 given some script source and URL, its scripting language, and a
 browsing context, the user agent must create a script,
 using the given script source, URL, and scripting language, using a
 new empty object as the global object, and using the given browsing
 context as the browsing context. The referrer source, URL character
 encoding, and base URL for the resulting script are not important as no APIs
 are exposed to the script.

 When the specification says that a script is to be created from a node node, given some
 script source, its URL, its scripting language, and optionally a muted errors
 flag, the user agent must create a script, using the given script source, URL, and
 scripting language, the script settings determined from the node node, and, if the muted errors flag was set in the call to this
 algorithm, the muted errors flag.

 The script settings determined from the node node are computed as follows:

 	Let document be the
 Document of node (or node itself if it is a
 Document).

 	The global object is the Window object of document.

 	The browsing context is the browsing context of
 document.

	The document is document.

	The referrer source is document.

	The URL character encoding is the character encoding of document. (This is a
 reference, not a copy.)

 	The base URL is the base
 URL of document. (This is a reference, not a copy.)

 Killing scripts

 User agents may impose resource limitations on scripts, for
 example CPU quotas, memory limits, total execution time limits, or
 bandwidth limitations. When a script exceeds a limit, the user agent
 may either throw a QuotaExceededError exception, abort
 the script without an exception, prompt the user, or throttle script
 execution.

 For example, the following script never terminates. A user agent
 could, after waiting for a few seconds, prompt the user to either
 terminate the script or let it continue.

 <script>
 while (true) { /* loop */ }
</script>

 User agents are encouraged to allow users to disable scripting
 whenever the user is prompted either by a script (e.g. using the
 window.alert() API) or because of a
 script's actions (e.g. because it has exceeded a time limit).

 If scripting is disabled while a script is executing, the script
 should be terminated immediately.

 User agents may allow users to specifically disable scripts just
 for the purposes of closing a browsing context.

 For example, the prompt mentioned in the example
 above could also offer the user with a mechanism to just close the
 page entirely, without running any unload event handlers.

 Runtime script errors

 When the user agent is required to report an error for a
 particular script script with a particular
 position line:col, using a particular target target, it must run these steps, after which the error is either handled or not
 handled:

 	If target is in error reporting mode, then abort these
 steps; the error is not handled.

 	Let target be in error reporting mode.

 	Let message be a user-agent-defined
 string describing the error in a helpful manner.
 [image: (This is a fingerprinting vector.)]

 	

 Let location be an absolute URL that corresponds to the
 resource from which script was obtained.

 The resource containing the script will typically be the file
 from which the Document was parsed, e.g. for inline
 script elements or event handler content
 attributes; or the JavaScript file that the script was in,
 for external scripts. Even for dynamically-generated scripts, user
 agents are strongly encouraged to attempt to keep track of the
 original source of a script. For example, if an external script uses
 the document.write() API to
 insert an inline script element during parsing, the URL
 of the resource containing the script would ideally be reported as
 being the external script, and the line number might ideally be
 reported as the line with the document.write() call or where the
 string passed to that call was first constructed. Naturally,
 implementing this can be somewhat non-trivial.

 User agents are similarly encouraged to keep careful track of the
 original line numbers, even in the face of document.write() calls mutating
 the document as it is parsed, or event handler content
 attributes spanning multiple lines.

 	If script has muted errors, then set message to "Script error.", set location to the empty string, and set line and col to 0.

 	Let event be a new trusted ErrorEvent object that does not
 bubble but is cancelable, and which has the event name error.

 	Initialize event's message attribute to message.

 	Initialize event's filename attribute to location.

 	Initialize event's lineno attribute to line.

 	Initialize event's column attribute to col.

 	Dispatch event at target.

 	Let target no longer be in error reporting mode.

 	If event was canceled, then the error is handled. Otherwise, the error is not handled.

 Runtime script errors in documents

 Whenever an uncaught runtime script error occurs in one of the scripts associated with a
 Document, the user agent must report the error for the relevant script, with the problematic position (line number and column
 number) in the resource containing the script, using
 the script's global object as the target. If the error is still not handled after this, then the error may be reported to the
 user.

 The ErrorEvent interface

 [Constructor(DOMString type, optional ErrorEventInit eventInitDict)]
interface ErrorEvent : Event {
 readonly attribute DOMString message;
 readonly attribute DOMString filename;
 readonly attribute unsigned long lineno;
 readonly attribute unsigned long column;
};

dictionary ErrorEventInit : EventInit {
 DOMString message;
 DOMString filename;
 unsigned long lineno;
 unsigned long column;
};

 The message attribute
 must return the value it was initialized to. When the object is
 created, this attribute must be initialized to the empty string. It
 represents the error message.

 The filename
 attribute must return the value it was initialized to. When the
 object is created, this attribute must be initialized to the empty
 string. It represents the absolute URL of the script in
 which the error originally occurred.

 The lineno
 attribute must return the value it was initialized to. When the
 object is created, this attribute must be initialized to zero. It
 represents the line number where the error occurred in the
 script.

 The column
 attribute must return the value it was initialized to. When the
 object is created, this attribute must be initialized to zero. It
 represents the column number where the error occurred in the
 script.

 Event loops

 Definitions

 To coordinate events, user interaction, scripts, rendering, networking, and so forth, user
 agents must use event loops as described in this section.

 There must be at least one event loop per user agent, and at most one event
 loop per unit of related similar-origin browsing contexts.

 When there is more than one event loop for a unit of related
 browsing contexts, complications arise when a browsing context in that group
 is navigated such that it switches from one unit of related
 similar-origin browsing contexts to another. This specification does not currently describe
 how to handle these complications.

 An event loop always has at least one browsing context. If an
 event loop's browsing contexts all go away,
 then the event loop goes away as well. A browsing context always has an
 event loop coordinating its activities.

 Other specifications can define new kinds of event
 loops that aren't associated with browsing contexts; in particular,
 the Web Workers specification does so.

 An event loop has one or more task queues. A
 task queue is an ordered list of tasks, which can
 be:

 	Events

 	

 Asynchronously dispatching an Event object at a particular
 EventTarget object is a task.

 Not all events are dispatched using the task queue, many are
 dispatched synchronously during other tasks.

 	Parsing

 	The HTML parser tokenizing one or more bytes, and then processing any
 resulting tokens, is typically a task.

 	Callbacks

 	Calling a callback asynchronously is a task.

 	Using a resource

 	When an algorithm fetches a resource, if the fetching occurs
 asynchronously then the processing of the resource once some or all of the resource is available
 is a task.

 	Reacting to DOM manipulation

 	Some elements have tasks that trigger in response to DOM manipulation, e.g. when that
 element is inserted into the document.

 Each task is associated with a Document; if the
 task was queued in the context of an element, then it is the element's Document; if
 the task was queued in the context of a browsing context, then it is the
 browsing context's active document at the time the task was queued; if
 the task was queued by or for a script then the document is
 the script's document.

 A task is intended for a specific event loop:
 the event loop that is handling tasks for the task's associated Document.

 When a user agent is to queue a task, it must add the given task to one of the task queues of the relevant event loop.

 Each task is defined as coming from a specific task
 source. All the tasks from one particular task source and destined to a
 particular event loop (e.g. the callbacks generated by timers of a
 Document, the events fired for mouse movements over that Document, the
 tasks queued for the parser of that Document) must always be added to the same
 task queue, but tasks from different task sources may be placed in different task
 queues.

 For example, a user agent could have one task queue for mouse and
 key events (the user interaction task source), and another for everything else. The
 user agent could then give keyboard and mouse events preference over other tasks three quarters of
 the time, keeping the interface responsive but not starving other task queues, and never
 processing events from any one task source out of order.

 A user agent may have one storage mutex. This mutex is used to control access to
 shared state like cookies. At any one point, the storage mutex is either free, or
 owned by a particular event loop or instance of the fetching algorithm.

 If a user agent does not implement a storage mutex, it is exempt from implementing
 the requirements that require it to acquire or release it.

 User agent implementors have to make a choice between two evils. On the one hand,
 not implementing the storage mutex means that there is a risk of data corruption: a site could,
 for instance, try to read a cookie, increment its value, then write it back out, using the new
 value of the cookie as a unique identifier for the session; if the site does this twice in two
 different browser windows at the same time, it might end up using the same "unique" identifier for
 both sessions, with potentially disastrous effects. On the other hand, implementing the storage
 mutex has potentially serious performance implications: whenever a site uses Web Storage or
 cookies, all other sites that try to use Web Storage or cookies are blocked until the first site
 finishes.

 Whenever a script calls into a plugin, and
 whenever a plugin calls into a script, the user
 agent must release the storage mutex.

 Processing model

 An event loop must continually run through the following steps for as long as it
 exists:

 	Run the oldest task on one of the event
 loop's task queues, if any, ignoring tasks whose
 associated Documents are not fully active. The user agent may pick any
 task queue.

 	If the storage mutex is now owned by the event loop, release it
 so that it is once again free.

 	If a task was run in the first step above, remove that task from its task
 queue.

 	

 If this event loop is not a worker's event loop, run these
 substeps:

 	Perform a microtask checkpoint.

 	Provide a stable state.

 	If necessary, update the rendering or user interface of any Document or
 browsing context to reflect the current state.

 	Otherwise, if this event loop is running for a
 WorkerGlobalScope, but there are no events in the event loop's task queues and the WorkerGlobalScope object's flag is true, then destroy the event
 loop, aborting these steps.

 	Return to the first step of the event loop.

 When a user agent is to perform a microtask checkpoint, if the running
 mutation observers flag is false, then the user agent must run the following steps:

 	Let the running mutation observers flag be true.

 	.

 	

 Invoke MutationObserver objects for the
 unit of related similar-origin browsing contexts to which the script's
 browsing context belongs, using the task wrapper algorithm as the steps to
 invoke each callback.

 This will typically invoke scripted callbacks, which calls the jump to a
 code entry-point algorithm, which calls this perform a microtask checkpoint
 algorithm again, which is why we use the running mutation observers flag to avoid
 reentrancy.

 	Let the running mutation observers flag be false.

 When the user agent is to provide a stable state, if any asynchronously-running
 algorithms are awaiting a stable state, then the user
 agent must run their synchronous section and then resume running their asynchronous
 algorithm (if appropriate).

 A synchronous section never mutates the DOM, runs any script, or has
 any side-effects detectable from another synchronous section, and thus synchronous sections can be run in any order, and cannot
 spin the event loop.

 Steps in synchronous sections are marked
 with ⌛.

 The task wrapper algorithm, which is implicitly invoked in the context of an
 event loop and is used to invoke a given callback in a specific
 way, is as follows:

 	Invoke callback as specified.

 The above will change shortly.

 When an algorithm says to spin the event loop until a condition goal is met, the user agent must run the following steps:

 	Let task source be the task source of the currently
 running task.

 	

 Stop the currently running task, allowing the event
 loop to resume, but continue these steps asynchronously.

 This causes the event loop to move on to the second step of its
 processing model (defined above).

 	Wait until the condition goal is met.

 	Queue a task to continue running these steps, using the task
 source task source. Wait until this task runs before continuing these
 steps.

 	Return to the caller.

 Some of the algorithms in this specification, for historical reasons, require the user agent to
 pause while running a task until a condition goal is met. This means running the following steps:

 	If any asynchronously-running algorithms are awaiting a
 stable state, then run their synchronous section and then resume running
 their asynchronous algorithm. (See the event loop processing model definition above
 for details.)

	If necessary, update the rendering or user interface of any Document or
 browsing context to reflect the current state.

 	Wait until the condition goal is met. While a user agent has a paused
 task, the corresponding event loop must not run
 further tasks, and any script in the currently running task must block. User agents should remain responsive to user input
 while paused, however, albeit in a reduced capacity since the event loop will not be
 doing anything.

 When a user agent is to obtain the storage mutex as part of running a task, it must run through the following steps:

 	If the storage mutex is already owned by this task's event loop, then abort these steps.

 	Otherwise, pause until the storage mutex can be taken by the
 event loop.

 	Take ownership of the storage mutex.

 Generic task sources

 The following task sources are used by a number of mostly
 unrelated features in this and other specifications.

 	The DOM manipulation task source

 	

 This task source is used for features that react to DOM manipulations, such as
 things that happen asynchronously when an element is inserted into the document.

 	The user interaction task source

 	

 This task source is used for features that react to user interaction, for
 example keyboard or mouse input.

 Asynchronous events sent in response to user input (e.g. click events) must be fired using tasks queued with the user
 interaction task source. [DOMEVENTS]

 	The networking task source

 	

 This task source is used for features that trigger in response to network
 activity.

 	The history traversal task source

 	

 This task source is used to queue calls to history.back() and similar APIs.

 The javascript: URL scheme

 When a URL using the javascript: scheme is dereferenced, the user agent must run
 the following steps:

 	Let the script source be the string obtained using the
 content retrieval operation defined for javascript: URLs. [JSURL]

 	

 Use the appropriate step from the following list:

 	If a browsing context is being navigated to a javascript:
 URL, and the source browsing context for that
 navigation, if any, has scripting disabled

 	

 Let result be void.

 	If a browsing context is being navigated to a javascript:
 URL, and the active document of that browsing
 context has the same origin as the script given by
 that URL

 	

 Let address be the address of the active
 document of the browsing context being
 navigated.

 If address is about:blank,
 and the browsing context being navigated has a
 creator browsing context, then let address be the address of the creator
 Document instead.

 Create a
 script from the Document node of the
 active document, using the aforementioned script
 source, the URL of the resource where the
 javascript: URL, was found, and assuming the
 scripting language is JavaScript.

 Let result be the return value of the
 initial code entry-point of this script. If an exception was
 thrown, let result be void instead. (The
 result will be void also if scripting is disabled.)

 When it comes time to set the document's address
 in the navigation algorithm, use
 address as the override
 URL.

 	Otherwise

 	

 Let result be void.

 	

 If the result of executing the script is void (there is no
 return value), then the URL must be treated in a manner equivalent
 to an HTTP resource with an HTTP 204 No Content response.

 Otherwise, the URL must be treated in a manner equivalent to an
 HTTP resource with a 200 OK response whose Content-Type metadata is
 text/html and whose response body is the return value
 converted to a string value.

 Certain contexts, in particular img
 elements, ignore the Content-Type
 metadata.

 So for example a javascript: URL for a
 src attribute of an
 img element would be evaluated in the context of an
 empty object as soon as the attribute is set; it would then be
 sniffed to determine the image type and decoded as an image.

 A javascript: URL in an href attribute of an a
 element would only be evaluated when the link was followed.

 The src attribute of an
 iframe element would be evaluated in the context of
 the iframe's own browsing context; once
 evaluated, its return value (if it was not void) would replace that
 browsing context's document, thus changing the
 variables visible in that browsing context.

 Events

 Event handlers

 Many objects can have event handlers specified. These act as non-capture event
 listeners for the object on which they are specified. [DOM]

 An event handler has a name, which always starts with
 "on" and is followed by the name of the event for which it is intended.

 An event handler can either have the value null or be set
 to a callback object. This is defined using the EventHandler callback function type.

 Event handlers are exposed in one of two ways.

 The first way, common to all event handlers, is as an event handler IDL attribute.

 The second way is as an event handler content
 attribute. Event handlers on HTML elements and some of the event handlers on
 Window objects are exposed in this way.

 An event handler IDL attribute is an IDL
 attribute for a specific event handler. The name of the IDL
 attribute is the same as the name of the event handler.

 Event handler IDL attributes, on setting, must set the corresponding event handler
 to their new value, and on getting, must return whatever the current value of the corresponding
 event handler is (possibly null).

 If an event handler IDL attribute exposes an
 event handler of an object that doesn't exist, it must always
 return null on getting and must do nothing on setting.

 This can happen in particular for event
 handler IDL attribute on body elements that do not have corresponding
 Window objects.

 Certain event handler IDL attributes have additional requirements, in particular
 the onmessage attribute of
 MessagePort objects.

 On getting, event handler IDL attributes must return the value of their
 corresponding event handlers, except when the value is an internal error value, in which case the user agent must set
 the corresponding event handler to null, and then throw an exception corresponding to the error
 condition.

 An event handler content attribute is a
 content attribute for a specific event handler. The name of
 the content attribute is the same as the name of the event
 handler.

 Event handler content attributes, when specified, must contain valid JavaScript
 code which, when parsed, would match the FunctionBody production after
 automatic semicolon insertion. [ECMA262]

 When an event handler content attribute
 is set, if the element is owned by a Document that is in a browsing
 context, and scripting is enabled for that
 browsing context, the user agent must run the following steps to create a script after setting the content attribute to its new value:

 	Set the corresponding event handler to null.

 	Set up a script execution environment for JavaScript.

 	Let body be the event
 handler content attribute's new value.

 	

 If body is not parsable as FunctionBody or if parsing detects an
 early error then set the event handler content attribute to an error as
 defined below, and abort these steps.

 FunctionBody is defined in ECMAScript edition 5 section 13 Function
 Definition. Early error is defined in ECMAScript edition 5 section 16 Errors. [ECMA262]

 	

 If body begins with a Directive Prologue that contains a Use Strict
 Directive then let strict be true, otherwise let strict
 be false.

 The terms "Directive Prologue" and "Use Strict Directive" are defined in
 ECMAScript edition 5 section 14.1 Directive Prologues and the Use Strict Directive. [ECMA262]

 	

 Using the script execution environment created above, create a function object (as defined in
 ECMAScript edition 5 section 13.2 Creating Function Objects), with:

 	Parameter list FormalParameterList

 	

 	If the attribute is the onerror attribute of
 the Window object

 	Let the function have four arguments, named event, source, lineno, and column.

 	Otherwise

 	Let the function have a single argument called event.

 	Function body FunctionBody

 	The result of parsing body above.

 	Lexical Environment Scope

 	

 	Let Scope be the result of NewObjectEnvironment(the element's
 Document, the global environment).

 	If the element has a form owner, let Scope be the result
 of NewObjectEnvironment(the element's form owner, Scope).

 	Let Scope be the result of NewObjectEnvironment(the element's object,
 Scope).

 NewObjectEnvironment() is defined in ECMAScript edition 5 section 10.2.2.3
 NewObjectEnvironment (O, E). [ECMA262]

 	Boolean flag Strict

 	The value of strict.

 Let this new function be the only entry in the script's list of code
 entry-points.

 	Set up the script's global object, the script's browsing
 context, the script's document, the script's referrer source,
 the script's URL character encoding, and the script's base URL from
 the script settings determined from the node on which the attribute is being
 set.

 	Set the corresponding event handler to the
 aforementioned function.

 When a user agent is required, by the steps above, to set the event handler content
 attribute to an error, the user agent must set the corresponding event handler to an internal error value
 representing the error condition, keeping track of the URL of the resource where the
 event handler content attribute was set, and
 the relevant line number inside that resource where the error occurred.

 When an event handler content attribute is removed, the user agent must set the corresponding
 event handler to null.

 When an event handler content
 attribute is set on an element owned by a Document that is not in a
 browsing context, the corresponding event handler is not changed.

 When an event handler H of an element
 or object T implementing the EventTarget interface is first set
 to a non-null value, the user agent must append an event
 listener to the list of event listeners
 associated with T with type set to the event handler event
 type corresponding to H, capture set to false, and
 listener set to the event handler processing algorithm defined below. [DOM]

 The listener is emphatically not the event handler itself. Every event handler ends up registering the same
 listener, the algorithm defined below, which takes care of invoking the right callback, and
 processing the callback's return value.

 This only happens the first time the event
 handler's value is set. Since listeners are called in the order they were registered, the
 order of event listeners for a particular event type will always be first the event listeners
 registered with addEventListener() before
 the first time the event handler was set to a non-null value,
 then the callback to which it is currently set, if any, and finally the event listeners registered
 with addEventListener() after the
 first time the event handler was set to a non-null value.

 This example demonstrates the order in which event listeners are invoked. If the button in
 this example is clicked by the user, the page will show four alerts, with the text "ONE", "TWO",
 "THREE", and "FOUR" respectively.

 <button id="test">Start Demo</button>
<script>
 var button = document.getElementById('test');
 button.addEventListener('click', function () { alert('ONE') }, false);
 button.setAttribute('onclick', "alert('NOT CALLED')"); // event handler listener is registered here
 button.addEventListener('click', function () { alert('THREE') }, false);
 button.onclick = function () { alert('TWO'); };
 button.addEventListener('click', function () { alert('FOUR') }, false);
</script>

 The interfaces implemented by the event object do not influence whether an event handler is triggered or not.

 The event handler processing algorithm for an event
 handler H and an Event object E is as
 follows:

 	If H's value is null, then abort these steps.

 	If H's value is an internal error
 value, then: set the event handler to null and then
 report the error for the appropriate script and
 with the appropriate position (line number and column number), as established when the error was
 detected, using the Window object of that Document as the target. If
 the error is still not handled after this, then the error
 may be reported to the user. Finally, abort these steps.

 	Let callback be H's value, the callback that the
 event handler was last set to.

 	

 Process the Event object E as follows:

 	If E is an ErrorEvent object and the event handler IDL attribute's type is
 OnErrorEventHandler

 	

 Invoke callback with four arguments,
 the first one having the value of E's message attribute,
 the second having the value of E's filename attribute,
 the third having the value of E's lineno attribute, and
 the fourth having the value of E's column attribute,
 with the callback this value set to E's currentTarget. Let the return
 value be return value. [WEBIDL]

 	Otherwise

 	

 Invoke callback with one argument, the value of which is the
 Event object E, with the callback this value set to E's currentTarget. Let the return value be return value. [WEBIDL]

 	

 Process return value as follows:

 	If the event type is mouseover

 	If the event type is error and E is an ErrorEvent object

 	If return value is a WebIDL boolean true value, then cancel the event.

 	If the event type is beforeunload

 	

 The 's type is
 OnBeforeUnloadEventHandler, and the return value will
 therefore have been coerced into either the value null or a DOMString.

 If the return value is null, then cancel the event.

 Otherwise, If the Event object E is a
 BeforeUnloadEvent object, and the Event object E's returnValue
 attribute's value is the empty string, then set the returnValue attribute's value to return value.

 	Otherwise

 	If return value is a WebIDL boolean false value, then cancel the event.

 The EventHandler callback function type represents a callback used for event
 handlers. It is represented in Web IDL as follows:

 [TreatNonCallableAsNull]
callback EventHandlerNonNull = any (Event event);
typedef EventHandlerNonNull? EventHandler;

 In JavaScript, any Function object implements this interface.

 For example, the following document fragment:

 <body onload="alert(this)" onclick="alert(this)">

 ...leads to an alert saying "[object Window]" when the document is
 loaded, and an alert saying "[object HTMLBodyElement]" whenever the
 user clicks something in the page.

 The return value of the function affects whether the event is canceled or not:
 if the return value is false, the event is canceled
 (except for mouseover events, where the return value has to
 be true to cancel the event). With beforeunload events,
 the value is instead used to determine the message to show the user.

 For historical reasons, the onerror handler has different
 arguments:

 [TreatNonCallableAsNull]
callback OnErrorEventHandlerNonNull = any ((Event or DOMString) event, optional DOMString source, optional unsigned long lineno, optional unsigned long column);
typedef OnErrorEventHandlerNonNull? OnErrorEventHandler;

 Similarly, the onbeforeunload handler has a
 different return value:

 [TreatNonCallableAsNull]
callback OnBeforeUnloadEventHandlerNonNull = DOMString (Event event);
typedef OnBeforeUnloadEventHandlerNonNull? OnBeforeUnloadEventHandler;

 Event handlers on elements, Document objects, and Window objects

 The following are the event handlers (and their corresponding event handler event types)
 supported by all HTML elements, as both content attributes and IDL attributes, and on
 Document and Window objects, as IDL attributes.

 	Event handler 	Event handler event type

 	onabort 	 abort

	oncancel 	 cancel

	oncanplay 	 canplay

	oncanplaythrough 	 canplaythrough

	onchange 	 change

	onclick 	 click

	onclose 	 close

	oncuechange 	 cuechange

	ondblclick 	 dblclick

	ondrag 	 drag

	ondragend 	 dragend

	ondragenter 	 dragenter

	ondragexit 	 dragexit

	ondragleave 	 dragleave

	ondragover 	 dragover

	ondragstart 	 dragstart

	ondrop 	 drop

	ondurationchange 	 durationchange

	onemptied 	 emptied

	onended 	 ended

	oninput 	 input

	oninvalid 	 invalid

	onkeydown 	 keydown

	onkeypress 	 keypress

	onkeyup 	 keyup

	onloadeddata 	 loadeddata

	onloadedmetadata 	 loadedmetadata

	onloadstart 	 loadstart

	onmousedown 	 mousedown

	onmouseenter 	 mouseenter

	onmouseleave 	 mouseleave

	onmousemove 	 mousemove

	onmouseout 	 mouseout

	onmouseover 	 mouseover

	onmouseup 	 mouseup

	onmousewheel 	 mousewheel

	onpause 	 pause

	onplay 	 play

	onplaying 	 playing

	onprogress 	 progress

	onratechange 	 ratechange

	onreset 	 reset

	onseeked 	 seeked

	onseeking 	 seeking

	onselect 	 select

	onshow 	 show

	onstalled 	 stalled

	onsubmit 	 submit

	onsuspend 	 suspend

	ontimeupdate 	 timeupdate

	onvolumechange 	 volumechange

	onwaiting 	 waiting

 The following are the event handlers (and their
 corresponding event handler
 event types) supported
 by all HTML elements other than body and
 frameset, as both content attributes and IDL
 attributes, and on Document objects, as IDL
 attributes; and by Window objects, as IDL attributes on the
 Window object, and with corresponding content
 attributes and IDL attributes exposed on the body and
 frameset elements:

 	Event handler 	Event handler event type

 	onblur 	 blur

	onerror 	 error

	onfocus 	 focus

	onload 	 load

	onscroll 	 scroll

 The following are the event handlers (and their
 corresponding event handler
 event types) supported
 by Window objects, as IDL attributes on the
 Window object, and with corresponding content
 attributes and IDL attributes exposed on the body and
 frameset elements:

 	Event handler 	Event handler event type

 	onafterprint 	 afterprint

	onbeforeprint 	 beforeprint

	onbeforeunload 	 beforeunload

	onhashchange 	 hashchange

	onmessage 	 message

	onoffline 	 offline

	ononline 	 online

	onpagehide 	 pagehide

	onpageshow 	 pageshow

	onpopstate 	 popstate

	onresize 	 resize

	onstorage 	 storage

	onunload 	 unload

 The following are the event handlers (and their
 corresponding event handler
 event types) supported
 on Document objects as IDL attributes:

 	Event handler 	Event handler event type

 	onreadystatechange 	 readystatechange

 IDL definitions

 [NoInterfaceObject]
interface GlobalEventHandlers {
 attribute EventHandler onabort;
 attribute EventHandler onblur;
 attribute OnErrorEventHandler onerror;
 attribute EventHandler onfocus;
 attribute EventHandler oncancel;
 attribute EventHandler oncanplay;
 attribute EventHandler oncanplaythrough;
 attribute EventHandler onchange;
 attribute EventHandler onclick;
 attribute EventHandler onclose;
 attribute EventHandler oncuechange;
 attribute EventHandler ondblclick;
 attribute EventHandler ondrag;
 attribute EventHandler ondragend;
 attribute EventHandler ondragenter;
 attribute EventHandler ondragexit;
 attribute EventHandler ondragleave;
 attribute EventHandler ondragover;
 attribute EventHandler ondragstart;
 attribute EventHandler ondrop;
 attribute EventHandler ondurationchange;
 attribute EventHandler onemptied;
 attribute EventHandler onended;
 attribute EventHandler oninput;
 attribute EventHandler oninvalid;
 attribute EventHandler onkeydown;
 attribute EventHandler onkeypress;
 attribute EventHandler onkeyup;
 attribute EventHandler onload;
 attribute EventHandler onloadeddata;
 attribute EventHandler onloadedmetadata;
 attribute EventHandler onloadstart;
 attribute EventHandler onmousedown;
 [LenientThis] attribute EventHandler onmouseenter;
 [LenientThis] attribute EventHandler onmouseleave;
 attribute EventHandler onmousemove;
 attribute EventHandler onmouseout;
 attribute EventHandler onmouseover;
 attribute EventHandler onmouseup;
 attribute EventHandler onmousewheel;
 attribute EventHandler onpause;
 attribute EventHandler onplay;
 attribute EventHandler onplaying;
 attribute EventHandler onprogress;
 attribute EventHandler onratechange;
 attribute EventHandler onreset;
 attribute EventHandler onscroll;
 attribute EventHandler onseeked;
 attribute EventHandler onseeking;
 attribute EventHandler onselect;
 attribute EventHandler onshow;
 attribute EventHandler onstalled;
 attribute EventHandler onsubmit;
 attribute EventHandler onsuspend;
 attribute EventHandler ontimeupdate;
 attribute EventHandler onvolumechange;
 attribute EventHandler onwaiting;
};

[NoInterfaceObject]
interface WindowEventHandlers {
 attribute EventHandler onafterprint;
 attribute EventHandler onbeforeprint;
 attribute OnBeforeUnloadEventHandler onbeforeunload;
 attribute EventHandler onhashchange;
 attribute EventHandler onmessage;
 attribute EventHandler onoffline;
 attribute EventHandler ononline;
 attribute EventHandler onpagehide;
 attribute EventHandler onpageshow;
 attribute EventHandler onpopstate;
 attribute EventHandler onresize;
 attribute EventHandler onstorage;
 attribute EventHandler onunload;
};

 Event firing

 Certain operations and methods are defined as firing events on elements. For example, the click() method on the HTMLElement interface is defined as
 firing a click event on the element. [DOMEVENTS]

 Firing a simple event named e means
 that a trusted event with the name e, which does not bubble (except where otherwise stated) and is not cancelable
 (except where otherwise stated), and which uses the Event interface, must be created
 and dispatched at the given target.

 Firing a synthetic mouse event named e means that an event with the name e, which is trusted (except where otherwise stated), does not bubble
 (except where otherwise stated), is not cancelable (except where otherwise stated), and which uses
 the MouseEvent interface, must be created and dispatched at the given target. The
 event object must have its screenX, screenY, clientX, clientY, and button
 attributes initialized to 0, its ctrlKey, shiftKey,
 altKey, and metaKey attributes initialized according
 to the current state of the key input device, if any (false for any keys that are not available),
 its detail attribute initialized to 1, and its relatedTarget attribute initialized to null (except where otherwise stated). The
 getModifierState() method on the object must return values appropriately
 describing the state of the key input device at the time the event is created.

 Firing a click event
 means firing a synthetic mouse event named click, which bubbles and is cancelable.

 The default action of these events is to do nothing except where otherwise stated.

 Events and the Window object

 When an event is dispatched at a DOM node in a Document in a browsing
 context, if the event is not a load event, the user agent
 must act as if, for the purposes of event dispatching,
 the Window object is the parent of the Document object. [DOM]

 Base64 utility methods

 The atob() and btoa() methods allow authors to transform content to and from
 the base64 encoding.

 [NoInterfaceObject]
interface WindowBase64 {
 DOMString btoa(DOMString btoa);
 DOMString atob(DOMString atob);
};
Window implements WindowBase64;

 In these APIs, for mnemonic purposes, the "b" can be considered to stand for
 "binary", and the "a" for "ASCII". In practice, though, for primarily historical reasons, both the
 input and output of these functions are Unicode strings.

 	result = window . btoa(data)

 	

 Takes the input data, in the form of a Unicode string containing only characters in the range
 U+0000 to U+00FF, each representing a binary byte with values 0x00 to 0xFF respectively, and
 converts it to its base64 representation, which it returns.

 Throws an InvalidCharacterError exception if the input string contains any
 out-of-range characters.

 	result = window . atob(data)

 	

 Takes the input data, in the form of a Unicode string containing base64-encoded binary data,
 decodes it, and returns a string consisting of characters in the range U+0000 to U+00FF, each
 representing a binary byte with values 0x00 to 0xFF respectively, corresponding to that binary
 data.

 Throws an InvalidCharacterError exception if the input string is not valid
 base64 data.

 The WindowBase64 interface adds to the Window interface
 and the WorkerGlobalScope interface (part of Web Workers).

 The btoa() method must throw an
 InvalidCharacterError exception if the method's first argument contains any character
 whose code point is greater than U+00FF. Otherwise, the user agent must convert that argument to a
 sequence of octets whose nth octet is the eight-bit representation of the code
 point of the nth character of the argument, and then must apply the base64
 algorithm to that sequence of octets, and return the result. [RFC4648]

 The atob() method must run the following
 steps to parse the string passed in the method's first argument:

 	Let input be the string being parsed.

 	Let position be a pointer into input, initially
 pointing at the start of the string.

 	Remove all space characters from input.

 	If the length of input divides by 4 leaving no remainder, then: if
 input ends with one or two "=" (U+003D) characters, remove them
 from input.

 	If the length of input divides by 4 leaving a remainder of 1, throw an
 InvalidCharacterError exception and abort these steps.

	

 If input contains a character that is not in the following list of
 characters and character ranges, throw an InvalidCharacterError exception and abort
 these steps:

 	"+" (U+002B)

	"/" (U+002F)

	Alphanumeric ASCII characters

 	Let output be a string, initially empty.

 	Let buffer be a buffer that can have bits appended to it, initially
 empty.

 	

 While position does not point past the end of input,
 run these substeps:

 	

 Find the character pointed to by position in the first column of the
 following table. Let n be the number given in the second cell of the same
 row.

 	Character
 	Number

 	A	0

	B	1

	C	2

	D	3

	E	4

	F	5

	G	6

	H	7

	I	8

	J	9

	K	10

	L	11

	M	12

	N	13

	O	14

	P	15

	Q	16

	R	17

	S	18

	T	19

	U	20

	V	21

	W	22

	X	23

	Y	24

	Z	25

	a	26

	b	27

	c	28

	d	29

	e	30

	f	31

	g	32

	h	33

	i	34

	j	35

	k	36

	l	37

	m	38

	n	39

	o	40

	p	41

	q	42

	r	43

	s	44

	t	45

	u	46

	v	47

	w	48

	x	49

	y	50

	z	51

	0	52

	1	53

	2	54

	3	55

	4	56

	5	57

	6	58

	7	59

	8	60

	9	61

	+	62

	/	63

 	Append to buffer the six bits corresponding to number, most significant bit first.

 	If buffer has accumulated 24 bits, interpret them as three 8-bit
 big-endian numbers. Append the three characters with code points equal to those numbers to output, in the same order, and then empty buffer.

 	Advance position by one character.

 	

 If buffer is not empty, it contains either 12 or 18 bits. If it contains
 12 bits, discard the last four and interpret the remaining eight as an 8-bit big-endian number.
 If it contains 18 bits, discard the last two and interpret the remaining 16 as two 8-bit
 big-endian numbers. Append the one or two characters with code points equal to those one or two
 numbers to output, in the same order.

 The discarded bits mean that, for instance, atob("YQ") and
 atob("YR") both return "a".

 	Return output.

 Some base64 encoders add newlines or other whitespace to their output. The atob() method throws an exception if its input contains
 characters other than those described by the regular expression bracket expression [+/=0-9A-Za-z], so other characters need to be removed before atob() is used for decoding.

 Timers

 The setTimeout()
 and setInterval()
 methods allow authors to schedule timer-based callbacks.

 [NoInterfaceObject]
interface WindowTimers {
 long setTimeout(handler, optional long timeout, any... arguments);
 long setTimeout(DOMString handler, optional long timeout, any... arguments);
 void clearTimeout(long handle);
 long setInterval(handler, optional long timeout, any... arguments);
 long setInterval(DOMString handler, optional long timeout, any... arguments);
 void clearInterval(long handle);
};
Window implements WindowTimers;

 	handle = window . setTimeout(handler [, timeout [, arguments...]])

 	

 Schedules a timeout to run handler after
 timeout milliseconds. Any arguments are passed straight through to the handler.

 	handle = window . setTimeout(code [, timeout])

 	

 Schedules a timeout to compile and run code
 after timeout milliseconds.

 	window . clearTimeout(handle)

 	

 Cancels the timeout set with setTimeout() identified by handle.

 	handle = window . setInterval(handler [, timeout [, arguments...]])

 	

 Schedules a timeout to run handler every
 timeout milliseconds. Any arguments are passed straight through to the handler.

 	handle = window . setInterval(code [, timeout])

 	

 Schedules a timeout to compile and run code
 every timeout milliseconds.

 	window . clearInterval(handle)

 	

 Cancels the timeout set with setInterval() identified by handle.

 This API does not guarantee that timers will run exactly on schedule. Delays due
 to CPU load, other tasks, etc, are to be expected.

 The WindowTimers interface adds to the Window interface
 and the WorkerGlobalScope interface (part of Web Workers).

 Each object that implements the WindowTimers interface has a list of active
 timers. Each entry in this lists is identified by a number, which must be unique within the
 list for the lifetime of the object that implements the WindowTimers interface.

 The setTimeout() method must run
 the following steps:

 	Let handle be a user-agent-defined integer that is greater than zero
 that will identify the timeout to be set by this call in the list of active
 timers.

 	Add an entry to the list of active timers for handle.

 	Get the timed task handle in the list of active
 timers, and let task be the result. This algorithm uses the first
 argument to the method (handler) and, if there are any, the third and
 subsequent arguments to the method (arguments), to establish precisely what
 task does.

 	Let timeout be the second argument to the method, or zero if the
 argument was omitted.

 	If the currently running task is a task that was created
 by the setTimeout() method, and timeout is less than 4, then increase timeout to 4.

 	Return handle, and then continue running this algorithm
 asynchronously.

 	

 If the method context is a Window object, wait until the
 Document associated with the method context has been fully
 active for a further timeout milliseconds (not necessarily
 consecutively).

 Otherwise, if the method context is a WorkerGlobalScope object,
 wait until timeout milliseconds have passed with the worker not suspended
 (not necessarily consecutively).

 Otherwise, act as described in the specification that defines that the
 WindowTimers interface is implemented by some other object.

 	

 Wait until any invocations of this algorithm that had the same method context,
 that started before this one, and whose timeout is equal to or less than
 this one's, have completed.

 Argument conversion as defined by Web IDL (for example, invoking toString() methods on objects passed as the first argument) happens in the
 algorithms defined in Web IDL, before this algorithm is invoked.

 So for example, the following rather silly code will result in the log containing "ONE TWO ":

 var log = '';
function logger(s) { log += s + ' '; }

setTimeout({ toString: function () {
 setTimeout("logger('ONE')", 100);
 return "logger('TWO')";
} }, 100);

 	

 Optionally, wait a further user-agent defined length of time.

 This is intended to allow user agents to pad timeouts as needed to optimise the
 power usage of the device. For example, some processors have a low-power mode where the
 granularity of timers is reduced; on such platforms, user agents can slow timers down to fit
 this schedule instead of requiring the processor to use the more accurate mode with its
 associated higher power usage.

 	

 Queue the task task.

 Once the task has been processed, it is safe to remove the entry for handle from the list of active timers (there is no way for the
 entry's existence to be detected past this point, so it does not technically matter one way or
 the other).

 The setInterval() method must run
 the following steps:

 	Let handle be a user-agent-defined integer that is greater than zero
 that will identify the timeout to be set by this call in the list of active
 timers.

 	Add an entry to the list of active timers for handle.

 	Get the timed task handle in the list of active
 timers, and let task be the result. This algorithm uses the first
 argument to the method (handler) and, if there are any, the third and
 subsequent arguments to the method (arguments), to establish precisely what
 task does.

 	Let timeout be the second argument to the method, or zero if the
 argument was omitted.

 	If timeout is less than 4, then increase timeout
 to 4.

 	Return handle, and then continue running this algorithm
 asynchronously.

 	

 Wait: If the method context is a Window object,
 wait until the Document associated with the method context has been
 fully active for a further interval milliseconds (not
 necessarily consecutively).

 Otherwise, if the method context is a WorkerGlobalScope object,
 wait until interval milliseconds have passed with the worker not suspended
 (not necessarily consecutively).

 Otherwise, act as described in the specification that defines that the
 WindowTimers interface is implemented by some other object.

 	

 Optionally, wait a further user-agent defined length of time.

 This is intended to allow user agents to pad timeouts as needed to optimise the
 power usage of the device. For example, some processors have a low-power mode where the
 granularity of timers is reduced; on such platforms, user agents can slow timers down to fit
 this schedule instead of requiring the processor to use the more accurate mode with its
 associated higher power usage.

 	Queue the task task.

 	Return to the step labeled wait.

 The clearTimeout() and clearInterval() methods must clear the
 entry identified as handle from the list of active timers of the
 WindowTimers object on which the method was invoked, where handle
 is the argument passed to the method, if any. (If handle does not identify an
 entry in the list of active timers of the WindowTimers object on which
 the method was invoked, the method does nothing.)

 The method context, when referenced by the algorithms in this section, is the object
 on which the method for which the algorithm is running is implemented (a Window or
 WorkerGlobalScope object). The method context proxy is the method
 context if that is a WorkerGlobalScope object, or else the
 WindowProxy that corresponds to the method context.

 When the above methods are invoked and try to get the timed task handle in list list, they must run the following steps:

 	

 If the first argument to the invoked method is a Function, then return a task that runs the following substeps, and then abort these steps:

 	If the entry for handle in list has been
 cleared, then abort this task's substeps.

 	

 Call the Function. Use the third and subsequent arguments to the invoked
 method (if any) as the arguments for invoking the Function. Use the method
 context proxy as the thisArg for invoking the
 Function. [ECMA262]

 Otherwise, continue with the remaining steps.

 	Let script source be the first argument to the method.

 	Let script language be JavaScript.

 	

 If the method context is a Window object, let global
 object be the method context, let browsing context be the
 browsing context with which global object is associated, let
 document and referrer source be the
 Document associated with global object, let character encoding be the character
 encoding of the Document associated with global object
 (this is a reference, not a copy), and let base
 URL be the base URL of the Document
 associated with global object (this is a reference,
 not a copy).

 Otherwise, if the method context is a WorkerGlobalScope object, let
 global object, browsing context, document, referrer source, character
 encoding, and base URL be the script's global object,
 script's browsing context, script's document, script's referrer
 source, script's URL character encoding, and script's base URL
 (respectively) of the script that the algorithm created when it created the method context.

 Otherwise, act as described in the specification that defines that the
 WindowTimers interface is implemented by some other object.

 	Return a task that checks if the entry for handle in list has been cleared, and if it has not, creates a script using script source as the
 script source, the URL where script source can be found, scripting language as the scripting language, global object as
 the global object, browsing context as the browsing context, document as the document, referrer source as the referrer
 source, character encoding as the URL character encoding, and base URL as the base URL.

 The task source for these tasks is the
 timer task source.

 User prompts

 Simple dialogs

 	window . alert(message)

 	

 Displays a modal alert with the given message, and waits for the user to dismiss it.

 A call to the navigator.yieldForStorageUpdates()
 method is implied when this method is invoked.

 	result = window . confirm(message)

 	

 Displays a modal OK/Cancel prompt with the given message, waits
 for the user to dismiss it, and returns true if the user clicks OK
 and false if the user clicks Cancel.

 A call to the navigator.yieldForStorageUpdates()
 method is implied when this method is invoked.

 	result = window . prompt(message [, default])

 	

 Displays a modal text field prompt with the given message,
 waits for the user to dismiss it, and returns the value that the
 user entered. If the user cancels the prompt, then returns null
 instead. If the second argument is present, then the given value
 is used as a default.

 A call to the navigator.yieldForStorageUpdates()
 method is implied when this method is invoked.

 The alert(message) method, when
 invoked, must run the following steps:

 	If the event loop's termination nesting level is non-zero,
 optionally abort these steps.

 	Release the storage mutex.

 	Optionally, abort these steps. (For example, the user agent might give the user the option
 to ignore all alerts, and would thus abort at this step whenever the method was
 invoked.)

 	Show the given message to the user.

 	Optionally, pause while waiting for the user to acknowledge the
 message.

 The confirm(message) method,
 when invoked, must run the following steps:

 	If the event loop's termination nesting level is non-zero,
 optionally abort these steps, returning false.

 	Release the storage mutex.

 	Optionally, return false and abort these steps. (For example, the user agent might give
 the user the option to ignore all prompts, and would thus abort at this step whenever the method
 was invoked.)

 	Show the given message to the user, and ask the user to respond with a
 positive or negative response.

 	Pause until the user responds either positively or negatively.

 	If the user responded positively, return true; otherwise, the user responded negatively:
 return false.

 The prompt(message, default) method, when invoked, must run the following steps:

 	If the event loop's termination nesting level is non-zero,
 optionally abort these steps, returning null.

 	Release the storage mutex.

 	Optionally, return null and abort these steps. (For example, the user agent might give the
 user the option to ignore all prompts, and would thus abort at this step whenever the method was
 invoked.)

 	Show the given message to the user, and ask the user to either respond
 with a string value or abort. The response must be defaulted to the value given by
 default.

 	Pause while waiting for the user's response.

 	If the user aborts, then return null; otherwise, return the string that the user responded
 with.

 Printing

 	window . print()

 	

 Prompts the user to print the page.

 A call to the navigator.yieldForStorageUpdates()
 method is implied when this method is invoked.

 When the print() method
 is invoked, if the Document is ready for
 post-load tasks, then the user agent must synchronously run
 the printing steps. Otherwise, the user agent must only
 set the print when loaded flag on the
 Document.

 User agents should also run the printing steps
 whenever the user asks for the opportunity to obtain a
 physical form (e.g. printed copy), or the representation of a
 physical form (e.g. PDF copy), of a document.

 The printing steps are as follows:

 	

 The user agent may display a message to the user or
 abort these steps (or both).

 For instance, a kiosk browser could silently
 ignore any invocations of the print() method.

 For instance, a browser on a mobile device
 could detect that there are no printers in the vicinity and
 display a message saying so before continuing to offer a "save to
 PDF" option.

 	

 The user agent must fire a simple event named
 beforeprint at the
 Window object of the Document that is
 being printed, as well as any nested browsing contexts in it.

 The beforeprint event can be used
 to annotate the printed copy, for instance adding the time at
 which the document was printed.

 	

 The user agent must release the storage mutex.

 	

 The user agent should offer the user the opportunity to
 obtain a physical form (or the representation of a
 physical form) of the document. The user agent may wait for the
 user to either accept or decline before returning; if so, the user
 agent must pause while the method is waiting. Even if
 the user agent doesn't wait at this point, the user agent must use
 the state of the relevant documents as they are at this point in
 the algorithm if and when it eventually creates the alternate
 form.

 	

 The user agent must fire a simple event named
 afterprint at the
 Window object of the Document that is
 being printed, as well as any nested browsing contexts in it.

 The afterprint event can be used
 to revert annotations added in the earlier event, as well as
 showing post-printing UI. For instance, if a page is walking the
 user through the steps of applying for a home loan, the script
 could automatically advance to the next step after having printed
 a form or other.

 Dialogs implemented using separate documents

 	result = window . showModalDialog(url [, argument])

 	

 Prompts the user with the given page, waits for that page to
 close, and returns the return value.

 A call to the navigator.yieldForStorageUpdates()
 method is implied when this method is invoked.

 The showModalDialog(url, argument) method, when invoked,
 must cause the user agent to run the following steps:

 	

 Resolve url relative to the
 entry script's base URL.

 If this fails, then throw a SyntaxError exception and abort these steps.

 	If the event loop's termination nesting level is non-zero,
 optionally abort these steps, returning the empty string.

 	

 Release the storage mutex.

 	

 If the user agent is configured such that this invocation of showModalDialog() is somehow disabled, then return the empty
 string and abort these steps.

 User agents are expected to disable this method in certain cases to avoid user
 annoyance (e.g. as part of their popup blocker feature). For instance, a user agent could
 require that a site be white-listed before enabling this method, or the user agent could be
 configured to only allow one modal dialog at a time.

 	

 If the active sandboxing flag set of the active document of the
 browsing context of the incumbent
 script has its sandboxed auxiliary
 navigation browsing context flag set, then return the empty string and abort these
 steps.

 	

 Let incumbent origin be the effective script origin of the
 incumbent script at the time the showModalDialog() method was called.

 	

 Let the list of background browsing
 contexts be a list of all the browsing contexts that:

 	are part of the same unit of related browsing contexts as the browsing context
 of the Window object on which the showModalDialog() method was called, and that

 	have an active document whose origin is the same as incumbent origin,

 ...as well as any browsing contexts that are nested inside any
 of the browsing contexts matching those conditions.

 	

 Disable the user interface for all the browsing contexts in the list of
 background browsing contexts. This should prevent the user from navigating those browsing
 contexts, causing events to be sent to those browsing context, or editing any content in those
 browsing contexts. However, it does not prevent those browsing contexts from receiving events
 from sources other than the user, from running scripts, from running animations, and so
 forth.

 	

 Create a new auxiliary browsing context, with the opener browsing
 context being the browsing context of the Window object on which the showModalDialog() method was called. The new auxiliary
 browsing context has no name.

 This browsing context's Documents' Window
 objects all implement the WindowModal interface.

 	

 Set all the flags in the new browsing context's popup sandboxing flag set that
 are set in the active sandboxing flag set of the active document of
 the browsing context of the incumbent
 script. The browsing context of the incumbent script
 must be set as the new browsing context's one permitted sandboxed
 navigator.

 	

 Let the dialog arguments of the new browsing context be set to the value of argument, or the undefined value if the argument was omitted.

 	

 Let the dialog arguments' origin be incumbent origin.

 	

 Let the return value of the new browsing context be the undefined value.

 	

 Let the return value origin be incumbent origin.

 	

 Navigate the new browsing context to
 the absolute URL that resulted from resolving
 url earlier, with replacement enabled, and with the browsing context of the incumbent
 script as the source browsing
 context.

 	

 Spin the event loop until the new browsing context is closed. The user agent must allow the user to indicate
 that the browsing context is to be closed.

 	

 Reenable the user interface for all the browsing contexts in the list of
 background browsing contexts.

 	

 If the auxiliary browsing context's return value origin at
 the time the browsing context was closed was the same as incumbent origin,
 then let return value be the auxiliary browsing
 context's return value as it stood when the browsing context was closed.

 Otherwise, let return value be undefined.

 	

 Return return value.

 The Window objects of Documents hosted by browsing contexts created by the above algorithm must also implement the
 WindowModal interface.

 When this happens, the members of the WindowModal interface, in
 JavaScript environments, appear to actually be part of the Window interface (e.g.
 they are on the same prototype chain as the window.alert()
 method).

 [NoInterfaceObject] interface WindowModal {
 readonly attribute any dialogArguments;
 attribute any returnValue;
};

 	window . dialogArguments

 	

 Returns the argument argument that was passed to the showModalDialog() method.

 	window . returnValue [= value]

 	

 Returns the current return value for the window.

 Can be set, to change the value that will be returned by the showModalDialog() method.

 Such browsing contexts have associated dialog arguments, which are stored along with
 the dialog arguments' origin. These values are set by the showModalDialog() method in the algorithm above, when the
 browsing context is created, based on the arguments provided to the method.

 The dialogArguments IDL
 attribute, on getting, must check whether its browsing context's active document's
 effective script origin is the same as the dialog arguments'
 origin. If it is, then the browsing context's dialog arguments must be
 returned unchanged. Otherwise, the IDL attribute must return undefined.

 These browsing contexts also have an associated return value and return value
 origin. As with the previous two values, these values are set by the showModalDialog() method in the algorithm above, when the
 browsing context is created.

 The returnValue IDL attribute, on
 getting, must check whether its browsing context's active document's effective
 script origin is the same as the current return
 value origin. If it is, then the browsing context's return value must be
 returned unchanged. Otherwise, the IDL attribute must return undefined. On setting, the
 attribute must set the return value to the given new value, and the return
 value origin to the browsing context's active document's effective
 script origin.

 The window.close() method can be used to
 close the browsing context.

 System state and capabilities

 The Navigator object

 The navigator attribute of the
 Window interface must return an instance of the Navigator interface,
 which represents the identity and state of the user agent (the client), and allows Web pages to
 register themselves as potential protocol and content handlers:

 interface Navigator {
 // objects implementing this interface also implement the interfaces given below
};
Navigator implements NavigatorID;
Navigator implements NavigatorLanguage;
Navigator implements NavigatorOnLine;
Navigator implements NavigatorContentUtils;
Navigator implements NavigatorStorageUtils;

 These interfaces are defined separately so that other specifications can re-use parts of the
 Navigator interface.

 Client identification

 [NoInterfaceObject]
interface NavigatorID {
 readonly attribute DOMString appName;
 readonly attribute DOMString appVersion;
 readonly attribute DOMString platform;
 readonly attribute DOMString product;
 readonly attribute DOMString userAgent;
};

 In certain cases, despite the best efforts of the entire
 industry, Web browsers have bugs and limitations that Web authors
 are forced to work around.

 This section defines a collection of attributes that can be used
 to determine, from script, the kind of user agent in use, in order
 to work around these issues.

 Client detection should always be limited to detecting known
 current versions; future versions and unknown versions should always
 be assumed to be fully compliant.

 	window . navigator . appName

 	
 Returns the name of the browser.

 	window . navigator . appVersion

 	
 Returns the version of the browser.

 	window . navigator . platform

 	
 Returns the name of the platform.

 	window . navigator . product

 	
 Returns the string "Gecko".

 	window . navigator . userAgent

 	
 Returns the complete User-Agent header.

 	appName

 	Must return either the string "Netscape" or the full name of the browser, e.g. "Mellblom Browsernator".

 	appVersion

 	Must return either the string "4.0" or a string representing the version of the browser in detail, e.g. "1.0 (VMS; en-US) Mellblomenator/9000".

 	platform

 	Must return either the empty string or a string representing the platform on which the browser is executing, e.g. "MacIntel", "Win32", "FreeBSD i386", "WebTV OS".

 	product

 	Must return the string "Gecko".

 	userAgent

 	Must return the string used for the value of the "User-Agent" header in HTTP requests, or the empty string if no such header is ever sent.

 Any information in this API that varies from user
 to user can be used to profile the user. In fact, if enough such
 information is available, a user can actually be uniquely
 identified. For this reason, user agent implementors are strongly
 urged to include as little information in this API as possible.
 [image: (This is a fingerprinting vector.)]

 Language preferences

 [NoInterfaceObject]
interface NavigatorLanguage {
 readonly attribute DOMString? language;
};

 	window . navigator . language

 	
 Returns a language tag representing the user's preferred language.

 	language

 	Must return either the string "en" or a language tag representing the user's preferred language.

 As for the API in the previous section, any information in this API that varies
 from user to user can be used to profile or identify the user. For this reason, user agent
 implementors are encouraged to return "en" unless the user has explicitly indicated that the site
 in question is allowed access to the information.
 [image: (This is a fingerprinting vector.)]

 Custom scheme and content handlers

 [NoInterfaceObject]
interface NavigatorContentUtils {
 // content handler registration
 void registerProtocolHandler(DOMString scheme, DOMString url, DOMString title);
 void registerContentHandler(DOMString mimeType, DOMString url, DOMString title);
 DOMString isProtocolHandlerRegistered(DOMString scheme, DOMString url);
 DOMString isContentHandlerRegistered(DOMString mimeType, DOMString url);
 void unregisterProtocolHandler(DOMString scheme, DOMString url);
 void unregisterContentHandler(DOMString mimeType, DOMString url);
};

 The registerProtocolHandler() method
 allows Web sites to register themselves as possible handlers for particular schemes. For example,
 an online telephone messaging service could register itself as a handler of the sms:
 scheme, so that if the user clicks on such a link, he is given the opportunity to use that Web
 site. Analogously, the registerContentHandler() method
 allows Web sites to register themselves as possible handlers for content in a particular
 MIME type. For example, the same online telephone messaging service could register
 itself as a handler for text/vcard files, so that if the user has no native
 application capable of handling vCards, his Web browser can instead suggest he use that site to
 view contact information stored on vCards that he opens. [RFC5724] RFC6350

 	window . navigator . registerProtocolHandler(scheme, url, title)

 	window . navigator . registerContentHandler(mimeType, url, title)

 	

 Registers a handler for the given scheme or content type, at the given URL, with the given
 title.

 The string "%s" in the URL is used as a placeholder for where to put
 the URL of the content to be handled.

 Throws a SecurityError exception if the user agent blocks the registration (this
 might happen if trying to register as a handler for "http", for instance).

 Throws a SyntaxError exception if the "%s" string is
 missing in the URL.

 User agents may, within the constraints described in this section, do whatever they like when
 the methods are called. A UA could, for instance, prompt the user and offer the user the
 opportunity to add the site to a shortlist of handlers, or make the handlers his default, or
 cancel the request. UAs could provide such a UI through modal UI or through a non-modal transient
 notification interface. UAs could also simply silently collect the information, providing it only
 when relevant to the user.

 User agents should keep track of which sites have registered handlers (even if the user has
 declined such registrations) so that the user is not repeatedly prompted with the same
 request.

 The arguments to the methods have the following meanings and corresponding implementation
 requirements. The requirements that involve throwing exceptions must be processed in the order
 given below, stopping at the first exception thrown. (So the exceptions for the first argument
 take precedence over the exceptions for the second argument.)

 	scheme (registerProtocolHandler() only)

 	

 A scheme, such as mailto or web+auth. The scheme must be compared
 in an ASCII case-insensitive manner by user agents for the purposes of comparing
 with the scheme part of URLs that they consider against the list of registered handlers.

 The scheme value, if it contains a colon (as in "mailto:"),
 will never match anything, since schemes don't contain colons.

 If the registerProtocolHandler()
 method is invoked with a scheme that is neither a whitelisted scheme nor a scheme
 whose value starts with the substring "web+" and otherwise contains only
 lowercase ASCII letters, and whose length is at least five characters (including
 the "web+" prefix), the user agent must throw a SecurityError
 exception.

 The following schemes are the whitelisted schemes:

 	bitcoin

 	irc

 	geo

 	mailto

 	magnet

 	mms

 	news

 	nntp

 	sip

 	sms

 	smsto

 	ssh

 	tel

 	urn

 	webcal

 	xmpp

 This list can be changed. If there are schemes that should be added, please send
 feedback.

 This list excludes any schemes that could reasonably be expected to be supported
 inline, e.g. in an iframe, such as http or (more
 theoretically) gopher. If those were supported, they could potentially be
 used in man-in-the-middle attacks, by replacing pages that have frames with such content with
 content under the control of the protocol handler. If the user agent has native support for the
 schemes, this could further be used for cookie-theft attacks.

 	mimeType (registerContentHandler() only)

 	

 A MIME type, such as model/vnd.flatland.3dml or
 application/vnd.google-earth.kml+xml. The MIME type must be compared
 in an ASCII case-insensitive manner by user agents for the purposes of comparing
 with MIME types of documents that they consider against the list of registered handlers.

 User agents must compare the given values only to the MIME type/subtype parts of content
 types, not to the complete type including parameters. Thus, if mimeType
 values passed to this method include characters such as commas or whitespace, or include MIME
 parameters, then the handler being registered will never be used.

 The type is compared to the MIME type used by the user agent
 after the sniffing algorithms have been applied.

 If the registerContentHandler()
 method is invoked with a MIME type that is in the type blacklist or
 that the user agent has deemed a privileged type, the user agent must throw a
 SecurityError exception.

 The following MIME types are in the type
 blacklist:

 	application/x-www-form-urlencoded

 	application/xhtml+xml

 	application/xml

 	image/gif

 	image/jpeg

 	image/png

 	image/svg+xml

 	multipart/x-mixed-replace

 	text/cache-manifest

 	text/css

 	text/html

 	text/ping

 	text/plain

 	text/xml

 	All types that the user agent supports displaying natively in a browsing context during navigation, except for application/rss+xml and application/atom+xml

 This list can be changed. If there are MIME types that should be added, please
 send feedback.

 	url

 	

 A string used to build the URL of the page that will handle the requests.

 User agents must throw a SyntaxError exception if the url
 argument passed to one of these methods does not contain the exact literal string
 "%s".

 User agents must throw a SyntaxError exception if resolving the url argument relative to the entry
 script's base URL, is not successful.

 The resulting absolute URL would by definition not be a valid
 URL as it would include the string "%s" which is not a valid
 component in a URL.

 User agents must throw a SecurityError exception if the resulting absolute
 URL has an origin that differs from the origin of the
 entry script.

 This is forcibly the case if the %s placeholder is in the
 scheme, host, or port parts of the URL.

 The resulting absolute URL is the proto-URL. It identifies the
 handler for the purposes of the methods described below.

 When the user agent uses this handler, it must replace the first occurrence of the exact
 literal string "%s" in the url argument with an
 escaped version of the absolute URL of the content in question (as defined below),
 then resolve the resulting URL, relative to the base URL of the entry script at the time the registerContentHandler() or registerProtocolHandler() methods were
 invoked, and then navigate an appropriate browsing
 context to the resulting URL using the GET method (or equivalent for non-HTTP URLs).

 To get the escaped version of the absolute URL of the content in question, the
 user agent must replace every character in that absolute URL that is not a
 character in the URL default encode set with the result of UTF-8 percent encoding that character.

 If the user had visited a site at http://example.com/ that made the
 following call:

 navigator.registerContentHandler('application/x-soup', 'soup?url=%s', 'SoupWeb™')

 ...and then, much later, while visiting http://www.example.net/,
 clicked on a link such as:

 Download our Chicken Kïwi soup!

 ...then, assuming this chickenkïwi.soup file was served with the
 MIME type application/x-soup, the UA might navigate to the following
 URL:

 http://example.com/soup?url=http://www.example.net/chickenk%C3%AFwi.soup

 This site could then fetch the chickenkïwi.soup file and do whatever it is
 that it does with soup (synthesize it and ship it to the user, or whatever).

 	title

 	

 A descriptive title of the handler, which the UA might use to remind the user what the site
 in question is.

 This section does not define how the pages registered by these methods are used, beyond the
 requirements on how to process the url value (see above). To some extent, the
 processing model for navigating across documents defines some cases
 where these methods are relevant, but in general UAs may use this information wherever they would
 otherwise consider handing content to native plugins or helper applications.

 UAs must not use registered content handlers to handle content that was returned as part of a
 non-GET transaction (or rather, as part of any non-idempotent transaction), as the remote site
 would not be able to fetch the same data.

 In addition to the registration methods, there are also methods for determining if particular
 handlers have been registered, and for unregistering handlers.

 	state = window . navigator . isProtocolHandlerRegistered(scheme, url)

 	state = window . navigator . isContentHandlerRegistered(mimeType, url)

 	

 Returns one of the following strings describing the state of the handler given by the
 arguments:

 	new

	Indicates that no attempt has been made to register the given handler (or that the handler
 has been unregistered). It would be appropriate to promote the availability of the handler or
 to just automatically register the handler.

	registered

	Indicates that the given handler has been registered or that the site is blocked from
 registering the handler. Trying to register the handler again would have no effect.

	declined

	Indicates that the given handler has been offered but was rejected. Trying to register the
 handler again may prompt the user again.

 	state = window . navigator . unregisterProtocolHandler(scheme, url)

 	state = window . navigator . unregisterContentHandler(mimeType, url)

 	

 Unregisters the handler given by the arguments.

 The isProtocolHandlerRegistered()
 method must return the handler state string that most closely describes the current
 state of the handler described by the two arguments to the method, where the first argument gives
 the scheme and the second gives the string used to build the URL of the page that
 will handle the requests.
 [image: (This is a fingerprinting vector.)]

 The first argument must be compared to the schemes for which custom protocol handlers are
 registered in an ASCII case-insensitive manner to find the relevant handlers.

 The second argument must be preprocessed as described below, and if that is successful, must
 then be matched against the proto-URLs of the relevant handlers to
 find the described handler.

 The isContentHandlerRegistered()
 method must return the handler state string that most closely describes the current
 state of the handler described by the two arguments to the method, where the first argument gives
 the MIME type and the second gives the string used to build the URL of
 the page that will handle the requests.
 [image: (This is a fingerprinting vector.)]

 The first argument must be compared to the MIME types for which
 custom content handlers are registered in an ASCII case-insensitive manner to find
 the relevant handlers.

 The second argument must be preprocessed as described below, and if that is successful, must
 then be matched against the proto-URLs of the relevant handlers to
 find the described handler.

 The handler state strings are the following strings.
 Each string describes several situations, as given by the following list.

 	new

	The described handler has never been registered for the given scheme or type.

	The described handler was once registered for the given scheme or type, but the site has
 since unregistered it. If the handler were to be reregistered, the user would be notified
 accordingly.

	The described handler was once registered for the given scheme or type, but the site has
 since unregistered it, but the user has indicated that the site is to be blocked from registering
 the type again, so the user agent would ignore further registration attempts.

	registered

	An attempt was made to register the described handler for the given scheme or type, but the
 user has not yet been notified, and the user agent would ignore further registration attempts.
 (Maybe the user agent batches registration requests to display them when the user requests to be
 notified about them, and the user has not yet requested that the user agent notify it of the
 previous registration attempt.)

	The described handler is registered for the given scheme or type (maybe, or maybe not, as the
 default handler).

	The described handler is permanently blocked from being (re)registered. (Maybe the user
 marked the registration attempt as spam, or blocked the site for other reasons.)

	declined

	An attempt was made to register the described handler for the given scheme or type, but the
 user has not yet been notified; however, the user might be notified if another registration
 attempt were to be made. (Maybe the last registration attempt was made while the page was in the
 background and the user closed the page without looking at it, and the user agent requires
 confirmation for this registration attempt.)

	An attempt was made to register the described handler for the given scheme or type, but the
 user has not yet responded.

	An attempt was made to register the described handler for the given scheme or type, but the
 user declined the offer. The user has not indicated that the handler is to be permanently
 blocked, however, so another attempt to register the described handler might result in the user
 being prompted again.

	The described handler was once registered for the given scheme or type, but the user has
 since removed it. The user has not indicated that the handler is to be permanently blocked,
 however, so another attempt to register the described handler might result in the user being
 prompted again.

 The unregisterProtocolHandler()
 method must unregister the handler described by the two arguments to the method, where the first
 argument gives the scheme and the second gives the string used to build the URL of
 the page that will handle the requests.

 The first argument must be compared to the schemes for which custom protocol handlers are
 registered in an ASCII case-insensitive manner to find the relevant handlers.

 The second argument must be preprocessed as described below, and if that is successful, must
 then be matched against the proto-URLs of the relevant handlers to
 find the described handler.

 The unregisterContentHandler()
 method must unregister the handler described by the two arguments to the method, where the first
 argument gives the MIME type and the second gives the string used to build the
 URL of the page that will handle the requests.

 The first argument must be compared to the MIME types for which
 custom content handlers are registered in an ASCII case-insensitive manner to find
 the relevant handlers.

 The second argument must be preprocessed as described below, and if that is successful, must
 then be matched against the proto-URLs of the relevant handlers to
 find the described handler.

 The second argument of the four methods described above must be preprocessed as follows:

 	If the string does not contain the substring "%s", abort these
 steps. There's no matching handler.

 	Resolve the string relative to the base URL of the entry script.

 	If this fails, then throw a SyntaxError exception, aborting the
 method.

 	If the resulting absolute URL's origin is not the same
 origin as that of the entry script, throw a SecurityError
 exception, aborting the method.

 	Return the resulting absolute URL as the result of preprocessing the
 argument.

 Security and privacy

 These mechanisms can introduce a number of concerns, in particular privacy concerns.

 Hijacking all Web usage. User agents should not allow schemes that are key to
 its normal operation, such as http or https, to be rerouted through
 third-party sites. This would allow a user's activities to be trivially tracked, and would allow
 user information, even in secure connections, to be collected.

 Hijacking defaults. User agents are strongly urged to not automatically change
 any defaults, as this could lead the user to send data to remote hosts that the user is not
 expecting. New handlers registering themselves should never automatically cause those sites to be
 used.

 Registration spamming. User agents should consider the possibility that a site
 will attempt to register a large number of handlers, possibly from multiple domains (e.g. by
 redirecting through a series of pages each on a different domain, and each registering a handler
 for video/mpeg — analogous practices abusing other Web browser features have
 been used by pornography Web sites for many years). User agents should gracefully handle such
 hostile attempts, protecting the user.

 Misleading titles. User agents should not rely wholly on the title argument to the methods when presenting the registered handlers to the user,
 since sites could easily lie. For example, a site hostile.example.net could claim
 that it was registering the "Cuddly Bear Happy Content Handler". User agents should therefore use
 the handler's domain in any UI along with any title.

 Hostile handler metadata. User agents should protect against typical attacks
 against strings embedded in their interface, for example ensuring that markup or escape characters
 in such strings are not executed, that null bytes are properly handled, that over-long strings do
 not cause crashes or buffer overruns, and so forth.

 Leaking Intranet URLs. The mechanism described in this section can result in
 secret Intranet URLs being leaked, in the following manner:

 	The user registers a third-party content handler as the default handler for a content
 type.

 	The user then browses his corporate Intranet site and accesses a document that uses that
 content type.

 	The user agent contacts the third party and hands the third party the URL to the Intranet
 content.

 No actual confidential file data is leaked in this manner, but the URLs themselves could
 contain confidential information. For example, the URL could be
 http://www.corp.example.com/upcoming-aquisitions/the-sample-company.egf, which might
 tell the third party that Example Corporation is intending to merge with The Sample Company.
 Implementors might wish to consider allowing administrators to disable this feature for certain
 subdomains, content types, or schemes.

 Leaking secure URLs. User agents should not send HTTPS URLs to third-party
 sites registered as content handlers without the user's informed consent, for the same reason that
 user agents sometimes avoid sending Referer (sic) HTTP headers
 from secure sites to third-party sites.

 Leaking credentials. User agents must never send username or password
 information in the URLs that are escaped and included sent to the handler sites. User agents may
 even avoid attempting to pass to Web-based handlers the URLs of resources that are known to
 require authentication to access, as such sites would be unable to access the resources in
 question without prompting the user for credentials themselves (a practice that would require the
 user to know whether to trust the third-party handler, a decision many users are unable to make or
 even understand).

 Interface interference. User agents should be prepared to handle intentionally
 long arguments to the methods. For example, if the user interface exposed consists of an "accept"
 button and a "deny" button, with the "accept" binding containing the name of the handler, it's
 important that a long name not cause the "deny" button to be pushed off the screen.

 Fingerprinting users. Since a site can detect if it has attempted to register
 a particular handler or not, whether or not the user responds, the mechanism can be used to store
 data. User agents are therefore strongly urged to treat registrations in the same manner as
 cookies: clearing cookies for a site should also clear all registrations for that site, and
 disabling cookies for a site should also disable registrations.

 Sample user interface

 This section is non-normative.

 A simple implementation of this feature for a desktop Web browser might work as follows.

 The registerContentHandler() method
 could display a modal dialog box:

 [image: The modal dialog box could have the title 'Content Handler Registration', and could say 'This Web page: Kittens at work http://kittens.example.org/ ...would like permission to handle files of type: application/x-meowmeow using the following Web-based application: Kittens-at-work displayer http://kittens.example.org/?show=%s Do you trust the administrators of the "kittens.example.org" domain?' with two buttons, 'Trust kittens.example.org' and 'Cancel'.]

 In this dialog box, "Kittens at work" is the title of the page that invoked the method,
 "http://kittens.example.org/" is the URL of that page, "application/x-meowmeow" is the string that
 was passed to the registerContentHandler() method as its first
 argument (mimeType), "http://kittens.example.org/?show=%s" was the second
 argument (url), and "Kittens-at-work displayer" was the third argument (title).

 If the user clicks the Cancel button, then nothing further happens. If the user clicks the
 "Trust" button, then the handler is remembered.

 When the user then attempts to fetch a URL that uses the "application/x-meowmeow" MIME
 type, then it might display a dialog as follows:

 [image: The dialog box could have the title 'Unknown File Type' and could say 'You have attempted to access:' followed by a URL, followed by a prompt such as 'How would you like FerretBrowser to handle this resource?' with three radio buttons, one saying 'Contact the FerretBrowser plugin registry to see if there is an official way to handle this resource.', one saying 'Pass this URL to a local application' with an application selector, and one saying 'Pass this URL to the "Kittens-at-work displayer" application at "kittens.example.org"', with a checkbox labeled 'Always do this for resources using the "application/x-meowmeow" type in future.', and with two buttons, 'Ok' and 'Cancel'.]

 In this dialog, the third option is the one that was primed by the site registering itself
 earlier.

 If the user does select that option, then the browser, in accordance with the requirements
 described in the previous two sections, will redirect the user to
 "http://kittens.example.org/?show=data%3Aapplication/x-meowmeow;base64,S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

 The registerProtocolHandler() method
 would work equivalently, but for schemes instead of unknown content types.

 Manually releasing the storage mutex

 [NoInterfaceObject]
interface NavigatorStorageUtils {
 void yieldForStorageUpdates();
};

 	window . navigator . yieldForStorageUpdates()

 	

 If a script uses the document.cookie API, or the
 localStorage API, the
 browser will block other scripts from accessing cookies or storage
 until the first script finishes.
 [WEBSTORAGE]

 Calling the navigator.yieldForStorageUpdates()
 method tells the user agent to unblock any other scripts that may
 be blocked, even though the script hasn't returned.

 Values of cookies and items in the Storage objects
 of localStorage attributes
 can change after calling this method, whence its name.
 [WEBSTORAGE]

 The yieldForStorageUpdates() method,
 when invoked, must, if the storage mutex is owned by the event loop of
 the task that resulted in the method being called, release the
 storage mutex so that it is once again free. Otherwise, it must do nothing.

 The External interface

 The external attribute of the Window
 interface must return an instance of the External interface. The same object must be
 returned each time.

 interface External {
 void AddSearchProvider(DOMString engineURL);
 unsigned long IsSearchProviderInstalled(DOMString engineURL);
};

 	window . external . AddSearchProvider(url)

 	

 Adds the search engine described by the OpenSearch description
 document at url. [OPENSEARCH]

 The OpenSearch description document has to be on the same
 server as the script that calls this method.

 	installed = window . external . IsSearchProviderInstalled(url)

 	

 Returns a value based on comparing url to
 the URLs of the results pages of the installed search engines.

 	0
	None of the installed search engines match url.

	1
	One or more installed search engines match url, but none are the user's default search engine.

	2
	The user's default search engine matches url.

 The url is compared to the URLs of the
 results pages of the installed search engines using a prefix
 match. Only results pages on the same domain as the script that
 calls this method are checked.

 Another way of exposing search engines using
 OpenSearch description documents is using a link
 element with the search link
 type.

 The AddSearchProvider()
 method, when invoked, must run the following steps:

 	Optionally, abort these steps. User agents may implement
 the method as a stub method that never does anything, or may
 arbitrarily ignore invocations with particular arguments for
 security, privacy, or usability reasons.

 	Resolve the value of the
 method's first argument relative to the entry
 script's base
 URL.

 	If this fails, abort these steps.

 	Process the resulting absolute URL as the
 URL to an OpenSearch description document. [OPENSEARCH]

 The IsSearchProviderInstalled()
 method, when invoked, must run the following steps:
 [image: (This is a fingerprinting vector.)]

 	Optionally, return 0 and abort these steps. User agents may
 implement the method as a stub method that never returns a
 non-zero value, or may arbitrarily ignore invocations with
 particular arguments for security, privacy, or usability
 reasons.

 	If the origin of the entry script
 is an opaque identifier (i.e. it has no host component), then
 return 0 and abort these steps.

 	Let host1 be the host component of the
 origin of the entry script.

 	Resolve the scriptURL argument relative to the entry
 script's base
 URL.

 	If this fails, return 0 and abort these steps.

 	Let host2 be the host component of the resulting
 parsed URL.

 	

 If the longest suffix in the Public Suffix List that matches
 the end of host1 is different than the
 longest suffix in the Public Suffix List that matches the end of
 host2, then return 0 and abort these steps.
 [PSL]

 If the next domain component of host1 and
 host2 after their common suffix are not the
 same, then return 0 and abort these steps.

 	Let search engines be the list of
 search engines known by the user agent and made available to the
 user by the user agent for which the resulting absolute
 URL is a prefix match of the search engine's
 URL, if any. For search engines registered using
 OpenSearch description documents, the URL of the
 search engine corresponds to the URL given in a Url element whose rel
 attribute is "results" (the default). [OPENSEARCH]

 	If search engines is empty, return 0
 and abort these steps.

 	If the user's default search engine (as determined by the
 user agent) is one of the search engines in search
 engines, then return 2 and abort these steps.

 	Return 1.

User interaction

 The hidden attribute

 All HTML elements may have the hidden content attribute set. The hidden attribute is a boolean
 attribute. When specified on an element, it indicates that
 the element is not yet, or is no longer, directly relevant to the
 page's current state, or that it is being used to declare content to
 be reused by other parts of the page as opposed to being directly
 accessed by the user.

 In the following skeletal example, the attribute is used to hide
 the Web game's main screen until the user logs in:

 <h1>The Example Game</h1>
 <section id="login">
 <h2>Login</h2>
 <form>
 ...
 <!-- calls login() once the user's credentials have been checked -->
 </form>
 <script>
 function login() {
 // switch screens
 document.getElementById('login').hidden = true;
 document.getElementById('game').hidden = false;
 }
 </script>
 </section>
 <section id="game" hidden>
 ...
 </section>

 The hidden attribute must not be
 used to hide content that could legitimately be shown in another
 presentation. For example, it is incorrect to use hidden to hide panels in a tabbed dialog,
 because the tabbed interface is merely a kind of overflow
 presentation — one could equally well just show all the form
 controls in one big page with a scrollbar. It is similarly incorrect
 to use this attribute to hide content just from one presentation
 — if something is marked hidden, it is hidden from all
 presentations, including, for instance, printers.

 Elements that are not themselves hidden must not hyperlink to
 elements that are hidden. The for attributes of label and
 output elements that are not themselves hidden must similarly not refer to
 elements that are hidden. In both
 cases, such references would cause user confusion.

 Elements and scripts may, however, refer to elements that are
 hidden in other contexts.

 For example, it would be incorrect to use the href attribute to link to a
 section marked with the hidden
 attribute. If the content is not applicable or relevant, then there
 is no reason to link to it.

 It would be fine, however, to use the ARIA aria-describedby attribute to
 refer to descriptions that are themselves hidden. While hiding the descriptions
 implies that they are not useful alone, they could be written in
 such a way that they are useful in the specific context of being
 referenced from the images that they describe.

 Similarly, a canvas element with the hidden attribute could be used by a
 scripted graphics engine as an off-screen buffer, and a form
 control could refer to a hidden form element using its
 form attribute.

 Accessibility APIs are encouraged to provide a way to expose
 structured content while marking it as hidden in the default view.
 Such content should not be perceivable to users in the normal document
 flow in any modality, whether using Assistive Technology (AT) or
 mainstream User Agents.

 When such features are available, User Agents may use them to
 expose the full semantics of hidden
 elements to AT when appropriate, if such content is referenced
 indirectly by an ID reference or
 valid hash-name reference. This allows ATs to access the
 structure of these hidden elements
 upon user request, while keeping the content hidden in all
 presentations of the normal document flow. Authors who wish to prevent
 user-initiated viewing of a hidden
 element should not reference the element with such a mechanism.

 Because some User Agents have flattened hidden content when
 exposing such content to AT, authors should not reference hidden content which would lose essential
 meaning when flattened.

 For example, it would be appropriate for the structure of hidden table headers referenced from a
 headers attribute to be exposed
 to users of AT with such an API.

 Cases where it would be inappropriate for the structure of hidden elements to be exposed to users of
 AT with such an API include:

 	a hidden element referenced by
 an href attribute within the
 same document

 	a hidden form element referenced
 by a label element's for attribute (because the sorts of
 elements referenced from a label element's for attribute lose meaning when
 flattened)

 Specifications which define elements and attributes which may be
 included in conforming HTML5
 documents (such as SVG, MathML, and WAI-ARIA) may define how or
 whether this applies to their elements and attributes. [ARIA] [MATHML] [SVG]

 Elements in a section hidden by the hidden attribute are still active,
 e.g. scripts and form controls in such sections still execute
 and submit respectively. Only their presentation to the user
 changes.

 The hidden IDL
 attribute must reflect the content attribute of the
 same name.

 Inert subtrees

 A subtree of a Document can be marked as
 inert. When a node or one of its ancestors is
 inert, then the user agent must act as if the element
 was absent for the purposes of targeting user interaction events,
 may ignore the node for the purposes of text search user interfaces
 (commonly known as "find in page"), and may prevent the user from
 selecting text in that node. User agents should allow the user to
 override the restrictions on search and text selection, however.

 For example, consider a page that consists of
 just a single inert paragraph positioned in the middle
 of a body. If a user moves their pointing device from
 the body over to the inert paragraph and
 clicks on the paragraph, no mouseover event would be fired, and
 the mousemove and click events would be fired on the
 body element rather than the paragraph.

 When a node or one of its ancestors is inert, it
 also can't be focusable.

 An entire Document can be marked as blocked by
 a modal dialog subject. While a
 Document is so marked, every node that is in the Document, with the
 exception of the subject element, its ancestors,
 and its descendants, must be marked inert. (The
 elements excepted by this paragraph can additionally be marked
 inert through other means; being part of a modal dialog
 does not "protect" a node from being marked inert.)

 Only one element at a time can mark a Document as
 being blocked by a modal dialog. When a new
 dialog is made to block a Document, the previous element,
 if any, stops blocking the Document.

 The dialog element's showModal() method makes use of
 this mechanism.

 Activation

 	element . click()

 	

 Acts as if the element was clicked.

 The click() method must
 run synthetic click activation steps on the
 element.

 Focus

 When an element is focused, key events received by the
 document must be targeted at that element. There may be no element
 focused; when no element is focused, key events received by the
 document must be targeted at the body element, if there
 is one, or else at the Document's root element, if
 there is one. If there is no root element, key events must not be
 fired.

 User agents may track focus for each browsing
 context or Document individually, or may support
 only one focused element per top-level browsing context
 — user agents should follow platform conventions in this
 regard.

 Which elements within a top-level browsing context
 currently have focus must be independent of whether or not the
 top-level browsing context itself has the system
 focus.

 When a child browsing
 context is focused, its browsing context
 container must also have focus.

 When an element is focused, the element matches the
 CSS :focus pseudo-class.

 Sequential focus navigation and the tabindex attribute

 The tabindex
 content attribute allows authors to control whether an element is
 supposed to be focusable, whether it is supposed to be reachable
 using sequential focus navigation, and what is to be the relative
 order of the element for the purposes of sequential focus
 navigation. The name "tab index" comes from the common use of the
 "tab" key to navigate through the focusable elements. The term
 "tabbing" refers to moving forward through the focusable elements
 that can be reached using sequential focus navigation.

 The tabindex attribute, if
 specified, must have a value that is a valid
 integer.

 Each element can have a tabindex focus flag set, as defined
 below. This flag is a factor that contributes towards determining whether an element is
 focusable, as described in the next section.

 If the attribute is specified, it must be parsed using the
 rules for parsing integers. The attribute's values have
 the following meanings:

 	If the attribute is omitted or parsing the value returns an
 error

 	

 The user agent should follow platform conventions to determine
 if the element's tabindex focus flag is set and, if
 so, whether the element can be reached using sequential focus
 navigation, and if so, what its relative order should be.

 Modulo platform conventions, it is suggested that for the following elements, the
 tabindex focus flag be set:

 	a elements that have an href attribute

 	link elements that have an href attribute

 	button elements

 	input elements whose type attribute are not in the
 Hidden state

 	select elements

 	textarea elements

 	Elements with a draggable
 attribute set, if that would enable the user agent to allow the
 user to begin a drag operations for those elements without the use
 of a pointing device

 	Editing hosts

 	Browsing context
 containers

 	

 One valid reason to ignore the platform
 conventions and always allow an element to be focused (by setting
 its tabindex focus flag) would be if the user's only
 mechanism for activating an element is through a keyboard action
 that triggers the focused element.

 	If the value is a negative integer

 	

 The user agent must set the element's tabindex focus
 flag, but should not allow the element to be reached using
 sequential focus navigation.

 One valid reason to ignore the requirement that
 sequential focus navigation not allow the author to lead to the
 element would be if the user's only mechanism for moving the focus
 is sequential focus navigation. For instance, a keyboard-only user
 would be unable to click on a text field with a negative tabindex, so that user's user agent
 would be well justified in allowing the user to tab to the control
 regardless.

 	If the value is a zero

 	

 The user agent must set the element's tabindex focus
 flag, should allow the element to be reached using
 sequential focus navigation, and should follow platform
 conventions to determine the element's relative order.

 	If the value is greater than zero

 	

 The user agent must set the element's tabindex focus
 flag, should allow the element to be reached using
 sequential focus navigation, and should place the element in the
 sequential focus navigation order so that it is:

 	before any focusable element whose tabindex attribute has been omitted
 or whose value, when parsed, returns an error,

 	before any focusable element whose tabindex attribute has a value equal
 to or less than zero,

 	after any element whose tabindex attribute has a value
 greater than zero but less than the value of the tabindex attribute on the
 element,

 	after any element whose tabindex attribute has a value equal
 to the value of the tabindex
 attribute on the element but that is earlier in the document in
 tree order than the element,

 	before any element whose tabindex attribute has a value equal
 to the value of the tabindex
 attribute on the element but that is later in the document in
 tree order than the element, and

 	before any element whose tabindex attribute has a value
 greater than the value of the tabindex attribute on the
 element.

 An element that has its tabindex focus flag set but
 does not otherwise have an activation behavior defined
 has an activation behavior that does nothing.

 This means that an element that is only focusable
 because of its tabindex attribute
 will fire a click event in response
 to a non-mouse activation (e.g. hitting the "enter" key while the
 element is focused).

 The tabIndex IDL
 attribute must reflect the value of the tabindex content attribute. Its default
 value is 0 for elements that are focusable and −1 for
 elements that are not focusable.

 Focus management

 An element is focusable if all of the following conditions are met:

 	The element's tabindex focus flag is set.

 	The element is either being rendered or is a
 descendant of a canvas element that represents embedded
 content.

 	Neither the element nor any of its ancestors are inert.

 	The element is not disabled.

 In addition, each shape that is generated for an area element, any
 user-agent-provided interface components of media elements
 (e.g. a play button), and distinct user interface components of form controls (e.g. "up" and
 "down" buttons on an <input type=number> spin
 control), should be focusable, unless platform conventions dictate otherwise or
 unless their corresponding element is disabled. (A
 single area element can correspond to multiple shapes, since image maps can be reused
 with multiple images on a page.)

 The user agent may also make part of a details element's rendering
 focusable, to enable the element to be opened or closed using keyboard input.
 However, this is distinct from the details or summary element being
 focusable.

 Notwithstanding the above, user agents may make any element or part of an element
 focusable, especially to aid with accessibility or to better match platform conventions.

 The focusing steps for an element are as follows:

 	If the element is not in a
 Document, or if the element's
 Document has no browsing context, or if
 the element's Document's browsing context
 has no top-level browsing context, or if the element
 is not focusable, or if the element is already
 focused, then abort these steps.

	If focusing the element will remove the focus from another
 element, then run the unfocusing steps for that
 element.

 	

 Make the element the currently focused element in its
 top-level browsing context.

 Some elements, most notably area, can correspond
 to more than one distinct focusable area. If a particular area was
 indicated when the element was focused, then that is the area that
 must get focus; otherwise, e.g. when using the focus() method, the first such region in
 tree order is the one that must be focused.

 	

 The user agent may apply relevant platform-specific conventions
 for focusing widgets.

 For example, some platforms select the contents of
 a text field when that field is focused.

 	Fire a simple event named focus at the element.

 User agents must synchronously run the focusing
 steps for an element whenever the user moves the focus to a
 focusable element.

 The unfocusing steps for an element are as
 follows:

 	If the element is an input element, and the
 change event applies to the
 element, and the element does not have a defined activation
 behavior, and the user has changed the element's value or its list of selected files
 while the control was focused without committing that change, then
 fire a simple event that bubbles named change at the element.

	Unfocus the element.

 	Fire a simple event named blur at the element.

 When an element that is focused stops being a
 focusable element, or stops being focused without
 another element being explicitly focused in its stead, the user
 agent should synchronously run the unfocusing steps for
 the affected element only.

 For example, this might happen because the
 element is removed from its Document, or has a hidden attribute added. It would also
 happen to an input element when the element gets disabled.

 Document-level focus APIs

 	document . activeElement

 	

 Returns the currently focused element.

 	document . hasFocus()

 	

 Returns true if the document has focus; otherwise, returns false.

 	window . focus()

 	

 Focuses the window. Use of this method is discouraged. Allow the user to control window focus instead.

 	window . blur()

 	

 Unfocuses the window. Use of this method is discouraged. Allow the user to control window focus instead.

 The activeElement
 attribute on Document objects must return the
 element in the document that is focused. If no element in the
 Document is focused, this must return the body
 element.

 When a child browsing context is
 focused, its browsing context container is also
 focused, by definition. For
 example, if the user moves the focus to a text field in an
 iframe, the iframe is the element with
 focus in the parent browsing context.

 The hasFocus() method
 on Document objects must return true if the
 Document's browsing context is focused,
 and all its ancestor
 browsing contexts are also focused, and the top-level
 browsing context has the system focus. If the
 Document has no browsing context or if its
 browsing context has no top-level browsing
 context, then the method will always return false.

 The focus()
 method on the Window object, when invoked, provides a
 hint to the user agent that the script believes the user might be
 interested in the contents of the browsing context of
 the Window object on which the method was invoked.

 User agents are encouraged to have this focus() method trigger some kind of
 notification.

 The blur() method
 on the Window object, when invoked, provides a hint to
 the user agent that the script believes the user probably is not
 currently interested in the contents of the browsing
 context of the Window object on which the method
 was invoked, but that the contents might become interesting again in
 the future.

 User agents are encouraged to ignore calls to this blur() method entirely.

 Historically the focus() and blur() methods actually affected the
 system focus, but hostile sites widely abuse this behavior to the
 user's detriment.

 Element-level focus APIs

 	element . focus()

 	

 Focuses the element.

 	element . blur()

 	

 Unfocuses the element. Use of this method is discouraged. Focus
 another element instead.

 Do not use this method to hide the focus ring. Do not use any
 other method that hides the focus ring from keyboard users, in
 particular do not use a CSS rule to override the 'outline'
 property. Removal of the focus ring leads to serious accessibility
 issues for users who navigate and interact with interactive
 content using the keyboard.

 The focus() method,
 when invoked, must run the following algorithm:

 	If the element is marked as locked for focus, then abort
 these steps.

 	Mark the element as locked for focus.

 	Run the focusing steps for the
 element.

 	Unmark the element as locked for focus.

 The blur() method, when
 invoked, should run the unfocusing steps for the
 element on which the method was called instead. User agents may
 selectively or uniformly ignore calls to this method for usability
 reasons.

 For example, if the blur() method is unwisely being used to
 remove the focus ring for aesthetics reasons, the page would become
 unusable by keyboard users. Ignoring calls to this method would thus
 allow keyboard users to interact with the page.

 Assigning keyboard shortcuts

 Introduction

 This section is non-normative.

 Each element that can be activated or focused can be assigned a
 single key combination to activate it, using the accesskey attribute.

 The exact shortcut is determined by the user agent, based on
 information about the user's keyboard, what keyboard shortcuts
 already exist on the platform, and what other shortcuts have been
 specified on the page, using the information provided in the accesskey attribute as a guide.

 In order to ensure that a relevant keyboard shortcut is available
 on a wide variety of input devices, the author can provide a number
 of alternatives in the accesskey
 attribute.

 Each alternative consists of a single character, such as a letter
 or digit.

 User agents can provide users with a list of the keyboard
 shortcuts, but authors are encouraged to do so also. The accessKeyLabel IDL attribute
 returns a string representing the actual key combination assigned by
 the user agent.

 In this example, an author has provided a button that can be
 invoked using a shortcut key. To support full keyboards, the author
 has provided "C" as a possible key. To support devices equipped
 only with numeric keypads, the author has provided "1" as another
 possibly key.

 <input type=button value=Collect onclick="collect()"
 accesskey="C 1" id=c>

 To tell the user what the shortcut key is, the author has
 this script here opted to explicitly add the key combination to the
 button's label:

 function addShortcutKeyLabel(button) {
 if (button.accessKeyLabel != '')
 button.value += ' (' + button.accessKeyLabel + ')';
}
addShortcutKeyLabel(document.getElementById('c'));

 Browsers on different platforms will show different labels, even
 for the same key combination, based on the convention prevalent on
 that platform. For example, if the key combination is the Control
 key, the Shift key, and the letter C, a Windows browser might
 display "Ctrl+Shift+C", whereas a Mac browser might
 display "^⇧C", while an Emacs browser might
 just display "C-C". Similarly, if the key combination
 is the Alt key and the Escape key, Windows might use
 "Alt+Esc", Mac might use
 "⌥⎋", and an Emacs browser might use
 "M-ESC" or "ESC ESC".

 In general, therefore, it is unwise to attempt to parse the
 value returned from the accessKeyLabel IDL attribute.

 The accesskey attribute

 All HTML elements may have the accesskey content attribute set. The
 accesskey attribute's value is
 used by the user agent as a guide for creating a keyboard shortcut
 that activates or focuses the element.

 If specified, the value must be an ordered set of unique
 space-separated tokens that are case-sensitive,
 each of which must be exactly one Unicode code point in length.

 In the following example, a variety of links are given with
 access keys so that keyboard users familiar with the site can
 more quickly navigate to the relevant pages:

 <nav>
 <p>
 Activities |
 Technical Reports |
 Site Index |
 About Consortium |
 Contact
 </p>
</nav>

 In the following example, the search field is given two possible
 access keys, "s" and "0" (in that order). A user agent on a device
 with a full keyboard might pick
 Ctrl+Alt+S as the
 shortcut key, while a user agent on a small device with just a
 numeric keypad might pick just the plain unadorned key
 0:

 <form action="/search">
 <label>Search: <input type="search" name="q" accesskey="s 0"></label>
 <input type="submit">
</form>

 In the following example, a button has possible access keys
 described. A script then tries to update the button's label to
 advertise the key combination the user agent selected.

 <input type=submit accesskey="N @ 1" value="Compose">
...
<script>
 function labelButton(button) {
 if (button.accessKeyLabel)
 button.value += ' (' + button.accessKeyLabel + ')';
 }
 var inputs = document.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i += 1) {
 if (inputs[i].type == "submit")
 labelButton(inputs[i]);
 }
</script>

 On one user agent, the button's label might become
 "Compose (⌘N)". On another, it might become
 "Compose (Alt+⇧+1)". If the user agent doesn't
 assign a key, it will be just "Compose". The exact
 string depends on what the assigned access key is, and
 on how the user agent represents that key combination.

 Processing model

 An element's assigned access key is a key combination
 derived from the element's accesskey content attribute.
 Initially, an element must not have an assigned access
 key.

 Whenever an element's accesskey attribute is set, changed,
 or removed, the user agent must update the element's assigned
 access key by running the following steps:

 	If the element has no accesskey attribute, then skip to the
 fallback step below.

 	Otherwise, split the
 attribute's value on spaces, and let keys be the resulting tokens.

 	

 For each value in keys in turn, in the
 order the tokens appeared in the attribute's value, run the
 following substeps:

 	If the value is not a string exactly one Unicode code
 point in length, then skip the remainder of these steps for this
 value.

 	If the value does not correspond to a key on the system's
 keyboard, then skip the remainder of these steps for this
 value.

 	If the user agent can find a mix of zero or more modifier
 keys that, combined with the key that corresponds to the value
 given in the attribute, can be used as the access key, then the
 user agent may assign that combination of keys as the element's
 assigned access key and abort these steps.

 	Fallback: Optionally, the user agent may assign a key
 combination of its choosing as the element's assigned access
 key and then abort these steps.

 	If this step is reached, the element has no assigned
 access key.

 Once a user agent has selected and assigned an access key for an
 element, the user agent should not change the element's
 assigned access key unless the accesskey content attribute is changed
 or the element is moved to another Document.

 The accessKey IDL
 attribute must reflect the accesskey content attribute.

 The accessKeyLabel IDL
 attribute must return a string that represents the element's
 assigned access key, if any. If the element does not
 have one, then the IDL attribute must return the empty string.

 Editing

 Making document regions editable: The contenteditable content attribute

 The contenteditable attribute is an
 enumerated attribute whose keywords are the empty string, true,
 and false. The empty string and the true keyword map
 to the true state. The false keyword maps to the false state.
 In addition, there is a third state, the inherit state, which is the missing value
 default (and the invalid value default).

 The true state indicates that the element is editable. The inherit state
 indicates that the element is editable if its parent is. The false state indicates that the
 element is not editable.

 	element . contentEditable [= value]

 	

 Returns "true", "false", or "inherit", based on the state of the contenteditable attribute.

 Can be set, to change that state.

 Throws a SyntaxError exception if the new value isn't one of those strings.

 	element . isContentEditable

 	

 Returns true if the element is editable; otherwise, returns false.

 The contentEditable IDL attribute, on
 getting, must return the string "true" if the content attribute is set to
 the true state, "false" if the content attribute is set to the false state,
 and "inherit" otherwise. On setting, if the new value is an ASCII
 case-insensitive match for the string "inherit" then the content
 attribute must be removed, if the new value is an ASCII case-insensitive match for
 the string "true" then the content attribute must be set to the string
 "true", if the new value is an ASCII case-insensitive match for
 the string "false" then the content attribute must be set to the string
 "false", and otherwise the attribute setter must throw a
 SyntaxError exception.

 The isContentEditable IDL attribute, on
 getting, must return true if the element is either an editing host or
 editable, and false otherwise.

 Making entire documents editable: The designMode IDL attribute

 Documents have a designMode, which can be either enabled or
 disabled.

 	document . designMode [= value]

 	

 Returns "on" if the document is editable,
 and "off" if it isn't.

 Can be set, to change the document's current state. This focuses the document and resets the
 selection in that document.

 The designMode IDL attribute on the
 Document object takes two values, "on" and "off". On setting, the new value must be compared in an ASCII
 case-insensitive manner to these two values; if it matches the "on"
 value, then designMode must be enabled, and if it
 matches the "off" value, then designMode must be disabled. Other values must be
 ignored.

 On getting, if designMode is enabled, the IDL
 attribute must return the value "on"; otherwise it is disabled, and the
 attribute must return the value "off".

 The last state set must persist until the document is destroyed or the state is changed.
 Initially, documents must have their designMode
 disabled.

 When the designMode changes from being disabled to
 being enabled, the user agent must synchronously reset the document's active range's
 start and end boundary points to be at the start of the Document and then run the
 focusing steps for the root element of the Document, if any.

 Best practices for in-page editors

 Authors are encouraged to set the 'white-space' property on editing
 hosts and on markup that was originally created through these editing mechanisms to the
 value 'pre-wrap'. Default HTML whitespace handling is not well suited to WYSIWYG editing, and line
 wrapping will not work correctly in some corner cases if 'white-space' is left at its default
 value.

 As an example of problems that occur if the default 'normal' value is used instead, consider
 the case of the user typing "yellow␣␣ball", with two spaces (here
 represented by "␣") between the words. With the editing rules in place for the default
 value of 'white-space' ('normal'), the resulting markup will either consist of
 "yellow ball" or "yellow ball"; i.e.,
 there will be a non-breaking space between the two words in addition to the regular space. This
 is necessary because the 'normal' value for 'white-space' requires adjacent regular spaces to be
 collapsed together.

 In the former case, "yellow⍽" might wrap to the next line ("⍽"
 being used here to represent a non-breaking space) even though "yellow" alone might
 fit at the end of the line; in the latter case, "⍽ball", if wrapped to the
 start of the line, would have visible indentation from the non-breaking space.

 When 'white-space' is set to 'pre-wrap', however, the editing rules will instead simply put
 two regular spaces between the words, and should the two words be split at the end of a line, the
 spaces would be neatly removed from the rendering.

 Editing APIs

 The definition of the terms active range, editing
 host, and editable, the user interface requirements
 of elements that are editing hosts
 or editable, the

 execCommand(),
 queryCommandEnabled(),
 queryCommandIndeterm(),
 queryCommandState(),
 queryCommandSupported(), and
 queryCommandValue()

 methods, text selections, and the delete the selection
 algorithm are defined in the HTML Editing APIs specification. The
 interaction of editing and the undo/redo features in user agents is
 defined by the UndoManager and DOM Transaction specification. [EDITING] [UNDO]

 Spelling and grammar checking

 User agents can support the checking of spelling and grammar of
 editable text, either in form controls (such as the value of
 textarea elements), or in elements in an editing
 host (e.g. using contenteditable).

 For each element, user agents must establish a default behavior, either
 through defaults or through preferences expressed by the user. There
 are three possible default behaviors for each element:

 	true-by-default

	The element will be checked for spelling and grammar if its
 contents are editable.

	false-by-default

	The element will never be checked for spelling and grammar.

	inherit-by-default

	The element's default behavior is the same as its parent
 element's. Elements that have no parent element cannot have this as
 their default behavior.

 The spellcheck
 attribute is an enumerated attribute whose keywords are
 the empty string, true and false. The empty string and the true keyword map to the true state. The false keyword maps to the false state. In
 addition, there is a third state, the default state, which is
 the missing value default (and the invalid value
 default).

 The true state indicates that the element is
 to have its spelling and grammar checked. The default state
 indicates that the element is to act according to a default
 behavior, possibly based on the parent element's own spellcheck state, as defined below.
 The false state indicates that the element is not to be
 checked.

 	element . spellcheck [= value]

 	

 Returns true if the element is to have its spelling and grammar
 checked; otherwise, returns false.

 Can be set, to override the default and set the spellcheck content attribute.

 The spellcheck IDL
 attribute, on getting, must return true if the element's spellcheck content attribute is in
 the true state, or if the element's spellcheck content attribute is in
 the default state and the element's default behavior is true-by-default, or
 if the element's spellcheck
 content attribute is in the default state and the element's
 default behavior is
 inherit-by-default
 and the element's parent element's spellcheck IDL attribute would return
 true; otherwise, if none of those conditions applies, then the
 attribute must instead return false.

 The spellcheck
 IDL attribute is not affected by user preferences that override the
 spellcheck content attribute,
 and therefore might not reflect the actual spellchecking state.

 On setting, if the new value is true, then the element's spellcheck content attribute must be
 set to the literal string "true", otherwise it
 must be set to the literal string "false".

 User agents must only consider the following pieces of text as
 checkable for the purposes of this feature:

 	The value of input elements to which the readonly attribute applies,
 whose type attributes are not
 in the Password
 state, and that are mutable (i.e.
 that do not have the readonly attribute specified and
 that are not disabled).

 	The value of textarea elements that do not have a
 readonly attribute and
 that are not disabled.

 	Text in Text nodes that are
 children of editing hosts or
 editable elements.

 	Text in attributes of editable elements.

 For text that is part of a Text node, the element
 with which the text is associated is the element that is the
 immediate parent of the first character of the word, sentence, or
 other piece of text. For text in attributes, it is the attribute's
 element. For the values of input and
 textarea elements, it is the element itself.

 To determine if a word, sentence, or other piece of text in an
 applicable element (as defined above) is to have spelling- and
 grammar-checking enabled, the UA must use the following
 algorithm:

 	If the user has disabled the checking for this text, then the
 checking is disabled.

 	Otherwise, if the user has forced the checking for this text to
 always be enabled, then the checking is enabled.

 	Otherwise, if the element with which the text is associated has
 a spellcheck content
 attribute, then: if that attribute is in the true state,
 then checking is enabled; otherwise, if that attribute is in the
 false state, then checking is disabled.

 	Otherwise, if there is an ancestor element with a spellcheck content attribute that is
 not in the default state, then: if the nearest such
 ancestor's spellcheck content
 attribute is in the true state, then checking is enabled;
 otherwise, checking is disabled.

 	Otherwise, if the element's default behavior is true-by-default,
 then checking is enabled.

 	Otherwise, if the element's default behavior is false-by-default,
 then checking is disabled.

 	Otherwise, if the element's parent element has its
 checking enabled, then checking is enabled.

 	Otherwise, checking is disabled.

 If the checking is enabled for a word/sentence/text, the user agent should indicate spelling
 and grammar errors in that text. User agents should take into account the other semantics given in
 the document when suggesting spelling and grammar corrections. User agents may use the language of
 the element to determine what spelling and grammar rules to use, or may use the user's preferred
 language settings. UAs should use input element attributes such as pattern to ensure that the resulting value is valid, where
 possible.

 If checking is disabled, the user agent should not indicate spelling or grammar errors for that
 text.

 The element with ID "a" in the following example would be the
 one used to determine if the word "Hello" is checked for spelling
 errors. In this example, it would not be.

 <div contenteditable="true">
 Hello!
</div>

 The element with ID "b" in the following example would have
 checking enabled (the leading space character in the attribute's
 value on the input element causes the attribute to be
 ignored, so the ancestor's value is used instead, regardless of the
 default).

 <p spellcheck="true">
 <label>Name: <input spellcheck=" false" id="b"></label>
</p>

 This specification does not define the user
 interface for spelling and grammar checkers. A user agent could
 offer on-demand checking, could perform continuous checking while
 the checking is enabled, or could use other interfaces.

 Drag and drop

 This section defines an event-based drag-and-drop mechanism.

 This specification does not define exactly what a
 drag-and-drop operation actually is.

 On a visual medium with a pointing device, a drag operation could
 be the default action of a mousedown event that is followed by a
 series of mousemove events, and
 the drop could be triggered by the mouse being released.

 When using an input modality other than a pointing device, users
 would probably have to explicitly indicate their intention to
 perform a drag-and-drop operation, stating what they wish to drag
 and where they wish to drop it, respectively.

 However it is implemented, drag-and-drop operations must have a
 starting point (e.g. where the mouse was clicked, or the start of
 the selection or element that was selected for the drag), may have
 any number of intermediate steps (elements that the mouse moves over
 during a drag, or elements that the user picks as possible drop
 points as he cycles through possibilities), and must either have an
 end point (the element above which the mouse button was released, or
 the element that was finally selected), or be canceled. The end
 point must be the last element selected as a possible drop point
 before the drop occurs (so if the operation is not canceled, there
 must be at least one element in the middle step).

 Introduction

 This section is non-normative.

 To make an element draggable is simple: give the element a draggable attribute, and set an event
 listener for dragstart that
 stores the data being dragged.

 The event handler typically needs to check that it's not a text
 selection that is being dragged, and then needs to store data into
 the DataTransfer object and set the allowed effects
 (copy, move, link, or some combination).

 For example:

 <p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)">
 <li draggable="true" data-value="fruit-apple">Apples
 <li draggable="true" data-value="fruit-orange">Oranges
 <li draggable="true" data-value="fruit-pear">Pears

<script>
 var internalDNDType = 'text/x-example'; // set this to something specific to your site
 function dragStartHandler(event) {
 if (event.target instanceof HTMLLIElement) {
 // use the element's data-value="" attribute as the value to be moving:
 event.dataTransfer.setData(internalDNDType, event.target.dataset.value);
 event.dataTransfer.effectAllowed = 'move'; // only allow moves
 } else {
 event.preventDefault(); // don't allow selection to be dragged
 }
 }
</script>

 To accept a drop, the drop target has to have a dropzone attribute and listen to the
 drop event.

 The value of the dropzone
 attribute specifies what kind of data to accept (e.g. "string:text/plain" to accept any text strings, or
 "file:image/png" to accept a PNG image file) and what
 kind of feedback to give (e.g. "move" to indicate that
 the data will be moved).

 Instead of using the dropzone attribute, a drop target can
 handle the dragenter event (to
 report whether or not the drop target is to accept the drop) and the
 dragover event (to specify what
 feedback is to be shown to the user).

 The drop event allows the actual
 drop to be performed. This event needs to be canceled, so that the
 dropEffect
 attribute's value can be used by the source (otherwise it's
 reset).

 For example:

 <p>Drop your favorite fruits below:</p>
<ol dropzone="move string:text/x-example" ondrop="dropHandler(event)">
 <!-- don't forget to change the "text/x-example" type to something
 specific to your site -->

<script>
 var internalDNDType = 'text/x-example'; // set this to something specific to your site
 function dropHandler(event) {
 var li = document.createElement('li');
 var data = event.dataTransfer.getData(internalDNDType);
 if (data == 'fruit-apple') {
 li.textContent = 'Apples';
 } else if (data == 'fruit-orange') {
 li.textContent = 'Oranges';
 } else if (data == 'fruit-pear') {
 li.textContent = 'Pears';
 } else {
 li.textContent = 'Unknown Fruit';
 }
 event.target.appendChild(li);
 }
</script>

 To remove the original element (the one that was dragged) from
 the display, the dragend event
 can be used.

 For our example here, that means updating the original markup to
 handle that event:

 <p>What fruits do you like?</p>
<ol ondragstart="dragStartHandler(event)" ondragend="dragEndHandler(event)">
 ...as before...

<script>
 function dragStartHandler(event) {
 // ...as before...
 }
 function dragEndHandler(event) {
 // remove the dragged element
 event.target.parentNode.removeChild(event.target);
 }
</script>

 The drag data store

 The data that underlies a drag-and-drop operation, known as the
 drag data store, consists of the following information:

 	A drag data store item list, which is a list of
 items representing the dragged data, each consisting of the
 following information:

 	The drag data item kind

 	

 The kind of data:

 	Plain Unicode string

 	
 Text.

 	File

 	
 Binary data with a file name.

 	The drag data item type string

 	

 A Unicode string giving the type or format of the data,
 generally given by a MIME type. Some values that
 are not MIME types are
 special-cased for legacy reasons. The API does not enforce the
 use of MIME types; other values
 can be used as well. In all cases, however, the values are all
 converted to ASCII lowercase by the API.

 Strings that contain space characters cannot be used with the dropzone attribute, so authors are
 encouraged to use only MIME types
 or custom strings (without spaces).

 There is a limit of one Plain Unicode string item per
 item type
 string.

 	The actual data

 	A Unicode or binary string, in some cases with a file name
 (itself a Unicode string), as
 per the drag data item kind.

 The drag data store item list is ordered in the
 order that the items were added to the list; most recently added
 last.

 	

 The following information, used to generate the UI feedback
 during the drag:

 	User-agent-defined default feedback information, known as the
 drag data store default feedback.

 	Optionally, a bitmap image and the coordinate of a point
 within that image, known as the drag data store bitmap
 and drag data store hot spot coordinate.

 	

 A drag data store mode, which is one of the
 following:

 	Read/write mode

 	

 For the dragstart event.
 New data can be added to the drag data store.

 	Read-only mode

 	

 For the drop event. The list of
 items representing dragged data can be read, including the data.
 No new data can be added.

 	Protected mode

 	

 For all other events. The formats and kinds in the drag
 data store list of items representing dragged data can be
 enumerated, but the data itself is unavailable and no new data can
 be added.

 	

 A drag data store allowed effects state, which is a
 string.

 When a drag data store is created, it must be initialized such that its
 drag data store item list is empty, it has no
 drag data store default feedback, it has no drag
 data store bitmap and drag data store hot spot
 coordinate, its drag data store mode is protected mode, and its drag data
 store allowed effects state is the string "uninitialized".

 The DataTransfer interface

 DataTransfer objects are used to expose the
 drag data store that underlies a drag-and-drop
 operation.

 interface DataTransfer {
 attribute DOMString dropEffect;
 attribute DOMString effectAllowed;

 readonly attribute DataTransferItemList items;

 void setDragImage(Element image, long x, long y);

 /* old interface */
 readonly attribute DOMString[] types;
 DOMString getData(DOMString format);
 void setData(DOMString format, DOMString data);
 void clearData(optional DOMString format);
 readonly attribute FileList files;
};

 	dataTransfer . dropEffect [= value]

 	

 Returns the kind of operation that is currently selected. If
 the kind of operation isn't one of those that is allowed by the
 effectAllowed
 attribute, then the operation will fail.

 Can be set, to change the selected operation.

 The possible values are "none", "copy", "link", and "move".

 	dataTransfer . effectAllowed [= value]

 	

 Returns the kinds of operations that are to be allowed.

 Can be set (during the dragstart event), to change the
 allowed operations.

 The possible values are "none", "copy", "copyLink", "copyMove", "link", "linkMove", "move", "all", and "uninitialized",

 	dataTransfer . items

 	

 Returns a DataTransferItemList object, with the drag data.

 	dataTransfer . setDragImage(element, x, y)

 	

 Uses the given element to update the drag feedback, replacing any previously specified feedback.

 	dataTransfer . types

 	

 Returns an array listing the formats that were set in the dragstart event. In addition, if
 any files are being dragged, then one of the types will be the
 string "Files".

 	data = dataTransfer . getData(format)

 	

 Returns the specified data. If there is no such data, returns the empty string.

 	dataTransfer . setData(format, data)

 	

 Adds the specified data.

 	dataTransfer . clearData([format])

 	

 Removes the data of the specified formats. Removes all data if
 the argument is omitted.

 	dataTransfer . files

 	

 Returns a FileList of the files being dragged, if any.

 DataTransfer objects are used during the drag-and-drop events, and are only valid while
 those events are being fired.

 A DataTransfer object is associated with a
 drag data store while it is valid.

 The dropEffect
 attribute controls the drag-and-drop feedback that the user is given
 during a drag-and-drop operation. When the DataTransfer
 object is created, the dropEffect attribute is
 set to a string value. On getting, it must return its current value.
 On setting, if the new value is one of "none",
 "copy", "link", or
 "move", then the attribute's current value
 must be set to the new value. Other values must be ignored.

 The effectAllowed
 attribute is used in the drag-and-drop processing model to
 initialize the dropEffect attribute
 during the dragenter and dragover events. When the
 DataTransfer object is created, the effectAllowed
 attribute is set to a string value. On getting, it must return its
 current value. On setting, if drag data store's mode is the read/write mode and the new value is
 one of "none", "copy",
 "copyLink", "copyMove",
 "link", "linkMove",
 "move", "all", or "uninitialized", then the attribute's current value
 must be set to the new value. Otherwise it must be left
 unchanged.

 The items
 attribute must return a DataTransferItemList object
 associated with the DataTransfer object. The same
 object must be returned each time.

 The setDragImage(element, x, y) method must run the following
 steps:

 	If the DataTransfer object is no longer
 associated with a drag data store, abort these steps.
 Nothing happens.

 	If the drag data store's mode is not the read/write mode, abort these steps.
 Nothing happens.

 	If the element argument is an
 img element, then set the drag data store
 bitmap to the element's image (at its intrinsic size);
 otherwise, set the drag data store bitmap to an image
 generated from the given element (the exact mechanism for doing so
 is not currently specified).

 	Set the drag data store hot spot coordinate to
 the given x, y
 coordinate.

 The types
 attribute must return a live read only array giving the
 strings that the following steps would produce. The same object must
 be returned each time.

 	Start with an empty list L.

 	If the DataTransfer object is no longer
 associated with a drag data store, the array is empty.
 Abort these steps; return the empty list L.

 	For each item in the drag data store item list
 whose kind is Plain Unicode string, add an entry to
 the list L consisting of the item's type string.

 	If there are any items in the drag data store item
 list whose kind
 is File, then add an entry to the list L
 consisting of the string "Files". (This value
 can be distinguished from the other values because it is not
 lowercase.)

 	The strings produced by these steps are those in the list
 L.

 The getData(format) method
 must run the following steps:

 	If the DataTransfer object is no longer
 associated with a drag data store, return the empty
 string and abort these steps.

 	If the drag data store's mode is the protected mode, return the empty
 string and abort these steps.

 	Let format be the first argument,
 converted to ASCII lowercase.

 	Let convert-to-URL be false.

 	If format equals "text", change it to "text/plain".

 	If format equals "url", change it to "text/uri-list" and set convert-to-URL to true.

 	If there is no item in the drag data store item
 list whose kind
 is Plain Unicode string and whose type string is equal to format, return the empty string and abort these
 steps.

 	Let result be the data of the item
 in the drag data store item list whose kind is Plain Unicode
 string and whose type string is equal to format.

 	If convert-to-URL is true, then parse
 result as appropriate for text/uri-list data, and then set result to the first URL from the list, if any, or
 the empty string otherwise. [RFC2483]

 	Return result.

 The setData(format, data) method
 must run the following steps:

 	If the DataTransfer object is no longer
 associated with a drag data store, abort these steps.
 Nothing happens.

 	If the drag data store's mode is not the read/write mode, abort these steps.
 Nothing happens.

 	Let format be the first argument,
 converted to ASCII lowercase.

 	

 If format equals "text", change it to "text/plain".

 If format equals "url", change it to "text/uri-list".

 	Remove the item in the drag data store item
 list whose kind
 is Plain Unicode string and whose type string is equal to format, if there is one.

 	Add an item to the drag data store item list
 whose kind is Plain
 Unicode string, whose type string is equal to format,
 and whose data is the string given by the method's second
 argument.

 The clearData()
 method must run the following steps:

 	If the DataTransfer object is no longer
 associated with a drag data store, abort these steps.
 Nothing happens.

 	If the drag data store's mode is not the read/write mode, abort these steps.
 Nothing happens.

 	If the method was called with no arguments, remove each item
 in the drag data store item list whose kind is Plain Unicode
 string, and abort these steps.

 	Let format be the first argument,
 converted to ASCII lowercase.

 	

 If format equals "text", change it to "text/plain".

 If format equals "url", change it to "text/uri-list".

 	Remove the item in the drag data store item
 list whose kind
 is Plain Unicode string and whose type string is equal to format, if there is one.

 The clearData() method does
 not affect whether any files were included in the drag, so the types attribute's list might
 still not be empty after calling clearData() (it would
 still contain the "Files" string if any files
 were included in the drag).

 The files
 attribute must return a live FileList
 sequence consisting of File objects representing the
 files found by the following steps. The same object must be returned
 each time. Furthermore, for a given FileList object and
 a given underlying file, the same File object must be
 used each time.

 	Start with an empty list L.

 	If the DataTransfer object is no longer
 associated with a drag data store, the
 FileList is empty. Abort these steps; return the
 empty list L.

 	If the drag data store's mode is the protected mode, abort these steps;
 return the empty list L.

 	For each item in the drag data store item list
 whose kind is File ,
 add the item's data (the file, in particular its name and contents,
 as well as its type) to the list L.

 	The files found by these steps are those in the list L.

 This version of the API does not expose the types of
 the files during the drag.

 The DataTransferItemList interface

 Each DataTransfer object is associated with a
 DataTransferItemList object.

 interface DataTransferItemList {
 readonly attribute unsigned long length;
 getter DataTransferItem (unsigned long index);
 void remove(unsigned long index);
 void clear();

 DataTransferItem? add(DOMString data, DOMString type);
 DataTransferItem? add(File data);
};

 	items . length

 	Returns the number of items in the drag data store.

 	items[index]

 	

 Returns the DataTransferItem object representing the indexth entry in the drag data store.

 	delete items[index]

 	

 Removes the indexth entry in the drag data store.

 	items . clear()

 	

 Removes all the entries in the drag data store.

 	items . add(data)

 	items . add(data, type)

 	

 Adds a new entry for the given data to the drag data
 store. If the data is plain text
 then a type string has to be provided
 also.

 While the DataTransferItemList object's
 DataTransfer object is associated with a drag
 data store, the DataTransferItemList object's
 mode is the same as the drag data store mode.
 When the DataTransferItemList object's
 DataTransfer object is not associated with a
 drag data store, the DataTransferItemList
 object's mode is the disabled mode. The drag
 data store referenced in this section (which is used only
 when the DataTransferItemList object is not in the
 disabled mode) is the drag data store with which
 the DataTransferItemList object's
 DataTransfer object is associated.

 The length
 attribute must return zero if the object is in the disabled
 mode; otherwise it must return the number of items in the
 drag data store item list.

 When a DataTransferItemList object is not in the
 disabled mode, its supported property indices
 are the numbers in the range

 ,

 where n is the number of items in the drag
 data store item list.

 To determine the value of
 an indexed property i of a
 DataTransferItemList object, the user agent must return a
 DataTransferItem object representing the ith item in the drag data store. The
 same object must be returned each time a particular item is obtained
 from this DataTransferItemList object. The
 DataTransferItem object must be associated with the
 same DataTransfer object as the
 DataTransferItemList object when it is first created.

 The remove() method, when
 invoked with the argument i, must run these steps:

 	If the DataTransferItemList object is not in the
 read/write mode, throw an
 InvalidStateError exception and abort these
 steps.

 	Remove the ith item from the drag
 data store.

 The clear method,
 if the DataTransferItemList object is in the read/write mode, must remove all the
 items from the drag data store. Otherwise, it must do
 nothing.

 The add() method
 must run the following steps:

 	If the DataTransferItemList object is not in the
 read/write mode, return null and
 abort these steps.

 	

 Jump to the appropriate set of steps from the following list:

 	If the first argument to the method is a string

 	

 If there is already an item in the drag data store item
 list whose kind is Plain Unicode string and whose type string is
 equal to the value of the method's second argument,
 converted to ASCII lowercase, then throw a
 NotSupportedError exception and abort these
 steps.

 Otherwise, add an item to the drag data store item
 list whose kind is Plain Unicode string, whose type string is
 equal to the value of the method's second argument,
 converted to ASCII lowercase, and whose data is the
 string given by the method's first argument.

 	If the first argument to the method is a File

 	

 Add an item to the drag data store item list
 whose kind is
 File, whose type string is the type of the File,
 converted to ASCII lowercase, and whose data is the
 same as the File's data.

 	Determine the value
 of the indexed property corresponding to the newly added
 item, and return that value (a newly created
 DataTransferItem object).

 The DataTransferItem interface

 Each DataTransferItem object is associated with a
 DataTransfer object.

 interface DataTransferItem {
 readonly attribute DOMString kind;
 readonly attribute DOMString type;
 void getAsString(FunctionStringCallback? _callback);
 File? getAsFile();
};

callback FunctionStringCallback void (DOMString data);

 	item . kind

 	

 Returns the drag data item kind, one of: "string",
 "file".

 	item . type

 	

 Returns the drag data item type string.

 	item . getAsString(callback)

 	

 Invokes the callback with the string data as the argument, if the drag data item kind is Plain Unicode string.

 	file = item . getAsFile()

 	

 Returns a File object, if the drag data item kind is File.

 While the DataTransferItem object's
 DataTransfer object is associated with a drag
 data store and that drag data store's drag
 data store item list still contains the item that the
 DataTransferItem object represents, the
 DataTransferItem object's mode is the same as
 the drag data store mode. When the
 DataTransferItem object's DataTransfer
 object is not associated with a drag data
 store, or if the item that the DataTransferItem
 object represents has been removed from the relevant drag data
 store item list, the DataTransferItem object's
 mode is the disabled mode. The drag data
 store referenced in this section (which is used only when the
 DataTransferItem object is not in the disabled
 mode) is the drag data store with which the
 DataTransferItem object's DataTransfer
 object is associated.

 The kind attribute
 must return the empty string if the DataTransferItem
 object is in the disabled mode; otherwise it must return the
 string given in the cell from the second column of the following
 table from the row whose cell in the first column contains the
 drag data item kind of the item represented by the
 DataTransferItem object:

 	 Kind 	 String

 	 Plain Unicode string 	 "string"

 	 File 	 "file"

 The type attribute
 must return the empty string if the DataTransferItem
 object is in the disabled mode; otherwise it must return
 the drag data item type string of the item represented
 by the DataTransferItem object.

 The getAsString(callback) method must run the following
 steps:

 	If the callback is null, abort these
 steps.

 	If the DataTransferItem object is not in the read/write mode or the read-only mode, abort these steps. The
 callback is never invoked.

 	If the drag data item kind is not Plain
 Unicode string, abort these steps. The callback is never
 invoked.

 	Otherwise, queue a task to invoke callback, passing the actual data of the item
 represented by the DataTransferItem object as the
 argument.

 The getAsFile()
 method must run the following steps:

 	If the DataTransferItem object is not in the read/write mode or the read-only mode, return null and abort
 these steps.

 	If the drag data item kind is not File,
 then return null and abort these steps.

 	Return a new File object representing the
 actual data of the item represented by the
 DataTransferItem object.

 The DragEvent interface

 The drag-and-drop processing model involves several events. They
 all use the DragEvent interface.

 [Constructor(DOMString type, optional DragEventInit eventInitDict)]
interface DragEvent : MouseEvent {
 readonly attribute DataTransfer? dataTransfer;
};

dictionary DragEventInit : MouseEventInit {
 DataTransfer? dataTransfer;
};

 	event . dataTransfer

 	

 Returns the DataTransfer object for the event.

 Although, for consistency with other event interfaces, the DragEvent
 interface has a constructor, it is not particularly useful. In particular, there's no way to
 create a useful DataTransfer object from script, as DataTransfer objects
 have a processing and security model that is coordinated by the browser during drag-and-drops.

 The dataTransfer attribute of the
 DragEvent interface must return the value it was initialized to. When the object is
 created, this attribute must be initialized to null. It represents the context information for the
 event.

 When a user agent is required to fire a DND event named e at an
 element, using a particular drag data store, the user agent must run the following
 steps:

 	

 If e is dragstart, set the
 drag data store mode to the read/write
 mode.

 If e is drop, set the drag data
 store mode to the read-only mode.

 	Let dataTransfer be a newly created DataTransfer object
 associated with the given drag data store.

 	Set the effectAllowed attribute to the drag data
 store's drag data store allowed effects state.

 	

 Set the dropEffect attribute to "none"
 if e is dragstart, drag, dragexit, or dragleave; to the value corresponding to the current drag
 operation if e is drop or dragend; and to a value based on the effectAllowed attribute's value and the
 drag-and-drop source, as given by the following table, otherwise (i.e. if e
 is dragenter or dragover):

 	effectAllowed
 	dropEffect

 	"none"
 	"none"

 	"copy"
 	"copy"

 	"copyLink"
 	"copy", or, if appropriate, "link"

 	"copyMove"
 	"copy", or, if appropriate, "move"

 	"all"
 	"copy", or, if appropriate, either "link" or "move"

 	"link"
 	"link"

 	"linkMove"
 	"link", or, if appropriate, "move"

 	"move"
 	"move"

 	"uninitialized" when what is being dragged is a selection from a text field
 	"move", or, if appropriate, either "copy" or "link"

 	"uninitialized" when what is being dragged is a selection
 	"copy", or, if appropriate, either "link" or "move"

 	"uninitialized" when what is being dragged is an a element with an href attribute
 	"link", or, if appropriate, either "copy" or "move"

 	Any other case
 	"copy", or, if appropriate, either "link" or "move"

 Where the table above provides possibly
 appropriate alternatives, user agents may instead use the listed alternative values if
 platform conventions dictate that the user has requested those alternate effects.

 For example, Windows platform conventions are such that dragging while
 holding the "alt" key indicates a preference for linking the data, rather than moving or copying
 it. Therefore, on a Windows system, if "link" is an option according to
 the table above while the "alt" key is depressed, the user agent could select that instead of
 "copy" or "move".

 	

 Create a trusted DragEvent object
 and initialize it to have the given name e, to bubble, to be cancelable
 unless e is dragexit, dragleave, or dragend, and to
 have the detail attribute initialized to zero, the mouse
 and key attributes initialized according to the state of the input devices as they would be for
 user interaction events, the relatedTarget attribute initialized to null,
 and the dataTransfer attribute initialized to
 dataTransfer, the DataTransfer object created above.

 If there is no relevant pointing device, the object must have its screenX, screenY, clientX, clientY, and button attributes set to 0.

 	Dispatch the newly created
 DragEvent object at the specified target element.

 	Set the drag data store allowed effects state to the current value of dataTransfer's effectAllowed
 attribute. (It can only have changed value if e is dragstart.)

 	Set the drag data store mode back to the protected mode if it was changed in the first step.

 	Break the association between dataTransfer and the drag data
 store.

 Drag-and-drop processing model

 When the user attempts to begin a drag operation, the user agent must run the following steps.
 User agents must act as if these steps were run even if the drag actually started in another
 document or application and the user agent was not aware that the drag was occurring until it
 intersected with a document under the user agent's purview.

 	

 Determine what is being dragged, as follows:

 If the drag operation was invoked on a selection, then it is the selection that is being
 dragged.

 Otherwise, if the drag operation was invoked on a Document, it is the first
 element, going up the ancestor chain, starting at the node that the user tried to drag, that has
 the IDL attribute draggable set to true. If there is no such
 element, then nothing is being dragged; abort these steps, the drag-and-drop operation is never
 started.

 Otherwise, the drag operation was invoked outside the user agent's purview. What is being
 dragged is defined by the document or application where the drag was started.

 img elements and a elements with an href attribute have their draggable attribute set to true by default.

 	Create a drag data store. All the DND events fired subsequently by the steps
 in this section must use this drag data store.

 	

 Establish which DOM node is the source node, as follows:

 If it is a selection that is being dragged, then the source node is the
 Text node that the user started the drag on (typically the Text node
 that the user originally clicked). If the user did not specify a particular node, for example if
 the user just told the user agent to begin a drag of "the selection", then the source
 node is the first Text node containing a part of the selection.

 Otherwise, if it is an element that is being dragged, then the source node is
 the element that is being dragged.

 Otherwise, the source node is part of another document or application. When this
 specification requires that an event be dispatched at the source node in this case,
 the user agent must instead follow the platform-specific conventions relevant to that
 situation.

 Multiple events are fired on the source node during the course of
 the drag-and-drop operation.

 	

 Determine the list of dragged nodes, as follows:

 If it is a selection that is being dragged, then the list of dragged nodes
 contains, in tree order, every node that is partially or completely included in the
 selection (including all their ancestors).

 Otherwise, the list of dragged nodes contains only the source node,
 if any.

 	

 If it is a selection that is being dragged, then add an item to the drag data store
 item list, with its properties set as follows:

 	The drag data item type string

	"text/plain"

 	The drag data item kind

	Plain Unicode string

 	The actual data

 	The text of the selection

 Otherwise, if any files are being dragged, then add one item per file to the drag data
 store item list, with their properties set as follows:

 	The drag data item type string

	The MIME type of the file, if known, or "application/octet-stream" otherwise.

 	The drag data item kind

	File

 	The actual data

 	The file's contents and name.

 Dragging files can currently only happen from outside a browsing
 context, for example from a file system manager application.

 If the drag initiated outside of the application, the user agent must add items to the
 drag data store item list as appropriate for the data being dragged, honoring
 platform conventions where appropriate; however, if the platform conventions do not use MIME types to label dragged data, the user agent must make a
 best-effort attempt to map the types to MIME types, and, in any case, all the drag data item type strings must be converted to ASCII
 lowercase.

 User agents may also add one or more items representing the selection or dragged element(s)
 in other forms, e.g. as HTML.

 	

 If the list of dragged nodes is not empty, then , and add one item to the
 drag data store item list, with its properties set as follows:

 	The drag data item type string

	application/microdata+json

 	The drag data item kind

	Plain Unicode string

 	The actual data

 	The resulting JSON string.

 	

 Run the following substeps:

 	Let urls be an empty list of absolute
 URLs.

 	

 For each node in the list of dragged nodes:

 	If the node is an a element with an href attribute

 	Add to urls the result of resolving the element's href content
 attribute relative to the element.

 	If the node is an img element with a src
 attribute

 	Add to urls the result of resolving the element's src content attribute
 relative to the element.

 	If urls is still empty, abort these substeps.

 	Let url string be the result of concatenating the strings in urls, in the order they were added, separated by a U+000D CARRIAGE RETURN U+000A
 LINE FEED character pair (CRLF).

 	Add one item to the drag data store item list, with its properties set as
 follows:

 	The drag data item type string

	text/uri-list

 	The drag data item kind

	Plain Unicode string

 	The actual data

 	url string

 	

 Update the drag data store default feedback as appropriate for the user agent
 (if the user is dragging the selection, then the selection would likely be the basis for this
 feedback; if the user is dragging an element, then that element's rendering would be used; if
 the drag began outside the user agent, then the platform conventions for determining the drag
 feedback should be used).

 	

 Fire a DND event named dragstart at the
 source node.

 If the event is canceled, then the drag-and-drop operation should not occur; abort these
 steps.

 Since events with no event listeners registered are, almost by definition, never
 canceled, drag-and-drop is always available to the user if the author does not specifically
 prevent it.

 	

 Initiate the drag-and-drop operation in a manner consistent with platform
 conventions, and as described below.

 The drag-and-drop feedback must be generated from the first of the
 following sources that is available:

 	The drag data store bitmap, if any. In this case, the drag data store
 hot spot coordinate should be used as hints for where to put the cursor relative to the
 resulting image. The values are expressed as distances in CSS pixels from the left side and
 from the top side of the image respectively. [CSS]

 	The drag data store default feedback.

 From the moment that the user agent is to initiate the drag-and-drop operation,
 until the end of the drag-and-drop operation, device input events (e.g. mouse and keyboard events)
 must be suppressed.

 During the drag operation, the element directly indicated by the user as the drop target is
 called the immediate user selection. (Only elements can be selected by the user; other
 nodes must not be made available as drop targets.) However, the immediate user
 selection is not necessarily the current target element, which is the element
 currently selected for the drop part of the drag-and-drop operation.

 The immediate user selection changes as the user selects different elements
 (either by pointing at them with a pointing device, or by selecting them in some other way). The
 current target element changes when the immediate user selection
 changes, based on the results of event listeners in the document, as described below.

 Both the current target element and the immediate user selection can
 be null, which means no target element is selected. They can also both be elements in other
 (DOM-based) documents, or other (non-Web) programs altogether. (For example, a user could drag
 text to a word-processor.) The current target element is initially null.

 In addition, there is also a current drag operation, which can take on the values
 "none", "copy", "link", and
 "move". Initially, it has the value "none". It is
 updated by the user agent as described in the steps below.

 User agents must, as soon as the drag operation is initiated and every 350ms (±200ms) thereafter for as long as the drag
 operation is ongoing, queue a task to perform the following steps in sequence:

 	

 If the user agent is still performing the previous iteration of the sequence (if any) when
 the next iteration becomes due, abort these steps for this iteration (effectively "skipping
 missed frames" of the drag-and-drop operation).

 	

 Fire a DND event named drag at the
 source node. If this event is canceled, the user agent must set the current
 drag operation to "none" (no drag operation).

 	

 If the drag event was not canceled and the user has not ended
 the drag-and-drop operation, check the state of the drag-and-drop operation, as follows:

 	

 If the user is indicating a different immediate user selection than during the
 last iteration (or if this is the first iteration), and if this immediate user
 selection is not the same as the current target element, then fire a
 DND event named dragexit at the current
 target element, and then update the current target element as follows:

 	If the new immediate user selection is null

 	Set the current target element to null also.

 	If the new immediate user selection is in a non-DOM document or
 application

 	Set the current target element to the immediate user
 selection.

 	Otherwise

 	

 Fire a DND event named dragenter at the
 immediate user selection.

 If the event is canceled, then set the current target element to the
 immediate user selection.

 Otherwise, run the appropriate step from the following list:

 	If the immediate user selection is a text field (e.g.
 textarea, or an input element whose type attribute is in the Text state) or an editing host or
 editable element, and the drag data store item list has an item
 with the drag data item type string "text/plain" and the
 drag data item kind Plain Unicode string

 	Set the current target element to the immediate user
 selection anyway.

 	If the immediate user selection is an element with a dropzone attribute that matches the drag data store

 	Set the current target element to the immediate user
 selection anyway.

 	If the immediate user selection is an element that itself has an ancestor
 element with a dropzone attribute that matches the drag data store

 	

 Let new target be the nearest (deepest) such ancestor element.

 If the immediate user selection is new target, then
 leave the current target element unchanged.

 Otherwise, fire a DND event named dragenter at new target. Then, set the
 current target element to new target, regardless of
 whether that event was canceled or not.

 	If the immediate user selection is the body element

 	Leave the current target element unchanged.

 	Otherwise

 	

 Fire a DND event named dragenter at
 the body element, if there is one, or at the Document object, if
 not. Then, set the current target element to the body element,
 regardless of whether that event was canceled or not.

 	

 If the previous step caused the current target element to change, and if the
 previous target element was not null or a part of a non-DOM document, then fire a DND
 event named dragleave at the previous target
 element.

 	

 If the current target element is a DOM element, then fire a DND
 event named dragover at this current target
 element.

 If the dragover event is not canceled, run the
 appropriate step from the following list:

 	If the current target element is a text field (e.g. textarea,
 or an input element whose type attribute is
 in the Text state) or an editing host
 or editable element, and the drag data store item list has an item
 with the drag data item type string "text/plain" and the drag
 data item kind Plain Unicode string

 	Set the current drag operation to either "copy" or
 "move", as appropriate given the platform conventions.

 	If the current target element is an element with a dropzone attribute that matches the drag data store and specifies an operation

 	Set the current drag operation to the operation specified by the dropzone attribute of the current target
 element.

	If the current target element is an element with a dropzone attribute that matches the drag data store and does not
 specify an operation

 	Set the current drag operation to "copy".

	Otherwise

 	Reset the current drag operation to "none".

 Otherwise (if the dragover event is canceled),
 set the current drag operation based on the values of the effectAllowed and dropEffect attributes of the DragEvent
 object's dataTransfer object as they stood
 after the event dispatch finished, as per the
 following table:

 	effectAllowed
 	dropEffect
 	Drag operation

 	"uninitialized", "copy", "copyLink", "copyMove", or "all"
 	"copy"
 	"copy"

 	"uninitialized", "link", "copyLink", "linkMove", or "all"
 	"link"
 	"link"

 	"uninitialized", "move", "copyMove", "linkMove", or "all"
 	"move"
 	"move"

 	Any other case
 	"none"

 	

 Otherwise, if the current target element is not a DOM element, use
 platform-specific mechanisms to determine what drag operation is being performed (none, copy,
 link, or move), and set the current drag operation accordingly.

 	

 Update the drag feedback (e.g. the mouse cursor) to match the current drag
 operation, as follows:

 	Drag operation
 	Feedback

 	"copy"
 	Data will be copied if dropped here.

 	"link"
 	Data will be linked if dropped here.

 	"move"
 	Data will be moved if dropped here.

 	"none"
 	No operation allowed, dropping here will cancel the drag-and-drop operation.

 	

 Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the mouse button
 in a mouse-driven drag-and-drop interface), or if the drag event
 was canceled, then this will be the last iteration. Run the following steps, then stop the
 drag-and-drop operation:

 	

 If the current drag operation is "none" (no drag
 operation), or, if the user ended the drag-and-drop operation by canceling it (e.g. by hitting
 the Escape key), or if the current target element is null, then the
 drag operation failed. Run these substeps:

 	Let dropped be false.

 	If the current target element is a DOM element, fire a DND
 event named dragleave at it; otherwise, if it is
 not null, use platform-specific conventions for drag cancellation.

 Otherwise, the drag operation might be a success; run these substeps:

 	Let dropped be true.

 	If the current target element is a DOM element, fire a DND
 event named drop at it; otherwise, use
 platform-specific conventions for indicating a drop.

 	

 If the event is canceled, set the current drag operation to the value of the
 dropEffect attribute of the
 DragEvent object's dataTransfer
 object as it stood after the event dispatch
 finished.

 Otherwise, the event is not canceled; perform the event's default action, which depends
 on the exact target as follows:

 	If the current target element is a text field (e.g. textarea,
 or an input element whose type attribute
 is in the Text state) or an editing
 host or editable element, and the drag data store item
 list has an item with the drag data item type string
 "text/plain" and the drag data item kind Plain Unicode
 string

 	Insert the actual data of the first item in the drag data store item
 list to have a drag data item type
 string of "text/plain" and a drag
 data item kind that is Plain Unicode string into the text field or
 editing host or editable element in a manner consistent with
 platform-specific conventions (e.g. inserting it at the current mouse cursor position, or
 inserting it at the end of the field).

 	Otherwise

 	Reset the current drag operation to "none".

 	

 Fire a DND event named dragend at the
 source node.

 	

 Run the appropriate steps from the following list as the default action of the dragend event:

 	If dropped is true, the current target element is a
 text field (see below), the current drag operation is "move", and the source of the drag-and-drop operation is a selection in the
 DOM that is entirely contained within an editing host

 	Delete the selection.

 	If dropped is true, the current target element is a
 text field (see below), the current drag operation is "move", and the source of the drag-and-drop operation is a selection in a text
 field

 	The user agent should delete the dragged selection from the relevant text
 field.

 	If dropped is false or if the current drag operation is
 "none"

 	The drag was canceled. If the platform conventions dictate that this be represented to
 the user (e.g. by animating the dragged selection going back to the source of the
 drag-and-drop operation), then do so.

 	Otherwise

 	The event has no default action.

 For the purposes of this step, a text field is a textarea element or an
 input element whose type attribute is in one
 of the
 Text,
 Search,
 Tel,
 URL,
 E-mail,
 Password, or
 Number
 states.

 User agents are encouraged to consider how to react to drags near the edge of
 scrollable regions. For example, if a user drags a link to the bottom of the viewport on a long
 page, it might make sense to scroll the page so that the user can drop the link lower on the
 page.

 This model is independent of which Document object the nodes involved
 are from; the events are fired as described above and the rest of the processing model runs as
 described above, irrespective of how many documents are involved in the operation.

 Events summary

 This section is non-normative.

 The following events are involved in the drag-and-drop
 model.

 	 Event Name
 	 Target

 	 Cancelable?
 	 Drag data store mode

 	 dropEffect
 	 Default Action

 	dragstart
 	Source node

 	✓ Cancelable
 	Read/write mode

 	"none"
 	Initiate the drag-and-drop operation

 	drag
 	Source node

 	✓ Cancelable
 	Protected mode

 	"none"
 	Continue the drag-and-drop operation

 	dragenter
 	Immediate user selection or the body element

 	✓ Cancelable
 	Protected mode

 	Based on effectAllowed value
 	Reject immediate user selection as potential target element

 	dragexit
 	Previous target element

 	—
 	Protected mode

 	"none"
 	None

 	dragleave
 	Previous target element

 	—
 	Protected mode

 	"none"
 	None

 	dragover
 	Current target element

 	✓ Cancelable
 	Protected mode

 	Based on effectAllowed value
 	Reset the current drag operation to "none"

 	drop
 	Current target element

 	✓ Cancelable
 	Read-only mode

 	Current drag operation
 	Varies

 	dragend
 	Source node

 	—
 	Protected mode

 	Current drag operation
 	Varies

 Not shown in the above table: all these events bubble, and the
 effectAllowed
 attribute always has the value it had after the dragstart event, defaulting to "uninitialized" in the dragstart event.

 The draggable attribute

 All HTML elements may have the draggable content attribute set. The
 draggable attribute is an
 enumerated attribute. It has three states. The first
 state is true and it has the keyword true. The second state is false and it has
 the keyword false. The third state is
 auto; it has no keywords but it is the missing value
 default.

 The true state means the element is draggable; the
 false state means that it is not. The auto state
 uses the default behavior of the user agent.

 An element with a draggable
 attribute should also have a title
 attribute that names the element for the purpose of non-visual
 interactions.

 	element . draggable [= value]

 	

 Returns true if the element is draggable; otherwise, returns
 false.

 Can be set, to override the default and set the draggable content attribute.

 The draggable IDL
 attribute, whose value depends on the content attribute's in the way
 described below, controls whether or not the element is
 draggable. Generally, only text selections are draggable, but
 elements whose draggable IDL
 attribute is true become draggable as well.

 If an element's draggable
 content attribute has the state true, the draggable IDL attribute must return
 true.

 Otherwise, if the element's draggable content attribute has the
 state false, the draggable IDL attribute must return
 false.

 Otherwise, the element's draggable content attribute has the
 state auto. If the element is an img element,
 or, if the element is an a element with an href content attribute, the draggable IDL attribute must return
 true.

 Otherwise, the draggable IDL attribute
 must return false.

 If the draggable IDL attribute
 is set to the value false, the draggable content attribute must be
 set to the literal value false. If the draggable IDL attribute is set to the
 value true, the draggable
 content attribute must be set to the literal value true.

 The dropzone attribute

 All HTML elements may have the dropzone content attribute set. When
 specified, its value must be an unordered set of unique
 space-separated tokens that are ASCII
 case-insensitive. The allowed values are the following:

 	copy

 	Indicates that dropping an accepted item on the element will
 result in a copy of the dragged data.

	move

 	Indicates that dropping an accepted item on the element will
 result in the dragged data being moved to the new location.

	link

 	Indicates that dropping an accepted item on the element will
 result in a link to the original data.

	Any keyword with eight characters or more, beginning with the
 an ASCII case-insensitive match for the string "string:"

 	Indicates that items with the drag data item
 kind Plain Unicode string and the drag data
 item type string set to a value that matches the remainder
 of the keyword are accepted.

 	Any keyword with six characters or more, beginning with an
 ASCII case-insensitive match for the string "file:"

 	Indicates that items with the drag data item
 kind File and the drag data item type
 string set to a value that matches the remainder of the
 keyword are accepted.

 The dropzone content
 attribute's values must not have more than one of the three feedback
 values (copy, move, and link) specified. If none are
 specified, the copy value is
 implied.

 An element with a dropzone
 attribute should also have a title
 attribute that names the element for the purpose of non-visual
 interactions.

 A dropzone attribute matches a drag data store if
 the dropzone processing
 steps result in a match.

 A dropzone attribute specifies an operation if
 the dropzone processing
 steps result in a specified operation. The specified
 operation is as given by those steps.

 The dropzone processing
 steps are as follows. They either result in a match or not,
 and separate from this result either in a specified operation or
 not, as defined below.

 	Let value be the value of the dropzone attribute.

 	Let keywords be the result of splitting value on spaces.

 	Let matched be false.

 	Let operation be unspecified.

 	

 For each value in keywords, if any, in the
 order that they were found in value, run the
 following steps.

 	Let keyword be the keyword.

 	

 If keyword is one of "copy", "move", or "link", then: run the following
 substeps:

 	If operation is still unspecified,
 then let operation be the string given by
 keyword.

 	Skip to the step labeled end of keyword
 below.

 	If keyword does not contain a ":" (U+003A) character, or if the first such character in keyword is either the first character or the last
 character in the string, then skip to the step labeled end of
 keyword below.

 	Let kind code be the substring
 of keyword from the first character in the
 string to the last character in the string that is before the
 first ":" (U+003A) character in the string, converted
 to ASCII lowercase.

	

 Jump to the appropriate step from the list below, based on
 the value of kind code:

 	If kind code is the string "string"

 	

 Let kind be
 Plain Unicode string.

 	If kind code is the string "file"

 	

 Let kind be
 File.

 	Otherwise

 	

 Skip to the step labeled end of keyword below.

 	Let type be the substring of keyword from the first character after the first
 ":" (U+003A) character in the string, to the last character
 in the string, converted to ASCII
 lowercase.

 	If there exist any items in the drag data store item
 list whose drag data
 item kind is the
 kind given in kind and whose is
 type, then let matched be
 true.

 	End of keyword: Go on to the next keyword, if any,
 or the next step in the overall algorithm, if there are no
 more.

 	

 The algorithm results in a match if matched
 is true, and does not otherwise.

 The algorithm results in a specified operation if operation is not unspecified. The specified
 operation, if one is specified, is the one given by operation.

 The dropzone IDL
 attribute must reflect the content attribute of the
 same name.

 In this example, a div element is made into a drop
 target for image files using the dropzone attribute. Images dropped
 into the target are then displayed.

 <div dropzone="copy file:image/png file:image/gif file:image/jpeg" ondrop="receive(event, this)">
 <p>Drop an image here to have it displayed.</p>
</div>
<script>
 function receive(event, element) {
 var data = event.dataTransfer.items;
 for (var i = 0; i < data.length; i += 1) {
 if ((data[i].kind == 'file') && (data[i].type.match('^image/'))) {
 var img = new Image();
 img.src = window.createObjectURL(data[i].getAsFile());
 element.appendChild(img);
 }
 }
 }
</script>

 Security risks in the drag-and-drop model

 User agents must not make the data added to the DataTransfer object during the
 dragstart event available to scripts until the drop event, because otherwise, if a user were to drag sensitive
 information from one document to a second document, crossing a hostile third document in the
 process, the hostile document could intercept the data.

 For the same reason, user agents must consider a drop to be successful only if the user
 specifically ended the drag operation — if any scripts end the drag operation, it must be
 considered unsuccessful (canceled) and the drop event must not be
 fired.

 User agents should take care to not start drag-and-drop operations in response to script
 actions. For example, in a mouse-and-window environment, if a script moves a window while the user
 has his mouse button depressed, the UA would not consider that to start a drag. This is important
 because otherwise UAs could cause data to be dragged from sensitive sources and dropped into
 hostile documents without the user's consent.

 User agents should filter potentially active (scripted) content (e.g. HTML) when it is dragged
 and when it is dropped, using a whitelist of known-safe features. Similarly, relative URLs should be turned into absolute URLs to avoid references changing in
 unexpected ways. This specification does not specify how this is performed.

 Consider a hostile page providing some content and getting the user to select and drag and
 drop (or indeed, copy and paste) that content to a victim page's contenteditable region. If the browser does not ensure that
 only safe content is dragged, potentially unsafe content such as scripts and event handlers in
 the selection, once dropped (or pasted) into the victim site, get the privileges of the victim
 site. This would thus enable a cross-site scripting attack.

The HTML syntax

 This section only describes the rules for resources labeled with an HTML
 MIME type. Rules for XML resources are discussed in the section below entitled "The
 XHTML syntax".

 Writing HTML documents

 This section only applies to documents, authoring tools, and markup generators. In
 particular, it does not apply to conformance checkers; conformance checkers must use the
 requirements given in the next section ("parsing HTML documents").

 Documents must consist of the following parts, in the given
 order:

 	Optionally, a single "BOM" (U+FEFF) character.

 	Any number of comments and space characters.

 	A DOCTYPE.

	Any number of comments and space characters.

 	The root element, in the form of an html element.

 	Any number of comments and space characters.

 The various types of content mentioned above are described in the next few sections.

 In addition, there are some restrictions on how character encoding declarations are to be serialized, as discussed in the
 section on that topic.

 Space characters before the root html element, and space characters at the start
 of the html element and before the head element, will be dropped when
 the document is parsed; space characters after the root html element will
 be parsed as if they were at the end of the body element. Thus, space characters
 around the root element do not round-trip.

 It is suggested that newlines be inserted after the DOCTYPE, after any comments that are
 before the root element, after the html element's start tag (if it is not omitted), and after any comments that are inside the
 html element but before the head element.

 Many strings in the HTML syntax (e.g. the names of elements and their attributes) are
 case-insensitive, but only for uppercase ASCII letters and lowercase ASCII
 letters. For convenience, in this section this is just referred to as
 "case-insensitive".

 The DOCTYPE

 A DOCTYPE is a
 required preamble.

 DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a
 different rendering mode that is incompatible with some specifications. Including the DOCTYPE in a
 document ensures that the browser makes a best-effort attempt at following the relevant
 specifications.

 A DOCTYPE must consist of the following components, in this order:

 	A string that is an ASCII case-insensitive match for the string "<!DOCTYPE".

 	One or more space characters.

 	A string that is an ASCII case-insensitive match for the string "html".

 	Optionally, a DOCTYPE legacy string or an obsolete permitted DOCTYPE string (defined below).

 	Zero or more space characters.

 	A ">" (U+003E) character.

 In other words, <!DOCTYPE html>, case-insensitively.

 For the purposes of HTML generators that cannot output HTML
 markup with the short DOCTYPE "<!DOCTYPE
 html>", a DOCTYPE legacy string may be inserted
 into the DOCTYPE (in the position defined above). This string must
 consist of:

 	One or more space characters.

 	A string that is an ASCII case-insensitive match for the string "SYSTEM".

 	One or more space characters.

 	A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote mark).

 	The literal string "about:legacy-compat".

 	A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled quote mark).

 In other words, <!DOCTYPE html SYSTEM
 "about:legacy-compat"> or <!DOCTYPE html SYSTEM
 'about:legacy-compat'>, case-insensitively except for the
 part in single or double quotes.

 The DOCTYPE legacy string should not be used unless
 the document is generated from a system that cannot output the
 shorter string.

 To help authors transition from HTML4 and XHTML1, an
 obsolete permitted DOCTYPE string can be inserted into
 the DOCTYPE (in the position defined above). This string must
 consist of:

 	One or more space characters.

 	A string that is an ASCII case-insensitive match for the string "PUBLIC".

 	One or more space characters.

 	A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the first quote mark).

 	The string from one of the cells in the first column of the table below. The row to which this cell belongs is the selected row.

 	A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled first quote mark).

 	If a system identifier is used,

 	One or more space characters.

 	A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the third quote mark).

 	The string from the cell in the second column of the selected row.

 	A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e. the same character as in the earlier step labeled third quote mark).

 Allowed values for public and system identifiers in an obsolete permitted DOCTYPE string.

 	 Public identifier
 	 System identifier
 	 System identifier optional?

 	 -//W3C//DTD HTML 4.0//EN
 	 http://www.w3.org/TR/REC-html40/strict.dtd
 	 Yes

 	 -//W3C//DTD HTML 4.01//EN
 	 http://www.w3.org/TR/html4/strict.dtd
 	 Yes

 	 -//W3C//DTD XHTML 1.0 Strict//EN
 	 http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
 	 No

 	 -//W3C//DTD XHTML 1.1//EN
 	 http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
 	 No

 A DOCTYPE containing an
 obsolete permitted DOCTYPE string is an obsolete
 permitted DOCTYPE. Authors should not use obsolete permitted
 DOCTYPEs, as they are unnecessarily long.

 Elements

 There are five different kinds of elements: void elements,
 raw text elements, escapable raw text elements,
 foreign elements, and normal elements.

 	Void elements

 	area, base, br, col, embed,
 hr, img, input, keygen, link,
 meta, param, source,
 track, wbr

 	Raw text elements

 	script, style

 	escapable raw text elements

 	textarea, title

 	Foreign elements

 	Elements from the MathML namespace
 and the SVG namespace.

 	Normal elements

 	All other allowed HTML elements are normal
 elements.

 Tags are used to delimit the start
 and end of elements in the markup. Raw text, escapable raw text, and normal elements have a start tag to indicate where they
 begin, and an end tag to
 indicate where they end. The start and end tags of certain
 normal elements can be omitted, as described
 below in the section on optional tags. Those that cannot be omitted must not be omitted. Void
 elements only have a start tag; end tags must not be
 specified for void elements. Foreign
 elements must either have a start tag and an end tag, or a
 start tag that is marked as self-closing, in which case they must
 not have an end tag.

 The contents of the element must be placed between just after the
 start tag (which might be implied,
 in certain cases) and just before the end tag (which again,
 might be implied in certain
 cases). The exact allowed contents of each individual element
 depend on the content model of that element, as described earlier in
 this specification. Elements must not contain content that their
 content model disallows. In addition to the restrictions placed on
 the contents by those content models, however, the five types of
 elements have additional syntactic requirements.

 Void elements can't have any contents (since there's
 no end tag, no content can be put between the start tag and the end
 tag).

 Raw text elements can have text, though it has restrictions described
 below.

 Escapable raw text elements can have text and character references, but the text
 must not contain an ambiguous ampersand.
 There are also further
 restrictions described below.

 Foreign elements whose start tag is marked as
 self-closing can't have any contents (since, again, as there's no
 end tag, no content can be put between the start tag and the end
 tag). Foreign elements whose start tag is not
 marked as self-closing can have text, character references, CDATA sections, other elements, and comments, but the text must not
 contain the character "<" (U+003C) or an ambiguous ampersand.

 The HTML syntax does not support namespace
 declarations, even in foreign elements.

 For instance, consider the following HTML fragment:

 <p>
 <svg>
 <metadata>
 <!-- this is invalid -->
 <cdr:license xmlns:cdr="http://www.example.com/cdr/metadata" name="MIT"/>
 </metadata>
 </svg>
</p>

 The innermost element, cdr:license, is
 actually in the SVG namespace, as the "xmlns:cdr" attribute has no effect (unlike in
 XML). In fact, as the comment in the fragment above says, the
 fragment is actually non-conforming. This is because the SVG
 specification does not define any elements called "cdr:license" in the SVG namespace.

 Normal elements can have text, character references, other elements, and comments, but the text must not
 contain the character "<" (U+003C) or an ambiguous ampersand. Some
 normal elements also have yet more restrictions on what
 content they are allowed to hold, beyond the restrictions imposed by
 the content model and those described in this paragraph. Those
 restrictions are described below.

 Tags contain a tag name, giving the element's name. HTML
 elements all have names that only use alphanumeric ASCII characters. In the HTML
 syntax, tag names, even those for foreign elements, may be written with any mix of
 lower- and uppercase letters that, when converted to all-lowercase, matches the element's tag
 name; tag names are case-insensitive.

 Start tags

 Start tags must have the
 following format:

 	The first character of a start tag must be a "<" (U+003C) character.

 	The next few characters of a start tag must be the element's
 tag name.

 	If there are to be any attributes in the next step, there must
 first be one or more space
 characters.

 	Then, the start tag may have a number of attributes, the syntax for which is described
 below. Attributes must be separated from each other by one or more
 space characters.

 	After the attributes, or after the tag name if there are no attributes,
 there may be one or more space
 characters. (Some attributes are required to be followed by
 a space. See the attributes
 section below.)

 	Then, if the element is one of the void elements,
 or if the element is a foreign
 element, then there may be a single U+002F SOLIDUS character
 (/). This character has no effect on void elements,
 but on foreign elements it marks the start tag as
 self-closing.

 	Finally, start tags must be closed by a ">" (U+003E) character.

 End tags

 End tags must have the
 following format:

 	The first character of an end tag must be a "<" (U+003C) character.

 	The second character of an end tag must be a "/" (U+002F) character.

 	The next few characters of an end tag must be the element's
 tag name.

 	After the tag name, there may be one or more space characters.

 	Finally, end tags must be closed by a ">" (U+003E) character.

 Attributes

 Attributes for an element
 are expressed inside the element's start tag.

 Attributes have a name and a value. Attribute names must consist of
 one or more characters other than the space characters, U+0000 NULL, U+0022 QUOTATION
 MARK ("), U+0027 APOSTROPHE ('), ">" (U+003E), "/" (U+002F), and "=" (U+003D) characters,
 the control characters, and any characters that are not defined by
 Unicode. In the HTML syntax, attribute names, even those for
 foreign elements, may be written with any mix of lower-
 and uppercase letters that are an ASCII
 case-insensitive match for the attribute's name.

 Attribute values are a
 mixture of text and character references, except with the
 additional restriction that the text cannot contain an ambiguous ampersand.

 Attributes can be specified in four different ways:

 	Empty attribute syntax

 	

 Just the attribute
 name. The value is implicitly the empty string.

 In the following example, the disabled attribute is given with
 the empty attribute syntax:

 <input disabled>

 If an attribute using the empty attribute syntax is to be
 followed by another attribute, then there must be a space
 character separating the two.

 	Unquoted attribute value syntax

 	

 The attribute name,
 followed by zero or more space
 characters, followed by a single U+003D EQUALS SIGN
 character, followed by zero or more space characters, followed by the attribute value, which, in
 addition to the requirements given above for attribute values,
 must not contain any literal space
 characters, any U+0022 QUOTATION MARK characters ("),
 U+0027 APOSTROPHE characters ('), "=" (U+003D) characters, "<" (U+003C) characters, ">" (U+003E) characters, or "`" (U+0060) characters, and must not be the empty string.

 In the following example, the value attribute is given
 with the unquoted attribute value syntax:

 <input value=yes>

 If an attribute using the unquoted attribute syntax is to be
 followed by another attribute or by the optional "/" (U+002F) character allowed in step 6 of the start tag syntax above, then there
 must be a space character separating the two.

 	Single-quoted attribute value syntax

 	

 The attribute name,
 followed by zero or more space
 characters, followed by a single U+003D EQUALS SIGN
 character, followed by zero or more space characters, followed by a single "'" (U+0027) character, followed by the attribute value, which, in
 addition to the requirements given above for attribute values,
 must not contain any literal "'" (U+0027) characters, and
 finally followed by a second single U+0027 APOSTROPHE character
 (').

 In the following example, the type attribute is given with the
 single-quoted attribute value syntax:

 <input type='checkbox'>

 If an attribute using the single-quoted attribute syntax is to
 be followed by another attribute, then there must be a space
 character separating the two.

 	Double-quoted attribute value syntax

 	

 The attribute name,
 followed by zero or more space
 characters, followed by a single U+003D EQUALS SIGN
 character, followed by zero or more space characters, followed by a single """ (U+0022) character, followed by the attribute value, which, in
 addition to the requirements given above for attribute values,
 must not contain any literal """ (U+0022) characters,
 and finally followed by a second single """ (U+0022) character.

 In the following example, the name attribute is given with the
 double-quoted attribute value syntax:

 <input name="be evil">

 If an attribute using the double-quoted attribute syntax is to
 be followed by another attribute, then there must be a space
 character separating the two.

 There must never be two or more attributes on the same start tag
 whose names are an ASCII case-insensitive match for
 each other.

 When a foreign element has
 one of the namespaced attributes given by the local name and
 namespace of the first and second cells of a row from the following
 table, it must be written using the name given by the third cell
 from the same row.

 	 Local name 	 Namespace 	 Attribute name

 	 actuate 	 XLink namespace 	 xlink:actuate

 	 arcrole 	 XLink namespace 	 xlink:arcrole

 	 href 	 XLink namespace 	 xlink:href

 	 role 	 XLink namespace 	 xlink:role

 	 show 	 XLink namespace 	 xlink:show

 	 title 	 XLink namespace 	 xlink:title

 	 type 	 XLink namespace 	 xlink:type

 	 base 	 XML namespace 	 xml:base

 	 lang 	 XML namespace 	 xml:lang

 	 space 	 XML namespace 	 xml:space

 	 xmlns 	 XMLNS namespace 	 xmlns

 	 xlink 	 XMLNS namespace 	 xmlns:xlink

 No other namespaced attribute can be expressed in the
 HTML syntax.

 Whether the attributes in the table above are
 conforming or not is defined by other specifications (e.g. the SVG
 and MathML specifications); this section only describes the syntax
 rules if the attributes are serialized using the HTML syntax.

 Optional tags

 Certain tags can be omitted.

 Omitting an element's start tag in the situations
 described below does not mean the element is not present; it is
 implied, but it is still there. For example, an HTML document always
 has a root html element, even if the string <html> doesn't appear anywhere in the markup.

 An html element's start tag may be omitted if the
 first thing inside the html element is not a comment.

 An html element's end
 tag may be omitted if the html element is not
 immediately followed by a comment.

 A head element's start tag may be omitted if the
 element is empty, or if the first thing inside the
 head element is an element.

 A head element's end
 tag may be omitted if the head element is not
 immediately followed by a space character or a comment.

 A body element's start tag may be omitted if the
 element is empty, or if the first thing inside the body
 element is not a space character or a comment, except if the first thing
 inside the body element is a script or
 style element.

 A body element's end
 tag may be omitted if the body element is not
 immediately followed by a comment.

 An li element's end
 tag may be omitted if the li element is
 immediately followed by another li element or if there
 is no more content in the parent element.

 A dt element's end
 tag may be omitted if the dt element is
 immediately followed by another dt element or a
 dd element.

 A dd element's end
 tag may be omitted if the dd element is
 immediately followed by another dd element or a
 dt element, or if there is no more content in the
 parent element.

 A p element's end
 tag may be omitted if the p element is
 immediately followed by an address,
 article, aside, blockquote,
 dir, div, dl,
 fieldset, footer, form,
 h1, h2, h3, h4,
 h5, h6, header,
 hgroup, hr, main,
 nav, ol, p, pre,
 section, table, or ul,
 element, or if there is no more content in the parent element and
 the parent element is not an a element.

 An rt element's end
 tag may be omitted if the rt element is
 immediately followed by an rt or rp
 element, or if there is no more content in the parent element.

 An rp element's end
 tag may be omitted if the rp element is
 immediately followed by an rt or rp
 element, or if there is no more content in the parent element.

 An optgroup element's end tag may be omitted if the
 optgroup element is immediately followed by
 another optgroup element, or if there is no
 more content in the parent element.

 An option element's end
 tag may be omitted if the option element is
 immediately followed by another option element, or if
 it is immediately followed by an optgroup element, or
 if there is no more content in the parent element.

 A colgroup element's start tag may be omitted if the
 first thing inside the colgroup element is a
 col element, and if the element is not immediately
 preceded by another colgroup element whose end tag has been omitted. (It can't be
 omitted if the element is empty.)

 A colgroup element's end tag may be omitted if the
 colgroup element is not immediately followed by a
 space character or a comment.

 A thead element's end
 tag may be omitted if the thead element is
 immediately followed by a tbody or tfoot
 element.

 A tbody element's start tag may be omitted if the
 first thing inside the tbody element is a
 tr element, and if the element is not immediately
 preceded by a tbody, thead, or
 tfoot element whose end
 tag has been omitted. (It can't be omitted if the element is
 empty.)

 A tbody element's end
 tag may be omitted if the tbody element is
 immediately followed by a tbody or tfoot
 element, or if there is no more content in the parent element.

 A tfoot element's end
 tag may be omitted if the tfoot element is
 immediately followed by a tbody element, or if there is
 no more content in the parent element.

 A tr element's end
 tag may be omitted if the tr element is
 immediately followed by another tr element, or if there
 is no more content in the parent element.

 A td element's end
 tag may be omitted if the td element is
 immediately followed by a td or th
 element, or if there is no more content in the parent element.

 A th element's end
 tag may be omitted if the th element is
 immediately followed by a td or th
 element, or if there is no more content in the parent element.

 However, a start
 tag must never be omitted if it has any attributes.

 Restrictions on content models

 For historical reasons, certain elements have extra restrictions
 beyond even the restrictions given by their content model.

 A table element must not contain tr
 elements, even though these elements are technically allowed inside
 table elements according to the content models
 described in this specification. (If a tr element is
 put inside a table in the markup, it will in fact imply
 a tbody start tag before it.)

 A single newline may be
 placed immediately after the start
 tag of pre and textarea
 elements. This does not affect the processing of the element. If the
 element's contents are intended to start with a
 newline, two consecutive
 newlines thus need to be included by the author.

 The following two pre blocks are equivalent:

 <pre>Hello</pre>

 <pre>
Hello</pre>

 Restrictions on the contents of raw text and escapable raw text elements

 The text in raw text and
 escapable raw text elements must not contain any occurrences of the
 string "</" (U+003C LESS-THAN SIGN, U+002F
 SOLIDUS) followed by characters that case-insensitively match the
 tag name of the element followed by one of "tab" (U+0009), "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), U+0020 SPACE, ">" (U+003E), or
 "/" (U+002F).

 Text

 Text is allowed inside elements,
 attribute values, and comments. Extra constraints are placed on what
 is and what is not allowed in text based on where the text is to be
 put, as described in the other sections.

 Newlines

 Newlines in HTML may be
 represented either as "CR" (U+000D) characters, "LF" (U+000A) characters, or pairs of "CR" (U+000D),
 "LF" (U+000A) characters in that order.

 Where character references
 are allowed, a character reference of a "LF" (U+000A)
 character (but not a "CR" (U+000D) character) also
 represents a newline.

 Character references

 In certain cases described in other sections, text may be mixed with character references. These can be used
 to escape characters that couldn't otherwise legally be included in
 text.

 Character references must start with a U+0026 AMPERSAND character
 (&). Following this, there are three possible kinds of character
 references:

 	Named character references

 	The ampersand must be followed by one of the names given in the
 named character references section, using the same
 case.

 	Decimal numeric character reference

 	The ampersand must be followed by a "#" (U+0023) character, followed by one or more
 ASCII digits, representing a base-ten integer that corresponds to a Unicode code
 point that is allowed according to the definition below. The digits must then be followed by a
 ";" (U+003B) character.

 	Hexadecimal numeric character reference

 	The ampersand must be followed by a "#" (U+0023) character, which must be followed
 by either a "x" (U+0078) character or a "X" (U+0058) character, which must then be followed by one or more ASCII hex digits,
 representing a base-sixteen integer that corresponds to a Unicode code point that is allowed
 according to the definition below. The digits must then be followed by a ";" (U+003B) character.

 The numeric character reference forms described above are allowed
 to reference any Unicode code point other than U+0000, U+000D,
 permanently undefined Unicode characters (noncharacters), and
 control characters other than space
 characters.

 An ambiguous ampersand is a U+0026 AMPERSAND
 character (&) that is followed by one or more alphanumeric ASCII characters,
 followed by a ";" (U+003B) character, where these characters do not match any of the names
 given in the named character references section.

 CDATA sections

 CDATA sections must consist of
 the following components, in this order:

 	The string "<![CDATA[".

 	Optionally, text, with the
 additional restriction that the text must not contain the string
 "]]>".

 	The string "]]>".

 CDATA sections can only be used in foreign content (MathML or
 SVG). In this example, a CDATA section is used to escape the
 contents of an ms element:

 <p>You can add a string to a number, but this stringifies the number:</p>
<math>
 <ms><![CDATA[x<y]]></ms>
 <mo>+</mo>
 <mn>3</mn>
 <mo>=</mo>
 <ms><![CDATA[x<y3]]></ms>
</math>

 Comments

 Comments must start with the
 four character sequence U+003C LESS-THAN SIGN, U+0021 EXCLAMATION
 MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS (<!--). Following this sequence, the comment may
 have text, with the additional
 restriction that the text must not start with a single ">" (U+003E) character, nor start with a "-" (U+002D) character followed by a ">" (U+003E) character, nor contain two consecutive U+002D HYPHEN-MINUS
 characters (--), nor end with a "-" (U+002D) character. Finally, the comment must be ended by
 the three character sequence U+002D HYPHEN-MINUS, U+002D
 HYPHEN-MINUS, U+003E GREATER-THAN SIGN (-->).

 Parsing HTML documents

 This section only applies to user agents, data mining tools,
 and conformance checkers.

 The rules for parsing XML documents into DOM trees
 are covered by the next section, entitled "The XHTML
 syntax".

 User agents must use the parsing rules described in this section
 to generate the DOM trees from text/html resources.
 Together, these rules define what is referred to as the HTML
 parser.

 While the HTML syntax described in this specification bears a
 close resemblance to SGML and XML, it is a separate language with
 its own parsing rules.

 Some earlier versions of HTML (in particular from HTML2 to
 HTML4) were based on SGML and used SGML parsing rules. However, few
 (if any) web browsers ever implemented true SGML parsing for HTML
 documents; the only user agents to strictly handle HTML as an SGML
 application have historically been validators. The resulting
 confusion — with validators claiming documents to have one
 representation while widely deployed Web browsers interoperably
 implemented a different representation — has wasted decades
 of productivity. This version of HTML thus returns to a non-SGML
 basis.

 Authors interested in using SGML tools in their authoring
 pipeline are encouraged to use XML tools and the XML serialization
 of HTML.

 This specification defines the parsing rules for HTML documents,
 whether they are syntactically correct or not. Certain points in the
 parsing algorithm are said to be parse
 errors. The error handling for parse errors is well-defined
 (that's the processing rules described throughout this specification), but
 user agents, while parsing an HTML document, may abort the parser at the first parse error that they
 encounter for which they do not wish to apply the rules described
 in this specification.

 Conformance checkers must report at least one parse error
 condition to the user if one or more parse error conditions exist in
 the document and must not report parse error conditions if none
 exist in the document. Conformance checkers may report more than one
 parse error condition if more than one parse error condition exists
 in the document.

 Parse errors are only errors with the
 syntax of HTML. In addition to checking for parse errors,
 conformance checkers will also verify that the document obeys all
 the other conformance requirements described in this
 specification.

 For the purposes of conformance checkers, if a resource is
 determined to be in the HTML syntax, then it is an
 HTML document.

 Overview of the parsing model

 The input to the HTML parsing process consists of a stream of
 Unicode code points, which
 is passed through a tokenization stage followed by a
 tree construction stage. The output is a
 Document object.

 Implementations that do not
 support scripting do not have to actually create a DOM
 Document object, but the DOM tree in such cases is
 still used as the model for the rest of the specification.

 In the common case, the data handled by the tokenization stage
 comes from the network, but it can also come from script running in the user
 agent, e.g. using the document.write() API.

 There is only one set of states for the
 tokenizer stage and the tree construction stage, but the tree
 construction stage is reentrant, meaning that while the tree
 construction stage is handling one token, the tokenizer might be
 resumed, causing further tokens to be emitted and processed before
 the first token's processing is complete.

 In the following example, the tree construction stage will be
 called upon to handle a "p" start tag token while handling the
 "script" end tag token:

 ...
<script>
 document.write('<p>');
</script>
...

 To handle these cases, parsers have a script nesting
 level, which must be initially set to zero, and a parser
 pause flag, which must be initially set to false.

 The input byte stream

 The stream of Unicode code points that comprises the input to the
 tokenization stage will be initially seen by the user agent as a
 stream of bytes (typically coming over the network or from the local
 file system). The bytes encode the actual characters according to a
 particular character encoding, which the user agent must use
 to decode the bytes into characters.

 For XML documents, the algorithm user agents must
 use to determine the character encoding is given by the XML
 specification. This section does not apply to XML documents. [XML]

 The encoding sniffing algorithm defined below is
 used to determine the character encoding.

 Given a character encoding, the bytes in the input byte
 stream must be converted to Unicode code points for the
 tokenizer's input stream, as described by the rules for
 that encoding's decoder.

 Bytes or sequences of bytes in the original byte
 stream that did not conform to the encoding specification (e.g.
 invalid UTF-8 byte sequences in a UTF-8 input byte stream) are
 errors that conformance checkers are expected to report.

 Leading Byte Order Marks (BOMs) are not stripped by the decoder algorithms, they
 are stripped by the algorithm below.

 The decoder algorithms describe how to handle invalid input; for security
 reasons, it is imperative that those rules be followed precisely. Differences in how invalid byte
 sequences are handled can result in, amongst other problems, script injection vulnerabilities
 ("XSS").

 Determining the character encoding

 In some cases, it might be impractical to unambiguously determine the encoding before parsing
 the document. Because of this, this specification provides for a two-pass mechanism with an
 optional pre-scan. Implementations are allowed, as described below, to apply a simplified parsing
 algorithm to whatever bytes they have available before beginning to parse the document. Then, the
 real parser is started, using a tentative encoding derived from this pre-parse and other
 out-of-band metadata. If, while the document is being loaded, the user agent discovers a character
 encoding declaration that conflicts with this information, then the parser can get reinvoked to
 perform a parse of the document with the real encoding.

 User agents must use the following algorithm, called the encoding
 sniffing algorithm, to determine the character encoding to use when decoding a document in
 the first pass. This algorithm takes as input any out-of-band metadata available to the user agent
 (e.g. the Content-Type metadata of the document) and all the
 bytes available so far, and returns a character encoding and a confidence. The confidence is either tentative,
 certain, or irrelevant. The encoding used, and whether the confidence in that
 encoding is tentative or certain, is used
 during the parsing to determine whether to change the encoding. If no encoding is
 necessary, e.g. because the parser is operating on a Unicode stream and doesn't have to use a
 character encoding at all, then the confidence is
 irrelevant.

 	

 If the user has explicitly instructed the user agent to override the document's character
 encoding with a specific encoding, optionally return that encoding with the confidence certain and abort these steps.

 Typically, user agents remember such user requests across sessions, and in some
 cases apply them to documents in iframes as well.

 	

 The user agent may wait for more bytes of the resource to be available, either in this step
 or at any later step in this algorithm. For instance, a user agent might wait 500ms or 1024
 bytes, whichever came first. In general preparsing the source to find the encoding improves
 performance, as it reduces the need to throw away the data structures used when parsing upon
 finding the encoding information. However, if the user agent delays too long to obtain data to
 determine the encoding, then the cost of the delay could outweigh any performance improvements
 from the preparse.

 The authoring conformance requirements for character encoding declarations limit
 them to only appearing in the first 1024 bytes. User agents are
 therefore encouraged to use the prescan algorithm below (as invoked by these steps) on the first
 1024 bytes, but not to stall beyond that.

 	

 For each of the rows in the following table, starting with the first one and going down, if
 there are as many or more bytes available than the number of bytes in the first column, and the
 first bytes of the file match the bytes given in the first column, then return the encoding
 given in the cell in the second column of that row, with the confidence certain, and abort these steps:

 	Bytes in Hexadecimal
 	Encoding

 	FE FF
 	Big-endian UTF-16

 	FF FE
 	Little-endian UTF-16

 	EF BB BF
 	UTF-8

 This step looks for Unicode Byte Order Marks (BOMs).

 That this step happens before the next one honoring the HTTP
 Content-Type header is a willful violation of the HTTP specification,
 motivated by a desire to be maximally compatible with legacy content. [HTTP]

 	If the transport layer specifies a character encoding, and it is supported, return that
 encoding with the confidence certain, and
 abort these steps.

 	

 Optionally prescan the byte
 stream to determine its encoding. The end condition is that the user
 agent decides that scanning further bytes would not be efficient. User agents are encouraged to
 only prescan the first 1024 bytes. User agents may decide that scanning any bytes is
 not efficient, in which case these substeps are entirely skipped.

 The aforementioned algorithm either aborts unsuccessfully or returns a character encoding. If
 it returns a character encoding, then this algorithm must be aborted, returning the same
 encoding, with confidence tentative.

 	

 If the HTML parser for which this algorithm is being run is associated with a
 Document that is itself in a nested browsing context, run these
 substeps:

 	Let new document be the Document with which the
 HTML parser is associated.

 	Let parent document be the Document through which new document is
 nested (the active document of the parent browsing context of
 new document).

 	If parent document's origin is not the same
 origin as new document's origin, then abort these
 substeps.

 	If parent document's character encoding is not an ASCII-compatible character encoding,
 then abort these substeps.

 	Return parent document's character encoding, with the confidence tentative, and abort the
 encoding sniffing algorithm's steps.

 	Otherwise, if the user agent has information on the likely encoding for this page, e.g.
 based on the encoding of the page when it was last visited, then return that encoding, with the
 confidence tentative, and abort these
 steps.

 	

 The user agent may attempt to autodetect the character encoding from applying frequency
 analysis or other algorithms to the data stream. Such algorithms may use information about the
 resource other than the resource's contents, including the address of the resource. If
 autodetection succeeds in determining a character encoding, and that encoding is a supported
 encoding, then return that encoding, with the confidence tentative, and abort these steps.
 [UNIVCHARDET]

 The UTF-8 encoding has a highly detectable bit pattern. Documents that contain
 bytes with values greater than 0x7F which match the UTF-8 pattern are very likely to be UTF-8,
 while documents with byte sequences that do not match it are very likely not. User-agents are
 therefore encouraged to search for this common encoding. [PPUTF8] [UTF8DET]

 	

 Otherwise, return an implementation-defined or user-specified default character encoding,
 with the confidence tentative.

 In controlled environments or in environments where the encoding of documents can be
 prescribed (for example, for user agents intended for dedicated use in new networks), the
 comprehensive UTF-8 encoding is suggested.

 In other environments, the default encoding is typically dependent on the user's locale (an
 approximation of the languages, and thus often encodings, of the pages that the user is likely
 to frequent). The following table gives suggested defaults based on the user's locale, for
 compatibility with legacy content. Locales are identified by BCP 47 language tags. [BCP47] [ENCODING]

 	Locale language
 	Suggested default encoding

 	ar
 	Arabic
 	windows-1256

 	bg
 	Bulgarian
 	windows-1251

 	cs
 	Czech
 	windows-1250

 	et
 	Estonian
 	windows-1257

 	fa
 	Persian
 	windows-1256

 	he
 	Hebrew
 	windows-1255

 	hr
 	Croatian
 	windows-1250

 	hu
 	Hungarian
 	ISO-8859-2

 	ja
 	Japanese
 	Shift_JIS

 	ko
 	Korean
 	euc-kr

 	ku
 	Kurdish
 	windows-1254

 	lt
 	Lithuanian
 	windows-1257

 	lv
 	Latvian
 	windows-1257

 	pl
 	Polish
 	ISO-8859-2

 	ru
 	Russian
 	windows-1251

 	sk
 	Slovak
 	windows-1250

 	sl
 	Slovenian
 	ISO-8859-2

 	sr
 	Serbian
 	windows-1251

 	th
 	Thai
 	windows-874

 	tr
 	Turkish
 	windows-1254

 	uk
 	Ukrainian
 	windows-1251

 	vi
 	Vietnamese
 	windows-1258

 	zh-CN
 	Chinese (People's Republic of China)
 	GB18030

 	zh-TW
 	Chinese (Taiwan)
 	Big5

 	All other locales
 	windows-1252

 The contents of this table are derived from the intersection of
 Windows, Chrome, and Firefox defaults.

 The document's character encoding must immediately be set to the value returned
 from this algorithm, at the same time as the user agent uses the returned value to select the
 decoder to use for the input byte stream.

 When an algorithm requires a user agent to prescan a byte stream to determine its
 encoding, given some defined end condition, then it must run the
 following steps. These steps either abort unsuccessfully or return a character encoding. If at any
 point during these steps (including during instances of the get an attribute algorithm invoked by this
 one) the user agent either runs out of bytes (meaning the position pointer
 created in the first step below goes beyond the end of the byte stream obtained so far) or reaches
 its end condition, then abort the prescan a byte stream to determine its
 encoding algorithm unsuccessfully.

 	

 Let position be a pointer to a byte in the input byte stream, initially
 pointing at the first byte.

 	

 Loop: If position points to:

 	A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')

 	

 Advance the position pointer so that it points at the first 0x3E byte
 which is preceded by two 0x2D bytes (i.e. at the end of an ASCII '-->' sequence) and comes
 after the 0x3C byte that was found. (The two 0x2D bytes can be the same as the those in the
 '<!--' sequence.)

 	A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65, 0x54 or 0x74, 0x41 or 0x61, and one of 0x09, 0x0A, 0x0C, 0x0D, 0x20, 0x2F (case-insensitive ASCII '<meta' followed by a space or slash)

 	

 	Advance the position pointer so that it points at the next 0x09,
 0x0A, 0x0C, 0x0D, 0x20, or 0x2F byte (the one in sequence of characters matched
 above).

 	Let attribute list be an empty list of strings.

 	Let got pragma be false.

 	Let need pragma be null.

 	Let charset be the null value (which, for the purposes of this
 algorithm, is distinct from an unrecognised encoding or the empty string).

 	Attributes: Get an
 attribute and its value. If no attribute was sniffed, then jump to the
 processing step below.

 	If the attribute's name is already in attribute list, then return
 to the step labeled attributes.

	Add the attribute's name to attribute list.

	

 Run the appropriate step from the following list, if one applies:

 	If the attribute's name is "http-equiv"

 	If the attribute's value is "content-type", then set got pragma to true.

 	If the attribute's name is "content"

 	Apply the algorithm for extracting a character encoding from a
 meta element, giving the attribute's value as the string to parse. If a
 character encoding is returned, and if charset is still set to null,
 let charset be the encoding returned, and set need
 pragma to true.

 	If the attribute's name is "charset"

 	Let charset be the result of getting an encoding
 from the attribute's value, and set need pragma to false.

 	Return to the step labeled attributes.

 	Processing: If need pragma is null, then jump to the step
 below labeled next byte.

 	If need pragma is true but got pragma is
 false, then jump to the step below labeled next byte.

 	If charset is a UTF-16 encoding, change the value of
 charset to UTF-8.

 	If charset is not a supported character encoding, then jump to the
 step below labeled next byte.

 	Abort the prescan a byte stream to determine its encoding algorithm,
 returning the encoding given by charset.

 	A sequence of bytes starting with a 0x3C byte (ASCII <), optionally a 0x2F byte (ASCII /), and finally a byte in the range 0x41-0x5A or 0x61-0x7A (an ASCII letter)

 	

 	Advance the position pointer so that it points at the next 0x09
 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x3E
 (ASCII >) byte.

 	Repeatedly get an attribute
 until no further attributes can be found, then jump to the step below labeled next
 byte.

 	A sequence of bytes starting with: 0x3C 0x21 (ASCII '<!')

 	A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')

 	A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

 	

 Advance the position pointer so that it points at the first 0x3E byte
 (ASCII >) that comes after the 0x3C byte that was found.

 	Any other byte

 	

 Do nothing with that byte.

 	Next byte: Move position so it points at the next byte in the
 input byte stream, and return to the step above labeled loop.

 When the prescan a byte stream to determine its encoding algorithm says to get an attribute, it means doing this:

 	If the byte at position is one of 0x09
 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR),
 0x20 (ASCII space), or 0x2F (ASCII /) then advance position to the next byte and redo this
 step.

 	If the byte at position is 0x3E (ASCII
 >), then abort the get an
 attribute algorithm. There isn't one.

 	Otherwise, the byte at position is the
 start of the attribute name. Let attribute name
 and attribute value be the empty
 string.

 	Process the byte at position as follows:

 	If it is 0x3D (ASCII =), and the attribute
 name is longer than the empty string

 	Advance position to the next byte and
 jump to the step below labeled value.

 	If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII
 FF), 0x0D (ASCII CR), or 0x20 (ASCII space)

 	Jump to the step below labeled spaces.

 	If it is 0x2F (ASCII /) or 0x3E (ASCII >)

 	Abort the get an
 attribute algorithm. The attribute's name is the value of
 attribute name, its value is the empty
 string.

 	If it is in the range 0x41 (ASCII A) to 0x5A (ASCII
 Z)

 	Append the Unicode character with code point to attribute name (where b is
 the value of the byte at position). (This
 converts the input to lowercase.)

 	Anything else

 	Append the Unicode character with the same code point as the
 value of the byte at position to attribute name. (It doesn't actually matter how
 bytes outside the ASCII range are handled here, since only
 ASCII characters can contribute to the detection of a character
 encoding.)

 	Advance position to the next byte and
 return to the previous step.

 	Spaces: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII
 LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then
 advance position to the next byte, then,
 repeat this step.

 	If the byte at position is not
 0x3D (ASCII =), abort the get an
 attribute algorithm. The attribute's name is the value of
 attribute name, its value is the empty
 string.

 	Advance position past the 0x3D (ASCII
 =) byte.

 	Value: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII
 LF), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then
 advance position to the next byte, then,
 repeat this step.

 	Process the byte at position as
 follows:

 	If it is 0x22 (ASCII ") or 0x27 (ASCII ')

 	

 	Let b be the value of the byte at
 position.

 	Quote loop: Advance position to
 the next byte.

 	If the value of the byte at position is
 the value of b, then advance position to the next byte and abort the "get an
 attribute" algorithm. The attribute's name is the value of attribute name, and its value is the value of
 attribute value.

 	Otherwise, if the value of the byte at position is in the range 0x41 (ASCII A) to 0x5A
 (ASCII Z), then append a Unicode character to attribute value whose code point is 0x20 more
 than the value of the byte at position.

 	Otherwise, append a Unicode character to attribute value whose code point is the same as
 the value of the byte at position.

 	Return to the step above labeled quote loop.

 	If it is 0x3E (ASCII >)

 	Abort the get an
 attribute algorithm. The attribute's name is the value of
 attribute name, its value is the empty
 string.

 	If it is in the range 0x41 (ASCII A) to 0x5A (ASCII
 Z)

 	Append the Unicode character with code point to attribute value (where b is
 the value of the byte at position). Advance
 position to the next byte.

 	Anything else

 	Append the Unicode character with the same code point as the
 value of the byte at position to attribute value. Advance position to the next byte.

 	Process the byte at position as
 follows:

 	If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII
 FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x3E (ASCII
 >)

 	Abort the get an
 attribute algorithm. The attribute's name is the value of
 attribute name and its value is the value of
 attribute value.

 	If it is in the range 0x41 (ASCII A) to 0x5A (ASCII Z)

 	Append the Unicode character with code point to attribute value (where b is
 the value of the byte at position).

 	Anything else

 	Append the Unicode character with the same code point as the
 value of the byte at position to attribute value.

 	Advance position to the next byte and
 return to the previous step.

 For the sake of interoperability, user agents should not use a
 pre-scan algorithm that returns different results than the one
 described above. (But, if you do, please at least let us know, so
 that we can improve this algorithm and benefit everyone...)

 Character encodings

 User agents must support the encodings defined in the Encoding standard. User agents
 should not support other encodings.

 User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings. [CESU8] [UTF7] [BOCU1] [SCSU]

 Support for encodings based on EBCDIC is especially discouraged. This encoding is rarely used
 for publicly-facing Web content. Support for UTF-32 is also especially discouraged. This encoding
 is rarely used, and frequently implemented incorrectly.

 This specification does not make any attempt to support EBCDIC-based encodings and
 UTF-32 in its algorithms; support and use of these encodings can thus lead to unexpected behavior
 in implementations of this specification.

 Changing the encoding while parsing

 When the parser requires the user agent to change the encoding, it must run the
 following steps. This might happen if the encoding sniffing algorithm described above
 failed to find a character encoding, or if it found a character encoding that was not the actual
 encoding of the file.

 	If the encoding that is already being used to interpret the
 input stream is a UTF-16 encoding, then set the confidence to
 certain and abort these steps. The new encoding is ignored;
 if it was anything but the same encoding, then it would be clearly
 incorrect.

 	If the new encoding is a UTF-16 encoding, change
 it to UTF-8.

 	If the new encoding is identical or equivalent to the encoding
 that is already being used to interpret the input stream, then set
 the confidence to
 certain and abort these steps. This happens when the
 encoding information found in the file matches what the
 encoding sniffing algorithm determined to be the
 encoding, and in the second pass through the parser if the first
 pass found that the encoding sniffing algorithm described in the
 earlier section failed to find the right encoding.

 	If all the bytes up to the last byte converted by the current
 decoder have the same Unicode interpretations in both the current
 encoding and the new encoding, and if the user agent supports
 changing the converter on the fly, then the user agent may change
 to the new converter for the encoding on the fly. Set the
 document's character encoding and the encoding used to
 convert the input stream to the new encoding, set the confidence to
 certain, and abort these steps.

 	Otherwise, navigate to the
 document again, with replacement enabled, and using
 the same source browsing context, but this time skip
 the encoding sniffing algorithm and instead just set
 the encoding to the new encoding and the confidence to
 certain. Whenever possible, this should be done without
 actually contacting the network layer (the bytes should be
 re-parsed from memory), even if, e.g., the document is marked as
 not being cacheable. If this is not possible and contacting the
 network layer would involve repeating a request that uses a method
 other than HTTP GET (or
 equivalent for non-HTTP URLs), then instead set the confidence to
 certain and ignore the new encoding. The resource will be
 misinterpreted. User agents may notify the user of the situation,
 to aid in application development.

 Preprocessing the input stream

 The input stream consists of the characters pushed
 into it as the input byte stream is decoded or from the
 various APIs that directly manipulate the input stream.

 One leading U+FEFF BYTE ORDER MARK character must be ignored if
 any are present in the input stream.

 The requirement to strip a U+FEFF BYTE ORDER MARK
 character regardless of whether that character was used to determine
 the byte order is a willful violation of Unicode,
 motivated by a desire to increase the resilience of user agents in
 the face of naïve transcoders.

 Any occurrences of any characters in the ranges U+0001 to U+0008,
 U+000E to U+001F, U+007F
 to U+009F, U+FDD0
 to U+FDEF, and characters U+000B, U+FFFE, U+FFFF, U+1FFFE, U+1FFFF,
 U+2FFFE, U+2FFFF, U+3FFFE, U+3FFFF, U+4FFFE, U+4FFFF, U+5FFFE,
 U+5FFFF, U+6FFFE, U+6FFFF, U+7FFFE, U+7FFFF, U+8FFFE, U+8FFFF,
 U+9FFFE, U+9FFFF, U+AFFFE, U+AFFFF, U+BFFFE, U+BFFFF, U+CFFFE,
 U+CFFFF, U+DFFFE, U+DFFFF, U+EFFFE, U+EFFFF, U+FFFFE, U+FFFFF,
 U+10FFFE, and U+10FFFF are parse
 errors. These are all control characters or permanently
 undefined Unicode characters (noncharacters).

 "CR" (U+000D) characters and "LF" (U+000A)
 characters are treated specially. All CR characters must be
 converted to LF characters, and any LF characters that immediately
 follow a CR character must be ignored. Thus, newlines in HTML DOMs
 are represented by LF characters, and there are never any CR
 characters in the input to the tokenization stage.

 The next input character is the first character in the
 input stream that has not yet been consumed
 or explicitly ignored by the requirements in this section.
 Initially, the next input character is the first character in
 the input. The current input character is the last
 character to have been consumed.

 The insertion point is the position (just before a
 character or just before the end of the input stream) where content
 inserted using document.write() is actually
 inserted. The insertion point is relative to the position of the
 character immediately after it, it is not an absolute offset into
 the input stream. Initially, the insertion point is
 undefined.

 The "EOF" character in the tables below is a conceptual character
 representing the end of the input stream. If the parser
 is a script-created parser, then the end of the
 input stream is reached when an explicit "EOF"
 character (inserted by the document.close() method) is
 consumed. Otherwise, the "EOF" character is not a real character in
 the stream, but rather the lack of any further characters.

 The handling of U+0000 NULL characters varies based on where the characters are
 found. In general, they are ignored except where doing so could plausibly introduce an attack
 vector. This handling is, by necessity, spread across both the tokenization stage and the tree
 construction stage.

 Parse state

 The insertion mode

 The insertion mode is a state variable that controls
 the primary operation of the tree construction stage.

 Initially, the insertion mode is "initial". It can change to
 "before html",
 "before head",
 "in head", "in head noscript",
 "after head", "in body", "text", "in table", "in table text", "in caption", "in column group", "in table body", "in row", "in
 cell", "in
 select", "in
 select in table", "after body", "in frameset", "after frameset", "after after body", and "after after
 frameset" during the course of the parsing, as described in
 the tree construction stage. The insertion mode affects
 how tokens are processed and whether CDATA sections are
 supported.

 Several of these modes, namely "in head", "in
 body", "in
 table", and "in
 select", are special, in that the other modes defer to them
 at various times. When the algorithm below says that the user agent
 is to do something "using the rules for the m insertion mode", where m is one
 of these modes, the user agent must use the rules described under
 the m insertion mode's section, but
 must leave the insertion mode unchanged unless the
 rules in m themselves switch the insertion
 mode to a new value.

 When the insertion mode is switched to "text" or "in table text", the original insertion mode
 is also set. This is the insertion mode to which the tree
 construction stage will return.

 When the steps below require the UA to reset the insertion
 mode appropriately, it means the UA must follow these
 steps:

 	Let last be false.

 	Let node be the last node in the
 stack of open elements.

 	Loop: If node is the first node in
 the stack of open elements, then set last to
 true and set node to the context element.
 (fragment case)

 	

 If node is a select element, run these substeps:

 	Let ancestor be node.

 	Loop: If ancestor is the first node in the stack of open
 elements, jump to the step below labeled done.

 	Let ancestor be the node before ancestor in the
 stack of open elements.

 	If ancestor is a table node, switch the insertion
 mode to "in select in table" and
 abort these steps.

 	Jump back to the step labeled loop.

 	Done: Switch the insertion mode to "in select" and abort these steps.

 	If node is a td or
 th element and last is false, then
 switch the insertion mode to "in cell" and abort these steps.

 	If node is a tr element, then
 switch the insertion mode to "in row" and abort these steps.

 	If node is a tbody,
 thead, or tfoot element, then switch the
 insertion mode to "in table body" and abort these steps.

 	If node is a caption element,
 then switch the insertion mode to "in caption" and abort
 these steps.

 	If node is a colgroup element,
 then switch the insertion mode to "in column group" and
 abort these steps.

 	If node is a table element,
 then switch the insertion mode to "in table" and abort these
 steps.

 	If node is a head element
 and last is true,
 then switch the insertion mode to "in body" ("in body"! not "in head"!) and abort
 these steps. (fragment case)

 	If node is a head element and last is
 false, then switch the insertion mode to "in
 head" and abort these steps.

 	If node is a body element,
 then switch the insertion mode to "in body" and abort these
 steps.

 	If node is a frameset element,
 then switch the insertion mode to "in frameset" and abort
 these steps. (fragment case)

 	If node is an html element,
 then switch the insertion mode
 to "before
 head" and abort these steps. (fragment
 case)

 	If last is true, then switch the
 insertion mode to "in body" and abort these steps. (fragment
 case)

 	Let node now be the node before node in the stack of open
 elements.

 	Return to the step labeled loop.

 The stack of open elements

 Initially, the stack of open elements is empty. The stack grows downwards; the
 topmost node on the stack is the first one added to the stack, and the bottommost node of the
 stack is the most recently added node in the stack (notwithstanding when the stack is manipulated
 in a random access fashion as part of the handling for misnested
 tags).

 The "before html" insertion
 mode creates the html root element node, which is then added to the stack.

 In the fragment case, the stack of open elements is
 initialized to contain an html element that is created as part of that algorithm. (The fragment case skips the
 "before html" insertion mode.)

 The html node, however it is created, is the topmost node of the stack. It only
 gets popped off the stack when the parser finishes.

 The current node is the bottommost node in this stack of open
 elements.

 The adjusted current node is the context
 element if the stack of open elements has only one element in it and the parser was
 created by the HTML fragment parsing algorithm; otherwise, the adjusted current
 node is the current node.

 Elements in the stack of open elements fall into the following categories:

 	Special

 	The following elements have varying levels of special parsing rules: HTML's
 address, applet, area, article,
 aside, base, basefont, bgsound,
 blockquote, body, br, button,
 caption, center, col, colgroup,
 dd, details, dir, div, dl,
 dt, embed, fieldset, figcaption,
 figure, footer, form, frame,
 frameset, h1, h2, h3, h4,
 h5, h6, head, header, hgroup,
 hr, html, iframe,
 img, input, isindex, li, link,
 listing, main, marquee,
 meta, nav, noembed,
 noframes, noscript, object, ol,
 p, param, plaintext, pre,
 script, section, select, source,
 style, summary, table, tbody,
 td, textarea, tfoot, th, thead,
 title, tr, track, ul, wbr, and
 xmp; MathML's mi, mo, mn, ms, mtext, and annotation-xml; and SVG's foreignObject, desc, and title.

 	Formatting

 	The following HTML elements are those that end up in the list of active formatting
 elements: a, b, big, code,
 em, font, i, nobr, s,
 small, strike, strong, tt, and
 u.

 	Ordinary

 	All other elements found while parsing an HTML document.

 The stack of open elements is said to have an element in a specific scope consisting of a list of element types list when the following algorithm terminates in a match state:

 	Initialize node to be the current node (the bottommost
 node of the stack).

 	If node is the target node, terminate in a match state.

 	Otherwise, if node is one of the element types in list, terminate in a failure state.

 	Otherwise, set node to the previous entry in the stack of open
 elements and return to step 2. (This will never fail, since the loop will always terminate
 in the previous step if the top of the stack — an html element — is
 reached.)

 The stack of open elements is said to have an
 element in scope when it has an element in the specific scope consisting of the
 following element types:

 	applet in the HTML namespace

 	caption in the HTML namespace

 	html in the HTML namespace

 	table in the HTML namespace

 	td in the HTML namespace

 	th in the HTML namespace

 	marquee in the HTML namespace

 	object in the HTML namespace

 	mi in the MathML namespace

 	mo in the MathML namespace

 	mn in the MathML namespace

 	ms in the MathML namespace

 	mtext in the MathML namespace

 	annotation-xml in the MathML namespace

 	foreignObject in the SVG namespace

 	desc in the SVG namespace

 	title in the SVG namespace

 The stack of open elements is said to have an element in list item scope when it has an element in the specific
 scope consisting of the following element types:

 	All the element types listed above for the has an element
 in scope algorithm.

 	ol in the HTML namespace

 	ul in the HTML namespace

 The stack of open elements is said to have an element in button scope when it has an element in the specific
 scope consisting of the following element types:

 	All the element types listed above for the has an element
 in scope algorithm.

 	button in the HTML namespace

 The stack of open elements is said to have an element in table scope when it has an element in the specific
 scope consisting of the following element types:

 	html in the HTML namespace

 	table in the HTML namespace

 The stack of open elements is said to have an element in select scope when it has an element in the specific
 scope consisting of all element types except the following:

 	optgroup in the HTML namespace

 	option in the HTML namespace

 Nothing happens if at any time any of the elements in the stack of open elements
 are moved to a new location in, or removed from, the Document tree. In particular,
 the stack is not changed in this situation. This can cause, amongst other strange effects, content
 to be appended to nodes that are no longer in the DOM.

 In some cases (namely, when closing misnested formatting
 elements), the stack is manipulated in a random-access fashion.

 The list of active formatting elements

 Initially, the list of active formatting elements is
 empty. It is used to handle mis-nested formatting element tags.

 The list contains elements in the formatting
 category, and scope markers. The scope markers are inserted when
 entering applet elements, buttons, object
 elements, marquees, table cells, and table captions, and are used to
 prevent formatting from "leaking" into applet
 elements, buttons, object elements, marquees, and
 tables.

 The scope markers are unrelated to the concept of an
 element being in
 scope.

 In addition, each element in the list of active formatting
 elements is associated with the token for which it was
 created, so that further elements can be created for that token if
 necessary.

 When the steps below require the UA to push onto the list of
 active formatting elements an element element, the UA must perform the following steps:

 	If there are already three elements in the list of
 active formatting elements after the last list marker, if
 any, or anywhere in the list if there are no list markers, that
 have the same tag name, namespace, and attributes as element, then remove the earliest such element from
 the list of active formatting elements. For these
 purposes, the attributes must be compared as they were when the
 elements were created by the parser; two elements have the same
 attributes if all their parsed attributes can be paired such that
 the two attributes in each pair have identical names, namespaces,
 and values (the order of the attributes does not matter).

 This is the Noah's Ark clause. But with three per
 family instead of two.

 	Add element to the list of active
 formatting elements.

 When the steps below require the UA to reconstruct the
 active formatting elements, the UA must perform the following
 steps:

 	If there are no entries in the list of active formatting
 elements, then there is nothing to reconstruct; stop this
 algorithm.

 	If the last (most recently added) entry in the list of
 active formatting elements is a marker, or if it is an
 element that is in the stack of open elements, then
 there is nothing to reconstruct; stop this algorithm.

 	Let entry be the last (most recently added)
 element in the list of active formatting
 elements.

 	Rewind: If there are no entries before entry in the
 list of active formatting elements, then jump to the step
 labeled create.

 	Let entry be the entry one earlier than
 entry in the list of active formatting
 elements.

 	If entry is neither a marker nor an element
 that is also in the stack of open elements, go to the step labeled
 rewind.

 	Advance: Let entry be the element one later than
 entry in the list of active formatting
 elements.

 	Create: Insert an HTML element for the token for which the element entry was created, to obtain new element.

 	Replace the entry for entry in the list
 with an entry for new element.

 	If the entry for new element in the
 list of active formatting elements is not the last
 entry in the list, return to the step labeled advance.

 This has the effect of reopening all the formatting elements that
 were opened in the current body, cell, or caption (whichever is
 youngest) that haven't been explicitly closed.

 The way this specification is written, the
 list of active formatting elements always consists of
 elements in chronological order with the least recently added
 element first and the most recently added element last (except for
 while steps 8 to 11 of the above algorithm are being executed, of
 course).

 When the steps below require the UA to clear the list of
 active formatting elements up to the last marker, the UA must
 perform the following steps:

 	Let entry be the last (most recently added)
 entry in the list of active formatting elements.

 	Remove entry from the list of active
 formatting elements.

 	If entry was a marker, then stop the
 algorithm at this point. The list has been cleared up to the last
 marker.

 	Go to step 1.

 The element pointers

 Initially, the head element
 pointer and the form element
 pointer are both null.

 Once a head element has been parsed (whether
 implicitly or explicitly) the head
 element pointer gets set to point to this node.

 The form element pointer
 points to the last form element that was opened and
 whose end tag has not yet been seen. It is used to make form
 controls associate with forms in the face of dramatically bad
 markup, for historical reasons.

 Other parsing state flags

 The scripting flag is set to "enabled" if scripting was enabled for the
 Document with which the parser is associated when the
 parser was created, and "disabled" otherwise.

 The scripting flag can be enabled even
 when the parser was originally created for the HTML fragment
 parsing algorithm, even though script elements
 don't execute in that case.

 The frameset-ok flag is set to "ok" when the parser is
 created. It is set to "not ok" after certain tokens are seen.

 Tokenization

 Implementations must act as if they used the following state
 machine to tokenize HTML. The state machine must start in the
 data state. Most states consume a single character,
 which may have various side-effects, and either switches the state
 machine to a new state to reconsume the same character, or
 switches it to a new state to consume the next character, or stays
 in the same state to consume the next character. Some states have
 more complicated behavior and can consume several characters before
 switching to another state. In some cases, the tokenizer state is
 also changed by the tree construction stage.

 The exact behavior of certain states depends on the
 insertion mode and the stack of open
 elements. Certain states also use a temporary
 buffer to track progress.

 The output of the tokenization step is a series of zero or more
 of the following tokens: DOCTYPE, start tag, end tag, comment,
 character, end-of-file. DOCTYPE tokens have a name, a public
 identifier, a system identifier, and a force-quirks
 flag. When a DOCTYPE token is created, its name, public
 identifier, and system identifier must be marked as missing (which
 is a distinct state from the empty string), and the force-quirks
 flag must be set to off (its other state is
 on). Start and end tag tokens have a tag name, a
 self-closing flag, and a list of attributes, each of which
 has a name and a value. When a start or end tag token is created,
 its self-closing flag must be unset (its other state is that
 it be set), and its attributes list must be empty. Comment and
 character tokens have data.

 When a token is emitted, it must immediately be handled by the
 tree construction stage. The tree construction stage
 can affect the state of the tokenization stage, and can insert
 additional characters into the stream. (For example, the
 script element can result in scripts executing and
 using the dynamic markup insertion APIs to insert
 characters into the stream being tokenized.)

 When a start tag token is emitted with its self-closing
 flag set, if the flag is not acknowledged when it is processed by the
 tree construction stage, that is a parse error.

 When an end tag token is emitted with attributes, that is a
 parse error.

 When an end tag token is emitted with its self-closing
 flag set, that is a parse error.

 An appropriate end tag token is an end tag token whose
 tag name matches the tag name of the last start tag to have been
 emitted from this tokenizer, if any. If no start tag has been
 emitted from this tokenizer, then no end tag token is
 appropriate.

 Before each step of the tokenizer, the user agent must first
 check the parser pause flag. If it is true, then the
 tokenizer must abort the processing of any nested invocations of the
 tokenizer, yielding control back to the caller.

 The tokenizer state machine consists of the states defined in the
 following subsections.

 Data state

 Consume the next input character:

 	U+0026 AMPERSAND (&)

 	Switch to the character reference in data
 state.

 	"<" (U+003C)

 	Switch to the tag open state.

 	U+0000 NULL

 	Parse error. Emit the current input
 character as a character token.

 	EOF

 	Emit an end-of-file token.

 	Anything else

 	Emit the current input character as a character
 token.

 Character reference in data state

 Switch to the data state.

 Attempt to consume a character reference, with no
 additional allowed character.

 If nothing is returned, emit a U+0026 AMPERSAND character (&)
 token.

 Otherwise, emit the character tokens that were returned.

 RCDATA state

 Consume the next input character:

 	U+0026 AMPERSAND (&)

 	Switch to the character reference in RCDATA
 state.

 	"<" (U+003C)

 	Switch to the RCDATA less-than sign state.

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Emit an end-of-file token.

 	Anything else

 	Emit the current input character as a character
 token.

 Character reference in RCDATA state

 Switch to the RCDATA state.

 Attempt to consume a character reference, with no
 additional allowed character.

 If nothing is returned, emit a U+0026 AMPERSAND character (&)
 token.

 Otherwise, emit the character tokens that were returned.

 RAWTEXT state

 Consume the next input character:

 	"<" (U+003C)

 	Switch to the RAWTEXT less-than sign state.

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Emit an end-of-file token.

 	Anything else

 	Emit the current input character as a character
 token.

 Script data state

 Consume the next input character:

 	"<" (U+003C)

 	Switch to the script data less-than sign state.

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Emit an end-of-file token.

 	Anything else

 	Emit the current input character as a character
 token.

 PLAINTEXT state

 Consume the next input character:

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Emit an end-of-file token.

 	Anything else

 	Emit the current input character as a character
 token.

 Tag open state

 Consume the next input character:

 	"!" (U+0021)

 	Switch to the markup declaration open state.

 	"/" (U+002F)

 	Switch to the end tag open state.

 	Uppercase ASCII letter

 	Create a new start tag token, set its tag name to the
 lowercase version of the current input character (add 0x0020 to the
 character's code point), then switch to the tag name
 state. (Don't emit the token yet; further details will
 be filled in before it is emitted.)

 	Lowercase ASCII letter

 	Create a new start tag token, set its tag name to the
 current input character, then switch to the tag
 name state. (Don't emit the token yet; further details will
 be filled in before it is emitted.)

 	"?" (U+003F)

 	Parse error. Switch to the bogus
 comment state.

 	Anything else

 	Parse error. Switch to the data
 state. Emit a U+003C LESS-THAN SIGN character token.
 Reconsume the current input character.

 End tag open state

 Consume the next input character:

 	Uppercase ASCII letter

 	Create a new end tag token, set its tag name to the lowercase
 version of the current input character (add 0x0020 to
 the character's code point), then switch to the tag name
 state. (Don't emit the token yet; further details will be
 filled in before it is emitted.)

 	Lowercase ASCII letter

 	Create a new end tag token, set its tag name to the
 current input character, then switch to the tag
 name state. (Don't emit the token yet; further details will
 be filled in before it is emitted.)

 	">" (U+003E)

 	Parse error. Switch to the data
 state.

 	EOF

 	Parse error. Switch to the data
 state. Emit a U+003C LESS-THAN SIGN character token and a
 U+002F SOLIDUS character token. Reconsume the EOF character.

 	Anything else

 	Parse error. Switch to the bogus
 comment state.

 Tag name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before attribute name state.

 	"/" (U+002F)

 	Switch to the self-closing start tag state.

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current tag token's tag name.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current tag token's tag name.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 tag token's tag name.

 RCDATA less-than sign state

 Consume the next input character:

 	"/" (U+002F)

 	Set the temporary buffer to the empty string. Switch
 to the RCDATA end tag open state.

 	Anything else

 	Switch to the RCDATA state. Emit a U+003C
 LESS-THAN SIGN character token. Reconsume the current
 input character.

 RCDATA end tag open state

 Consume the next input character:

 	Uppercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 lowercase version of the current input character (add
 0x0020 to the character's code point). Append the current
 input character to the temporary buffer. Finally,
 switch to the RCDATA end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Lowercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 current input character. Append the current
 input character to the temporary buffer. Finally,
 switch to the RCDATA end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Anything else

 	Switch to the RCDATA state. Emit a U+003C
 LESS-THAN SIGN character token and a U+002F SOLIDUS character token.
 Reconsume the current input character.

 RCDATA end tag name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	If the current end tag token is an appropriate end tag
 token, then switch to the before attribute name
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	"/" (U+002F)

 	If the current end tag token is an appropriate end tag
 token, then switch to the self-closing start tag
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	">" (U+003E)

 	If the current end tag token is an appropriate end tag
 token, then switch to the data state and emit
 the current tag token. Otherwise, treat it as per the "anything
 else" entry below.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current tag token's tag name. Append the current input
 character to the temporary buffer.

 	Lowercase ASCII letter

 	Append the current input character to the current
 tag token's tag name. Append the current input
 character to the temporary buffer.

 	Anything else

 	Switch to the RCDATA state. Emit a U+003C
 LESS-THAN SIGN character token, a U+002F SOLIDUS character token,
 and a character token for each of the characters in the
 temporary buffer (in the order they were added to the
 buffer). Reconsume the current input character.

 RAWTEXT less-than sign state

 Consume the next input character:

 	"/" (U+002F)

 	Set the temporary buffer to the empty string. Switch
 to the RAWTEXT end tag open state.

 	Anything else

 	Switch to the RAWTEXT state. Emit a U+003C
 LESS-THAN SIGN character token. Reconsume the current
 input character.

 RAWTEXT end tag open state

 Consume the next input character:

 	Uppercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 lowercase version of the current input character (add
 0x0020 to the character's code point). Append the current
 input character to the temporary buffer. Finally,
 switch to the RAWTEXT end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Lowercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 current input character. Append the current
 input character to the temporary buffer. Finally,
 switch to the RAWTEXT end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Anything else

 	Switch to the RAWTEXT state. Emit a U+003C
 LESS-THAN SIGN character token and a U+002F SOLIDUS character
 token. Reconsume the current input character.

 RAWTEXT end tag name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	If the current end tag token is an appropriate end tag
 token, then switch to the before attribute name
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	"/" (U+002F)

 	If the current end tag token is an appropriate end tag
 token, then switch to the self-closing start tag
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	">" (U+003E)

 	If the current end tag token is an appropriate end tag
 token, then switch to the data state and emit
 the current tag token. Otherwise, treat it as per the "anything
 else" entry below.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current tag token's tag name. Append the current input
 character to the temporary buffer.

 	Lowercase ASCII letter

 	Append the current input character to the current
 tag token's tag name. Append the current input
 character to the temporary buffer.

 	Anything else

 	Switch to the RAWTEXT state. Emit a U+003C
 LESS-THAN SIGN character token, a U+002F SOLIDUS character token,
 and a character token for each of the characters in the
 temporary buffer (in the order they were added to the
 buffer). Reconsume the current input character.

 Script data less-than sign state

 Consume the next input character:

 	"/" (U+002F)

 	Set the temporary buffer to the empty string. Switch
 to the script data end tag open state.

 	"!" (U+0021)

 	Switch to the script data escape start state. Emit
 a U+003C LESS-THAN SIGN character token and a U+0021 EXCLAMATION
 MARK character token.

 	Anything else

 	Switch to the script data state. Emit a U+003C
 LESS-THAN SIGN character token. Reconsume the current
 input character.

 Script data end tag open state

 Consume the next input character:

 	Uppercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 lowercase version of the current input character (add
 0x0020 to the character's code point). Append the current
 input character to the temporary buffer. Finally,
 switch to the script data end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Lowercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 current input character. Append the current
 input character to the temporary buffer. Finally,
 switch to the script data end tag name state. (Don't emit
 the token yet; further details will be filled in before it is
 emitted.)

 	Anything else

 	Switch to the script data state. Emit a U+003C
 LESS-THAN SIGN character token and a U+002F SOLIDUS character token.
 Reconsume the current input character.

 Script data end tag name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	If the current end tag token is an appropriate end tag
 token, then switch to the before attribute name
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	"/" (U+002F)

 	If the current end tag token is an appropriate end tag
 token, then switch to the self-closing start tag
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	">" (U+003E)

 	If the current end tag token is an appropriate end tag
 token, then switch to the data state and emit
 the current tag token. Otherwise, treat it as per the "anything
 else" entry below.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current tag token's tag name. Append the current input
 character to the temporary buffer.

 	Lowercase ASCII letter

 	Append the current input character to the current
 tag token's tag name. Append the current input
 character to the temporary buffer.

 	Anything else

 	Switch to the script data state. Emit a U+003C
 LESS-THAN SIGN character token, a U+002F SOLIDUS character token,
 and a character token for each of the characters in the
 temporary buffer (in the order they were added to the
 buffer). Reconsume the current input character.

 Script data escape start state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data escape start dash
 state. Emit a U+002D HYPHEN-MINUS character token.

 	Anything else

 	Switch to the script data state. Reconsume the
 current input character.

 Script data escape start dash state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data escaped dash dash
 state. Emit a U+002D HYPHEN-MINUS character token.

 	Anything else

 	Switch to the script data state. Reconsume the
 current input character.

 Script data escaped state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data escaped dash state. Emit
 a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data escaped less-than sign
 state.

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Switch to the data state. Parse
 error. Reconsume the EOF character.

 	Anything else

 	Emit the current input character as a character
 token.

 Script data escaped dash state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data escaped dash dash
 state. Emit a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data escaped less-than sign
 state.

 	U+0000 NULL

 	Parse error. Switch to the script data
 escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character
 token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Switch to the script data escaped state. Emit the
 current input character as a character token.

 Script data escaped dash dash state

 Consume the next input character:

 	"-" (U+002D)

 	Emit a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data escaped less-than sign
 state.

 	">" (U+003E)

 	Switch to the script data state. Emit a U+003E
 GREATER-THAN SIGN character token.

 	U+0000 NULL

 	Parse error. Switch to the script data
 escaped state. Emit a U+FFFD REPLACEMENT CHARACTER character
 token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Switch to the script data escaped state. Emit the
 current input character as a character token.

 Script data escaped less-than sign state

 Consume the next input character:

 	"/" (U+002F)

 	Set the temporary buffer to the empty string. Switch
 to the script data escaped end tag open state.

 	Uppercase ASCII letter

 	Set the temporary buffer to the empty string. Append
 the lowercase version of the current input character
 (add 0x0020 to the character's code point) to the temporary
 buffer. Switch to the script data double escape start
 state. Emit a U+003C LESS-THAN SIGN character token and the
 current input character as a character token.

 	Lowercase ASCII letter

 	Set the temporary buffer to the empty string. Append
 the current input character to the temporary
 buffer. Switch to the script data double escape start
 state. Emit a U+003C LESS-THAN SIGN character token and the
 current input character as a character token.

 	Anything else

 	Switch to the script data escaped state. Emit a U+003C
 LESS-THAN SIGN character token. Reconsume the current
 input character.

 Script data escaped end tag open state

 Consume the next input character:

 	Uppercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 lowercase version of the current input character (add
 0x0020 to the character's code point). Append the current
 input character to the temporary buffer. Finally,
 switch to the script data escaped end tag name
 state. (Don't emit the token yet; further details will be
 filled in before it is emitted.)

 	Lowercase ASCII letter

 	Create a new end tag token, and set its tag name to the
 current input character. Append the current
 input character to the temporary buffer. Finally,
 switch to the script data escaped end tag name
 state. (Don't emit the token yet; further details will be
 filled in before it is emitted.)

 	Anything else

 	Switch to the script data escaped state. Emit a
 U+003C LESS-THAN SIGN character token and a U+002F SOLIDUS
 character token. Reconsume the current input
 character.

 Script data escaped end tag name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	If the current end tag token is an appropriate end tag
 token, then switch to the before attribute name
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	"/" (U+002F)

 	If the current end tag token is an appropriate end tag
 token, then switch to the self-closing start tag
 state. Otherwise, treat it as per the "anything else" entry
 below.

 	">" (U+003E)

 	If the current end tag token is an appropriate end tag
 token, then switch to the data state and emit
 the current tag token. Otherwise, treat it as per the "anything
 else" entry below.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current tag token's tag name. Append the current input
 character to the temporary buffer.

 	Lowercase ASCII letter

 	Append the current input character to the current
 tag token's tag name. Append the current input
 character to the temporary buffer.

 	Anything else

 	Switch to the script data escaped state. Emit a
 U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character
 token, and a character token for each of the characters in the
 temporary buffer (in the order they were added to the
 buffer). Reconsume the current input character.

 Script data double escape start state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	"/" (U+002F)

 	">" (U+003E)

 	If the temporary buffer is the string "script", then switch to the script data
 double escaped state. Otherwise, switch to the script
 data escaped state. Emit the current input
 character as a character token.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 temporary buffer. Emit the current input
 character as a character token.

 	Lowercase ASCII letter

 	Append the current input character to the
 temporary buffer. Emit the current input
 character as a character token.

 	Anything else

 	Switch to the script data escaped state. Reconsume
 the current input character.

 Script data double escaped state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data double escaped dash
 state. Emit a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data double escaped less-than
 sign state. Emit a U+003C LESS-THAN SIGN character
 token.

 	U+0000 NULL

 	Parse error. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Emit the current input character as a character
 token.

 Script data double escaped dash state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the script data double escaped dash dash
 state. Emit a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data double escaped less-than
 sign state. Emit a U+003C LESS-THAN SIGN character
 token.

 	U+0000 NULL

 	Parse error. Switch to the script data
 double escaped state. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Switch to the script data double escaped
 state. Emit the current input character as a
 character token.

 Script data double escaped dash dash state

 Consume the next input character:

 	"-" (U+002D)

 	Emit a U+002D HYPHEN-MINUS character token.

 	"<" (U+003C)

 	Switch to the script data double escaped less-than
 sign state. Emit a U+003C LESS-THAN SIGN character
 token.

 	">" (U+003E)

 	Switch to the script data state. Emit a U+003E
 GREATER-THAN SIGN character token.

 	U+0000 NULL

 	Parse error. Switch to the script data
 double escaped state. Emit a U+FFFD REPLACEMENT CHARACTER
 character token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Switch to the script data double escaped
 state. Emit the current input character as a
 character token.

 Script data double escaped less-than sign state

 Consume the next input character:

 	"/" (U+002F)

 	Set the temporary buffer to the empty string. Switch
 to the script data double escape end state. Emit a
 U+002F SOLIDUS character token.

 	Anything else

 	Switch to the script data double escaped state.
 Reconsume the current input character.

 Script data double escape end state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	"/" (U+002F)

 	">" (U+003E)

 	If the temporary buffer is the string "script", then switch to the script data
 escaped state. Otherwise, switch to the script data
 double escaped state. Emit the current input
 character as a character token.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 temporary buffer. Emit the current input
 character as a character token.

 	Lowercase ASCII letter

 	Append the current input character to the
 temporary buffer. Emit the current input
 character as a character token.

 	Anything else

 	Switch to the script data double escaped state.
 Reconsume the current input character.

 Before attribute name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	"/" (U+002F)

 	Switch to the self-closing start tag state.

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	Uppercase ASCII letter

 	Start a new attribute in the current tag token. Set that
 attribute's name to the lowercase version of the current input
 character (add 0x0020 to the character's code point), and its
 value to the empty string. Switch to the attribute name
 state.

 	U+0000 NULL

 	Parse error. Start a new attribute in the current
 tag token. Set that attribute's name to a U+FFFD REPLACEMENT
 CHARACTER character, and its value to the empty string. Switch to
 the attribute name state.

 	U+0022 QUOTATION MARK (")

 	"'" (U+0027)

 	"<" (U+003C)

 	"=" (U+003D)

 	Parse error. Treat it as per the "anything else"
 entry below.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Start a new attribute in the current tag token. Set that
 attribute's name to the current input character, and
 its value to the empty string. Switch to the attribute name
 state.

 Attribute name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the after attribute name state.

 	"/" (U+002F)

 	Switch to the self-closing start tag state.

 	"=" (U+003D)

 	Switch to the before attribute value state.

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current attribute's name.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current attribute's name.

 	U+0022 QUOTATION MARK (")

 	"'" (U+0027)

 	"<" (U+003C)

 	Parse error. Treat it as per the "anything else"
 entry below.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 attribute's name.

 When the user agent leaves the attribute name state (and before
 emitting the tag token, if appropriate), the complete attribute's
 name must be compared to the other attributes on the same token;
 if there is already an attribute on the token with the exact same
 name, then this is a parse error and the new
 attribute must be removed from the token.

 If an attribute is so removed from a token, it, along with the value that gets
 associated with it, if any, are never subsequently used by the parser, and are therefore
 effectively discarded. Removing the attribute in this way does not change its status as the
 "current attribute" for the purposes of the tokenizer, however.

 After attribute name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	"/" (U+002F)

 	Switch to the self-closing start tag state.

 	"=" (U+003D)

 	Switch to the before attribute value state.

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	Uppercase ASCII letter

 	Start a new attribute in the current tag token. Set that
 attribute's name to the lowercase version of the current
 input character (add 0x0020 to the character's code point),
 and its value to the empty string. Switch to the attribute
 name state.

 	U+0000 NULL

 	Parse error. Start a new attribute in the current
 tag token. Set that attribute's name to a U+FFFD REPLACEMENT
 CHARACTER character, and its value to the empty string. Switch to
 the attribute name state.

 	U+0022 QUOTATION MARK (")

 	"'" (U+0027)

 	"<" (U+003C)

 	Parse error. Treat it as per the "anything else"
 entry below.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Start a new attribute in the current tag token. Set that
 attribute's name to the current input character, and
 its value to the empty string. Switch to the attribute name
 state.

 Before attribute value state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	U+0022 QUOTATION MARK (")

 	Switch to the attribute value (double-quoted) state.

 	U+0026 AMPERSAND (&)

 	Switch to the attribute value (unquoted) state.
 Reconsume the current input character.

 	"'" (U+0027)

 	Switch to the attribute value (single-quoted) state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current attribute's value. Switch to the
 attribute value (unquoted) state.

 	">" (U+003E)

 	Parse error. Switch to the data
 state. Emit the current tag token.

 	"<" (U+003C)

 	"=" (U+003D)

 	"`" (U+0060)

 	Parse error. Treat it as per the "anything else"
 entry below.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 attribute's value. Switch to the attribute value (unquoted)
 state.

 Attribute value (double-quoted) state

 Consume the next input character:

 	U+0022 QUOTATION MARK (")

 	Switch to the after attribute value (quoted)
 state.

 	U+0026 AMPERSAND (&)

 	Switch to the character reference in attribute value
 state, with the additional allowed character
 being U+0022 QUOTATION MARK (").

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current attribute's value.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 attribute's value.

 Attribute value (single-quoted) state

 Consume the next input character:

 	"'" (U+0027)

 	Switch to the after attribute value (quoted)
 state.

 	U+0026 AMPERSAND (&)

 	Switch to the character reference in attribute value
 state, with the additional allowed character
 being "'" (U+0027).

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current attribute's value.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 attribute's value.

 Attribute value (unquoted) state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before attribute name state.

 	U+0026 AMPERSAND (&)

 	Switch to the character reference in attribute value
 state, with the additional allowed character
 being ">" (U+003E).

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current attribute's value.

 	U+0022 QUOTATION MARK (")

 	"'" (U+0027)

 	"<" (U+003C)

 	"=" (U+003D)

 	"`" (U+0060)

 	Parse error. Treat it as per the "anything else"
 entry below.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 attribute's value.

 Character reference in attribute value state

 Attempt to consume a character reference.

 If nothing is returned, append a U+0026 AMPERSAND character
 (&) to the current attribute's value.

 Otherwise, append the returned character tokens to the current
 attribute's value.

 Finally, switch back to the attribute value state that switched
 into this state.

 After attribute value (quoted) state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before attribute name state.

 	"/" (U+002F)

 	Switch to the self-closing start tag state.

 	">" (U+003E)

 	Switch to the data state. Emit the current tag
 token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Parse error. Switch to the before attribute
 name state. Reconsume the character.

 Self-closing start tag state

 Consume the next input character:

 	">" (U+003E)

 	Set the self-closing flag of the current tag
 token. Switch to the data state. Emit the current tag
 token.

 	EOF

 	Parse error. Switch to the data
 state. Reconsume the EOF character.

 	Anything else

 	Parse error. Switch to the before attribute
 name state. Reconsume the character.

 Bogus comment state

 Consume every character up to and including the first ">" (U+003E) character or the end of the file (EOF),
 whichever comes first. Emit a comment token whose data is the
 concatenation of all the characters starting from and including the
 character that caused the state machine to switch into the bogus
 comment state, up to and including the character immediately before
 the last consumed character (i.e. up to the character just before
 the U+003E or EOF character), but with any U+0000 NULL characters
 replaced by U+FFFD REPLACEMENT CHARACTER characters. (If the comment
 was started by the end of the file (EOF), the token is empty.
 Similarly, the token is empty if it was generated by the string
 "<!>".)

 Switch to the data state.

 If the end of the file was reached, reconsume the EOF
 character.

 Markup declaration open state

 If the next two characters are both "-" (U+002D) characters, consume those two characters, create a comment token
 whose data is the empty string, and switch to the comment
 start state.

 Otherwise, if the next seven characters are an ASCII
 case-insensitive match for the word "DOCTYPE", then consume
 those characters and switch to the DOCTYPE state.

 Otherwise, if there is an adjusted current node and it is not
 an element in the HTML namespace and the next seven
 characters are a case-sensitive match for the string
 "[CDATA[" (the five uppercase letters "CDATA" with a U+005B LEFT
 SQUARE BRACKET character before and after), then consume those
 characters and switch to the CDATA section state.

 Otherwise, this is a parse error. Switch to the
 bogus comment state. The next character that is
 consumed, if any, is the first character that will be in the
 comment.

 Comment start state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the comment start dash state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the comment token's data. Switch to the comment
 state.

 	">" (U+003E)

 	Parse error. Switch to the data
 state. Emit the comment token.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the comment
 token's data. Switch to the comment state.

 Comment start dash state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the comment end state

 	U+0000 NULL

 	Parse error. Append a "-" (U+002D) character and a U+FFFD REPLACEMENT CHARACTER character to the
 comment token's data. Switch to the comment
 state.

 	">" (U+003E)

 	Parse error. Switch to the data
 state. Emit the comment token.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF
 character.

 	Anything else

 	Append a "-" (U+002D) character and the
 current input character to the comment token's
 data. Switch to the comment state.

 Comment state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the comment end dash state

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the comment token's data.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF
 character.

 	Anything else

 	Append the current input character to the comment
 token's data.

 Comment end dash state

 Consume the next input character:

 	"-" (U+002D)

 	Switch to the comment end state

 	U+0000 NULL

 	Parse error. Append a "-" (U+002D) character and a U+FFFD REPLACEMENT CHARACTER character to the
 comment token's data. Switch to the comment
 state.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF
 character.

 	Anything else

 	Append a "-" (U+002D) character and the
 current input character to the comment token's
 data. Switch to the comment state.

 Comment end state

 Consume the next input character:

 	">" (U+003E)

 	Switch to the data state. Emit the comment
 token.

 	U+0000 NULL

 	Parse error. Append two "-" (U+002D) characters and a U+FFFD REPLACEMENT CHARACTER character to the
 comment token's data. Switch to the comment
 state.

 	"!" (U+0021)

 	Parse error. Switch to the comment end bang
 state.

 	"-" (U+002D)

 	Parse error. Append a "-" (U+002D) character to the comment token's data.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF
 character.

 	Anything else

 	Parse error. Append two "-" (U+002D) characters and the current input character to the
 comment token's data. Switch to the comment
 state.

 Comment end bang state

 Consume the next input character:

 	"-" (U+002D)

 	Append two "-" (U+002D) characters and a "!" (U+0021) character to the comment token's data. Switch
 to the comment end dash state.

 	">" (U+003E)

 	Switch to the data state. Emit the comment
 token.

 	U+0000 NULL

 	Parse error. Append two "-" (U+002D) characters, a "!" (U+0021) character, and a
 U+FFFD REPLACEMENT CHARACTER character to the comment token's data.
 Switch to the comment state.

 	EOF

 	Parse error. Switch to the data
 state. Emit the comment token. Reconsume the EOF
 character.

 	Anything else

 	Append two "-" (U+002D) characters, a "!" (U+0021) character, and the current input
 character to the comment token's data. Switch to the
 comment state.

 DOCTYPE state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before DOCTYPE name state.

 	EOF

 	Parse error. Switch to the data
 state. Create a new DOCTYPE token. Set its force-quirks
 flag to on. Emit the token. Reconsume the EOF
 character.

 	Anything else

 	Parse error. Switch to the before DOCTYPE
 name state. Reconsume the character.

 Before DOCTYPE name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	Uppercase ASCII letter

 	Create a new DOCTYPE token. Set the token's name to the
 lowercase version of the current input character (add 0x0020 to the
 character's code point). Switch to the DOCTYPE name
 state.

 	U+0000 NULL

 	Parse error. Create a new DOCTYPE token. Set the
 token's name to a U+FFFD REPLACEMENT CHARACTER character. Switch to
 the DOCTYPE name state.

 	">" (U+003E)

 	Parse error. Create a new DOCTYPE token. Set its
 force-quirks flag to on. Switch to the data
 state. Emit the token.

 	EOF

 	Parse error. Switch to the data
 state. Create a new DOCTYPE token. Set its force-quirks
 flag to on. Emit the token. Reconsume the EOF
 character.

 	Anything else

 	Create a new DOCTYPE token. Set the token's name to the
 current input character. Switch to the DOCTYPE name
 state.

 DOCTYPE name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the after DOCTYPE name state.

 	">" (U+003E)

 	Switch to the data state. Emit the current DOCTYPE
 token.

 	Uppercase ASCII letter

 	Append the lowercase version of the current input
 character (add 0x0020 to the character's code point) to the
 current DOCTYPE token's name.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current DOCTYPE token's name.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 DOCTYPE token's name.

 After DOCTYPE name state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	">" (U+003E)

 	Switch to the data state. Emit the current DOCTYPE
 token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	

 If the six characters starting from the current input
 character are an ASCII case-insensitive match
 for the word "PUBLIC", then consume those characters and switch to
 the after DOCTYPE public keyword state.

 Otherwise, if the six characters starting from the
 current input character are an ASCII
 case-insensitive match for the word "SYSTEM", then consume
 those characters and switch to the after DOCTYPE system
 keyword state.

 Otherwise, this is a parse error. Set the
 DOCTYPE token's force-quirks flag to on. Switch to
 the bogus DOCTYPE state.

 After DOCTYPE public keyword state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before DOCTYPE public identifier
 state.

 	U+0022 QUOTATION MARK (")

 	Parse error. Set the DOCTYPE token's public
 identifier to the empty string (not missing), then switch to the
 DOCTYPE public identifier (double-quoted) state.

 	"'" (U+0027)

 	Parse error. Set the DOCTYPE token's public
 identifier to the empty string (not missing), then switch to the
 DOCTYPE public identifier (single-quoted) state.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 Before DOCTYPE public identifier state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	U+0022 QUOTATION MARK (")

 	Set the DOCTYPE token's public identifier to the empty string
 (not missing), then switch to the DOCTYPE public identifier
 (double-quoted) state.

 	"'" (U+0027)

 	Set the DOCTYPE token's public identifier to the empty string
 (not missing), then switch to the DOCTYPE public identifier
 (single-quoted) state.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 DOCTYPE public identifier (double-quoted) state

 Consume the next input character:

 	U+0022 QUOTATION MARK (")

 	Switch to the after DOCTYPE public identifier state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current DOCTYPE token's public identifier.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 DOCTYPE token's public identifier.

 DOCTYPE public identifier (single-quoted) state

 Consume the next input character:

 	"'" (U+0027)

 	Switch to the after DOCTYPE public identifier state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current DOCTYPE token's public identifier.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 DOCTYPE token's public identifier.

 After DOCTYPE public identifier state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the between DOCTYPE public and system
 identifiers state.

 	">" (U+003E)

 	Switch to the data state. Emit the current DOCTYPE
 token.

 	U+0022 QUOTATION MARK (")

 	Parse error. Set the DOCTYPE token's system
 identifier to the empty string (not missing), then switch to the
 DOCTYPE system identifier (double-quoted) state.

 	"'" (U+0027)

 	Parse error. Set the DOCTYPE token's system
 identifier to the empty string (not missing), then switch to the
 DOCTYPE system identifier (single-quoted) state.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 Between DOCTYPE public and system identifiers state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	">" (U+003E)

 	Switch to the data state. Emit the current DOCTYPE
 token.

 	U+0022 QUOTATION MARK (")

 	Set the DOCTYPE token's system identifier to the empty string
 (not missing), then switch to the DOCTYPE system identifier
 (double-quoted) state.

 	"'" (U+0027)

 	Set the DOCTYPE token's system identifier to the empty string
 (not missing), then switch to the DOCTYPE system identifier
 (single-quoted) state.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 After DOCTYPE system keyword state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Switch to the before DOCTYPE system identifier
 state.

 	U+0022 QUOTATION MARK (")

 	Parse error. Set the DOCTYPE token's system
 identifier to the empty string (not missing), then switch to the
 DOCTYPE system identifier (double-quoted) state.

 	"'" (U+0027)

 	Parse error. Set the DOCTYPE token's system
 identifier to the empty string (not missing), then switch to the
 DOCTYPE system identifier (single-quoted) state.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 Before DOCTYPE system identifier state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	U+0022 QUOTATION MARK (")

 	Set the DOCTYPE token's system identifier to the empty string
 (not missing), then switch to the DOCTYPE system identifier
 (double-quoted) state.

 	"'" (U+0027)

 	Set the DOCTYPE token's system identifier to the empty string
 (not missing), then switch to the DOCTYPE system identifier
 (single-quoted) state.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the bogus
 DOCTYPE state.

 DOCTYPE system identifier (double-quoted) state

 Consume the next input character:

 	U+0022 QUOTATION MARK (")

 	Switch to the after DOCTYPE system identifier
 state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current DOCTYPE token's system identifier.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 DOCTYPE token's system identifier.

 DOCTYPE system identifier (single-quoted) state

 Consume the next input character:

 	"'" (U+0027)

 	Switch to the after DOCTYPE system identifier
 state.

 	U+0000 NULL

 	Parse error. Append a U+FFFD REPLACEMENT CHARACTER
 character to the current DOCTYPE token's system identifier.

 	">" (U+003E)

 	Parse error. Set the DOCTYPE token's
 force-quirks flag to on. Switch to the data
 state. Emit that DOCTYPE token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Append the current input character to the current
 DOCTYPE token's system identifier.

 After DOCTYPE system identifier state

 Consume the next input character:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	Ignore the character.

 	">" (U+003E)

 	Switch to the data state. Emit the current DOCTYPE
 token.

 	EOF

 	Parse error. Switch to the data
 state. Set the DOCTYPE token's force-quirks flag to
 on. Emit that DOCTYPE token. Reconsume the EOF character.

 	Anything else

 	Parse error. Switch to the bogus DOCTYPE
 state. (This does not set the DOCTYPE token's
 force-quirks flag to on.)

 Bogus DOCTYPE state

 Consume the next input character:

 	">" (U+003E)

 	Switch to the data state. Emit the DOCTYPE
 token.

 	EOF

 	Switch to the data state. Emit the DOCTYPE token.
 Reconsume the EOF character.

 	Anything else

 	Ignore the character.

 CDATA section state

 Switch to the data state.

 Consume every character up to the next occurrence of the three
 character sequence U+005D RIGHT SQUARE BRACKET U+005D RIGHT SQUARE
 BRACKET U+003E GREATER-THAN SIGN (]]>), or the
 end of the file (EOF), whichever comes first. Emit a series of
 character tokens consisting of all the characters consumed except
 the matching three character sequence at the end (if one was found
 before the end of the file).

 If the end of the file was reached, reconsume the EOF
 character.

 Tokenizing character references

 This section defines how to consume a character reference, optionally with an
 additional allowed character, which, if specified where the algorithm is invoked, adds
 a character to the list of characters that cause there to not be a character reference.

 This definition is used when parsing character
 references in
 text and in attributes.

 The behavior depends on the identity of the next character (the
 one immediately after the U+0026 AMPERSAND character), as follows:

 	"tab" (U+0009)

 	"LF" (U+000A)

 	"FF" (U+000C)

 	U+0020 SPACE

 	U+003C LESS-THAN SIGN

 	U+0026 AMPERSAND

 	EOF

 	The additional allowed character, if there is one

 	Not a character reference. No characters are consumed, and
 nothing is returned. (This is not an error, either.)

 	"#" (U+0023)

 	

 Consume the U+0023 NUMBER SIGN.

 The behavior further depends on the character after the U+0023
 NUMBER SIGN:

 	U+0078 LATIN SMALL LETTER X

 	U+0058 LATIN CAPITAL LETTER X

 	

 Consume the X.

 Follow the steps below, but using ASCII hex digits.

 When it comes to interpreting the number, interpret it as a hexadecimal number.

 	Anything else

 	

 Follow the steps below, but using ASCII digits.

 When it comes to interpreting the number, interpret it as a
 decimal number.

 Consume as many characters as match the range of characters given above (ASCII hex
 digits or ASCII digits).

 If no characters match the range, then don't consume any
 characters (and unconsume the U+0023 NUMBER SIGN character and, if
 appropriate, the X character). This is a parse
 error; nothing is returned.

 Otherwise, if the next character is a U+003B SEMICOLON, consume
 that too. If it isn't, there is a parse
 error.

 If one or more characters match the range, then take them all
 and interpret the string of characters as a number (either
 hexadecimal or decimal as appropriate).

 If that number is one of the numbers in the first column of the
 following table, then this is a parse error. Find the
 row with that number in the first column, and return a character
 token for the Unicode character given in the second column of that
 row.

 	Number 	Unicode character

 	0x00 	U+FFFD 	REPLACEMENT CHARACTER

	0x0D 	U+000D 	CARRIAGE RETURN (CR)

	0x80 	U+20AC 	EURO SIGN (€)

	0x81 	U+0081 	<control>

	0x82 	U+201A 	SINGLE LOW-9 QUOTATION MARK (‚)

	0x83 	U+0192 	LATIN SMALL LETTER F WITH HOOK (ƒ)

	0x84 	U+201E 	DOUBLE LOW-9 QUOTATION MARK („)

	0x85 	U+2026 	HORIZONTAL ELLIPSIS (…)

	0x86 	U+2020 	DAGGER (†)

	0x87 	U+2021 	DOUBLE DAGGER (‡)

	0x88 	U+02C6 	MODIFIER LETTER CIRCUMFLEX ACCENT (ˆ)

	0x89 	U+2030 	PER MILLE SIGN (‰)

	0x8A 	U+0160 	LATIN CAPITAL LETTER S WITH CARON (Š)

	0x8B 	U+2039 	SINGLE LEFT-POINTING ANGLE QUOTATION MARK (‹)

	0x8C 	U+0152 	LATIN CAPITAL LIGATURE OE (Œ)

	0x8D 	U+008D 	<control>

	0x8E 	U+017D 	LATIN CAPITAL LETTER Z WITH CARON (Ž)

	0x8F 	U+008F 	<control>

	0x90 	U+0090 	<control>

	0x91 	U+2018 	LEFT SINGLE QUOTATION MARK (‘)

	0x92 	U+2019 	RIGHT SINGLE QUOTATION MARK (’)

	0x93 	U+201C 	LEFT DOUBLE QUOTATION MARK (“)

	0x94 	U+201D 	RIGHT DOUBLE QUOTATION MARK (”)

	0x95 	U+2022 	BULLET (•)

	0x96 	U+2013 	EN DASH (–)

	0x97 	U+2014 	EM DASH (—)

	0x98 	U+02DC 	SMALL TILDE (˜)

	0x99 	U+2122 	TRADE MARK SIGN (™)

	0x9A 	U+0161 	LATIN SMALL LETTER S WITH CARON (š)

	0x9B 	U+203A 	SINGLE RIGHT-POINTING ANGLE QUOTATION MARK (›)

	0x9C 	U+0153 	LATIN SMALL LIGATURE OE (œ)

	0x9D 	U+009D 	<control>

	0x9E 	U+017E 	LATIN SMALL LETTER Z WITH CARON (ž)

	0x9F 	U+0178 	LATIN CAPITAL LETTER Y WITH DIAERESIS (Ÿ)

 Otherwise, if the number is in the range 0xD800 to 0xDFFF or is greater than 0x10FFFF, then this is a
 parse error. Return a U+FFFD REPLACEMENT
 CHARACTER.

 Otherwise, return a character token for the Unicode character
 whose code point is that number.

 Additionally, if the number is in the range 0x0001 to 0x0008, 0x000E to 0x001F, 0x007F to 0x009F, 0xFDD0 to
 0xFDEF, or is one of 0x000B, 0xFFFE, 0xFFFF, 0x1FFFE, 0x1FFFF,
 0x2FFFE, 0x2FFFF, 0x3FFFE, 0x3FFFF, 0x4FFFE, 0x4FFFF, 0x5FFFE,
 0x5FFFF, 0x6FFFE, 0x6FFFF, 0x7FFFE, 0x7FFFF, 0x8FFFE, 0x8FFFF,
 0x9FFFE, 0x9FFFF, 0xAFFFE, 0xAFFFF, 0xBFFFE, 0xBFFFF, 0xCFFFE,
 0xCFFFF, 0xDFFFE, 0xDFFFF, 0xEFFFE, 0xEFFFF, 0xFFFFE, 0xFFFFF,
 0x10FFFE, or 0x10FFFF, then this is a parse
 error.

 	Anything else

 	

 Consume the maximum number of characters possible, with the
 consumed characters matching one of the identifiers in the first
 column of the named character references table (in a
 case-sensitive manner).

 If no match can be made, then no characters are consumed, and nothing is returned. In this
 case, if the characters after the U+0026 AMPERSAND character (&) consist of a sequence of
 one or more alphanumeric ASCII characters followed by a U+003B SEMICOLON character
 (;), then this is a parse error.

 If the character reference is being consumed as part of an attribute, and the last character matched is not a ";" (U+003B) character, and the next character is either a "=" (U+003D) character or
 an alphanumeric ASCII character, then, for
 historical reasons, all the characters that were matched after the U+0026 AMPERSAND character
 (&) must be unconsumed, and nothing is returned.

 However, if this next character is in fact a "=" (U+003D) character, then this is a
 parse error, because some legacy user agents will
 misinterpret the markup in those cases.

 Otherwise, a character reference is parsed. If the last
 character matched is not a ";" (U+003B) character, there
 is a parse error.

 Return one or two character tokens for the character(s)
 corresponding to the character reference name (as given by the
 second column of the named character references
 table).

 If the markup contains (not in an attribute) the string I'm ¬it; I tell you, the character
 reference is parsed as "not", as in, I'm ¬it;
 I tell you (and this is a parse error). But if the markup
 was I'm ∉ I tell you, the
 character reference would be parsed as "notin;", resulting in
 I'm ∉ I tell you (and no parse
 error).

 Tree construction

 The input to the tree construction stage is a sequence of tokens from the
 tokenization stage. The tree construction stage is associated with a DOM
 Document object when a parser is created. The "output" of this stage consists of
 dynamically modifying or extending that document's DOM tree.

 This specification does not define when an interactive user agent has to render the
 Document so that it is available to the user, or when it has to begin accepting user
 input.

 As each token is emitted from the tokenizer, the user agent must follow the appropriate steps
 from the following list, known as the tree construction dispatcher:

 	If there is no adjusted current node

 	If the adjusted current node is an element in the HTML namespace

 	If the adjusted current node is a MathML text integration point and the token is a start tag whose tag name is neither "mglyph" nor "malignmark"

 	If the adjusted current node is a MathML text integration point and the token is a character token

 	If the adjusted current node is an annotation-xml element in the MathML namespace and the token is a start tag whose tag name is "svg"

 	If the adjusted current node is an HTML integration point and the token is a start tag

 	If the adjusted current node is an HTML integration point and the token is a character token

 	If the token is an end-of-file token

 	Process the token according to the rules given in the section corresponding to the current
 insertion mode in HTML content.

 	Otherwise

 	Process the token according to the rules given in the section for parsing tokens in foreign content.

 The next token is the token that is about to be processed by the tree
 construction dispatcher (even if the token is subsequently just ignored).

 A node is a MathML text integration point if it is one of the following
 elements:

 	An mi element in the MathML namespace

 	An mo element in the MathML namespace

 	An mn element in the MathML namespace

 	An ms element in the MathML namespace

 	An mtext element in the MathML namespace

 A node is an HTML integration point if it is one of the following elements:

 	An annotation-xml element in the MathML namespace whose start tag token had an attribute with the name "encoding" whose value was an ASCII case-insensitive match for the string "text/html"

 	An annotation-xml element in the MathML namespace whose start tag token had an attribute with the name "encoding" whose value was an ASCII case-insensitive match for the string "application/xhtml+xml"

 	A foreignObject element in the SVG namespace

 	A desc element in the SVG namespace

 	A title element in the SVG namespace

 Not all of the tag names mentioned below are conformant tag names in this
 specification; many are included to handle legacy content. They still form part of the algorithm
 that implementations are required to implement to claim conformance.

 The algorithm described below places no limit on the depth of the DOM tree
 generated, or on the length of tag names, attribute names, attribute values, Text
 nodes, etc. While implementors are encouraged to avoid arbitrary limits, it is recognized that practical concerns will likely force user agents to impose nesting
 depth constraints.

 Creating and inserting nodes

 While the parser is processing a token, it can enable or disable foster parenting. This affects the following algorithm.

 The appropriate place for inserting a node, optionally using a particular
 override target, is the position in an element returned by running the following steps:

 	

 If there was an override target specified, then let target be the
 override target.

 Otherwise, let target be the current node.

 	

 Determine the adjusted insertion location using the first matching steps
 from the following list:

 	If foster parenting is enabled and target is a table, tbody, tfoot,
 thead, or tr element

 	

 Foster parenting happens when content is misnested in tables.

 Run these substeps:

 	Let last table be the last table element in the
 stack of open elements, if any.

	If there is no last table, then let adjusted insertion
 location be inside the first element in the stack of open elements (the
 html element), after its last child (if any), and abort these substeps.
 (fragment case)

	If last table has a parent element, then let adjusted insertion location be inside last table's parent
 element, immediately before last table, and abort these
 substeps.

 	Let previous element be the element immediately above last table in the stack of open elements.

 	Let adjusted insertion location be inside previous
 element, after its last child (if any).

 These steps are involved in part because it's possible for elements, the
 table element in this case in particular, to have been moved by a script around
 in the DOM, or indeed removed from the DOM entirely, after the element was inserted by the
 parser.

 	Otherwise

 	

 Let adjusted insertion location be inside target,
 after its last child (if any).

 	

 Return the adjusted insertion location.

 When the steps below require the UA to create an
 element for a token in a particular given namespace and with a
 particular intended parent, the UA must run the following steps:

 	

 Create a node implementing the interface appropriate for the element type corresponding to
 the tag name of the token in given namespace (as given in the specification
 that defines that element, e.g. for an a element in the HTML
 namespace, this specification defines it to be the HTMLAnchorElement
 interface), with the tag name being the name of that element, with the node being in the given
 namespace, and with the attributes on the node being those given in the given token.

 The interface appropriate for an element in the HTML namespace that is not defined
 in this specification (or other applicable specifications) is
 HTMLUnknownElement. Elements in other namespaces whose interface is not defined by
 that namespace's specification must use the interface Element.

 The ownerDocument of the newly created element
 must be the same as that of the intended parent.

 	

 If the newly created element is a resettable element,
 invoke its reset algorithm. (This initializes
 the element's value and checkedness based on the element's attributes.)

 	Return the newly created element.

 When the steps below require the UA to insert an HTML element for a token, the UA
 must run the following steps:

 	Let the adjusted insertion location be the appropriate
 place for inserting a node.

 	Create an element for the token in the HTML namespace, with the
 intended parent being the element in which the adjusted insertion location
 finds itself.

 	If the element is a form-associated element, and the form element pointer is not null, and the newly created element is either not reassociateable or doesn't
 have a form attribute, associate the newly created element with the
 form element pointed to by the form element
 pointer, and suppress the running of the reset the form owner algorithm in
 the next step.

 	

 If it is possible to insert an element at the adjusted insertion
 location, then insert the newly created element at the adjusted insertion
 location.

 If the adjusted insertion location cannot accept more
 elements, e.g. because it's a Document that already has an element child, then the
 newly created element is dropped on the floor.

 	Push the element onto the stack of open elements so that it is the new
 current node.

 	Return the newly created element.

 When the steps below require the UA to insert a foreign element for a token, the UA
 must first create an element for the token in the given namespace, with the current node as the intended parent, and then append
 this node to the current node, and push it onto the stack of open
 elements so that it is the new current node. If the newly created element has
 an xmlns attribute in the XMLNS namespace whose value is not
 exactly the same as the element's namespace, that is a parse error. Similarly, if the
 newly created element has an xmlns:xlink attribute in the XMLNS
 namespace whose value is not the XLink Namespace, that is a parse
 error.

 The insert a foreign element algorithm isn't affected by the foster parenting logic (it doesn't use the appropriate place for
 inserting a node algorithm); the current node, when the insert a
 foreign element algorithm is invoked, is always itself a non-HTML element.

 When the steps below require the user agent to adjust MathML attributes for a token,
 then, if the token has an attribute named definitionurl, change its name to
 definitionURL (note the case difference).

 When the steps below require the user agent to adjust SVG attributes for a token,
 then, for each attribute on the token whose attribute name is one of the ones in the first column
 of the following table, change the attribute's name to the name given in the corresponding cell in
 the second column. (This fixes the case of SVG attributes that are not all lowercase.)

 	 Attribute name on token 	 Attribute name on element

 	 attributename 	 attributeName

 	 attributetype 	 attributeType

 	 basefrequency 	 baseFrequency

 	 baseprofile 	 baseProfile

 	 calcmode 	 calcMode

 	 clippathunits 	 clipPathUnits

 	 contentscripttype 	 contentScriptType

 	 contentstyletype 	 contentStyleType

 	 diffuseconstant 	 diffuseConstant

 	 edgemode 	 edgeMode

 	 externalresourcesrequired 	 externalResourcesRequired

 	 filterres 	 filterRes

 	 filterunits 	 filterUnits

 	 glyphref 	 glyphRef

 	 gradienttransform 	 gradientTransform

 	 gradientunits 	 gradientUnits

 	 kernelmatrix 	 kernelMatrix

 	 kernelunitlength 	 kernelUnitLength

 	 keypoints 	 keyPoints

 	 keysplines 	 keySplines

 	 keytimes 	 keyTimes

 	 lengthadjust 	 lengthAdjust

 	 limitingconeangle 	 limitingConeAngle

 	 markerheight 	 markerHeight

 	 markerunits 	 markerUnits

 	 markerwidth 	 markerWidth

 	 maskcontentunits 	 maskContentUnits

 	 maskunits 	 maskUnits

 	 numoctaves 	 numOctaves

 	 pathlength 	 pathLength

 	 patterncontentunits 	 patternContentUnits

 	 patterntransform 	 patternTransform

 	 patternunits 	 patternUnits

 	 pointsatx 	 pointsAtX

 	 pointsaty 	 pointsAtY

 	 pointsatz 	 pointsAtZ

 	 preservealpha 	 preserveAlpha

 	 preserveaspectratio 	 preserveAspectRatio

 	 primitiveunits 	 primitiveUnits

 	 refx 	 refX

 	 refy 	 refY

 	 repeatcount 	 repeatCount

 	 repeatdur 	 repeatDur

 	 requiredextensions 	 requiredExtensions

 	 requiredfeatures 	 requiredFeatures

 	 specularconstant 	 specularConstant

 	 specularexponent 	 specularExponent

 	 spreadmethod 	 spreadMethod

 	 startoffset 	 startOffset

 	 stddeviation 	 stdDeviation

 	 stitchtiles 	 stitchTiles

 	 surfacescale 	 surfaceScale

 	 systemlanguage 	 systemLanguage

 	 tablevalues 	 tableValues

 	 targetx 	 targetX

 	 targety 	 targetY

 	 textlength 	 textLength

 	 viewbox 	 viewBox

 	 viewtarget 	 viewTarget

 	 xchannelselector 	 xChannelSelector

 	 ychannelselector 	 yChannelSelector

 	 zoomandpan 	 zoomAndPan

 When the steps below require the user agent to adjust foreign attributes for a
 token, then, if any of the attributes on the token match the strings given in the first column of
 the following table, let the attribute be a namespaced attribute, with the prefix being the string
 given in the corresponding cell in the second column, the local name being the string given in the
 corresponding cell in the third column, and the namespace being the namespace given in the
 corresponding cell in the fourth column. (This fixes the use of namespaced attributes, in
 particular lang attributes in the .)

 	 Attribute name 	 Prefix 	 Local name 	 Namespace

 	 xlink:actuate 	 xlink 	 actuate 	 XLink namespace

 	 xlink:arcrole 	 xlink 	 arcrole 	 XLink namespace

 	 xlink:href 	 xlink 	 href 	 XLink namespace

 	 xlink:role 	 xlink 	 role 	 XLink namespace

 	 xlink:show 	 xlink 	 show 	 XLink namespace

 	 xlink:title 	 xlink 	 title 	 XLink namespace

 	 xlink:type 	 xlink 	 type 	 XLink namespace

 	 xml:base 	 xml 	 base 	 XML namespace

 	 xml:lang 	 xml 	 lang 	 XML namespace

 	 xml:space 	 xml 	 space 	 XML namespace

 	 xmlns 	 (none) 	 xmlns 	 XMLNS namespace

 	 xmlns:xlink 	 xmlns 	 xlink 	 XMLNS namespace

 When the steps below require the user agent to insert a character while processing a
 token, the user agent must run the following steps:

 	Let data be the characters passed to the algorithm, or, if no
 characters were explicitly specified, the character of the character token being
 processed.

 	Let the adjusted insertion location be the appropriate
 place for inserting a node.

 	

 If the adjusted insertion location is in a Document node,
 then abort these steps.

The DOM will not let Document nodes have Text node
 children, so they are dropped on the floor.

 	

 If there is a Text node immediately before the adjusted insertion
 location, then append data to that Text node's data.

 Otherwise, create a new Text node whose data is data and
 whose ownerDocument is the same as that of the
 element in which the adjusted insertion location finds itself, and insert
 the newly created node at the adjusted insertion location.

 Here are some sample inputs to the parser and the corresponding number of Text
 nodes that they result in, assuming a user agent that executes scripts.

 	Input 	Number of Text nodes

 	A<script>
var script = document.getElementsByTagName('script')[0];
document.body.removeChild(script);
</script>B

 	One Text node in the document, containing "AB".

 	A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C

 	Three Text nodes; "A" before the script, the script's contents, and "BC" after the script (the parser appends to the Text node created by the script).

 	A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';
document.body.appendChild(text);
</script>C

 	Two adjacent Text nodes in the document, containing "A" and "BC".

 	A<table>B<tr>C</tr>D</table>

 	One Text node before the table, containing "ABCD". (This is caused by foster parenting.)

 	A<table><tr> B</tr> C</table>

 	One Text node before the table, containing "A B C" (A-space-B-space-C). (This is caused by foster parenting.)

 	A<table><tr> B</tr> C</table>

 	One Text node before the table, containing "A BC" (A-space-B-C), and one Text node inside the table (as a child of a tbody) with a single space character. (Space characters separated from non-space characters by non-character tokens are not affected by foster parenting, even if those other tokens then get ignored.)

 When the steps below require the user agent to insert a comment while processing a
 comment token, optionally with an explicitly insertion position position, the
 user agent must run the following steps:

 	Let data be the data given in the comment token being
 processed.

 	If position was specified, then let the adjusted
 insertion location be position. Otherwise, let adjusted
 insertion location be the appropriate place for inserting a node.

 	Create a Comment node whose data attribute is set to
 data and whose ownerDocument is
 the same as that of the node in which the adjusted insertion location finds
 itself.

	Insert the newly created node at the adjusted insertion
 location.

 DOM mutation events must not fire for changes caused by the UA
 parsing the document. This includes the parsing of any content inserted using document.write() and document.writeln() calls. [DOMEVENTS]

 However, mutation observers do fire, as required by the DOM specification.

 Parsing elements that contain only text

 The generic raw text element parsing algorithm and the generic RCDATA element
 parsing algorithm consist of the following steps. These algorithms are always invoked in
 response to a start tag token.

 	Insert an HTML element for the token.

 	If the algorithm that was invoked is the generic raw text element parsing
 algorithm, switch the tokenizer to the RAWTEXT state; otherwise the algorithm
 invoked was the generic RCDATA element parsing algorithm, switch the tokenizer to
 the RCDATA state.

 	Let the original insertion mode be the current insertion
 mode.

	Then, switch the insertion mode to "text".

 Closing elements that have implied end tags

 When the steps below require the UA to generate implied end
 tags, then, while the current node is a
 dd element, a dt element, an
 li element, an option element, an
 optgroup element, a p element, an
 rp element, or an rt element, the UA must
 pop the current node off the stack of open
 elements.

 If a step requires the UA to generate implied end tags but lists
 an element to exclude from the process, then the UA must perform the
 above steps as if that element was not in the above list.

 The rules for parsing tokens in HTML content

 The "initial" insertion mode

 When the user agent is to apply the rules for the "initial" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Ignore the token.

 	A comment token

 	
 Insert a comment as the last child of the Document object.

 	A DOCTYPE token

 	

 If the DOCTYPE token's name is not a
 case-sensitive match for the string "html", or the token's public identifier is not
 missing, or the token's system identifier is neither missing nor a
 case-sensitive match for the string
 "about:legacy-compat", and none of the sets of
 conditions in the following list are matched, then there is a
 parse error.

 	The DOCTYPE token's name is a case-sensitive
 match for the string "html", the token's
 public identifier is the case-sensitive string
 "-//W3C//DTD HTML 4.0//EN", and
 the token's system identifier is either missing or the
 case-sensitive string "http://www.w3.org/TR/REC-html40/strict.dtd".

 	The DOCTYPE token's name is a case-sensitive
 match for the string "html", the token's
 public identifier is the case-sensitive string
 "-//W3C//DTD HTML 4.01//EN", and
 the token's system identifier is either missing or the
 case-sensitive string "http://www.w3.org/TR/html4/strict.dtd".

 	The DOCTYPE token's name is a case-sensitive
 match for the string "html", the token's
 public identifier is the case-sensitive string
 "-//W3C//DTD XHTML 1.0 Strict//EN",
 and the token's system identifier is the
 case-sensitive string "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd".

 	The DOCTYPE token's name is a case-sensitive
 match for the string "html", the token's
 public identifier is the case-sensitive string
 "-//W3C//DTD XHTML 1.1//EN", and
 the token's system identifier is the case-sensitive
 string "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd".

 Conformance checkers may, based on the values (including
 presence or lack thereof) of the DOCTYPE token's name, public
 identifier, or system identifier, switch to a conformance checking
 mode for another language (e.g. based on the DOCTYPE token a
 conformance checker could recognize that the document is an
 HTML4-era document, and defer to an HTML4 conformance
 checker.)

 Append a DocumentType node to the
 Document node, with the name
 attribute set to the name given in the DOCTYPE token, or the empty
 string if the name was missing; the publicId
 attribute set to the public identifier given in the DOCTYPE token,
 or the empty string if the public identifier was missing; the
 systemId attribute set to the system
 identifier given in the DOCTYPE token, or the empty string if the
 system identifier was missing; and the other attributes specific
 to DocumentType objects set to null and empty lists
 as appropriate. Associate the DocumentType node with
 the Document object so that it is returned as the
 value of the doctype attribute of the
 Document object.

 Then, if the document is not an iframe
 srcdoc document, and the DOCTYPE token matches
 one of the conditions in the following list, then set the Document to quirks
 mode:

 	 The force-quirks flag is set to on.

 	 The name is set to anything other than "html" (compared case-sensitively).

 	 The public identifier starts with: "+//Silmaril//dtd html Pro v0r11 19970101//"

 	 The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit + extensions//"

 	 The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit + extensions//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.0//"

 	 The public identifier starts with: "-//IETF//DTD HTML 2.1E//"

 	 The public identifier starts with: "-//IETF//DTD HTML 3.0//"

 	 The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"

 	 The public identifier starts with: "-//IETF//DTD HTML 3.2//"

 	 The public identifier starts with: "-//IETF//DTD HTML 3//"

 	 The public identifier starts with: "-//IETF//DTD HTML Level 0//"

 	 The public identifier starts with: "-//IETF//DTD HTML Level 1//"

 	 The public identifier starts with: "-//IETF//DTD HTML Level 2//"

 	 The public identifier starts with: "-//IETF//DTD HTML Level 3//"

 	 The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"

 	 The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"

 	 The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"

 	 The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"

 	 The public identifier starts with: "-//IETF//DTD HTML Strict//"

 	 The public identifier starts with: "-//IETF//DTD HTML//"

 	 The public identifier starts with: "-//Metrius//DTD Metrius Presentational//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML Strict//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 HTML//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0 Tables//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML Strict//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 HTML//"

 	 The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0 Tables//"

 	 The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"

 	 The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict HTML//"

 	 The public identifier starts with: "-//O'Reilly and Associates//DTD HTML 2.0//"

 	 The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended 1.0//"

 	 The public identifier starts with: "-//O'Reilly and Associates//DTD HTML Extended Relaxed 1.0//"

 	 The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO 6.0::19990601::extensions to HTML 4.0//"

 	 The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO 4.0::19971010::extensions to HTML 4.0//"

 	 The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"

 	 The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL + extensions//"

 	 The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava HTML//"

 	 The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava Strict HTML//"

 	 The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"

 	 The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"

 	 The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"

 	 The public identifier starts with: "-//W3C//DTD HTML 3.2//"

 	 The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"

 	 The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"

 	 The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"

 	 The public identifier starts with: "-//W3C//DTD HTML Experimental 19960712//"

 	 The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"

 	 The public identifier starts with: "-//W3C//DTD W3 HTML//"

 	 The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"

 	 The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"

 	 The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"

 	 The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"

 	 The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"

 	 The public identifier is set to: "HTML"

 	 The system identifier is set to: "http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd"

 	 The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"

 	 The system identifier is missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

 Otherwise, if the document is not an iframe srcdoc document, and the DOCTYPE token matches one of
 the conditions in the following list, then set the Document to limited-quirks
 mode:

 	 The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"

 	 The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"

 	 The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Frameset//"

 	 The system identifier is not missing and the public identifier starts with: "-//W3C//DTD HTML 4.01 Transitional//"

 The system identifier and public identifier strings must be
 compared to the values given in the lists above in an ASCII
 case-insensitive manner. A system identifier whose value is
 the empty string is not considered missing for the purposes of the
 conditions above.

 Then, switch the insertion mode to "before html".

 	Anything else

 	

 If the document is not an iframe
 srcdoc document,
 then this is a parse error; set the
 Document to quirks mode.

 In any case, switch the insertion mode to "before html", then
 reprocess the token.

 The "before html" insertion mode

 When the user agent is to apply the rules for the "before html" insertion mode, the user agent must handle the token as follows:

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A comment token

 	
 Insert a comment as the last child of the Document object.

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Ignore the token.

 	A start tag whose tag name is "html"

 	

 Create an element for the token in the HTML
 namespace, with the Document as the intended parent. Append it to the Document
 object. Put this element in the stack of open
 elements.

 If the Document is being
 loaded as part of navigation of a
 browsing context, then: if the newly created element
 has a manifest attribute
 whose value is not the empty string, then resolve the value of that attribute to an
 absolute URL, relative to the newly created element,
 and if that is successful, run the application cache selection
 algorithm with the result of applying the URL serializer algorithm to
 the resulting parsed URL with the exclude fragment flag set; otherwise, if there is no such attribute, or its value is
 the empty string, or resolving its value fails, run the application cache selection
 algorithm with no manifest. The algorithm must be passed
 the Document object.

 Switch the insertion mode to "before head".

 	An end tag whose tag name is one of: "head", "body", "html", "br"

 	
 Act as described in the "anything else" entry below.

 	Any other end tag

 	
 Parse error. Ignore the token.

 	Anything else

 	

 Create an html element whose ownerDocument is the Document object. Append it to the
 Document object. Put this element in the stack
 of open elements.

 If the Document is being loaded as part of navigation of a browsing
 context, then: run the application cache selection
 algorithm with no manifest, passing it the
 Document object.

 Switch the insertion mode to "before head", then
 reprocess the token.

 The root element can end up being removed from the
 Document object, e.g. by scripts; nothing in particular
 happens in such cases, content continues being appended to the nodes
 as described in the next section.

 The "before head" insertion mode

 When the user agent is to apply the rules for the "before head" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Ignore the token.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is "head"

 	

 Insert an HTML element for the token.

 Set the head element pointer
 to the newly created head element.

 Switch the insertion mode to "in head".

 	An end tag whose tag name is one of: "head", "body", "html", "br"

 	

 Act s described in the "anything else" entry below.

 	Any other end tag

 	

 Parse error. Ignore the token.

 	Anything else

 	

 Insert an HTML element for a "head" start tag token with no attributes.

 Set the head element pointer
 to the newly created head element.

 Switch the insertion mode to "in head".

 Reprocess the current token.

 The "in head" insertion mode

 When the user agent is to apply the rules for the "in head" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Insert the character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is one of: "base", "basefont",
 "bgsound", "link"

 	

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 	A start tag whose tag name is "meta"

 	

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 If the element has a charset attribute, and getting an encoding from
 its value results in a supported ASCII-compatible character encoding or a
 UTF-16 encoding, and the confidence is
 currently tentative, then change the encoding to the resulting encoding.

 Otherwise, if the element has an http-equiv
 attribute whose value is an ASCII case-insensitive match for the string "Content-Type", and the element has a content attribute, and applying the algorithm for
 extracting a character encoding from a meta element to that attribute's
 value returns a supported ASCII-compatible character encoding or a UTF-16
 encoding, and the confidence is
 currently tentative, then change the encoding to the extracted encoding.

 	A start tag whose tag name is "title"

 	
 Follow the generic RCDATA element parsing algorithm.

 	A start tag whose tag name is "noscript", if the scripting flag is enabled

 	A start tag whose tag name is one of: "noframes", "style"

 	
 Follow the generic raw text element parsing algorithm.

 	A start tag whose tag name is "noscript", if the scripting flag is disabled

 	

 Insert an HTML element for the token.

 Switch the insertion mode to "in head
 noscript".

 	A start tag whose tag name is "script"

 	

 Run these steps:

 	Let the adjusted insertion location be the appropriate
 place for inserting a node.

 	Create an element for the token in the HTML namespace, with the
 intended parent being the element in which the adjusted insertion location
 finds itself.

 	

 Mark the element as being "parser-inserted" and
 unset the element's "force-async" flag.

 This ensures that, if the script is external,
 any document.write()
 calls in the script will execute in-line, instead of blowing the
 document away, as would happen in most other cases. It also
 prevents the script from executing until the end tag is
 seen.

 	If the parser was originally created for the HTML
 fragment parsing algorithm, then mark the
 script element as "already
 started". (fragment case)

 	Insert the newly created element at the adjusted insertion
 location.

 	Push the element onto the stack of open elements so that it is the new
 current node.

 	Switch the tokenizer to the script data
 state.

 	Let the original insertion mode be the current
 insertion mode.

	Switch the insertion mode to "text".

 	An end tag whose tag name is "head"

 	

 Pop the current node (which will be the
 head element) off the stack of open
 elements.

 Switch the insertion mode to "after head".

 	An end tag whose tag name is one of: "body", "html", "br"

 	
 Act as described in the "anything else" entry below.

 	A start tag whose tag name is "head"

 	Any other end tag

 	
 Parse error. Ignore the token.

 	Anything else

 	

 Pop the current node (which will be the
 head element) off the stack of open
 elements.

 Switch the insertion mode to "after head".

 Reprocess the token.

 8.2.5.4.5 The "in head noscript" insertion mode

 When the user agent is to apply the rules for the "in head noscript" insertion mode, the user agent must handle the token as follows:

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	An end tag whose tag name is "noscript"

 	

 Pop the current node (which will be a
 noscript element) from the stack of open
 elements; the new current node will be a
 head element.

 Switch the insertion mode to "in head".

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	A comment token

 	A start tag whose tag name is one of: "basefont", "bgsound",
 "link", "meta", "noframes", "style"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	An end tag whose tag name is "br"

 	
 Act as described in the "anything else" entry below.

 	A start tag whose tag name is one of: "head", "noscript"

 	Any other end tag

 	
 Parse error. Ignore the token.

 	Anything else

 	

 Parse error.

 Pop the current node (which will be a
 noscript element) from the stack of open
 elements; the new current node will be a
 head element.

 Switch the insertion mode to "in head".

 Reprocess the token.

 8.2.5.4.6 The "after head" insertion mode

 When the user agent is to apply the rules for the "after head" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Insert the character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is "body"

 	

 Insert an HTML element for the token.

 Set the frameset-ok flag to "not ok".

 Switch the insertion mode to "in body".

 	A start tag whose tag name is "frameset"

 	

 Insert an HTML element for the token.

 Switch the insertion mode to "in frameset".

 	A start tag whose tag name is one of: "base", "basefont",
 "bgsound", "link", "meta", "noframes", "script", "style",
 "title"

 	

 Parse error.

 Push the node pointed to by the head element pointer onto the
 stack of open elements.

 Process the token using the rules for the "in head" insertion
 mode.

 Remove the node pointed to by the head element pointer from the stack
 of open elements.

 The head element
 pointer cannot be null at this point.

 	An end tag whose tag name is one of: "body", "html", "br"

 	
 Act as described in the "anything else" entry below.

 	A start tag whose tag name is "head"

 	Any other end tag

 	
 Parse error. Ignore the token.

 	Anything else

 	

 Insert an HTML element for a "body" start tag token with no attributes.

 Switch the insertion mode to "in body".

 Reprocess the current token.

 8.2.5.4.7 The "in body" insertion mode

 When the user agent is to apply the rules for the "in body" insertion mode, the user agent must handle the token as follows:

 	A character token that is U+0000 NULL

 	

 Parse error. Ignore the token.

 	A character token that is one of U+0009 CHARACTER TABULATION,
 "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

 	

 Reconstruct the active formatting elements, if
 any.

 Insert the token's
 character.

 	Any other character token

 	

 Reconstruct the active formatting elements, if
 any.

 Insert the token's
 character.

 Set the frameset-ok flag to "not ok".

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Parse error.

 For each attribute on the token,
 check to see if the attribute is already present on the top
 element of the stack of open elements. If it is not,
 add the attribute and its corresponding value to that element.

 	A start tag whose tag name is one of: "base", "basefont",
 "bgsound", "link", "meta", "noframes", "script", "style", "title"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	A start tag whose tag name is "body"

 	

 Parse error.

 If the second element on the stack of open
 elements is not a body element, if the
 stack of open elements has only one node on it,
 then ignore the token. (fragment case)

 Otherwise, set the frameset-ok flag to "not ok";
 then, for each attribute on the token, check to see if the
 attribute is already present on the body element (the
 second element) on the stack of open elements, and if
 it is not, add the attribute and its corresponding value to that
 element.

 	A start tag whose tag name is "frameset"

 	

 Parse error.

 If the second element on the stack of open
 elements is not a body element, or, if the
 stack of open elements has only one node on it,
 then ignore the token. (fragment case)

 If the frameset-ok flag is set to "not ok", ignore
 the token.

 Otherwise, run the following steps:

 	Remove the second element on the stack of open
 elements from its parent node, if it has one.

 	Pop all the nodes from the bottom of the stack of
 open elements, from the current node up to,
 but not including, the root html element.

	Insert an HTML element for the
 token.

 	Switch the insertion mode to "in frameset".

 	An end-of-file token

 	

 If there is a node in the stack of open elements
 that is not either a dd element, a dt
 element, an li element, a p element, a
 tbody element, a td element, a
 tfoot element, a th element, a
 thead element, a tr element, the
 body element, or the html element, then
 this is a parse error.

 Otherwise, stop parsing.

 	An end tag whose tag name is "body"

 	

 If the stack of open elements does not have a body element
 in scope, this is a parse error; ignore the
 token.

 Otherwise, if there is a node in the stack of open
 elements that is not either a dd element, a
 dt element, an li element, an
 optgroup element, an option element, a
 p element, an rp element, an
 rt element, a tbody element, a
 td element, a tfoot element, a
 th element, a thead element, a
 tr element, the body element, or the
 html element, then this is a parse
 error.

 Switch the insertion mode to "after body".

 	An end tag whose tag name is "html"

 	

 If the stack of open elements does not have a body element
 in scope, this is a parse error; ignore the
 token.

 Otherwise, if there is a node in the stack of open
 elements that is not either a dd element, a
 dt element, an li element, an
 optgroup element, an option element, a
 p element, an rp element, an
 rt element, a tbody element, a
 td element, a tfoot element, a
 th element, a thead element, a
 tr element, the body element, or the
 html element, then this is a parse
 error.

 Switch the insertion mode to "after body".

 Reprocess the token.

 	A start tag whose tag name is one of: "address", "article",
 "aside", "blockquote", "center", "details", "dialog", "dir", "div",
 "dl", "fieldset", "figcaption", "figure", "footer", "header",
 "hgroup", "main", "nav", "ol", "p", "section", "summary", "ul"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for the token.

 	A start tag whose tag name is one of: "h1", "h2", "h3", "h4",
 "h5", "h6"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 If the current node is an HTML element whose tag name
 is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a
 parse error; pop the current node off
 the stack of open elements.

 Insert an HTML element for the token.

 	A start tag whose tag name is one of: "pre", "listing"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for the token.

 If the next token is a "LF" (U+000A) character
 token, then ignore that token and move on to the next
 one. (Newlines at the start of pre blocks are
 ignored as an authoring convenience.)

 X will eat the
 , but X will not eat the . -->

 Set the frameset-ok flag to "not ok".

 	A start tag whose tag name is "form"

 	

 If the form element
 pointer is not null, then this is a parse
 error; ignore the token.

 Otherwise:

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for the token, and set the
 form element pointer to
 point to the element created.

 	A start tag whose tag name is "li"

 	

 Run these steps:

 	Set the frameset-ok flag to "not ok".

 	Initialize node to be the current
 node (the bottommost node of the stack).

 	

 Loop: If node is an li element, then run these
 substeps:

 	Generate implied end tags, except for li elements.

 	If the current node is not an li element, then this is a
 parse error.

 	Pop elements from the stack of open elements until an li
 element has been popped from the stack.

 	Jump to the step labeled done below.

 	If node is in the special
 category, but is not an address, div,
 or p element, then jump to the step labeled done below.

 	Otherwise, set node to the previous
 entry in the stack of open elements and return to
 the step labeled loop.

 	Done: If the stack of open elements has a p element in button scope, then close a
 p element.

 	Finally, insert an HTML element for the token.

 	A start tag whose tag name is one of: "dd", "dt"

 	

 Run these steps:

 	Set the frameset-ok flag to "not ok".

 	Initialize node to be the current
 node (the bottommost node of the stack).

 	

 Loop: If node is a dd element, then run these
 substeps:

 	Generate implied end tags, except for dd elements.

 	If the current node is not a dd element, then this is a
 parse error.

 	Pop elements from the stack of open elements until a dd
 element has been popped from the stack.

 	Jump to the step labeled done below.

 	

 If node is a dt element, then run these substeps:

 	Generate implied end tags, except for dt elements.

 	If the current node is not a dt element, then this is a
 parse error.

 	Pop elements from the stack of open elements until a dt
 element has been popped from the stack.

 	Jump to the step labeled done below.

 	If node is in the special
 category, but is not an address, div,
 or p element, then jump to the step labeled done below.

 	Otherwise, set node to the previous
 entry in the stack of open elements and return to
 the step labeled loop.

 	Done: If the stack of open elements has a p element in button scope, then close a
 p element.

 	Finally, insert an HTML element for the token.

 	A start tag whose tag name is "plaintext"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for the token.

 Switch the tokenizer to the PLAINTEXT state.

 Once a start tag with the tag name "plaintext" has
 been seen, that will be the last token ever seen other than
 character tokens (and the end-of-file token), because there is no
 way to switch out of the PLAINTEXT state.

 	A start tag whose tag name is "button"

 	

 	

 If the stack of open elements has a
 button element in scope, then run these substeps:

 	Parse error.

 	Generate implied end tags.

 	Pop elements from the stack of open elements until a button
 element has been popped from the stack.

 	Reconstruct the active formatting elements, if any.

 	Insert an HTML element for the token.

 	Set the frameset-ok flag to "not ok".

 	An end tag whose tag name is one of: "address", "article",
 "aside", "blockquote", "button", "center", "details", "dialog",
 "dir", "div", "dl", "fieldset", "figcaption", "figure", "footer",
 "header", "hgroup", "listing", "main", "nav", "ol", "pre",
 "section", "summary", "ul"

 	

 If the stack of open elements does not have an element in scope
 that is an HTML element and
 with the same tag name as that of the token, then this is a
 parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags.

 	If the current node is not an HTML element with
 the same tag name as that of the token, then this is a
 parse error.

 	Pop elements from the stack of open elements
 until an HTML element with the same tag name as the token has been
 popped from the stack.

 	An end tag whose tag name is "form"

 	

 Let node be the element that the
 form element pointer is set
 to.

 Set the form element pointer
 to null.

 If node is null or the stack of open
 elements does not have node in scope, then this is
 a parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags.

 	If the current node is not node, then this is a parse
 error.

 	Remove node from the stack of
 open elements.

 	An end tag whose tag name is "p"

 	

 If the stack of open elements does not have a p element in button scope, then this is a parse
 error; insert an HTML element for a "p" start tag token with no
 attributes.

 Close a p element.

 	An end tag whose tag name is "li"

 	

 If the stack of open elements does not have an li element in list
 item scope,
 then this is a parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags, except
 for li elements.

 	If the current node is not an li element, then this is a
 parse error.

 	Pop elements from the stack of open elements
 until an li element has been
 popped from the stack.

 	An end tag whose tag name is one of: "dd", "dt"

 	

 If the stack of open elements does not have an element in scope
 that is an HTML element and
 with the same tag name as that of the token, then this is a
 parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags, except
 for HTML elements with the same tag name as the token.

 	If the current node is not an HTML element with
 the same tag name as that of the token, then this is a
 parse error.

 	Pop elements from the stack of open elements
 until an HTML element with the same tag name as the token has been
 popped from the stack.

 	An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"

 	

 If the stack of open elements does not have an element in scope
 that is an HTML element and
 whose tag name is one of "h1", "h2", "h3", "h4", "h5", or "h6",
 then this is a parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags.

 	If the current node is not an HTML element with
 the same tag name as that of the token, then this is a
 parse error.

 	Pop elements from the stack of open elements
 until an HTML element whose tag name is one of "h1", "h2", "h3", "h4",
 "h5", or "h6" has been popped from the stack.

 	An end tag whose tag name is "sarcasm"

 	
 Take a deep breath, then act as described in the "any other end
 tag" entry below.

 	A start tag whose tag name is "a"

 	

 If the list of active formatting elements
 contains an a element between the end of
 the list and the last marker on the list (or the start of the
 list if there is no marker on the list), then this is a
 parse error; run the adoption agency
 algorithm for the tag name "a", then remove that element from the
 list of active formatting elements and the
 stack of open elements if the adoption agency
 algorithm didn't
 already remove it (it might not have if the element is not
 in table
 scope).

 In the non-conforming stream
 a<table>b</table>x,
 the first a element would be closed upon seeing the
 second one, and the "x" character would be inside a link to "b",
 not to "a". This is despite the fact that the outer a
 element is not in table scope (meaning that a regular
 end tag at the start of the table wouldn't
 close the outer a element). The result is that the
 two a elements are indirectly nested inside each
 other — non-conforming markup will often result in
 non-conforming DOMs when parsed.

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token. Push
 onto the list of active formatting elements that
 element.

 	A start tag whose tag name is one of: "b", "big", "code", "em",
 "font", "i", "s", "small", "strike", "strong", "tt", "u"

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token. Push
 onto the list of active formatting elements that
 element.

 	A start tag whose tag name is "nobr"

 	

 Reconstruct the active formatting elements, if
 any.

 If the stack of open elements has a nobr element in scope,
 then this is a parse error; run the adoption agency algorithm for
 the tag name "nobr", then once again
 reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token. Push
 onto the list of active formatting elements that
 element.

 	An end tag whose tag name is one of: "a",
 "b", "big", "code", "em", "font", "i", "nobr", "s", "small",
 "strike", "strong", "tt", "u"

 	

 Run the adoption agency algorithm for the token's tag name.

 	A start tag whose tag name is one of: "applet",
 "marquee", "object"

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token.

 Insert a marker at the end of the list of active
 formatting elements.

 Set the frameset-ok flag to "not ok".

 	An end tag token whose tag name is one of: "applet",
 "marquee", "object"

 	

 If the stack of open elements does not have an element in scope
 that is an HTML element and
 with the same tag name as that of the token, then this is a
 parse error; ignore the token.

 Otherwise, run these steps:

 	Generate implied end tags.

 	If the current node is not an HTML element with
 the same tag name as that of the token, then this is a
 parse error.

 	Pop elements from the stack of open elements
 until an HTML element with the same tag name as the token has been
 popped from the stack.

 	Clear the list of active formatting elements up to the
 last marker.

 	A start tag whose tag name is "table"

 	

 If the Document is not set to
 quirks mode, and the stack of open
 elements has a
 p element in button scope, then close a
 p element.

 Insert an HTML element for the token.

 Set the frameset-ok flag to "not ok".

 Switch the insertion mode to "in table".

 	An end tag whose tag name is "br"

 	

 Parse error. Act as described in the next entry, as if this was a "br" start tag
 token, rather than an end tag token.

 	A start tag whose tag name is one of: "area", "br", "embed",
 "img", "keygen", "wbr"

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 Set the frameset-ok flag to "not ok".

 	A start tag whose tag name is "input"

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 If the token does not have an attribute with the name "type",
 or if it does, but that attribute's value is not an ASCII
 case-insensitive match for the string "hidden", then: set the frameset-ok
 flag to "not ok".

 	A start tag whose tag name is one of: "param", "source", "track"

 	

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 	A start tag whose tag name is "hr"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 Set the frameset-ok flag to "not ok".

 	A start tag whose tag name is "image"

 	
 Parse error. Change the token's tag name
 to "img" and reprocess it. (Don't ask.)

 	A start tag whose tag name is "isindex"

 	

 Parse error.

 If the form element
 pointer is not null, then ignore the token.

 Otherwise:

 Acknowledge the
 token's self-closing flag, if it is set.

 Set the frameset-ok flag to "not ok".

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Insert an HTML element for a "form" start tag token with no attributes, and set the
 form element pointer to
 point to the element created.

 If the token has an attribute called "action", set the
 action attribute on the
 resulting form element to the value of the
 "action" attribute of the token.

 Insert an HTML element for an "hr" start tag token with no attributes.
 Immediately pop the current node off the stack of open elements.

 Reconstruct the active formatting elements, if any.

 Insert an HTML element for a "label" start tag token with no attributes.

 Insert characters (see below for what they should
 say).

 Insert an HTML element for an "input" start tag token with all the attributes
 from the "isindex" token except "name", "action", and "prompt", and with an attribute named
 "name" with the value "isindex". (This creates an input element with the name attribute set to the magic balue "isindex".) Immediately pop the current node off
 the stack of open elements.

 Insert more characters (see below for what they
 should say).

 Pop the current node (which will be the label element created
 earlier) off the stack of open elements.

 Insert an HTML element for an "hr" start tag token with no attributes.
 Immediately pop the current node off the stack of open elements.

 Pop the current node (which will be the form element created
 earlier) off the stack of open elements. Set the form element pointer to null.

 Prompt: If the token has an attribute with the name "prompt", then the
 first stream of characters must be the same string as given in
 that attribute, and the second stream of characters must be
 empty. Otherwise, the two streams of character tokens together
 should, together with the input element, express the
 equivalent of "This is a searchable index. Enter search keywords:
 (input field)" in the user's preferred language.

 	A start tag whose tag name is "textarea"

 	

 Run these steps:

 	Insert an HTML element for the
 token.

 	If the next token is a "LF" (U+000A) character
 token, then ignore that token and move on to the next
 one. (Newlines at the start of textarea elements are
 ignored as an authoring convenience.)

 	Switch the tokenizer to the RCDATA
 state.

 	Let the original insertion mode be the
 current insertion mode.

	Set the frameset-ok flag to "not
 ok".

 	Switch the insertion mode to "text".

 	A start tag whose tag name is "xmp"

 	

 If the stack of open elements has a p element in button
 scope, then close a p element.

 Reconstruct the active formatting elements, if
 any.

 Set the frameset-ok flag to "not ok".

 Follow the generic raw text element parsing algorithm.

 	A start tag whose tag name is "iframe"

 	

 Set the frameset-ok flag to "not ok".

 Follow the generic raw text element parsing algorithm.

 	A start tag whose tag name is "noembed"

 	A start tag whose tag name is "noscript", if the scripting flag is enabled

 	

 Follow the generic raw text element parsing algorithm.

 	A start tag whose tag name is "select"

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token.

 Set the frameset-ok flag to "not ok".

 If the insertion mode is one of "in table", "in caption", "in table body",
 "in row", or "in cell", then switch the
 insertion mode to "in select in table". Otherwise, switch the
 insertion mode to "in select".

 	A start tag whose tag name is one of: "optgroup", "option"

 	

 If the current node is an option
 element, then pop the current node off the stack of open elements.

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token.

 	A start tag whose tag name is one of: "rp", "rt"

 	

 If the stack of open elements has a ruby element in scope,
 then generate implied end tags. If the current
 node is not then a ruby element, this is a
 parse error.

 Insert an HTML element for the token.

 	A start tag whose tag name is "math"

 	

 Reconstruct the active formatting elements, if
 any.

 Adjust MathML attributes for the token. (This
 fixes the case of MathML attributes that are not all
 lowercase.)

 Adjust foreign attributes for the token. (This
 fixes the use of namespaced attributes, in particular XLink.)

 Insert a foreign element for the token, in the
 MathML namespace.

 If the token has its self-closing flag set, pop the
 current node off the stack of open
 elements and acknowledge the token's self-closing flag.

 	A start tag whose tag name is "svg"

 	

 Reconstruct the active formatting elements, if
 any.

 Adjust SVG attributes for the token. (This fixes
 the case of SVG attributes that are not all lowercase.)

 Adjust foreign attributes for the token. (This
 fixes the use of namespaced attributes, in particular XLink in
 SVG.)

 Insert a foreign element for the token, in the
 SVG namespace.

 If the token has its self-closing flag set, pop the
 current node off the stack of open
 elements and acknowledge the token's self-closing flag.

 	A start tag whose tag name is one of: "caption",
 "col", "colgroup", "frame", "head", "tbody", "td", "tfoot", "th",
 "thead", "tr"

 	
 Parse error. Ignore the token.

 	Any other start tag

 	

 Reconstruct the active formatting elements, if
 any.

 Insert an HTML element for the token.

 This element will be an ordinary
 element.

 	Any other end tag

 	

 Run these steps:

 	Initialize node to be the current
 node (the bottommost node of the stack).

 	Loop: If node is an HTML element with the same tag
 name as the token, then:

 	Generate implied end tags, except
 for HTML elements with the same tag name as the token.

 	If the tag name of the end tag token does not match
 the tag name of the current node, or if it is not an HTML element, then this is a
 parse error.

 	Pop all the nodes from the current node up
 to node, including node, then stop these steps.

 	Otherwise, if node is in the
 special category, then this is a parse
 error; ignore the token, and abort these steps.

 	Set node to the previous entry in the
 stack of open elements.

 	Return to the step labeled loop.

 When the steps above say the user agent is to close a p element, it
 means that the user agent must run the following steps:

 	Generate implied end tags, except for p elements.

 	If the current node is not a p element, then this is a
 parse error.

 	Pop elements from the stack of open elements until a p element
 has been popped from the stack.

 The adoption agency algorithm, which takes as its only argument
 a tag name subject for which the algorithm is being run, consists of the
 following steps:

 	Let outer loop counter be
 zero.

 	Outer loop: If outer loop
 counter is greater than or equal to eight, then abort these
 steps.

 	Increment outer loop counter by
 one.

 	

 Let formatting element be the last element in the list of active
 formatting elements that:

 	is between the end of the list and the last scope
 marker in the list, if any, or the start of the list
 otherwise, and

 	has the tag name subject.

 If there is no such element, then abort these steps and instead act as described in the "any
 other end tag" entry below.

 	If formatting element is not in the stack of open
 elements, then this is a parse error; remove the element from the list, and
 abort these steps.

 	If formatting element is in the stack of open elements,
 but the element is not in scope, then this is a
 parse error; abort these steps.

 	If formatting element is not the current node, this is a
 parse error. (But do not abort these steps.)

 	Let furthest block be the topmost node in the stack of open
 elements that is lower in the stack than formatting element, and is an
 element in the special category. There might not be one.

 	If there is no furthest block, then the UA must first pop all the
 nodes from the bottom of the stack of open elements, from the current
 node up to and including formatting element, then remove formatting element from the list of active formatting elements, and
 finally abort these steps.

 	Let common ancestor be the element immediately above formatting element in the stack of open elements.

 	Let a bookmark note the position of formatting element in the
 list of active formatting elements relative to the elements on either side of it in
 the list.

 	

 Let node and last node be furthest
 block. Follow these steps:

 	Let inner loop counter be zero.

 	Inner loop: Increment inner loop counter by one.

 	Let node be the element immediately above node
 in the stack of open elements, or if node is no longer in the
 stack of open elements (e.g. because it got removed by this algorithm), the element that was immediately above node in the stack of open elements before node
 was removed.

 	If node is formatting element, then go to the
 next step in the overall algorithm.

 	If inner loop counter is greater than three and node is in the list of active formatting elements, then remove node from the list of active formatting elements.

 	If node is not in the list of active
 formatting elements, then remove node from the stack of open
 elements and then go back to the step labeled inner loop.

 	Create an element for the token for which the element node was created, with common ancestor as the intended
 parent; replace the entry for node in the list of active formatting
 elements with an entry for the new element, replace the entry for node in the stack of open elements with an entry for the new
 element, and let node be the new element.

 	If last node is furthest block, then move the
 aforementioned bookmark to be immediately after the new node in the
 list of active formatting elements.

 	Insert last node into node, first removing it
 from its previous parent node if any.

 	Let last node be node.

 	Return to the step labeled inner loop.

 	Insert whatever last node ended up being in the previous step at the appropriate
 place for inserting a node, but using common ancestor as the override target.

 	Create an element for the token for which formatting
 element was created, with furthest block as the intended
 parent.

 	Take all of the child nodes of furthest block and append them to the
 element created in the last step.

 	Append that new element to furthest block.

 	Remove formatting element from the list of active formatting
 elements, and insert the new element into the list of active formatting
 elements at the position of the aforementioned bookmark.

 	Remove formatting element from the stack of open
 elements, and insert the new element into the stack of open elements
 immediately below the position of furthest block in that stack.

 	Jump back to the step labeled outer loop.

 This algorithm's name, the "adoption agency algorithm", comes from the way it
 causes elements to change parents, and is in contrast with other possible algorithms for dealing
 with misnested content, which included the "incest algorithm", the "secret affair algorithm", and
 the "Heisenberg algorithm".

 8.2.5.4.8 The "text" insertion mode

 When the user agent is to apply the rules for the "text" insertion mode, the user agent must handle the token as follows:

 	A character token

 	

 Insert the token's
 character.

 This can never be a U+0000 NULL character; the
 tokenizer converts those to U+FFFD REPLACEMENT CHARACTER
 characters.

 	An end-of-file token

 	

 Parse error.

 If the current node is a script
 element, mark the script element as "already
 started".

 Pop the current node off the stack of open
 elements.

 Switch the insertion mode to the original
 insertion mode and reprocess the token.

 	An end tag whose tag name is "script"

 	

 Perform a microtask checkpoint.

 Provide a stable state.

 Let script be the current node
 (which will be a script element).

 Pop the current node off the stack of open
 elements.

 Switch the insertion mode to the original
 insertion mode.

 Let the old insertion point have the
 same value as the current insertion point. Let
 the insertion point be just before the next
 input character.

 Increment the parser's script nesting level by
 one.

 Prepare the script. This might cause some script to execute,
 which might cause new characters
 to be inserted into the tokenizer, and might cause the
 tokenizer to output more tokens, resulting in a reentrant invocation of the parser.

 Decrement the parser's script nesting level by
 one. If the parser's script nesting level is zero,
 then set the parser pause flag to false.

 Let the insertion point have the value of the old insertion point. (In other words, restore the
 insertion point to its previous value. This value
 might be the "undefined" value.)

 At this stage, if there is a
 pending parsing-blocking script, then:

 	If the script nesting level is not zero:

 	

 Set the parser pause flag to true, and abort the
 processing of any nested invocations of the tokenizer, yielding
 control back to the caller. (Tokenization will resume when the
 caller returns to the "outer" tree construction stage.)

 The tree construction stage of this particular
 parser is being called reentrantly,
 say from a call to document.write().

 	Otherwise:

 	

 Run these steps:

 	Let the script be the pending parsing-blocking
 script. There is no longer a pending parsing-blocking script.

 	Block the tokenizer for this instance of the
 HTML parser, such that the event loop will not run tasks that invoke the tokenizer.

 	If the parser's Document has a style sheet that is blocking
 scripts or the script's "ready to be parser-executed"
 flag is not set: spin the event loop until the parser's Document
 has no style sheet that is blocking scripts and the script's
 "ready to be parser-executed" flag is set.

 	Unblock the tokenizer for this instance of the
 HTML parser, such that tasks that invoke the
 tokenizer can again be run.

 	Let the insertion point be just before the next input
 character.

 	Increment the parser's script nesting level by one (it should be zero
 before this step, so this sets it to one).

 	Execute the
 script.

 	Decrement the parser's script nesting level by one. If the parser's
 script nesting level is zero (which it always should be at this point), then set
 the parser pause flag to false.

	Let the insertion point be undefined again.

 	If there is once again a pending parsing-blocking script, then repeat
 these steps from step 1.

 	Any other end tag

 	

 Pop the current node off the stack of open
 elements.

 Switch the insertion mode to the original
 insertion mode.

 8.2.5.4.9 The "in table" insertion mode

 When the user agent is to apply the rules for the "in table" insertion mode, the user agent must handle the token as follows:

 	A character token, if the current node is table, tbody, tfoot, thead, or tr element

 	

 Let the pending table character tokens
 be an empty list of tokens.

 Let the original insertion mode be the current
 insertion mode.

 Switch the insertion mode to "in table text" and
 reprocess the token.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "caption"

 	

 Clear the stack back to a table context. (See
 below.)

 Insert a marker at the end of the list of active
 formatting elements.

 Insert an HTML element for the token, then
 switch the insertion mode to "in caption".

 	A start tag whose tag name is "colgroup"

 	

 Clear the stack back to a table context. (See
 below.)

 Insert an HTML element for the token, then
 switch the insertion mode to "in column
 group".

 	A start tag whose tag name is "col"

 	

 Clear the stack back to a table context. (See
 below.)

 Insert an HTML element for a "colgroup" start tag token with no attributes, then
 switch the insertion mode to "in column
 group".

 Reprocess the current token.

 	A start tag whose tag name is one of: "tbody", "tfoot", "thead"

 	

 Clear the stack back to a table context. (See
 below.)

 Insert an HTML element for the token, then
 switch the insertion mode to "in table
 body".

 	A start tag whose tag name is one of: "td", "th", "tr"

 	

 Clear the stack back to a table context. (See
 below.)

 Insert an HTML element for a "tbody" start tag token with no attributes, then
 switch the insertion mode to "in table
 body".

 Reprocess the current token.

 	A start tag whose tag name is "table"

 	

 Parse error.

 If the stack of open elements does not have a table element in table
 scope, ignore the token.

 Otherwise:

 Pop elements from this stack until a table
 element has been popped from the stack.

 Reset the insertion mode appropriately.

 Reprocess the token.

 	An end tag whose tag name is "table"

 	

 If the stack of open elements does not have a table element in table
 scope, this is a
 parse error; ignore the token.

 Otherwise:

 Pop elements from this stack until a table
 element has been popped from the stack.

 Reset the insertion mode appropriately.

 	An end tag whose tag name is one of: "body", "caption",
 "col", "colgroup", "html", "tbody", "td", "tfoot", "th",
 "thead", "tr"

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is one of: "style", "script"

 	

 Process the token using the rules for the "in head" insertion
 mode.

 	A start tag whose tag name is "input"

 	

 If the token does not have an attribute with the name "type",
 or if it does, but that attribute's value is not an ASCII
 case-insensitive match for the string "hidden", then: act as described in the "anything
 else" entry below.

 Otherwise:

 Parse error.

 Insert an HTML element for the token.

 Pop that input element off the stack of
 open elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 	A start tag whose tag name is "form"

 	

 Parse error.

 If the form element
 pointer is not null, ignore the token.

 Otherwise:

 Insert an HTML element for the token, and set the
 form element pointer to
 point to the element created.

 Pop that form element off the stack of
 open elements.

 	An end-of-file token

 	

 Process the token using the rules for the "in body" insertion
 mode.

 	Anything else

 	

 Parse error. Enable foster parenting, process
 the token using the rules for the "in
 body" insertion mode, and then disable foster
 parenting.

 When the steps above require the UA to clear the stack
 back to a table context, it means that the UA must, while
 the current node is not a table,
 or html element, pop elements from the
 stack of open elements.

 The current node being an
 html element after this process is a fragment
 case.

 8.2.5.4.10 The "in table text" insertion mode

 When the user agent is to apply the rules for the "in table text" insertion mode, the user agent must handle the token as follows:

 	A character token that is U+0000 NULL

 	

 Parse error. Ignore the token.

 	Any other character token

 	

 Append the character token to the pending table character
 tokens list.

 	Anything else

 	

 If any of the tokens in the pending table character
 tokens list are character tokens that are not space characters, then reprocess
 the character tokens in the pending table character
 tokens list using the rules given in the "anything else"
 entry in the "in
 table" insertion mode.

 Otherwise, insert the
 characters given by the pending table character
 tokens list.

 Switch the insertion mode to the original
 insertion mode and reprocess the token.

 8.2.5.4.11 The "in caption" insertion mode

 When the user agent is to apply the rules for the "in caption" insertion mode, the user agent must handle the token as follows:

 	An end tag whose tag name is "caption"

 	

 If the stack of open elements does not have a caption element in table
 scope, this is a
 parse error; ignore the token. (fragment
 case)

 Otherwise:

 Generate implied end tags.

 Now, if the current node is not a
 caption element, then this is a parse
 error.

 Pop elements from this stack until a caption
 element has been popped from the stack.

 Clear the list of active formatting elements up to
 the last marker.

 Switch the insertion mode to "in table".

 	A start tag whose tag name is one of: "caption", "col",
 "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

 	An end tag whose tag name is "table"

 	

 Parse error.

 If the stack of open elements does not have a caption element in table
 scope, ignore the token. (fragment
 case)

 Otherwise:

 Pop elements from this stack until a caption
 element has been popped from the stack.

 Clear the list of active formatting elements up to
 the last marker.

 Switch the insertion mode to "in table".

 Reprocess the token.

 	An end tag whose tag name is one of: "body", "col",
 "colgroup", "html", "tbody", "td", "tfoot", "th", "thead",
 "tr"

 	
 Parse error. Ignore the token.

 	Anything else

 	
 Process the token using the rules for the "in body" insertion
 mode.

 8.2.5.4.12 The "in column group" insertion mode

 When the user agent is to apply the rules for the "in column group" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Insert the character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is "col"

 	

 Insert an HTML element for the token. Immediately
 pop the current node off the stack of open
 elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 	An end tag whose tag name is "colgroup"

 	

 If the current node is not a colgroup element, then this is a parse
 error; ignore the token.

 Otherwise, pop the current node from the stack of open
 elements. Switch the insertion mode to
 "in table".

 	An end tag whose tag name is "col"

 	
 Parse error. Ignore the token.

 	An end-of-file token

 	

 Process the token using the rules for the "in body" insertion
 mode.

 	Anything else

 	

 If the current node is not a colgroup element, then this is a parse
 error; ignore the token.

 Otherwise, pop the current node from the stack of open
 elements.

 Switch the insertion mode to
 "in table".

 Reprocess the token.

 8.2.5.4.13 The "in table body" insertion mode

 When the user agent is to apply the rules for the "in table body" insertion mode, the user agent must handle the token as follows:

 	A start tag whose tag name is "tr"

 	

 Clear the stack back to a table body
 context. (See below.)

 Insert an HTML element for the token, then switch
 the insertion mode to "in row".

 	A start tag whose tag name is one of: "th", "td"

 	

 Parse error.

 Clear the stack back to a table body
 context. (See below.)

 Insert an HTML element for a "tr" start tag token with no attributes, then switch
 the insertion mode to "in row".

 Reprocess the current token.

 	An end tag whose tag name is one of: "tbody", "tfoot",
 "thead"

 	

 If the stack of open elements does not have an element in table
 scope that is an HTML element and with the same tag name as the token, this is a
 parse error; ignore the token.

 Otherwise:

 Clear the stack back to a table body
 context. (See below.)

 Pop the current node from the stack of
 open elements. Switch the insertion mode
 to "in table".

 	A start tag whose tag name is one of: "caption", "col",
 "colgroup", "tbody", "tfoot", "thead"

 	An end tag whose tag name is "table"

 	

 If the stack of open elements does not have a
 tbody, thead, or tfoot
 element in table scope, this is a parse
 error; ignore the token.

 Otherwise:

 Clear the stack back to a table body
 context. (See below.)

 Pop the current node from the stack of
 open elements. Switch the insertion mode
 to "in table".

 Reprocess the token.

 	An end tag whose tag name is one of: "body", "caption",
 "col", "colgroup", "html", "td", "th", "tr"

 	
 Parse error. Ignore the token.

 	Anything else

 	
 Process the token using the rules for the "in table" insertion
 mode.

 When the steps above require the UA to clear the stack
 back to a table body context, it means that the UA must,
 while the current node is not a tbody,
 tfoot, thead, or html
 element, pop elements from the stack of open
 elements.

 The current node being an
 html element after this process is a fragment
 case.

 8.2.5.4.14 The "in row" insertion mode

 When the user agent is to apply the rules for the "in row" insertion mode, the user agent must handle the token as follows:

 	A start tag whose tag name is one of: "th", "td"

 	

 Clear the stack back to a table row
 context. (See below.)

 Insert an HTML element for the token, then switch
 the insertion mode to "in cell".

 Insert a marker at the end of the list of active
 formatting elements.

 	An end tag whose tag name is "tr"

 	

 If the stack of open elements does not have a tr element in table
 scope, this is a
 parse error; ignore the token.

 Otherwise:

 Clear the stack back to a table row
 context. (See below.)

 Pop the current node (which will be a
 tr element) from the stack of open
 elements. Switch the insertion mode to
 "in table
 body".

 	A start tag whose tag name is one of: "caption", "col",
 "colgroup", "tbody", "tfoot", "thead", "tr"

 	An end tag whose tag name is "table"

 	

 If the stack of open elements does not have a tr element in table
 scope, this is a
 parse error; ignore the token.

 Otherwise:

 Clear the stack back to a table row
 context. (See below.)

 Pop the current node (which will be a
 tr element) from the stack of open
 elements. Switch the insertion mode to
 "in table
 body".

 Reprocess the token.

 	An end tag whose tag name is one of: "tbody", "tfoot",
 "thead"

 	

 If the stack of open elements does not have an element in table
 scope that is an HTML element and with the same tag name as the token, this is a
 parse error; ignore the token.

 If the stack of open elements does not have a tr element in table
 scope, ignore the token.

 Otherwise:

 Clear the stack back to a table row
 context. (See below.)

 Pop the current node (which will be a
 tr element) from the stack of open
 elements. Switch the insertion mode to
 "in table
 body".

 Reprocess the token.

 	An end tag whose tag name is one of: "body", "caption",
 "col", "colgroup", "html", "td", "th"

 	
 Parse error. Ignore the token.

 	Anything else

 	
 Process the token using the rules for the "in table" insertion
 mode.

 When the steps above require the UA to clear the stack
 back to a table row context, it means that the UA must,
 while the current node is not a tr,
 or html element, pop elements from the
 stack of open elements.

 The current node being an
 html element after this process is a fragment
 case.

 8.2.5.4.15 The "in cell" insertion mode

 When the user agent is to apply the rules for the "in cell" insertion mode, the user agent must handle the token as follows:

 	An end tag whose tag name is one of: "td", "th"

 	

 If the stack of open elements does not have an element in table
 scope that is an HTML element and with the same tag name as that of the token, then
 this is a parse error; ignore the token.

 Otherwise:

 Generate implied end tags.

 Now, if the current node is not an HTML element
 with the same tag name as the token, then this is a
 parse error.

 Pop elements from the stack of open elements stack
 until an HTML element with the same tag name as the token has been
 popped from the stack.

 Clear the list of active formatting elements up to
 the last marker.

 Switch the insertion mode to "in row".

 	A start tag whose tag name is one of: "caption", "col",
 "colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

 	

 If the stack of open elements does
 not have
 a td or th element in table
 scope, then this is a parse error; ignore
 the token. (fragment case)

 Otherwise, close the cell (see below) and
 reprocess the token.

 	An end tag whose tag name is one of: "body", "caption",
 "col", "colgroup", "html"

 	
 Parse error. Ignore the token.

 	An end tag whose tag name is one of: "table", "tbody",
 "tfoot", "thead", "tr"

 	

 If the stack of open elements does not have an element in table
 scope that is an HTML element and with the same tag name as that of the token, then this is a parse
 error; ignore the token.

 Otherwise, close the cell (see below) and
 reprocess the token.

 	Anything else

 	
 Process the token using the rules for the "in body" insertion
 mode.

 Where the steps above say to close the cell, they
 mean to run the following algorithm:

 	Generate implied end tags.

 	If the current node is not now a td element or a th
 element, then this is a parse error.

 	Pop elements from the stack of open elements stack until a td
 element or a th element has been popped from the stack.

 	Clear the list of active formatting elements up to the last marker.

 	Switch the insertion mode to "in
 row".

 The stack of open elements cannot have
 both a td and a th element in table scope at the
 same time, nor can it have neither when the close the
 cell algorithm is invoked.

 8.2.5.4.16 The "in select" insertion mode

 When the user agent is to apply the rules for the "in select" insertion mode, the user agent must handle the token as follows:

 	A character token that is U+0000 NULL

 	
 Parse error. Ignore the token.

 	Any other character token

 	
 Insert the token's
 character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is "option"

 	

 If the current node is an option
 element, pop that node from the stack of open
 elements.

 Insert an HTML element for the token.

 	A start tag whose tag name is "optgroup"

 	

 If the current node is an option
 element, pop that node from the stack of open
 elements.

 If the current node is an optgroup
 element, pop that node from the stack of open
 elements.

 Insert an HTML element for the token.

 	An end tag whose tag name is "optgroup"

 	

 First, if the current node is an
 option element, and the node immediately before
 it in the stack of open elements is an
 optgroup element, then pop the current node from the stack of open
 elements.

 If the current node is an
 optgroup element, then pop that node from the
 stack of open elements. Otherwise, this is a
 parse error; ignore the token.

 	An end tag whose tag name is "option"

 	

 If the current node is an option
 element, then pop that node from the stack of open
 elements. Otherwise, this is a parse
 error; ignore the token.

 	An end tag whose tag name is "select"

 	

 If the stack of open elements does not have a select element in select
 scope, this is a
 parse error; ignore the token. (fragment
 case)

 Otherwise:

 Pop elements from the stack of open elements
 until a select element has been popped from the
 stack.

 Reset the insertion mode appropriately.

 	A start tag whose tag name is "select"

 	

 Parse error.

 Pop elements from the stack of open elements
 until a select element has been popped from the
 stack.

 Reset the insertion mode appropriately.

 It just gets treated like an end tag.

 	A start tag whose tag name is one of: "input", "keygen", "textarea"

 	

 Parse error.

 If the stack of open elements does not have a select
 element in select scope, ignore the token. (fragment
 case)

 Pop elements from the stack of open elements
 until a select element has been popped from the
 stack.

 Reset the insertion mode appropriately.

 Reprocess the token.

 	A start tag whose tag name is one of: "script"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	An end-of-file token

 	

 Process the token using the rules for the "in body" insertion
 mode.

 	Anything else

 	
 Parse error. Ignore the token.

 8.2.5.4.17 The "in select in table" insertion mode

 When the user agent is to apply the rules for the "in select in table" insertion mode, the user agent must handle the token as follows:

 	A start tag whose tag name is one of: "caption", "table",
 "tbody", "tfoot", "thead", "tr", "td", "th"

 	

 Parse error.

 Pop elements from the stack of open elements
 until a select element has been popped from the
 stack.

 Reset the insertion mode appropriately.

 Reprocess the token.

 	An end tag whose tag name is one of: "caption", "table",
 "tbody", "tfoot", "thead", "tr", "td", "th"

 	

 Parse error.

 If the stack of open elements does not have an
 element in table scope that is an HTML element and with the same tag name as that
 of the token, then ignore the token.

 Otherwise:

 Pop elements from the stack of open elements
 until a select element has been popped from the
 stack.

 Reset the insertion mode appropriately.

 Reprocess the token.

 	Anything else

 	
 Process the token using the rules for the "in select" insertion
 mode.

 8.2.5.4.18 The "after body" insertion mode

 When the user agent is to apply the rules for the "after body" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A comment token

 	
 Insert a comment as the last child of the first element in
 the stack of open elements (the html
 element).

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	An end tag whose tag name is "html"

 	

 If the parser was originally created as part of the HTML
 fragment parsing algorithm, this is a parse
 error; ignore the token. (fragment case)

 Otherwise, switch the insertion mode to "after after
 body".

 	An end-of-file token

 	
 Stop parsing.

 	Anything else

 	

 Parse error. Switch the insertion
 mode to "in
 body" and reprocess the token.

 8.2.5.4.19 The "in frameset" insertion mode

 When the user agent is to apply the rules for the "in frameset" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Insert the character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	A start tag whose tag name is "frameset"

 	
 Insert an HTML element for the token.

 	An end tag whose tag name is "frameset"

 	

 If the current node is the root
 html element, then this is a parse
 error; ignore the token. (fragment
 case)

 Otherwise, pop the current node from the
 stack of open elements.

 If the parser was not originally created as part
 of the HTML fragment parsing algorithm
 (fragment case), and the current
 node is no longer a frameset element, then
 switch the insertion mode to "after
 frameset".

 	A start tag whose tag name is "frame"

 	

 Insert an HTML element for the token.
 Immediately pop the current node off the
 stack of open elements.

 Acknowledge the
 token's self-closing flag, if it is set.

 	A start tag whose tag name is "noframes"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	An end-of-file token

 	

 If the current node is not the root
 html element, then this is a parse
 error.

 The current node can only be the root
 html element in the fragment case.

 Stop parsing.

 	Anything else

 	
 Parse error. Ignore the token.

 8.2.5.4.20 The "after frameset" insertion mode

 When the user agent is to apply the rules for the "after frameset" insertion mode, the user agent must handle the token as follows:

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	
 Insert the character.

 	A comment token

 	
 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	An end tag whose tag name is "html"

 	
 Switch the insertion mode to "after after
 frameset".

 	A start tag whose tag name is "noframes"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	An end-of-file token

 	
 Stop parsing.

 	Anything else

 	
 Parse error. Ignore the token.

 8.2.5.4.21 The "after after body" insertion mode

 When the user agent is to apply the rules for the "after after body" insertion mode, the user agent must handle the token as follows:

 	A comment token

 	
 Insert a comment as the last child of the Document object.

 	A DOCTYPE token

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	An end-of-file token

 	
 Stop parsing.

 	Anything else

 	
 Parse error. Switch the insertion mode
 to "in body" and
 reprocess the token.

 8.2.5.4.22 The "after after frameset" insertion mode

 When the user agent is to apply the rules for the "after after frameset" insertion mode, the user agent must handle the token as follows:

 	A comment token

 	
 Insert a comment as the last child of the Document object.

 	A DOCTYPE token

 	A character token that is one of U+0009 CHARACTER
 TABULATION, "LF" (U+000A), "FF" (U+000C),
 "CR" (U+000D), or U+0020 SPACE

 	A start tag whose tag name is "html"

 	
 Process the token using the rules for the "in body" insertion
 mode.

 	An end-of-file token

 	
 Stop parsing.

 	A start tag whose tag name is "noframes"

 	
 Process the token using the rules for the "in head" insertion
 mode.

 	Anything else

 	
 Parse error. Ignore the token.

 8.2.5.5 The rules for parsing tokens in foreign content

 When the user agent is to apply the rules for parsing tokens in foreign content, the user agent must handle the token as follows:

 	A character token that is U+0000 NULL

 	

 Parse error. Insert a U+FFFD REPLACEMENT
 CHARACTER character.

 	A character token that is one of U+0009 CHARACTER TABULATION, "LF" (U+000A), "FF" (U+000C), "CR" (U+000D), or U+0020 SPACE

 	

 Insert the token's character.

 	Any other character token

 	

 Insert the token's character.

 Set the frameset-ok flag to "not ok".

 	A comment token

 	

 Insert a comment.

 	A DOCTYPE token

 	
 Parse error. Ignore the token.

 	A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br", "center", "code", "dd", "div", "dl", "dt", "em", "embed", "h1", "h2", "h3", "h4", "h5", "h6", "head", "hr", "i", "img",
 "li", "listing",
"main",
 "meta", "nobr", "ol", "p", "pre", "ruby", "s", "small", "span", "strong", "strike", "sub",
 "sup", "table", "tt", "u", "ul", "var"

 	A start tag whose tag name is "font", if the token has any attributes named "color", "face",
 or "size"

 	

 Parse error.

 If the parser was originally created for the HTML fragment parsing algorithm,
 then act as described in the "any other start tag" entry below. (fragment case)

 Otherwise:

 Pop an element from the stack of open elements, and then keep popping more
 elements from the stack of open elements until the current node is a
 MathML text integration point, an HTML integration point, or an
 element in the HTML namespace.

 Then, reprocess the token.

 	Any other start tag

 	

 If the adjusted current node is an element in the MathML namespace,
 adjust MathML attributes for the token. (This fixes the case of MathML attributes
 that are not all lowercase.)

 If the adjusted current node is an element in the SVG namespace, and the
 token's tag name is one of the ones in the first column of the following table, change the tag
 name to the name given in the corresponding cell in the second column. (This fixes the case of
 SVG elements that are not all lowercase.)

 	 Tag name 	 Element name

 	 altglyph 	 altGlyph

 	 altglyphdef 	 altGlyphDef

 	 altglyphitem 	 altGlyphItem

 	 animatecolor 	 animateColor

 	 animatemotion 	 animateMotion

 	 animatetransform 	 animateTransform

 	 clippath 	 clipPath

 	 feblend 	 feBlend

 	 fecolormatrix 	 feColorMatrix

 	 fecomponenttransfer 	 feComponentTransfer

 	 fecomposite 	 feComposite

 	 feconvolvematrix 	 feConvolveMatrix

 	 fediffuselighting 	 feDiffuseLighting

 	 fedisplacementmap 	 feDisplacementMap

 	 fedistantlight 	 feDistantLight

 	 feflood 	 feFlood

 	 fefunca 	 feFuncA

 	 fefuncb 	 feFuncB

 	 fefuncg 	 feFuncG

 	 fefuncr 	 feFuncR

 	 fegaussianblur 	 feGaussianBlur

 	 feimage 	 feImage

 	 femerge 	 feMerge

 	 femergenode 	 feMergeNode

 	 femorphology 	 feMorphology

 	 feoffset 	 feOffset

 	 fepointlight 	 fePointLight

 	 fespecularlighting 	 feSpecularLighting

 	 fespotlight 	 feSpotLight

 	 fetile 	 feTile

 	 feturbulence 	 feTurbulence

 	 foreignobject 	 foreignObject

 	 glyphref 	 glyphRef

 	 lineargradient 	 linearGradient

 	 radialgradient 	 radialGradient

 	 textpath 	 textPath

 If the adjusted current node is an element in the SVG namespace,
 adjust SVG attributes for the token. (This fixes the case of SVG attributes that
 are not all lowercase.)

 Adjust foreign attributes for the token. (This fixes the use of namespaced
 attributes, in particular XLink in SVG.)

 Insert a foreign element for the token, in the same namespace as the
 adjusted current node.

 If the token has its self-closing flag set, then run the appropriate steps from the
 following list:

 	If the token's tag name is "script"

 	

 Acknowledge the token's self-closing
 flag, and then act as described in the steps for a "script" end tag below.

 	Otherwise

 	

 Pop the current node off the stack of open elements and acknowledge the token's self-closing
 flag.

 	An end tag whose tag name is "script", if the current node is a script element in the SVG namespace

 	

 Pop the current node off the stack of open elements.

 Let the old insertion point have the same value as the current
 insertion point. Let the insertion point be just before the next
 input character.

 Increment the parser's script nesting level by one. Set the parser pause
 flag to true.

 Process the
 script element according to the SVG rules, if the user agent supports
 SVG. [SVG]

 Even if this causes new characters to be
 inserted into the tokenizer, the parser will not be executed reentrantly, since the
 parser pause flag is true.

 Decrement the parser's script nesting level by one. If the parser's script
 nesting level is zero, then set the parser pause flag to false.

 Let the insertion point have the value of the old insertion
 point. (In other words, restore the insertion point to its previous value.
 This value might be the "undefined" value.)

 	Any other end tag

 	

 Run these steps:

 	Initialize node to be the current node (the bottommost
 node of the stack).

 	If node's tag name, converted to ASCII lowercase, is
 not the same as the tag name of the token, then this is a parse error.

 	Loop: If node is the topmost element in the stack of
 open elements, abort these steps. (fragment case)

 	If node's tag name, converted to ASCII lowercase, is
 the same as the tag name of the token, pop elements from the stack of open
 elements until node has been popped from the stack, and then abort
 these steps.

 	Set node to the previous entry in the stack of open
 elements.

 	If node is not an element in the HTML namespace, return
 to the step labeled loop.

 	Otherwise, process the token according to the rules given in the section corresponding
 to the current insertion mode in HTML content.

 8.2.6 The end

 Once the user agent stops parsing the document, the user agent
 must run the following steps:

 	Set the current document readiness to "interactive"
 and the insertion point to
 undefined.

 	Pop all the nodes off the stack of open elements.

 	If the list of scripts that will execute when the document has finished
 parsing is not empty, run these substeps:

 	Spin the event loop until the first script in the list
 of scripts that will execute when the document has finished parsing has its "ready
 to be parser-executed" flag set and the parser's Document
 has no style sheet that is blocking scripts.

 	Execute the first script in
 the list of scripts that will execute when the document has finished
 parsing.

 	Remove the first script element from the list of scripts that will
 execute when the document has finished parsing (i.e. shift out the first entry in the
 list).

 	If the list of scripts that will execute when the document has finished
 parsing is still not empty, repeat these substeps again from substep 1.

 	Queue a task to fire a simple event that bubbles named DOMContentLoaded at the Document.

 	Spin the event loop until the set of scripts that will execute as soon
 as possible and the list of scripts that will execute in order as soon as
 possible are empty.

 	Spin the event loop until there is nothing that delays the load event in the Document.

 	

 Queue a task to run the following substeps:

 	Set the current document readiness to "complete".

 	If the Document is in a browsing context, fire a simple
 event named load at the Document's
 Window object, but with its target set to
 the Document object (and the currentTarget set to the Window
 object).

 	

 If the Document is in a browsing context, then queue a
 task to run the following substeps:

 	If the Document's page showing flag is true, then abort this
 task (i.e. don't fire the event below).

 	Set the Document's page showing flag to true.

 	Fire a trusted event with the name pageshow at the Window object of the
 Document, but with its target set to the
 Document object (and the currentTarget set to the Window object),
 using the PageTransitionEvent interface, with the persisted attribute initialized to false. This
 event must not bubble, must not be cancelable, and has no default action.

 	If the Document has any pending application cache download process
 tasks, then queue each such task in the order they were added to the list of pending
 application cache download process tasks, and then empty the list of pending
 application cache download process tasks. The task source for these tasks is the networking task source.

 	If the Document's print when loaded flag is set, then run the
 printing steps.

 	The Document is now ready for post-load tasks.

 	Queue a task to mark the Document as completely
 loaded.

 When the user agent is to abort a parser, it must run the following steps:

 	Throw away any pending content in the input stream, and discard any future
 content that would have been added to it.

 	Set the current document readiness to "interactive".

 	Pop all the nodes off the stack of open elements.

 	Set the current document readiness to "complete".

 Except where otherwise specified, the task source for the tasks mentioned in this section is the DOM manipulation task
 source.

 8.2.7 Coercing an HTML DOM into an infoset

 When an application uses an HTML parser in
 conjunction with an XML pipeline, it is possible that the
 constructed DOM is not compatible with the XML tool chain in certain
 subtle ways. For example, an XML toolchain might not be able to
 represent attributes with the name xmlns,
 since they conflict with the Namespaces in XML syntax. There is also
 some data that the HTML parser generates that isn't
 included in the DOM itself. This section specifies some rules for
 handling these issues.

 If the XML API being used doesn't support DOCTYPEs, the tool may
 drop DOCTYPEs altogether.

 If the XML API doesn't support attributes in no namespace that
 are named "xmlns", attributes whose names
 start with "xmlns:", or attributes in the
 XMLNS namespace, then the tool may drop such
 attributes.

 The tool may annotate the output with any namespace declarations
 required for proper operation.

 If the XML API being used restricts the allowable characters in
 the local names of elements and attributes, then the tool may map
 all element and attribute local names that the API wouldn't support
 to a set of names that are allowed, by replacing any
 character that isn't supported with the uppercase letter U and the
 six digits of the character's Unicode code point when expressed in
 hexadecimal, using digits 0-9 and capital letters A-F as the
 symbols, in increasing numeric order.

 For example, the element name foo<bar, which can be output by the HTML
 parser, though it is neither a legal HTML element name nor a
 well-formed XML element name, would be converted into fooU00003Cbar, which is a well-formed XML
 element name (though it's still not legal in HTML by any means).

 As another example, consider the attribute
 xlink:href. Used on a MathML element, it becomes, after
 being adjusted, an
 attribute with a prefix "xlink" and a local
 name "href". However, used on an HTML element,
 it becomes an attribute with no prefix and the local name "xlink:href", which is not a valid NCName, and thus
 might not be accepted by an XML API. It could thus get converted,
 becoming "xlinkU00003Ahref".

 The resulting names from this conversion
 conveniently can't clash with any attribute generated by the
 HTML parser, since those are all either lowercase or
 those listed in the adjust foreign attributes
 algorithm's table.

 If the XML API restricts comments from having two consecutive
 "--" (U+002D) characters, the tool may insert a single
 U+0020 SPACE character between any such offending characters.

 If the XML API restricts comments from ending in a
 "-" (U+002D) character, the tool may insert a single
 U+0020 SPACE character at the end of such comments.

 If the XML API restricts allowed characters in character data,
 attribute values, or comments, the tool may replace any "FF" (U+000C) character with a U+0020 SPACE character, and any other
 literal non-XML character with a U+FFFD REPLACEMENT CHARACTER.

 If the tool has no way to convey out-of-band information, then
 the tool may drop the following information:

 	Whether the document is set to no-quirks mode,
 limited-quirks mode, or quirks mode

 	The association between form controls and forms that aren't
 their nearest form element ancestor (use of the
 form element pointer in the parser)

 The mutations allowed by this section apply
 after the HTML parser's rules have been
 applied. For example, a <a::> start tag
 will be closed by a </a::> end tag, and
 never by a </aU00003AU00003A> end tag, even
 if the user agent is using the rules above to then generate an
 actual element in the DOM with the name aU00003AU00003A for that start tag.

 8.2.8 An introduction to error handling and strange cases in the parser

 This section is non-normative.

 This section examines some erroneous markup and discusses how
 the HTML parser handles these cases.

 8.2.8.1 Misnested tags: <i></i>

 This section is non-normative.

 The most-often discussed example of erroneous markup is as
 follows:

 <p>12<i>34</i>5</p>

 The parsing of this markup is straightforward up to the "3". At
 this point, the DOM looks like this:

 	html	head
	body	p	#text: 1
	b	#text: 2
	i	#text: 3

 Here, the stack of open elements has five elements
 on it: html, body, p,
 b, and i. The list of active
 formatting elements just has two: b and
 i. The insertion mode is "in body".

 Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm" is
 invoked. This is a simple case, in that the formatting
 element is the b element, and there is no
 furthest block. Thus, the stack of open
 elements ends up with just three elements: html,
 body, and p, while the list of
 active formatting elements has just one: i. The
 DOM tree is unmodified at this point.

 The next token is a character ("4"), triggers the reconstruction of
 the active formatting elements, in this case just the
 i element. A new i element is thus created
 for the "4" Text node. After the end tag token for the
 "i" is also received, and the "5" Text node is
 inserted, the DOM looks as follows:

 	html	head
	body	p	#text: 1
	b	#text: 2
	i	#text: 3

	i	#text: 4

	#text: 5

 8.2.8.2 Misnested tags: <p></p>

 This section is non-normative.

 A case similar to the previous one is the following:

 1<p>23</p>

 Up to the "2" the parsing here is straightforward:

 	html	head
	body	b	#text: 1
	p	#text: 2

 The interesting part is when the end tag token with the tag name
 "b" is parsed.

 Before that token is seen, the stack of open
 elements has four elements on it: html,
 body, b, and p. The
 list of active formatting elements just has the one:
 b. The insertion mode is "in body".

 Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm" is invoked, as
 in the previous example. However, in this case, there is a
 furthest block, namely the p element. Thus,
 this time the adoption agency algorithm isn't skipped over.

 The common ancestor is the body
 element. A conceptual "bookmark" marks the position of the
 b in the list of active formatting
 elements, but since that list has only one element in it,
 the bookmark won't have much effect.

 As the algorithm progresses, node ends up set
 to the formatting element (b), and last
 node ends up set to the furthest block
 (p).

 The last node gets appended (moved) to the
 common ancestor, so that the DOM looks like:

 	html	head
	body	b	#text: 1

	p	#text: 2

 A new b element is created, and the children of the
 p element are moved to it:

 	html	head
	body	b	#text: 1

	p

 	b	#text: 2

 Finally, the new b element is appended to the
 p element, so that the DOM looks like:

 	html	head
	body	b	#text: 1

	p	b	#text: 2

 The b element is removed from the list of
 active formatting elements and the stack of open
 elements, so that when the "3" is parsed, it is appended to
 the p element:

 	html	head
	body	b	#text: 1

	p	b	#text: 2

	#text: 3

 8.2.8.3 Unexpected markup in tables

 This section is non-normative.

 Error handling in tables is, for historical reasons, especially
 strange. For example, consider the following markup:

 <table><tr><td>aaa</td></tr>bbb</table>ccc

 The highlighted b element start tag is not allowed
 directly inside a table like that, and the parser handles this case
 by placing the element before the table. (This is called foster parenting.) This can be seen by
 examining the DOM tree as it stands just after the
 table element's start tag has been seen:

 	html	head
	body	table

 ...and then immediately after the b element start
 tag has been seen:

 	html	head
	body	b
	table

 At this point, the stack of open elements has on it
 the elements html, body,
 table, and b (in that order, despite the
 resulting DOM tree); the list of active formatting
 elements just has the b element in it; and the
 insertion mode is "in table".

 The tr start tag causes the b element
 to be popped off the stack and a tbody start tag to be
 implied; the tbody and tr elements are
 then handled in a rather straight-forward manner, taking the parser
 through the "in table
 body" and "in
 row" insertion modes, after which the DOM looks as
 follows:

 	html	head
	body	b
	table	tbody	tr

 Here, the stack of open elements has on it the
 elements html, body, table,
 tbody, and tr; the list of active
 formatting elements still has the b element in
 it; and the insertion mode is "in row".

 The td element start tag token, after putting a
 td element on the tree, puts a marker on the list
 of active formatting elements (it also switches to the "in cell" insertion
 mode).

 	html	head
	body	b
	table	tbody	tr	td

 The marker means that when the "aaa" character tokens are seen,
 no b element is created to hold the resulting Text node:

 	html	head
	body	b
	table	tbody	tr	td	#text: aaa

 The end tags are handled in a straight-forward manner; after
 handling them, the stack of open elements has on it the
 elements html, body, table,
 and tbody; the list of active formatting
 elements still has the b element in it (the
 marker having been removed by the "td" end tag token); and the
 insertion mode is "in table body".

 Thus it is that the "bbb" character tokens are found. These
 trigger the "in table
 text" insertion mode to be used (with the original
 insertion mode set to "in table body"). The character tokens are collected,
 and when the next token (the table element end tag) is
 seen, they are processed as a group. Since they are not all spaces,
 they are handled as per the "anything else" rules in the "in table" insertion mode,
 which defer to the "in
 body" insertion mode but with foster parenting.

 When the
 active formatting elements are reconstructed, a
 b element is created and foster parented, and then the "bbb" Text
 node is appended to it:

 	html	head
	body	b
	b	#text: bbb

	table	tbody	tr	td	#text: aaa

 The stack of open elements has on it the elements
 html, body, table,
 tbody, and the new b (again, note that
 this doesn't match the resulting tree!); the list of active
 formatting elements has the new b element in it;
 and the insertion mode is still "in table body".

 Had the character tokens been only space characters instead of "bbb", then those
 space characters would just be
 appended to the tbody element.

 Finally, the table is closed by a "table" end
 tag. This pops all the nodes from the stack of open
 elements up to and including the table element,
 but it doesn't affect the list of active formatting
 elements, so the "ccc" character tokens after the table
 result in yet another b element being created, this
 time after the table:

 	html	head
	body	b
	b	#text: bbb

	table	tbody	tr	td	#text: aaa

	b	#text: ccc

 8.2.8.4 Scripts that modify the page as it is being parsed

 This section is non-normative.

 Consider the following markup, which for this example we will
 assume is the document with URL http://example.com/inner, being rendered as the
 content of an iframe in another document with the
 URL http://example.com/outer:

 <div id=a>
 <script>
 var div = document.getElementById('a');
 parent.document.body.appendChild(div);
 </script>
 <script>
 alert(document.URL);
 </script>
</div>
<script>
 alert(document.URL);
</script>

 Up to the first "script" end tag, before the script is parsed,
 the result is relatively straightforward:

 	html	head
	body	div id="a"	#text:

	script	#text: var div = document.getElementById('a'); ⏎ parent.document.body.appendChild(div);

 After the script is parsed, though, the div element
 and its child script element are gone:

 	html	head
	body

 They are, at this point, in the Document of the
 aforementioned outer browsing context. However, the
 stack of open elements still contains the
 div element.

 Thus, when the second script element is parsed, it
 is inserted into the outer Document
 object.

 Those parsed into different Documents than the one
 the parser was created for do not execute, so the first alert does
 not show.

 Once the div element's end tag is parsed, the
 div element is popped off the stack, and so the next
 script element is in the inner Document:

 	html	head
	body	script	#text: alert(document.URL);

 This script does execute, resulting in an alert that says "http://example.com/inner".

 8.2.8.5 The execution of scripts that are moving across multiple documents

 This section is non-normative.

 Elaborating on the example in the previous section, consider the
 case where the second script element is an external
 script (i.e. one with a src
 attribute). Since the element was not in the parser's
 Document when it was created, that external script is
 not even downloaded.

 In a case where a script element with a src attribute is parsed normally into
 its parser's Document, but while the external script is
 being downloaded, the element is moved to another document, the
 script continues to download, but does not execute.

 In general, moving script elements
 between Documents is considered a bad practice.

 8.2.8.6 Unclosed formatting elements

 This section is non-normative.

 The following markup shows how nested formatting elements (such
 as b) get collected and continue to be applied even as
 the elements they are contained in are closed, but that excessive
 duplicates are thrown away.

 <!DOCTYPE html>
<p><b class=x><b class=x><b class=x><b class=x>X
<p>X
<p><b class=x>X
<p>X

 The resulting DOM tree is as follows:

 	DOCTYPE: html
	html	head
	body	p	b class="x"	b class="x"	b	b class="x"	b class="x"	b	#text: X⏎

	p	b class="x"	b	b class="x"	b class="x"	b	#text: X⏎

	p	b class="x"	b	b class="x"	b class="x"	b	b	b class="x"	b	#text: X⏎

	p	#text: X⏎

 Note how the second p element in the markup has no
 explicit b elements, but in the resulting DOM, up to
 three of each kind of formatting element (in this case three
 b elements with the class attribute, and two unadorned
 b elements) get reconstructed before the element's
 "X".

 Also note how this means that in the final paragraph only six
 b end tags are needed to completely clear the list of
 formatting elements, even though nine b start tags have
 been seen up to this point.

 8.3 Serializing HTML fragments

 The following steps form the HTML fragment serialization
 algorithm. The algorithm takes as input a DOM
 Element, Document, or
 DocumentFragment referred to as the
 node, and either returns a string or throws an exception.

 This algorithm serializes the children of
 the node being serialized, not the node itself.

 	Let s be a string, and initialize it to
 the empty string.

 	

 For each child node of the node, in
 tree order, run the following steps:

 	Let current node be the child node
 being processed.

 	

 Append the appropriate string from the following list to
 s:

 	If current node is an Element

 	

 If current node is an element in the
 HTML namespace, the MathML
 namespace, or the SVG namespace, then let
 tagname be current
 node's local name. Otherwise, let tagname be current node's
 qualified name.

 Append a "<" (U+003C) character, followed
 by tagname.

 For HTML elements created by the
 HTML parser or Document.createElement(), tagname will be lowercase.

 For each attribute that the element has, append a U+0020
 SPACE character, the attribute's serialized name as described below, a
 "=" (U+003D) character, a U+0022 QUOTATION MARK
 character ("), the attribute's value, escaped as described below in
 attribute mode, and a second U+0022 QUOTATION MARK
 character (").

 An attribute's serialized name for the purposes
 of the previous paragraph must be determined as follows:

 	If the attribute has no namespace

 	

 The attribute's serialized name is the attribute's local
 name.

 For attributes on HTML elements
 set by the HTML parser or by Element.setAttribute(), the local name will
 be lowercase.

 	If the attribute is in the XML namespace

 	The attribute's serialized name is the string "xml:" followed by the attribute's local
 name.

 	If the attribute is in the XMLNS namespace and the attribute's local name is xmlns

 	The attribute's serialized name is the string "xmlns".

 	If the attribute is in the XMLNS namespace and the attribute's local name is not xmlns

 	The attribute's serialized name is the string "xmlns:" followed by the attribute's local
 name.

 	If the attribute is in the XLink namespace

 	The attribute's serialized name is the string "xlink:" followed by the attribute's local
 name.

 	If the attribute is in some other namespace

 	The attribute's serialized name is the attribute's
 qualified name.

 While the exact order of attributes is UA-defined, and may
 depend on factors such as the order that the attributes were
 given in the original markup, the sort order must be stable,
 such that consecutive invocations of this algorithm serialize an
 element's attributes in the same order.

 Append a ">" (U+003E) character.

 If current node is an area, base,
 basefont, bgsound, br, col,
 embed, frame, hr, img,
 input, keygen, link,
 meta, param, source, track or
 wbr element, then continue on to the next child node at this point.

 If current node is a pre,
 textarea, or listing element, and
 the first child node of the element, if any, is a
 Text node whose character data has as its first
 character a "LF" (U+000A) character, then append a
 "LF" (U+000A) character.

 Append the value of running the HTML fragment
 serialization algorithm on the current
 node element (thus recursing into this algorithm for
 that element), followed by a U+003C LESS-THAN SIGN character
 (<), a "/" (U+002F) character, tagname again, and finally a ">" (U+003E) character.

 	If current node is a Text node

 	

 If the parent of current node is a
 style, script, xmp,
 iframe, noembed,
 noframes, or plaintext element, or
 if the parent of current node is
 noscript element and scripting is enabled for the
 node, then append the value of current
 node's data IDL attribute
 literally.

 Otherwise, append the value of current
 node's data IDL attribute, escaped as described
 below.

 	If current node is a Comment

 	

 Append the literal string <!-- (U+003C
 LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS,
 U+002D HYPHEN-MINUS), followed by the value of current node's data IDL
 attribute, followed by the literal string -->
 (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN
 SIGN).

 	If current node is a ProcessingInstruction

 	

 Append the literal string <? (U+003C
 LESS-THAN SIGN, U+003F QUESTION MARK), followed by the value
 of current node's target IDL attribute, followed by a single
 U+0020 SPACE character, followed by the value of current node's data IDL
 attribute, followed by a single ">" (U+003E) character.

 	If current node is a DocumentType

 	

 Append the literal string <!DOCTYPE (U+003C
 LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+0044 LATIN CAPITAL
 LETTER D, U+004F LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL
 LETTER C, U+0054 LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL
 LETTER Y, U+0050 LATIN CAPITAL LETTER P, U+0045 LATIN CAPITAL
 LETTER E), followed by a space (U+0020 SPACE), followed by the
 value of current node's name IDL attribute, followed by the literal
 string > (U+003E GREATER-THAN SIGN).

 	The result of the algorithm is the string s.

 It is possible that the output of this algorithm, if
 parsed with an HTML parser, will not return the
 original tree structure.

 For instance, if a textarea element to which a
 Comment node has been appended is serialized
 and the output is then reparsed, the comment will end up being
 displayed in the text field. Similarly, if, as a result of DOM
 manipulation, an element contains a comment that contains the
 literal string "-->", then when the result
 of serializing the element is parsed, the comment will be truncated
 at that point and the rest of the comment will be interpreted as
 markup. More examples would be making a script element
 contain a Text node with the text string
 "</script>", or having a p element
 that contains a ul element (as the ul
 element's start tag would
 imply the end tag for the p).

 This can enable cross-site scripting attacks. An example of this would be a page that lets the
 user enter some font family names that are then inserted into a CSS style block via
 the DOM and which then uses the innerHTML IDL attribute to get
 the HTML serialization of that style element: if the user enters
 "</style><script>attack</script>" as a font family name, innerHTML will return markup that, if parsed in a different context,
 would contain a script node, even though no script node existed in the
 original DOM.

 Escaping a string (for the
 purposes of the algorithm above) consists of running the following
 steps:

 	Replace any occurrence of the "&"
 character by the string "&".

 	Replace any occurrences of the U+00A0 NO-BREAK SPACE
 character by the string " ".

 	If the algorithm was invoked in the attribute mode,
 replace any occurrences of the """
 character by the string """.

 	If the algorithm was not invoked in the
 attribute mode, replace any occurrences of the "<" character by the string "<", and any occurrences of the ">" character by the string ">".

 8.4 Parsing HTML fragments

 The following steps form the HTML fragment parsing
 algorithm. The algorithm optionally takes as input an
 Element node, referred to as the context element,
 which gives the context for the parser, as well as input, a string to parse, and returns a list of zero
 or more nodes.

 Parts marked fragment case in algorithms
 in the parser section are parts that only occur if the parser was
 created for the purposes of this algorithm (and with a context element). The
 algorithms have been annotated with such markings for informational
 purposes only; such markings have no normative weight. If it is
 possible for a condition described as a fragment case
 to occur even when the parser wasn't created for the purposes of
 handling this algorithm, then that is an error in the
 specification.

 	

 Create a new Document node, and mark it as being
 an HTML document.

 	

 If there is a context element, and the
 Document of the context element is in
 quirks mode, then let the Document be in
 quirks mode. Otherwise, if there is a context element, and the
 Document of the context element is in
 limited-quirks mode, then let the
 Document be in limited-quirks mode.
 Otherwise, leave the Document in no-quirks
 mode.

 	

 Create a new HTML parser, and associate it with
 the just created Document node.

 	

 If there is a context element, run
 these substeps:

 	

 Set the state of the HTML parser's
 tokenization stage as follows:

 	If it is a title or textarea
 element

 	Switch the tokenizer to the RCDATA state.

 	If it is a style, xmp,
 iframe, noembed, or
 noframes element

 	Switch the tokenizer to the RAWTEXT state.

 	If it is a script element

 	Switch the tokenizer to the script data state.

 	If it is a noscript element

 	If the scripting flag is enabled, switch the
 tokenizer to the RAWTEXT state. Otherwise,
 leave the tokenizer in the data state.

 	If it is a plaintext element

 	Switch the tokenizer to the PLAINTEXT
 state.

 	Otherwise

 	Leave the tokenizer in the data state.

 For performance reasons, an implementation that
 does not report errors and that uses the actual state machine
 described in this specification directly could use the PLAINTEXT
 state instead of the RAWTEXT and script data states where those
 are mentioned in the list above. Except for rules regarding
 parse errors, they are equivalent, since there is no
 appropriate end tag token in the fragment case, yet
 they involve far fewer state transitions.

 	

 Let root be a new html element
 with no attributes.

 	

 Append the element root to the
 Document node created above.

 	

 Set up the parser's stack of open elements so that
 it contains just the single element root.

 	

 Reset the
 parser's insertion mode appropriately.

 The parser will reference the context element as part
 of that algorithm.

 	

 Set the parser's form element
 pointer to the nearest node to the context element that is
 a form element (going straight up the ancestor
 chain, and including the element itself, if it is a
 form element), or, if there is no such
 form element, to null.

 	

 Place into the input stream for the HTML
 parser just created the input. The
 encoding confidence is
 irrelevant.

 	

 Start the parser and let it run until it has consumed all the
 characters just inserted into the input stream.

 	

 If there is a context element, return
 the child nodes of root, in tree
 order.

 Otherwise, return the children of the Document
 object, in tree order.

 8.5 Named character references

 This table lists the character reference names that are supported
 by HTML, and the code points to which they refer. It is referenced
 by the previous sections.

﻿

 	 Name 	 Character(s) 	 Glyph

 	 Aacute; 	 U+000C1 	 Á

 	 Aacute 	 U+000C1 	 Á

 	 aacute; 	 U+000E1 	 á

 	 aacute 	 U+000E1 	 á

 	 Abreve; 	 U+00102 	 Ă

 	 abreve; 	 U+00103 	 ă

 	 ac; 	 U+0223E 	 ∾

 	 acd; 	 U+0223F 	 ∿

 	 acE; 	 U+0223E U+00333 	 ∾̳

 	 Acirc; 	 U+000C2 	 Â

 	 Acirc 	 U+000C2 	 Â

 	 acirc; 	 U+000E2 	 â

 	 acirc 	 U+000E2 	 â

 	 acute; 	 U+000B4 	 ´

 	 acute 	 U+000B4 	 ´

 	 Acy; 	 U+00410 	 А

 	 acy; 	 U+00430 	 а

 	 AElig; 	 U+000C6 	 Æ

 	 AElig 	 U+000C6 	 Æ

 	 aelig; 	 U+000E6 	 æ

 	 aelig 	 U+000E6 	 æ

 	 af; 	 U+02061 	 ⁡

 	 Afr; 	 U+1D504 	 𝔄

 	 afr; 	 U+1D51E 	 𝔞

 	 Agrave; 	 U+000C0 	 À

 	 Agrave 	 U+000C0 	 À

 	 agrave; 	 U+000E0 	 à

 	 agrave 	 U+000E0 	 à

 	 alefsym; 	 U+02135 	 ℵ

 	 aleph; 	 U+02135 	 ℵ

 	 Alpha; 	 U+00391 	 Α

 	 alpha; 	 U+003B1 	 α

 	 Amacr; 	 U+00100 	 Ā

 	 amacr; 	 U+00101 	 ā

 	 amalg; 	 U+02A3F 	 ⨿

 	 AMP; 	 U+00026 	 &

 	 AMP 	 U+00026 	 &

 	 amp; 	 U+00026 	 &

 	 amp 	 U+00026 	 &

 	 And; 	 U+02A53 	 ⩓

 	 and; 	 U+02227 	 ∧

 	 andand; 	 U+02A55 	 ⩕

 	 andd; 	 U+02A5C 	 ⩜

 	 andslope; 	 U+02A58 	 ⩘

 	 andv; 	 U+02A5A 	 ⩚

 	 ang; 	 U+02220 	 ∠

 	 ange; 	 U+029A4 	 ⦤

 	 angle; 	 U+02220 	 ∠

 	 angmsd; 	 U+02221 	 ∡

 	 angmsdaa; 	 U+029A8 	 ⦨

 	 angmsdab; 	 U+029A9 	 ⦩

 	 angmsdac; 	 U+029AA 	 ⦪

 	 angmsdad; 	 U+029AB 	 ⦫

 	 angmsdae; 	 U+029AC 	 ⦬

 	 angmsdaf; 	 U+029AD 	 ⦭

 	 angmsdag; 	 U+029AE 	 ⦮

 	 angmsdah; 	 U+029AF 	 ⦯

 	 angrt; 	 U+0221F 	 ∟

 	 angrtvb; 	 U+022BE 	 ⊾

 	 angrtvbd; 	 U+0299D 	 ⦝

 	 angsph; 	 U+02222 	 ∢

 	 angst; 	 U+000C5 	 Å

 	 angzarr; 	 U+0237C 	 ⍼

 	 Aogon; 	 U+00104 	 Ą

 	 aogon; 	 U+00105 	 ą

 	 Aopf; 	 U+1D538 	 𝔸

 	 aopf; 	 U+1D552 	 𝕒

 	 ap; 	 U+02248 	 ≈

 	 apacir; 	 U+02A6F 	 ⩯

 	 apE; 	 U+02A70 	 ⩰

 	 ape; 	 U+0224A 	 ≊

 	 apid; 	 U+0224B 	 ≋

 	 apos; 	 U+00027 	 '

 	 ApplyFunction; 	 U+02061 	 ⁡

 	 approx; 	 U+02248 	 ≈

 	 approxeq; 	 U+0224A 	 ≊

 	 Aring; 	 U+000C5 	 Å

 	 Aring 	 U+000C5 	 Å

 	 aring; 	 U+000E5 	 å

 	 aring 	 U+000E5 	 å

 	 Ascr; 	 U+1D49C 	 𝒜

 	 ascr; 	 U+1D4B6 	 𝒶

 	 Assign; 	 U+02254 	 ≔

 	 ast; 	 U+0002A 	 *

 	 asymp; 	 U+02248 	 ≈

 	 asympeq; 	 U+0224D 	 ≍

 	 Atilde; 	 U+000C3 	 Ã

 	 Atilde 	 U+000C3 	 Ã

 	 atilde; 	 U+000E3 	 ã

 	 atilde 	 U+000E3 	 ã

 	 Auml; 	 U+000C4 	 Ä

 	 Auml 	 U+000C4 	 Ä

 	 auml; 	 U+000E4 	 ä

 	 auml 	 U+000E4 	 ä

 	 awconint; 	 U+02233 	 ∳

 	 awint; 	 U+02A11 	 ⨑

 	 backcong; 	 U+0224C 	 ≌

 	 backepsilon; 	 U+003F6 	 ϶

 	 backprime; 	 U+02035 	 ‵

 	 backsim; 	 U+0223D 	 ∽

 	 backsimeq; 	 U+022CD 	 ⋍

 	 Backslash; 	 U+02216 	 ∖

 	 Barv; 	 U+02AE7 	 ⫧

 	 barvee; 	 U+022BD 	 ⊽

 	 Barwed; 	 U+02306 	 ⌆

 	 barwed; 	 U+02305 	 ⌅

 	 barwedge; 	 U+02305 	 ⌅

 	 bbrk; 	 U+023B5 	 ⎵

 	 bbrktbrk; 	 U+023B6 	 ⎶

 	 bcong; 	 U+0224C 	 ≌

 	 Bcy; 	 U+00411 	 Б

 	 bcy; 	 U+00431 	 б

 	 bdquo; 	 U+0201E 	 „

 	 becaus; 	 U+02235 	 ∵

 	 Because; 	 U+02235 	 ∵

 	 because; 	 U+02235 	 ∵

 	 bemptyv; 	 U+029B0 	 ⦰

 	 bepsi; 	 U+003F6 	 ϶

 	 bernou; 	 U+0212C 	 ℬ

 	 Bernoullis; 	 U+0212C 	 ℬ

 	 Beta; 	 U+00392 	 Β

 	 beta; 	 U+003B2 	 β

 	 beth; 	 U+02136 	 ℶ

 	 between; 	 U+0226C 	 ≬

 	 Bfr; 	 U+1D505 	 𝔅

 	 bfr; 	 U+1D51F 	 𝔟

 	 bigcap; 	 U+022C2 	 ⋂

 	 bigcirc; 	 U+025EF 	 ◯

 	 bigcup; 	 U+022C3 	 ⋃

 	 bigodot; 	 U+02A00 	 ⨀

 	 bigoplus; 	 U+02A01 	 ⨁

 	 bigotimes; 	 U+02A02 	 ⨂

 	 bigsqcup; 	 U+02A06 	 ⨆

 	 bigstar; 	 U+02605 	 ★

 	 bigtriangledown; 	 U+025BD 	 ▽

 	 bigtriangleup; 	 U+025B3 	 △

 	 biguplus; 	 U+02A04 	 ⨄

 	 bigvee; 	 U+022C1 	 ⋁

 	 bigwedge; 	 U+022C0 	 ⋀

 	 bkarow; 	 U+0290D 	 ⤍

 	 blacklozenge; 	 U+029EB 	 ⧫

 	 blacksquare; 	 U+025AA 	 ▪

 	 blacktriangle; 	 U+025B4 	 ▴

 	 blacktriangledown; 	 U+025BE 	 ▾

 	 blacktriangleleft; 	 U+025C2 	 ◂

 	 blacktriangleright; 	 U+025B8 	 ▸

 	 blank; 	 U+02423 	 ␣

 	 blk12; 	 U+02592 	 ▒

 	 blk14; 	 U+02591 	 ░

 	 blk34; 	 U+02593 	 ▓

 	 block; 	 U+02588 	 █

 	 bne; 	 U+0003D U+020E5 	 =⃥

 	 bnequiv; 	 U+02261 U+020E5 	 ≡⃥

 	 bNot; 	 U+02AED 	 ⫭

 	 bnot; 	 U+02310 	 ⌐

 	 Bopf; 	 U+1D539 	 𝔹

 	 bopf; 	 U+1D553 	 𝕓

 	 bot; 	 U+022A5 	 ⊥

 	 bottom; 	 U+022A5 	 ⊥

 	 bowtie; 	 U+022C8 	 ⋈

 	 boxbox; 	 U+029C9 	 ⧉

 	 boxDL; 	 U+02557 	 ╗

 	 boxDl; 	 U+02556 	 ╖

 	 boxdL; 	 U+02555 	 ╕

 	 boxdl; 	 U+02510 	 ┐

 	 boxDR; 	 U+02554 	 ╔

 	 boxDr; 	 U+02553 	 ╓

 	 boxdR; 	 U+02552 	 ╒

 	 boxdr; 	 U+0250C 	 ┌

 	 boxH; 	 U+02550 	 ═

 	 boxh; 	 U+02500 	 ─

 	 boxHD; 	 U+02566 	 ╦

 	 boxHd; 	 U+02564 	 ╤

 	 boxhD; 	 U+02565 	 ╥

 	 boxhd; 	 U+0252C 	 ┬

 	 boxHU; 	 U+02569 	 ╩

 	 boxHu; 	 U+02567 	 ╧

 	 boxhU; 	 U+02568 	 ╨

 	 boxhu; 	 U+02534 	 ┴

 	 boxminus; 	 U+0229F 	 ⊟

 	 boxplus; 	 U+0229E 	 ⊞

 	 boxtimes; 	 U+022A0 	 ⊠

 	 boxUL; 	 U+0255D 	 ╝

 	 boxUl; 	 U+0255C 	 ╜

 	 boxuL; 	 U+0255B 	 ╛

 	 boxul; 	 U+02518 	 ┘

 	 boxUR; 	 U+0255A 	 ╚

 	 boxUr; 	 U+02559 	 ╙

 	 boxuR; 	 U+02558 	 ╘

 	 boxur; 	 U+02514 	 └

 	 boxV; 	 U+02551 	 ║

 	 boxv; 	 U+02502 	 │

 	 boxVH; 	 U+0256C 	 ╬

 	 boxVh; 	 U+0256B 	 ╫

 	 boxvH; 	 U+0256A 	 ╪

 	 boxvh; 	 U+0253C 	 ┼

 	 boxVL; 	 U+02563 	 ╣

 	 boxVl; 	 U+02562 	 ╢

 	 boxvL; 	 U+02561 	 ╡

 	 boxvl; 	 U+02524 	 ┤

 	 boxVR; 	 U+02560 	 ╠

 	 boxVr; 	 U+0255F 	 ╟

 	 boxvR; 	 U+0255E 	 ╞

 	 boxvr; 	 U+0251C 	 ├

 	 bprime; 	 U+02035 	 ‵

 	 Breve; 	 U+002D8 	 ˘

 	 breve; 	 U+002D8 	 ˘

 	 brvbar; 	 U+000A6 	 ¦

 	 brvbar 	 U+000A6 	 ¦

 	 Bscr; 	 U+0212C 	 ℬ

 	 bscr; 	 U+1D4B7 	 𝒷

 	 bsemi; 	 U+0204F 	 ⁏

 	 bsim; 	 U+0223D 	 ∽

 	 bsime; 	 U+022CD 	 ⋍

 	 bsol; 	 U+0005C 	 \

 	 bsolb; 	 U+029C5 	 ⧅

 	 bsolhsub; 	 U+027C8 	 ⟈

 	 bull; 	 U+02022 	 •

 	 bullet; 	 U+02022 	 •

 	 bump; 	 U+0224E 	 ≎

 	 bumpE; 	 U+02AAE 	 ⪮

 	 bumpe; 	 U+0224F 	 ≏

 	 Bumpeq; 	 U+0224E 	 ≎

 	 bumpeq; 	 U+0224F 	 ≏

 	 Cacute; 	 U+00106 	 Ć

 	 cacute; 	 U+00107 	 ć

 	 Cap; 	 U+022D2 	 ⋒

 	 cap; 	 U+02229 	 ∩

 	 capand; 	 U+02A44 	 ⩄

 	 capbrcup; 	 U+02A49 	 ⩉

 	 capcap; 	 U+02A4B 	 ⩋

 	 capcup; 	 U+02A47 	 ⩇

 	 capdot; 	 U+02A40 	 ⩀

 	 CapitalDifferentialD; 	 U+02145 	 ⅅ

 	 caps; 	 U+02229 U+0FE00 	 ∩︀

 	 caret; 	 U+02041 	 ⁁

 	 caron; 	 U+002C7 	 ˇ

 	 Cayleys; 	 U+0212D 	 ℭ

 	 ccaps; 	 U+02A4D 	 ⩍

 	 Ccaron; 	 U+0010C 	 Č

 	 ccaron; 	 U+0010D 	 č

 	 Ccedil; 	 U+000C7 	 Ç

 	 Ccedil 	 U+000C7 	 Ç

 	 ccedil; 	 U+000E7 	 ç

 	 ccedil 	 U+000E7 	 ç

 	 Ccirc; 	 U+00108 	 Ĉ

 	 ccirc; 	 U+00109 	 ĉ

 	 Cconint; 	 U+02230 	 ∰

 	 ccups; 	 U+02A4C 	 ⩌

 	 ccupssm; 	 U+02A50 	 ⩐

 	 Cdot; 	 U+0010A 	 Ċ

 	 cdot; 	 U+0010B 	 ċ

 	 cedil; 	 U+000B8 	 ¸

 	 cedil 	 U+000B8 	 ¸

 	 Cedilla; 	 U+000B8 	 ¸

 	 cemptyv; 	 U+029B2 	 ⦲

 	 cent; 	 U+000A2 	 ¢

 	 cent 	 U+000A2 	 ¢

 	 CenterDot; 	 U+000B7 	 ·

 	 centerdot; 	 U+000B7 	 ·

 	 Cfr; 	 U+0212D 	 ℭ

 	 cfr; 	 U+1D520 	 𝔠

 	 CHcy; 	 U+00427 	 Ч

 	 chcy; 	 U+00447 	 ч

 	 check; 	 U+02713 	 ✓

 	 checkmark; 	 U+02713 	 ✓

 	 Chi; 	 U+003A7 	 Χ

 	 chi; 	 U+003C7 	 χ

 	 cir; 	 U+025CB 	 ○

 	 circ; 	 U+002C6 	 ˆ

 	 circeq; 	 U+02257 	 ≗

 	 circlearrowleft; 	 U+021BA 	 ↺

 	 circlearrowright; 	 U+021BB 	 ↻

 	 circledast; 	 U+0229B 	 ⊛

 	 circledcirc; 	 U+0229A 	 ⊚

 	 circleddash; 	 U+0229D 	 ⊝

 	 CircleDot; 	 U+02299 	 ⊙

 	 circledR; 	 U+000AE 	 ®

 	 circledS; 	 U+024C8 	 Ⓢ

 	 CircleMinus; 	 U+02296 	 ⊖

 	 CirclePlus; 	 U+02295 	 ⊕

 	 CircleTimes; 	 U+02297 	 ⊗

 	 cirE; 	 U+029C3 	 ⧃

 	 cire; 	 U+02257 	 ≗

 	 cirfnint; 	 U+02A10 	 ⨐

 	 cirmid; 	 U+02AEF 	 ⫯

 	 cirscir; 	 U+029C2 	 ⧂

 	 ClockwiseContourIntegral; 	 U+02232 	 ∲

 	 CloseCurlyDoubleQuote; 	 U+0201D 	 ”

 	 CloseCurlyQuote; 	 U+02019 	 ’

 	 clubs; 	 U+02663 	 ♣

 	 clubsuit; 	 U+02663 	 ♣

 	 Colon; 	 U+02237 	 ∷

 	 colon; 	 U+0003A 	 :

 	 Colone; 	 U+02A74 	 ⩴

 	 colone; 	 U+02254 	 ≔

 	 coloneq; 	 U+02254 	 ≔

 	 comma; 	 U+0002C 	 ,

 	 commat; 	 U+00040 	 @

 	 comp; 	 U+02201 	 ∁

 	 compfn; 	 U+02218 	 ∘

 	 complement; 	 U+02201 	 ∁

 	 complexes; 	 U+02102 	 ℂ

 	 cong; 	 U+02245 	 ≅

 	 congdot; 	 U+02A6D 	 ⩭

 	 Congruent; 	 U+02261 	 ≡

 	 Conint; 	 U+0222F 	 ∯

 	 conint; 	 U+0222E 	 ∮

 	 ContourIntegral; 	 U+0222E 	 ∮

 	 Copf; 	 U+02102 	 ℂ

 	 copf; 	 U+1D554 	 𝕔

 	 coprod; 	 U+02210 	 ∐

 	 Coproduct; 	 U+02210 	 ∐

 	 COPY; 	 U+000A9 	 ©

 	 COPY 	 U+000A9 	 ©

 	 copy; 	 U+000A9 	 ©

 	 copy 	 U+000A9 	 ©

 	 copysr; 	 U+02117 	 ℗

 	 CounterClockwiseContourIntegral; 	 U+02233 	 ∳

 	 crarr; 	 U+021B5 	 ↵

 	 Cross; 	 U+02A2F 	 ⨯

 	 cross; 	 U+02717 	 ✗

 	 Cscr; 	 U+1D49E 	 𝒞

 	 cscr; 	 U+1D4B8 	 𝒸

 	 csub; 	 U+02ACF 	 ⫏

 	 csube; 	 U+02AD1 	 ⫑

 	 csup; 	 U+02AD0 	 ⫐

 	 csupe; 	 U+02AD2 	 ⫒

 	 ctdot; 	 U+022EF 	 ⋯

 	 cudarrl; 	 U+02938 	 ⤸

 	 cudarrr; 	 U+02935 	 ⤵

 	 cuepr; 	 U+022DE 	 ⋞

 	 cuesc; 	 U+022DF 	 ⋟

 	 cularr; 	 U+021B6 	 ↶

 	 cularrp; 	 U+0293D 	 ⤽

 	 Cup; 	 U+022D3 	 ⋓

 	 cup; 	 U+0222A 	 ∪

 	 cupbrcap; 	 U+02A48 	 ⩈

 	 CupCap; 	 U+0224D 	 ≍

 	 cupcap; 	 U+02A46 	 ⩆

 	 cupcup; 	 U+02A4A 	 ⩊

 	 cupdot; 	 U+0228D 	 ⊍

 	 cupor; 	 U+02A45 	 ⩅

 	 cups; 	 U+0222A U+0FE00 	 ∪︀

 	 curarr; 	 U+021B7 	 ↷

 	 curarrm; 	 U+0293C 	 ⤼

 	 curlyeqprec; 	 U+022DE 	 ⋞

 	 curlyeqsucc; 	 U+022DF 	 ⋟

 	 curlyvee; 	 U+022CE 	 ⋎

 	 curlywedge; 	 U+022CF 	 ⋏

 	 curren; 	 U+000A4 	 ¤

 	 curren 	 U+000A4 	 ¤

 	 curvearrowleft; 	 U+021B6 	 ↶

 	 curvearrowright; 	 U+021B7 	 ↷

 	 cuvee; 	 U+022CE 	 ⋎

 	 cuwed; 	 U+022CF 	 ⋏

 	 cwconint; 	 U+02232 	 ∲

 	 cwint; 	 U+02231 	 ∱

 	 cylcty; 	 U+0232D 	 ⌭

 	 Dagger; 	 U+02021 	 ‡

 	 dagger; 	 U+02020 	 †

 	 daleth; 	 U+02138 	 ℸ

 	 Darr; 	 U+021A1 	 ↡

 	 dArr; 	 U+021D3 	 ⇓

 	 darr; 	 U+02193 	 ↓

 	 dash; 	 U+02010 	 ‐

 	 Dashv; 	 U+02AE4 	 ⫤

 	 dashv; 	 U+022A3 	 ⊣

 	 dbkarow; 	 U+0290F 	 ⤏

 	 dblac; 	 U+002DD 	 ˝

 	 Dcaron; 	 U+0010E 	 Ď

 	 dcaron; 	 U+0010F 	 ď

 	 Dcy; 	 U+00414 	 Д

 	 dcy; 	 U+00434 	 д

 	 DD; 	 U+02145 	 ⅅ

 	 dd; 	 U+02146 	 ⅆ

 	 ddagger; 	 U+02021 	 ‡

 	 ddarr; 	 U+021CA 	 ⇊

 	 DDotrahd; 	 U+02911 	 ⤑

 	 ddotseq; 	 U+02A77 	 ⩷

 	 deg; 	 U+000B0 	 °

 	 deg 	 U+000B0 	 °

 	 Del; 	 U+02207 	 ∇

 	 Delta; 	 U+00394 	 Δ

 	 delta; 	 U+003B4 	 δ

 	 demptyv; 	 U+029B1 	 ⦱

 	 dfisht; 	 U+0297F 	 ⥿

 	 Dfr; 	 U+1D507 	 𝔇

 	 dfr; 	 U+1D521 	 𝔡

 	 dHar; 	 U+02965 	 ⥥

 	 dharl; 	 U+021C3 	 ⇃

 	 dharr; 	 U+021C2 	 ⇂

 	 DiacriticalAcute; 	 U+000B4 	 ´

 	 DiacriticalDot; 	 U+002D9 	 ˙

 	 DiacriticalDoubleAcute; 	 U+002DD 	 ˝

 	 DiacriticalGrave; 	 U+00060 	 `

 	 DiacriticalTilde; 	 U+002DC 	 ˜

 	 diam; 	 U+022C4 	 ⋄

 	 Diamond; 	 U+022C4 	 ⋄

 	 diamond; 	 U+022C4 	 ⋄

 	 diamondsuit; 	 U+02666 	 ♦

 	 diams; 	 U+02666 	 ♦

 	 die; 	 U+000A8 	 ¨

 	 DifferentialD; 	 U+02146 	 ⅆ

 	 digamma; 	 U+003DD 	 ϝ

 	 disin; 	 U+022F2 	 ⋲

 	 div; 	 U+000F7 	 ÷

 	 divide; 	 U+000F7 	 ÷

 	 divide 	 U+000F7 	 ÷

 	 divideontimes; 	 U+022C7 	 ⋇

 	 divonx; 	 U+022C7 	 ⋇

 	 DJcy; 	 U+00402 	 Ђ

 	 djcy; 	 U+00452 	 ђ

 	 dlcorn; 	 U+0231E 	 ⌞

 	 dlcrop; 	 U+0230D 	 ⌍

 	 dollar; 	 U+00024 	 $

 	 Dopf; 	 U+1D53B 	 𝔻

 	 dopf; 	 U+1D555 	 𝕕

 	 Dot; 	 U+000A8 	 ¨

 	 dot; 	 U+002D9 	 ˙

 	 DotDot; 	 U+020DC 	 ◌⃜

 	 doteq; 	 U+02250 	 ≐

 	 doteqdot; 	 U+02251 	 ≑

 	 DotEqual; 	 U+02250 	 ≐

 	 dotminus; 	 U+02238 	 ∸

 	 dotplus; 	 U+02214 	 ∔

 	 dotsquare; 	 U+022A1 	 ⊡

 	 doublebarwedge; 	 U+02306 	 ⌆

 	 DoubleContourIntegral; 	 U+0222F 	 ∯

 	 DoubleDot; 	 U+000A8 	 ¨

 	 DoubleDownArrow; 	 U+021D3 	 ⇓

 	 DoubleLeftArrow; 	 U+021D0 	 ⇐

 	 DoubleLeftRightArrow; 	 U+021D4 	 ⇔

 	 DoubleLeftTee; 	 U+02AE4 	 ⫤

 	 DoubleLongLeftArrow; 	 U+027F8 	 ⟸

 	 DoubleLongLeftRightArrow; 	 U+027FA 	 ⟺

 	 DoubleLongRightArrow; 	 U+027F9 	 ⟹

 	 DoubleRightArrow; 	 U+021D2 	 ⇒

 	 DoubleRightTee; 	 U+022A8 	 ⊨

 	 DoubleUpArrow; 	 U+021D1 	 ⇑

 	 DoubleUpDownArrow; 	 U+021D5 	 ⇕

 	 DoubleVerticalBar; 	 U+02225 	 ∥

 	 DownArrow; 	 U+02193 	 ↓

 	 Downarrow; 	 U+021D3 	 ⇓

 	 downarrow; 	 U+02193 	 ↓

 	 DownArrowBar; 	 U+02913 	 ⤓

 	 DownArrowUpArrow; 	 U+021F5 	 ⇵

 	 DownBreve; 	 U+00311 	 ◌̑

 	 downdownarrows; 	 U+021CA 	 ⇊

 	 downharpoonleft; 	 U+021C3 	 ⇃

 	 downharpoonright; 	 U+021C2 	 ⇂

 	 DownLeftRightVector; 	 U+02950 	 ⥐

 	 DownLeftTeeVector; 	 U+0295E 	 ⥞

 	 DownLeftVector; 	 U+021BD 	 ↽

 	 DownLeftVectorBar; 	 U+02956 	 ⥖

 	 DownRightTeeVector; 	 U+0295F 	 ⥟

 	 DownRightVector; 	 U+021C1 	 ⇁

 	 DownRightVectorBar; 	 U+02957 	 ⥗

 	 DownTee; 	 U+022A4 	 ⊤

 	 DownTeeArrow; 	 U+021A7 	 ↧

 	 drbkarow; 	 U+02910 	 ⤐

 	 drcorn; 	 U+0231F 	 ⌟

 	 drcrop; 	 U+0230C 	 ⌌

 	 Dscr; 	 U+1D49F 	 𝒟

 	 dscr; 	 U+1D4B9 	 𝒹

 	 DScy; 	 U+00405 	 Ѕ

 	 dscy; 	 U+00455 	 ѕ

 	 dsol; 	 U+029F6 	 ⧶

 	 Dstrok; 	 U+00110 	 Đ

 	 dstrok; 	 U+00111 	 đ

 	 dtdot; 	 U+022F1 	 ⋱

 	 dtri; 	 U+025BF 	 ▿

 	 dtrif; 	 U+025BE 	 ▾

 	 duarr; 	 U+021F5 	 ⇵

 	 duhar; 	 U+0296F 	 ⥯

 	 dwangle; 	 U+029A6 	 ⦦

 	 DZcy; 	 U+0040F 	 Џ

 	 dzcy; 	 U+0045F 	 џ

 	 dzigrarr; 	 U+027FF 	 ⟿

 	 Eacute; 	 U+000C9 	 É

 	 Eacute 	 U+000C9 	 É

 	 eacute; 	 U+000E9 	 é

 	 eacute 	 U+000E9 	 é

 	 easter; 	 U+02A6E 	 ⩮

 	 Ecaron; 	 U+0011A 	 Ě

 	 ecaron; 	 U+0011B 	 ě

 	 ecir; 	 U+02256 	 ≖

 	 Ecirc; 	 U+000CA 	 Ê

 	 Ecirc 	 U+000CA 	 Ê

 	 ecirc; 	 U+000EA 	 ê

 	 ecirc 	 U+000EA 	 ê

 	 ecolon; 	 U+02255 	 ≕

 	 Ecy; 	 U+0042D 	 Э

 	 ecy; 	 U+0044D 	 э

 	 eDDot; 	 U+02A77 	 ⩷

 	 Edot; 	 U+00116 	 Ė

 	 eDot; 	 U+02251 	 ≑

 	 edot; 	 U+00117 	 ė

 	 ee; 	 U+02147 	 ⅇ

 	 efDot; 	 U+02252 	 ≒

 	 Efr; 	 U+1D508 	 𝔈

 	 efr; 	 U+1D522 	 𝔢

 	 eg; 	 U+02A9A 	 ⪚

 	 Egrave; 	 U+000C8 	 È

 	 Egrave 	 U+000C8 	 È

 	 egrave; 	 U+000E8 	 è

 	 egrave 	 U+000E8 	 è

 	 egs; 	 U+02A96 	 ⪖

 	 egsdot; 	 U+02A98 	 ⪘

 	 el; 	 U+02A99 	 ⪙

 	 Element; 	 U+02208 	 ∈

 	 elinters; 	 U+023E7 	 ⏧

 	 ell; 	 U+02113 	 ℓ

 	 els; 	 U+02A95 	 ⪕

 	 elsdot; 	 U+02A97 	 ⪗

 	 Emacr; 	 U+00112 	 Ē

 	 emacr; 	 U+00113 	 ē

 	 empty; 	 U+02205 	 ∅

 	 emptyset; 	 U+02205 	 ∅

 	 EmptySmallSquare; 	 U+025FB 	 ◻

 	 emptyv; 	 U+02205 	 ∅

 	 EmptyVerySmallSquare; 	 U+025AB 	 ▫

 	 emsp; 	 U+02003 	  

 	 emsp13; 	 U+02004 	  

 	 emsp14; 	 U+02005 	  

 	 ENG; 	 U+0014A 	 Ŋ

 	 eng; 	 U+0014B 	 ŋ

 	 ensp; 	 U+02002 	  

 	 Eogon; 	 U+00118 	 Ę

 	 eogon; 	 U+00119 	 ę

 	 Eopf; 	 U+1D53C 	 𝔼

 	 eopf; 	 U+1D556 	 𝕖

 	 epar; 	 U+022D5 	 ⋕

 	 eparsl; 	 U+029E3 	 ⧣

 	 eplus; 	 U+02A71 	 ⩱

 	 epsi; 	 U+003B5 	 ε

 	 Epsilon; 	 U+00395 	 Ε

 	 epsilon; 	 U+003B5 	 ε

 	 epsiv; 	 U+003F5 	 ϵ

 	 eqcirc; 	 U+02256 	 ≖

 	 eqcolon; 	 U+02255 	 ≕

 	 eqsim; 	 U+02242 	 ≂

 	 eqslantgtr; 	 U+02A96 	 ⪖

 	 eqslantless; 	 U+02A95 	 ⪕

 	 Equal; 	 U+02A75 	 ⩵

 	 equals; 	 U+0003D 	 =

 	 EqualTilde; 	 U+02242 	 ≂

 	 equest; 	 U+0225F 	 ≟

 	 Equilibrium; 	 U+021CC 	 ⇌

 	 equiv; 	 U+02261 	 ≡

 	 equivDD; 	 U+02A78 	 ⩸

 	 eqvparsl; 	 U+029E5 	 ⧥

 	 erarr; 	 U+02971 	 ⥱

 	 erDot; 	 U+02253 	 ≓

 	 Escr; 	 U+02130 	 ℰ

 	 escr; 	 U+0212F 	 ℯ

 	 esdot; 	 U+02250 	 ≐

 	 Esim; 	 U+02A73 	 ⩳

 	 esim; 	 U+02242 	 ≂

 	 Eta; 	 U+00397 	 Η

 	 eta; 	 U+003B7 	 η

 	 ETH; 	 U+000D0 	 Ð

 	 ETH 	 U+000D0 	 Ð

 	 eth; 	 U+000F0 	 ð

 	 eth 	 U+000F0 	 ð

 	 Euml; 	 U+000CB 	 Ë

 	 Euml 	 U+000CB 	 Ë

 	 euml; 	 U+000EB 	 ë

 	 euml 	 U+000EB 	 ë

 	 euro; 	 U+020AC 	 €

 	 excl; 	 U+00021 	 !

 	 exist; 	 U+02203 	 ∃

 	 Exists; 	 U+02203 	 ∃

 	 expectation; 	 U+02130 	 ℰ

 	 ExponentialE; 	 U+02147 	 ⅇ

 	 exponentiale; 	 U+02147 	 ⅇ

 	 fallingdotseq; 	 U+02252 	 ≒

 	 Fcy; 	 U+00424 	 Ф

 	 fcy; 	 U+00444 	 ф

 	 female; 	 U+02640 	 ♀

 	 ffilig; 	 U+0FB03 	 ffi

 	 fflig; 	 U+0FB00 	 ff

 	 ffllig; 	 U+0FB04 	 ffl

 	 Ffr; 	 U+1D509 	 𝔉

 	 ffr; 	 U+1D523 	 𝔣

 	 filig; 	 U+0FB01 	 fi

 	 FilledSmallSquare; 	 U+025FC 	 ◼

 	 FilledVerySmallSquare; 	 U+025AA 	 ▪

 	 fjlig; 	 U+00066 U+0006A 	 fj

 	 flat; 	 U+0266D 	 ♭

 	 fllig; 	 U+0FB02 	 fl

 	 fltns; 	 U+025B1 	 ▱

 	 fnof; 	 U+00192 	 ƒ

 	 Fopf; 	 U+1D53D 	 𝔽

 	 fopf; 	 U+1D557 	 𝕗

 	 ForAll; 	 U+02200 	 ∀

 	 forall; 	 U+02200 	 ∀

 	 fork; 	 U+022D4 	 ⋔

 	 forkv; 	 U+02AD9 	 ⫙

 	 Fouriertrf; 	 U+02131 	 ℱ

 	 fpartint; 	 U+02A0D 	 ⨍

 	 frac12; 	 U+000BD 	 ½

 	 frac12 	 U+000BD 	 ½

 	 frac13; 	 U+02153 	 ⅓

 	 frac14; 	 U+000BC 	 ¼

 	 frac14 	 U+000BC 	 ¼

 	 frac15; 	 U+02155 	 ⅕

 	 frac16; 	 U+02159 	 ⅙

 	 frac18; 	 U+0215B 	 ⅛

 	 frac23; 	 U+02154 	 ⅔

 	 frac25; 	 U+02156 	 ⅖

 	 frac34; 	 U+000BE 	 ¾

 	 frac34 	 U+000BE 	 ¾

 	 frac35; 	 U+02157 	 ⅗

 	 frac38; 	 U+0215C 	 ⅜

 	 frac45; 	 U+02158 	 ⅘

 	 frac56; 	 U+0215A 	 ⅚

 	 frac58; 	 U+0215D 	 ⅝

 	 frac78; 	 U+0215E 	 ⅞

 	 frasl; 	 U+02044 	 ⁄

 	 frown; 	 U+02322 	 ⌢

 	 Fscr; 	 U+02131 	 ℱ

 	 fscr; 	 U+1D4BB 	 𝒻

 	 gacute; 	 U+001F5 	 ǵ

 	 Gamma; 	 U+00393 	 Γ

 	 gamma; 	 U+003B3 	 γ

 	 Gammad; 	 U+003DC 	 Ϝ

 	 gammad; 	 U+003DD 	 ϝ

 	 gap; 	 U+02A86 	 ⪆

 	 Gbreve; 	 U+0011E 	 Ğ

 	 gbreve; 	 U+0011F 	 ğ

 	 Gcedil; 	 U+00122 	 Ģ

 	 Gcirc; 	 U+0011C 	 Ĝ

 	 gcirc; 	 U+0011D 	 ĝ

 	 Gcy; 	 U+00413 	 Г

 	 gcy; 	 U+00433 	 г

 	 Gdot; 	 U+00120 	 Ġ

 	 gdot; 	 U+00121 	 ġ

 	 gE; 	 U+02267 	 ≧

 	 ge; 	 U+02265 	 ≥

 	 gEl; 	 U+02A8C 	 ⪌

 	 gel; 	 U+022DB 	 ⋛

 	 geq; 	 U+02265 	 ≥

 	 geqq; 	 U+02267 	 ≧

 	 geqslant; 	 U+02A7E 	 ⩾

 	 ges; 	 U+02A7E 	 ⩾

 	 gescc; 	 U+02AA9 	 ⪩

 	 gesdot; 	 U+02A80 	 ⪀

 	 gesdoto; 	 U+02A82 	 ⪂

 	 gesdotol; 	 U+02A84 	 ⪄

 	 gesl; 	 U+022DB U+0FE00 	 ⋛︀

 	 gesles; 	 U+02A94 	 ⪔

 	 Gfr; 	 U+1D50A 	 𝔊

 	 gfr; 	 U+1D524 	 𝔤

 	 Gg; 	 U+022D9 	 ⋙

 	 gg; 	 U+0226B 	 ≫

 	 ggg; 	 U+022D9 	 ⋙

 	 gimel; 	 U+02137 	 ℷ

 	 GJcy; 	 U+00403 	 Ѓ

 	 gjcy; 	 U+00453 	 ѓ

 	 gl; 	 U+02277 	 ≷

 	 gla; 	 U+02AA5 	 ⪥

 	 glE; 	 U+02A92 	 ⪒

 	 glj; 	 U+02AA4 	 ⪤

 	 gnap; 	 U+02A8A 	 ⪊

 	 gnapprox; 	 U+02A8A 	 ⪊

 	 gnE; 	 U+02269 	 ≩

 	 gne; 	 U+02A88 	 ⪈

 	 gneq; 	 U+02A88 	 ⪈

 	 gneqq; 	 U+02269 	 ≩

 	 gnsim; 	 U+022E7 	 ⋧

 	 Gopf; 	 U+1D53E 	 𝔾

 	 gopf; 	 U+1D558 	 𝕘

 	 grave; 	 U+00060 	 `

 	 GreaterEqual; 	 U+02265 	 ≥

 	 GreaterEqualLess; 	 U+022DB 	 ⋛

 	 GreaterFullEqual; 	 U+02267 	 ≧

 	 GreaterGreater; 	 U+02AA2 	 ⪢

 	 GreaterLess; 	 U+02277 	 ≷

 	 GreaterSlantEqual; 	 U+02A7E 	 ⩾

 	 GreaterTilde; 	 U+02273 	 ≳

 	 Gscr; 	 U+1D4A2 	 𝒢

 	 gscr; 	 U+0210A 	 ℊ

 	 gsim; 	 U+02273 	 ≳

 	 gsime; 	 U+02A8E 	 ⪎

 	 gsiml; 	 U+02A90 	 ⪐

 	 GT; 	 U+0003E 	 >

 	 GT 	 U+0003E 	 >

 	 Gt; 	 U+0226B 	 ≫

 	 gt; 	 U+0003E 	 >

 	 gt 	 U+0003E 	 >

 	 gtcc; 	 U+02AA7 	 ⪧

 	 gtcir; 	 U+02A7A 	 ⩺

 	 gtdot; 	 U+022D7 	 ⋗

 	 gtlPar; 	 U+02995 	 ⦕

 	 gtquest; 	 U+02A7C 	 ⩼

 	 gtrapprox; 	 U+02A86 	 ⪆

 	 gtrarr; 	 U+02978 	 ⥸

 	 gtrdot; 	 U+022D7 	 ⋗

 	 gtreqless; 	 U+022DB 	 ⋛

 	 gtreqqless; 	 U+02A8C 	 ⪌

 	 gtrless; 	 U+02277 	 ≷

 	 gtrsim; 	 U+02273 	 ≳

 	 gvertneqq; 	 U+02269 U+0FE00 	 ≩︀

 	 gvnE; 	 U+02269 U+0FE00 	 ≩︀

 	 Hacek; 	 U+002C7 	 ˇ

 	 hairsp; 	 U+0200A 	  

 	 half; 	 U+000BD 	 ½

 	 hamilt; 	 U+0210B 	 ℋ

 	 HARDcy; 	 U+0042A 	 Ъ

 	 hardcy; 	 U+0044A 	 ъ

 	 hArr; 	 U+021D4 	 ⇔

 	 harr; 	 U+02194 	 ↔

 	 harrcir; 	 U+02948 	 ⥈

 	 harrw; 	 U+021AD 	 ↭

 	 Hat; 	 U+0005E 	 ^

 	 hbar; 	 U+0210F 	 ℏ

 	 Hcirc; 	 U+00124 	 Ĥ

 	 hcirc; 	 U+00125 	 ĥ

 	 hearts; 	 U+02665 	 ♥

 	 heartsuit; 	 U+02665 	 ♥

 	 hellip; 	 U+02026 	 …

 	 hercon; 	 U+022B9 	 ⊹

 	 Hfr; 	 U+0210C 	 ℌ

 	 hfr; 	 U+1D525 	 𝔥

 	 HilbertSpace; 	 U+0210B 	 ℋ

 	 hksearow; 	 U+02925 	 ⤥

 	 hkswarow; 	 U+02926 	 ⤦

 	 hoarr; 	 U+021FF 	 ⇿

 	 homtht; 	 U+0223B 	 ∻

 	 hookleftarrow; 	 U+021A9 	 ↩

 	 hookrightarrow; 	 U+021AA 	 ↪

 	 Hopf; 	 U+0210D 	 ℍ

 	 hopf; 	 U+1D559 	 𝕙

 	 horbar; 	 U+02015 	 ―

 	 HorizontalLine; 	 U+02500 	 ─

 	 Hscr; 	 U+0210B 	 ℋ

 	 hscr; 	 U+1D4BD 	 𝒽

 	 hslash; 	 U+0210F 	 ℏ

 	 Hstrok; 	 U+00126 	 Ħ

 	 hstrok; 	 U+00127 	 ħ

 	 HumpDownHump; 	 U+0224E 	 ≎

 	 HumpEqual; 	 U+0224F 	 ≏

 	 hybull; 	 U+02043 	 ⁃

 	 hyphen; 	 U+02010 	 ‐

 	 Iacute; 	 U+000CD 	 Í

 	 Iacute 	 U+000CD 	 Í

 	 iacute; 	 U+000ED 	 í

 	 iacute 	 U+000ED 	 í

 	 ic; 	 U+02063 	 ⁣

 	 Icirc; 	 U+000CE 	 Î

 	 Icirc 	 U+000CE 	 Î

 	 icirc; 	 U+000EE 	 î

 	 icirc 	 U+000EE 	 î

 	 Icy; 	 U+00418 	 И

 	 icy; 	 U+00438 	 и

 	 Idot; 	 U+00130 	 İ

 	 IEcy; 	 U+00415 	 Е

 	 iecy; 	 U+00435 	 е

 	 iexcl; 	 U+000A1 	 ¡

 	 iexcl 	 U+000A1 	 ¡

 	 iff; 	 U+021D4 	 ⇔

 	 Ifr; 	 U+02111 	 ℑ

 	 ifr; 	 U+1D526 	 𝔦

 	 Igrave; 	 U+000CC 	 Ì

 	 Igrave 	 U+000CC 	 Ì

 	 igrave; 	 U+000EC 	 ì

 	 igrave 	 U+000EC 	 ì

 	 ii; 	 U+02148 	 ⅈ

 	 iiiint; 	 U+02A0C 	 ⨌

 	 iiint; 	 U+0222D 	 ∭

 	 iinfin; 	 U+029DC 	 ⧜

 	 iiota; 	 U+02129 	 ℩

 	 IJlig; 	 U+00132 	 Ĳ

 	 ijlig; 	 U+00133 	 ĳ

 	 Im; 	 U+02111 	 ℑ

 	 Imacr; 	 U+0012A 	 Ī

 	 imacr; 	 U+0012B 	 ī

 	 image; 	 U+02111 	 ℑ

 	 ImaginaryI; 	 U+02148 	 ⅈ

 	 imagline; 	 U+02110 	 ℐ

 	 imagpart; 	 U+02111 	 ℑ

 	 imath; 	 U+00131 	 ı

 	 imof; 	 U+022B7 	 ⊷

 	 imped; 	 U+001B5 	 Ƶ

 	 Implies; 	 U+021D2 	 ⇒

 	 in; 	 U+02208 	 ∈

 	 incare; 	 U+02105 	 ℅

 	 infin; 	 U+0221E 	 ∞

 	 infintie; 	 U+029DD 	 ⧝

 	 inodot; 	 U+00131 	 ı

 	 Int; 	 U+0222C 	 ∬

 	 int; 	 U+0222B 	 ∫

 	 intcal; 	 U+022BA 	 ⊺

 	 integers; 	 U+02124 	 ℤ

 	 Integral; 	 U+0222B 	 ∫

 	 intercal; 	 U+022BA 	 ⊺

 	 Intersection; 	 U+022C2 	 ⋂

 	 intlarhk; 	 U+02A17 	 ⨗

 	 intprod; 	 U+02A3C 	 ⨼

 	 InvisibleComma; 	 U+02063 	 ⁣

 	 InvisibleTimes; 	 U+02062 	 ⁢

 	 IOcy; 	 U+00401 	 Ё

 	 iocy; 	 U+00451 	 ё

 	 Iogon; 	 U+0012E 	 Į

 	 iogon; 	 U+0012F 	 į

 	 Iopf; 	 U+1D540 	 𝕀

 	 iopf; 	 U+1D55A 	 𝕚

 	 Iota; 	 U+00399 	 Ι

 	 iota; 	 U+003B9 	 ι

 	 iprod; 	 U+02A3C 	 ⨼

 	 iquest; 	 U+000BF 	 ¿

 	 iquest 	 U+000BF 	 ¿

 	 Iscr; 	 U+02110 	 ℐ

 	 iscr; 	 U+1D4BE 	 𝒾

 	 isin; 	 U+02208 	 ∈

 	 isindot; 	 U+022F5 	 ⋵

 	 isinE; 	 U+022F9 	 ⋹

 	 isins; 	 U+022F4 	 ⋴

 	 isinsv; 	 U+022F3 	 ⋳

 	 isinv; 	 U+02208 	 ∈

 	 it; 	 U+02062 	 ⁢

 	 Itilde; 	 U+00128 	 Ĩ

 	 itilde; 	 U+00129 	 ĩ

 	 Iukcy; 	 U+00406 	 І

 	 iukcy; 	 U+00456 	 і

 	 Iuml; 	 U+000CF 	 Ï

 	 Iuml 	 U+000CF 	 Ï

 	 iuml; 	 U+000EF 	 ï

 	 iuml 	 U+000EF 	 ï

 	 Jcirc; 	 U+00134 	 Ĵ

 	 jcirc; 	 U+00135 	 ĵ

 	 Jcy; 	 U+00419 	 Й

 	 jcy; 	 U+00439 	 й

 	 Jfr; 	 U+1D50D 	 𝔍

 	 jfr; 	 U+1D527 	 𝔧

 	 jmath; 	 U+00237 	 ȷ

 	 Jopf; 	 U+1D541 	 𝕁

 	 jopf; 	 U+1D55B 	 𝕛

 	 Jscr; 	 U+1D4A5 	 𝒥

 	 jscr; 	 U+1D4BF 	 𝒿

 	 Jsercy; 	 U+00408 	 Ј

 	 jsercy; 	 U+00458 	 ј

 	 Jukcy; 	 U+00404 	 Є

 	 jukcy; 	 U+00454 	 є

 	 Kappa; 	 U+0039A 	 Κ

 	 kappa; 	 U+003BA 	 κ

 	 kappav; 	 U+003F0 	 ϰ

 	 Kcedil; 	 U+00136 	 Ķ

 	 kcedil; 	 U+00137 	 ķ

 	 Kcy; 	 U+0041A 	 К

 	 kcy; 	 U+0043A 	 к

 	 Kfr; 	 U+1D50E 	 𝔎

 	 kfr; 	 U+1D528 	 𝔨

 	 kgreen; 	 U+00138 	 ĸ

 	 KHcy; 	 U+00425 	 Х

 	 khcy; 	 U+00445 	 х

 	 KJcy; 	 U+0040C 	 Ќ

 	 kjcy; 	 U+0045C 	 ќ

 	 Kopf; 	 U+1D542 	 𝕂

 	 kopf; 	 U+1D55C 	 𝕜

 	 Kscr; 	 U+1D4A6 	 𝒦

 	 kscr; 	 U+1D4C0 	 𝓀

 	 lAarr; 	 U+021DA 	 ⇚

 	 Lacute; 	 U+00139 	 Ĺ

 	 lacute; 	 U+0013A 	 ĺ

 	 laemptyv; 	 U+029B4 	 ⦴

 	 lagran; 	 U+02112 	 ℒ

 	 Lambda; 	 U+0039B 	 Λ

 	 lambda; 	 U+003BB 	 λ

 	 Lang; 	 U+027EA 	 ⟪

 	 lang; 	 U+027E8 	 ⟨

 	 langd; 	 U+02991 	 ⦑

 	 langle; 	 U+027E8 	 〈

 	 lap; 	 U+02A85 	 ⪅

 	 Laplacetrf; 	 U+02112 	 ℒ

 	 laquo; 	 U+000AB 	 «

 	 laquo 	 U+000AB 	 «

 	 Larr; 	 U+0219E 	 ↞

 	 lArr; 	 U+021D0 	 ⇐

 	 larr; 	 U+02190 	 ←

 	 larrb; 	 U+021E4 	 ⇤

 	 larrbfs; 	 U+0291F 	 ⤟

 	 larrfs; 	 U+0291D 	 ⤝

 	 larrhk; 	 U+021A9 	 ↩

 	 larrlp; 	 U+021AB 	 ↫

 	 larrpl; 	 U+02939 	 ⤹

 	 larrsim; 	 U+02973 	 ⥳

 	 larrtl; 	 U+021A2 	 ↢

 	 lat; 	 U+02AAB 	 ⪫

 	 lAtail; 	 U+0291B 	 ⤛

 	 latail; 	 U+02919 	 ⤙

 	 late; 	 U+02AAD 	 ⪭

 	 lates; 	 U+02AAD U+0FE00 	 ⪭︀

 	 lBarr; 	 U+0290E 	 ⤎

 	 lbarr; 	 U+0290C 	 ⤌

 	 lbbrk; 	 U+02772 	 ❲

 	 lbrace; 	 U+0007B 	 {

 	 lbrack; 	 U+0005B 	 [

 	 lbrke; 	 U+0298B 	 ⦋

 	 lbrksld; 	 U+0298F 	 ⦏

 	 lbrkslu; 	 U+0298D 	 ⦍

 	 Lcaron; 	 U+0013D 	 Ľ

 	 lcaron; 	 U+0013E 	 ľ

 	 Lcedil; 	 U+0013B 	 Ļ

 	 lcedil; 	 U+0013C 	 ļ

 	 lceil; 	 U+02308 	 ⌈

 	 lcub; 	 U+0007B 	 {

 	 Lcy; 	 U+0041B 	 Л

 	 lcy; 	 U+0043B 	 л

 	 ldca; 	 U+02936 	 ⤶

 	 ldquo; 	 U+0201C 	 “

 	 ldquor; 	 U+0201E 	 „

 	 ldrdhar; 	 U+02967 	 ⥧

 	 ldrushar; 	 U+0294B 	 ⥋

 	 ldsh; 	 U+021B2 	 ↲

 	 lE; 	 U+02266 	 ≦

 	 le; 	 U+02264 	 ≤

 	 LeftAngleBracket; 	 U+027E8 	 〈

 	 LeftArrow; 	 U+02190 	 ←

 	 Leftarrow; 	 U+021D0 	 ⇐

 	 leftarrow; 	 U+02190 	 ←

 	 LeftArrowBar; 	 U+021E4 	 ⇤

 	 LeftArrowRightArrow; 	 U+021C6 	 ⇆

 	 leftarrowtail; 	 U+021A2 	 ↢

 	 LeftCeiling; 	 U+02308 	 ⌈

 	 LeftDoubleBracket; 	 U+027E6 	 ⟦

 	 LeftDownTeeVector; 	 U+02961 	 ⥡

 	 LeftDownVector; 	 U+021C3 	 ⇃

 	 LeftDownVectorBar; 	 U+02959 	 ⥙

 	 LeftFloor; 	 U+0230A 	 ⌊

 	 leftharpoondown; 	 U+021BD 	 ↽

 	 leftharpoonup; 	 U+021BC 	 ↼

 	 leftleftarrows; 	 U+021C7 	 ⇇

 	 LeftRightArrow; 	 U+02194 	 ↔

 	 Leftrightarrow; 	 U+021D4 	 ⇔

 	 leftrightarrow; 	 U+02194 	 ↔

 	 leftrightarrows; 	 U+021C6 	 ⇆

 	 leftrightharpoons; 	 U+021CB 	 ⇋

 	 leftrightsquigarrow; 	 U+021AD 	 ↭

 	 LeftRightVector; 	 U+0294E 	 ⥎

 	 LeftTee; 	 U+022A3 	 ⊣

 	 LeftTeeArrow; 	 U+021A4 	 ↤

 	 LeftTeeVector; 	 U+0295A 	 ⥚

 	 leftthreetimes; 	 U+022CB 	 ⋋

 	 LeftTriangle; 	 U+022B2 	 ⊲

 	 LeftTriangleBar; 	 U+029CF 	 ⧏

 	 LeftTriangleEqual; 	 U+022B4 	 ⊴

 	 LeftUpDownVector; 	 U+02951 	 ⥑

 	 LeftUpTeeVector; 	 U+02960 	 ⥠

 	 LeftUpVector; 	 U+021BF 	 ↿

 	 LeftUpVectorBar; 	 U+02958 	 ⥘

 	 LeftVector; 	 U+021BC 	 ↼

 	 LeftVectorBar; 	 U+02952 	 ⥒

 	 lEg; 	 U+02A8B 	 ⪋

 	 leg; 	 U+022DA 	 ⋚

 	 leq; 	 U+02264 	 ≤

 	 leqq; 	 U+02266 	 ≦

 	 leqslant; 	 U+02A7D 	 ⩽

 	 les; 	 U+02A7D 	 ⩽

 	 lescc; 	 U+02AA8 	 ⪨

 	 lesdot; 	 U+02A7F 	 ⩿

 	 lesdoto; 	 U+02A81 	 ⪁

 	 lesdotor; 	 U+02A83 	 ⪃

 	 lesg; 	 U+022DA U+0FE00 	 ⋚︀

 	 lesges; 	 U+02A93 	 ⪓

 	 lessapprox; 	 U+02A85 	 ⪅

 	 lessdot; 	 U+022D6 	 ⋖

 	 lesseqgtr; 	 U+022DA 	 ⋚

 	 lesseqqgtr; 	 U+02A8B 	 ⪋

 	 LessEqualGreater; 	 U+022DA 	 ⋚

 	 LessFullEqual; 	 U+02266 	 ≦

 	 LessGreater; 	 U+02276 	 ≶

 	 lessgtr; 	 U+02276 	 ≶

 	 LessLess; 	 U+02AA1 	 ⪡

 	 lesssim; 	 U+02272 	 ≲

 	 LessSlantEqual; 	 U+02A7D 	 ⩽

 	 LessTilde; 	 U+02272 	 ≲

 	 lfisht; 	 U+0297C 	 ⥼

 	 lfloor; 	 U+0230A 	 ⌊

 	 Lfr; 	 U+1D50F 	 𝔏

 	 lfr; 	 U+1D529 	 𝔩

 	 lg; 	 U+02276 	 ≶

 	 lgE; 	 U+02A91 	 ⪑

 	 lHar; 	 U+02962 	 ⥢

 	 lhard; 	 U+021BD 	 ↽

 	 lharu; 	 U+021BC 	 ↼

 	 lharul; 	 U+0296A 	 ⥪

 	 lhblk; 	 U+02584 	 ▄

 	 LJcy; 	 U+00409 	 Љ

 	 ljcy; 	 U+00459 	 љ

 	 Ll; 	 U+022D8 	 ⋘

 	 ll; 	 U+0226A 	 ≪

 	 llarr; 	 U+021C7 	 ⇇

 	 llcorner; 	 U+0231E 	 ⌞

 	 Lleftarrow; 	 U+021DA 	 ⇚

 	 llhard; 	 U+0296B 	 ⥫

 	 lltri; 	 U+025FA 	 ◺

 	 Lmidot; 	 U+0013F 	 Ŀ

 	 lmidot; 	 U+00140 	 ŀ

 	 lmoust; 	 U+023B0 	 ⎰

 	 lmoustache; 	 U+023B0 	 ⎰

 	 lnap; 	 U+02A89 	 ⪉

 	 lnapprox; 	 U+02A89 	 ⪉

 	 lnE; 	 U+02268 	 ≨

 	 lne; 	 U+02A87 	 ⪇

 	 lneq; 	 U+02A87 	 ⪇

 	 lneqq; 	 U+02268 	 ≨

 	 lnsim; 	 U+022E6 	 ⋦

 	 loang; 	 U+027EC 	 ⟬

 	 loarr; 	 U+021FD 	 ⇽

 	 lobrk; 	 U+027E6 	 ⟦

 	 LongLeftArrow; 	 U+027F5 	 ⟵

 	 Longleftarrow; 	 U+027F8 	 ⟸

 	 longleftarrow; 	 U+027F5 	 ⟵

 	 LongLeftRightArrow; 	 U+027F7 	 ⟷

 	 Longleftrightarrow; 	 U+027FA 	 ⟺

 	 longleftrightarrow; 	 U+027F7 	 ⟷

 	 longmapsto; 	 U+027FC 	 ⟼

 	 LongRightArrow; 	 U+027F6 	 ⟶

 	 Longrightarrow; 	 U+027F9 	 ⟹

 	 longrightarrow; 	 U+027F6 	 ⟶

 	 looparrowleft; 	 U+021AB 	 ↫

 	 looparrowright; 	 U+021AC 	 ↬

 	 lopar; 	 U+02985 	 ⦅

 	 Lopf; 	 U+1D543 	 𝕃

 	 lopf; 	 U+1D55D 	 𝕝

 	 loplus; 	 U+02A2D 	 ⨭

 	 lotimes; 	 U+02A34 	 ⨴

 	 lowast; 	 U+02217 	 ∗

 	 lowbar; 	 U+0005F 	 _

 	 LowerLeftArrow; 	 U+02199 	 ↙

 	 LowerRightArrow; 	 U+02198 	 ↘

 	 loz; 	 U+025CA 	 ◊

 	 lozenge; 	 U+025CA 	 ◊

 	 lozf; 	 U+029EB 	 ⧫

 	 lpar; 	 U+00028 	 (

 	 lparlt; 	 U+02993 	 ⦓

 	 lrarr; 	 U+021C6 	 ⇆

 	 lrcorner; 	 U+0231F 	 ⌟

 	 lrhar; 	 U+021CB 	 ⇋

 	 lrhard; 	 U+0296D 	 ⥭

 	 lrm; 	 U+0200E 	 ‎

 	 lrtri; 	 U+022BF 	 ⊿

 	 lsaquo; 	 U+02039 	 ‹

 	 Lscr; 	 U+02112 	 ℒ

 	 lscr; 	 U+1D4C1 	 𝓁

 	 Lsh; 	 U+021B0 	 ↰

 	 lsh; 	 U+021B0 	 ↰

 	 lsim; 	 U+02272 	 ≲

 	 lsime; 	 U+02A8D 	 ⪍

 	 lsimg; 	 U+02A8F 	 ⪏

 	 lsqb; 	 U+0005B 	 [

 	 lsquo; 	 U+02018 	 ‘

 	 lsquor; 	 U+0201A 	 ‚

 	 Lstrok; 	 U+00141 	 Ł

 	 lstrok; 	 U+00142 	 ł

 	 LT; 	 U+0003C 	 <

 	 LT 	 U+0003C 	 <

 	 Lt; 	 U+0226A 	 ≪

 	 lt; 	 U+0003C 	 <

 	 lt 	 U+0003C 	 <

 	 ltcc; 	 U+02AA6 	 ⪦

 	 ltcir; 	 U+02A79 	 ⩹

 	 ltdot; 	 U+022D6 	 ⋖

 	 lthree; 	 U+022CB 	 ⋋

 	 ltimes; 	 U+022C9 	 ⋉

 	 ltlarr; 	 U+02976 	 ⥶

 	 ltquest; 	 U+02A7B 	 ⩻

 	 ltri; 	 U+025C3 	 ◃

 	 ltrie; 	 U+022B4 	 ⊴

 	 ltrif; 	 U+025C2 	 ◂

 	 ltrPar; 	 U+02996 	 ⦖

 	 lurdshar; 	 U+0294A 	 ⥊

 	 luruhar; 	 U+02966 	 ⥦

 	 lvertneqq; 	 U+02268 U+0FE00 	 ≨︀

 	 lvnE; 	 U+02268 U+0FE00 	 ≨︀

 	 macr; 	 U+000AF 	 ¯

 	 macr 	 U+000AF 	 ¯

 	 male; 	 U+02642 	 ♂

 	 malt; 	 U+02720 	 ✠

 	 maltese; 	 U+02720 	 ✠

 	 Map; 	 U+02905 	 ⤅

 	 map; 	 U+021A6 	 ↦

 	 mapsto; 	 U+021A6 	 ↦

 	 mapstodown; 	 U+021A7 	 ↧

 	 mapstoleft; 	 U+021A4 	 ↤

 	 mapstoup; 	 U+021A5 	 ↥

 	 marker; 	 U+025AE 	 ▮

 	 mcomma; 	 U+02A29 	 ⨩

 	 Mcy; 	 U+0041C 	 М

 	 mcy; 	 U+0043C 	 м

 	 mdash; 	 U+02014 	 —

 	 mDDot; 	 U+0223A 	 ∺

 	 measuredangle; 	 U+02221 	 ∡

 	 MediumSpace; 	 U+0205F 	  

 	 Mellintrf; 	 U+02133 	 ℳ

 	 Mfr; 	 U+1D510 	 𝔐

 	 mfr; 	 U+1D52A 	 𝔪

 	 mho; 	 U+02127 	 ℧

 	 micro; 	 U+000B5 	 µ

 	 micro 	 U+000B5 	 µ

 	 mid; 	 U+02223 	 ∣

 	 midast; 	 U+0002A 	 *

 	 midcir; 	 U+02AF0 	 ⫰

 	 middot; 	 U+000B7 	 ·

 	 middot 	 U+000B7 	 ·

 	 minus; 	 U+02212 	 −

 	 minusb; 	 U+0229F 	 ⊟

 	 minusd; 	 U+02238 	 ∸

 	 minusdu; 	 U+02A2A 	 ⨪

 	 MinusPlus; 	 U+02213 	 ∓

 	 mlcp; 	 U+02ADB 	 ⫛

 	 mldr; 	 U+02026 	 …

 	 mnplus; 	 U+02213 	 ∓

 	 models; 	 U+022A7 	 ⊧

 	 Mopf; 	 U+1D544 	 𝕄

 	 mopf; 	 U+1D55E 	 𝕞

 	 mp; 	 U+02213 	 ∓

 	 Mscr; 	 U+02133 	 ℳ

 	 mscr; 	 U+1D4C2 	 𝓂

 	 mstpos; 	 U+0223E 	 ∾

 	 Mu; 	 U+0039C 	 Μ

 	 mu; 	 U+003BC 	 μ

 	 multimap; 	 U+022B8 	 ⊸

 	 mumap; 	 U+022B8 	 ⊸

 	 nabla; 	 U+02207 	 ∇

 	 Nacute; 	 U+00143 	 Ń

 	 nacute; 	 U+00144 	 ń

 	 nang; 	 U+02220 U+020D2 	 ∠⃒

 	 nap; 	 U+02249 	 ≉

 	 napE; 	 U+02A70 U+00338 	 ⩰̸

 	 napid; 	 U+0224B U+00338 	 ≋̸

 	 napos; 	 U+00149 	 ŉ

 	 napprox; 	 U+02249 	 ≉

 	 natur; 	 U+0266E 	 ♮

 	 natural; 	 U+0266E 	 ♮

 	 naturals; 	 U+02115 	 ℕ

 	 nbsp; 	 U+000A0 	

 	 nbsp 	 U+000A0 	

 	 nbump; 	 U+0224E U+00338 	 ≎̸

 	 nbumpe; 	 U+0224F U+00338 	 ≏̸

 	 ncap; 	 U+02A43 	 ⩃

 	 Ncaron; 	 U+00147 	 Ň

 	 ncaron; 	 U+00148 	 ň

 	 Ncedil; 	 U+00145 	 Ņ

 	 ncedil; 	 U+00146 	 ņ

 	 ncong; 	 U+02247 	 ≇

 	 ncongdot; 	 U+02A6D U+00338 	 ⩭̸

 	 ncup; 	 U+02A42 	 ⩂

 	 Ncy; 	 U+0041D 	 Н

 	 ncy; 	 U+0043D 	 н

 	 ndash; 	 U+02013 	 –

 	 ne; 	 U+02260 	 ≠

 	 nearhk; 	 U+02924 	 ⤤

 	 neArr; 	 U+021D7 	 ⇗

 	 nearr; 	 U+02197 	 ↗

 	 nearrow; 	 U+02197 	 ↗

 	 nedot; 	 U+02250 U+00338 	 ≐̸

 	 NegativeMediumSpace; 	 U+0200B 	

 	 NegativeThickSpace; 	 U+0200B 	

 	 NegativeThinSpace; 	 U+0200B 	

 	 NegativeVeryThinSpace; 	 U+0200B 	

 	 nequiv; 	 U+02262 	 ≢

 	 nesear; 	 U+02928 	 ⤨

 	 nesim; 	 U+02242 U+00338 	 ≂̸

 	 NestedGreaterGreater; 	 U+0226B 	 ≫

 	 NestedLessLess; 	 U+0226A 	 ≪

 	 NewLine; 	 U+0000A 	 ␊

 	 nexist; 	 U+02204 	 ∄

 	 nexists; 	 U+02204 	 ∄

 	 Nfr; 	 U+1D511 	 𝔑

 	 nfr; 	 U+1D52B 	 𝔫

 	 ngE; 	 U+02267 U+00338 	 ≧̸

 	 nge; 	 U+02271 	 ≱

 	 ngeq; 	 U+02271 	 ≱

 	 ngeqq; 	 U+02267 U+00338 	 ≧̸

 	 ngeqslant; 	 U+02A7E U+00338 	 ⩾̸

 	 nges; 	 U+02A7E U+00338 	 ⩾̸

 	 nGg; 	 U+022D9 U+00338 	 ⋙̸

 	 ngsim; 	 U+02275 	 ≵

 	 nGt; 	 U+0226B U+020D2 	 ≫⃒

 	 ngt; 	 U+0226F 	 ≯

 	 ngtr; 	 U+0226F 	 ≯

 	 nGtv; 	 U+0226B U+00338 	 ≫̸

 	 nhArr; 	 U+021CE 	 ⇎

 	 nharr; 	 U+021AE 	 ↮

 	 nhpar; 	 U+02AF2 	 ⫲

 	 ni; 	 U+0220B 	 ∋

 	 nis; 	 U+022FC 	 ⋼

 	 nisd; 	 U+022FA 	 ⋺

 	 niv; 	 U+0220B 	 ∋

 	 NJcy; 	 U+0040A 	 Њ

 	 njcy; 	 U+0045A 	 њ

 	 nlArr; 	 U+021CD 	 ⇍

 	 nlarr; 	 U+0219A 	 ↚

 	 nldr; 	 U+02025 	 ‥

 	 nlE; 	 U+02266 U+00338 	 ≦̸

 	 nle; 	 U+02270 	 ≰

 	 nLeftarrow; 	 U+021CD 	 ⇍

 	 nleftarrow; 	 U+0219A 	 ↚

 	 nLeftrightarrow; 	 U+021CE 	 ⇎

 	 nleftrightarrow; 	 U+021AE 	 ↮

 	 nleq; 	 U+02270 	 ≰

 	 nleqq; 	 U+02266 U+00338 	 ≦̸

 	 nleqslant; 	 U+02A7D U+00338 	 ⩽̸

 	 nles; 	 U+02A7D U+00338 	 ⩽̸

 	 nless; 	 U+0226E 	 ≮

 	 nLl; 	 U+022D8 U+00338 	 ⋘̸

 	 nlsim; 	 U+02274 	 ≴

 	 nLt; 	 U+0226A U+020D2 	 ≪⃒

 	 nlt; 	 U+0226E 	 ≮

 	 nltri; 	 U+022EA 	 ⋪

 	 nltrie; 	 U+022EC 	 ⋬

 	 nLtv; 	 U+0226A U+00338 	 ≪̸

 	 nmid; 	 U+02224 	 ∤

 	 NoBreak; 	 U+02060 	 ⁠

 	 NonBreakingSpace; 	 U+000A0 	

 	 Nopf; 	 U+02115 	 ℕ

 	 nopf; 	 U+1D55F 	 𝕟

 	 Not; 	 U+02AEC 	 ⫬

 	 not; 	 U+000AC 	 ¬

 	 not 	 U+000AC 	 ¬

 	 NotCongruent; 	 U+02262 	 ≢

 	 NotCupCap; 	 U+0226D 	 ≭

 	 NotDoubleVerticalBar; 	 U+02226 	 ∦

 	 NotElement; 	 U+02209 	 ∉

 	 NotEqual; 	 U+02260 	 ≠

 	 NotEqualTilde; 	 U+02242 U+00338 	 ≂̸

 	 NotExists; 	 U+02204 	 ∄

 	 NotGreater; 	 U+0226F 	 ≯

 	 NotGreaterEqual; 	 U+02271 	 ≱

 	 NotGreaterFullEqual; 	 U+02267 U+00338 	 ≧̸

 	 NotGreaterGreater; 	 U+0226B U+00338 	 ≫̸

 	 NotGreaterLess; 	 U+02279 	 ≹

 	 NotGreaterSlantEqual; 	 U+02A7E U+00338 	 ⩾̸

 	 NotGreaterTilde; 	 U+02275 	 ≵

 	 NotHumpDownHump; 	 U+0224E U+00338 	 ≎̸

 	 NotHumpEqual; 	 U+0224F U+00338 	 ≏̸

 	 notin; 	 U+02209 	 ∉

 	 notindot; 	 U+022F5 U+00338 	 ⋵̸

 	 notinE; 	 U+022F9 U+00338 	 ⋹̸

 	 notinva; 	 U+02209 	 ∉

 	 notinvb; 	 U+022F7 	 ⋷

 	 notinvc; 	 U+022F6 	 ⋶

 	 NotLeftTriangle; 	 U+022EA 	 ⋪

 	 NotLeftTriangleBar; 	 U+029CF U+00338 	 ⧏̸

 	 NotLeftTriangleEqual; 	 U+022EC 	 ⋬

 	 NotLess; 	 U+0226E 	 ≮

 	 NotLessEqual; 	 U+02270 	 ≰

 	 NotLessGreater; 	 U+02278 	 ≸

 	 NotLessLess; 	 U+0226A U+00338 	 ≪̸

 	 NotLessSlantEqual; 	 U+02A7D U+00338 	 ⩽̸

 	 NotLessTilde; 	 U+02274 	 ≴

 	 NotNestedGreaterGreater; 	 U+02AA2 U+00338 	 ⪢̸

 	 NotNestedLessLess; 	 U+02AA1 U+00338 	 ⪡̸

 	 notni; 	 U+0220C 	 ∌

 	 notniva; 	 U+0220C 	 ∌

 	 notnivb; 	 U+022FE 	 ⋾

 	 notnivc; 	 U+022FD 	 ⋽

 	 NotPrecedes; 	 U+02280 	 ⊀

 	 NotPrecedesEqual; 	 U+02AAF U+00338 	 ⪯̸

 	 NotPrecedesSlantEqual; 	 U+022E0 	 ⋠

 	 NotReverseElement; 	 U+0220C 	 ∌

 	 NotRightTriangle; 	 U+022EB 	 ⋫

 	 NotRightTriangleBar; 	 U+029D0 U+00338 	 ⧐̸

 	 NotRightTriangleEqual; 	 U+022ED 	 ⋭

 	 NotSquareSubset; 	 U+0228F U+00338 	 ⊏̸

 	 NotSquareSubsetEqual; 	 U+022E2 	 ⋢

 	 NotSquareSuperset; 	 U+02290 U+00338 	 ⊐̸

 	 NotSquareSupersetEqual; 	 U+022E3 	 ⋣

 	 NotSubset; 	 U+02282 U+020D2 	 ⊂⃒

 	 NotSubsetEqual; 	 U+02288 	 ⊈

 	 NotSucceeds; 	 U+02281 	 ⊁

 	 NotSucceedsEqual; 	 U+02AB0 U+00338 	 ⪰̸

 	 NotSucceedsSlantEqual; 	 U+022E1 	 ⋡

 	 NotSucceedsTilde; 	 U+0227F U+00338 	 ≿̸

 	 NotSuperset; 	 U+02283 U+020D2 	 ⊃⃒

 	 NotSupersetEqual; 	 U+02289 	 ⊉

 	 NotTilde; 	 U+02241 	 ≁

 	 NotTildeEqual; 	 U+02244 	 ≄

 	 NotTildeFullEqual; 	 U+02247 	 ≇

 	 NotTildeTilde; 	 U+02249 	 ≉

 	 NotVerticalBar; 	 U+02224 	 ∤

 	 npar; 	 U+02226 	 ∦

 	 nparallel; 	 U+02226 	 ∦

 	 nparsl; 	 U+02AFD U+020E5 	 ⫽⃥

 	 npart; 	 U+02202 U+00338 	 ∂̸

 	 npolint; 	 U+02A14 	 ⨔

 	 npr; 	 U+02280 	 ⊀

 	 nprcue; 	 U+022E0 	 ⋠

 	 npre; 	 U+02AAF U+00338 	 ⪯̸

 	 nprec; 	 U+02280 	 ⊀

 	 npreceq; 	 U+02AAF U+00338 	 ⪯̸

 	 nrArr; 	 U+021CF 	 ⇏

 	 nrarr; 	 U+0219B 	 ↛

 	 nrarrc; 	 U+02933 U+00338 	 ⤳̸

 	 nrarrw; 	 U+0219D U+00338 	 ↝̸

 	 nRightarrow; 	 U+021CF 	 ⇏

 	 nrightarrow; 	 U+0219B 	 ↛

 	 nrtri; 	 U+022EB 	 ⋫

 	 nrtrie; 	 U+022ED 	 ⋭

 	 nsc; 	 U+02281 	 ⊁

 	 nsccue; 	 U+022E1 	 ⋡

 	 nsce; 	 U+02AB0 U+00338 	 ⪰̸

 	 Nscr; 	 U+1D4A9 	 𝒩

 	 nscr; 	 U+1D4C3 	 𝓃

 	 nshortmid; 	 U+02224 	 ∤

 	 nshortparallel; 	 U+02226 	 ∦

 	 nsim; 	 U+02241 	 ≁

 	 nsime; 	 U+02244 	 ≄

 	 nsimeq; 	 U+02244 	 ≄

 	 nsmid; 	 U+02224 	 ∤

 	 nspar; 	 U+02226 	 ∦

 	 nsqsube; 	 U+022E2 	 ⋢

 	 nsqsupe; 	 U+022E3 	 ⋣

 	 nsub; 	 U+02284 	 ⊄

 	 nsubE; 	 U+02AC5 U+00338 	 ⫅̸

 	 nsube; 	 U+02288 	 ⊈

 	 nsubset; 	 U+02282 U+020D2 	 ⊂⃒

 	 nsubseteq; 	 U+02288 	 ⊈

 	 nsubseteqq; 	 U+02AC5 U+00338 	 ⫅̸

 	 nsucc; 	 U+02281 	 ⊁

 	 nsucceq; 	 U+02AB0 U+00338 	 ⪰̸

 	 nsup; 	 U+02285 	 ⊅

 	 nsupE; 	 U+02AC6 U+00338 	 ⫆̸

 	 nsupe; 	 U+02289 	 ⊉

 	 nsupset; 	 U+02283 U+020D2 	 ⊃⃒

 	 nsupseteq; 	 U+02289 	 ⊉

 	 nsupseteqq; 	 U+02AC6 U+00338 	 ⫆̸

 	 ntgl; 	 U+02279 	 ≹

 	 Ntilde; 	 U+000D1 	 Ñ

 	 Ntilde 	 U+000D1 	 Ñ

 	 ntilde; 	 U+000F1 	 ñ

 	 ntilde 	 U+000F1 	 ñ

 	 ntlg; 	 U+02278 	 ≸

 	 ntriangleleft; 	 U+022EA 	 ⋪

 	 ntrianglelefteq; 	 U+022EC 	 ⋬

 	 ntriangleright; 	 U+022EB 	 ⋫

 	 ntrianglerighteq; 	 U+022ED 	 ⋭

 	 Nu; 	 U+0039D 	 Ν

 	 nu; 	 U+003BD 	 ν

 	 num; 	 U+00023 	 #

 	 numero; 	 U+02116 	 №

 	 numsp; 	 U+02007 	  

 	 nvap; 	 U+0224D U+020D2 	 ≍⃒

 	 nVDash; 	 U+022AF 	 ⊯

 	 nVdash; 	 U+022AE 	 ⊮

 	 nvDash; 	 U+022AD 	 ⊭

 	 nvdash; 	 U+022AC 	 ⊬

 	 nvge; 	 U+02265 U+020D2 	 ≥⃒

 	 nvgt; 	 U+0003E U+020D2 	 >⃒

 	 nvHarr; 	 U+02904 	 ⤄

 	 nvinfin; 	 U+029DE 	 ⧞

 	 nvlArr; 	 U+02902 	 ⤂

 	 nvle; 	 U+02264 U+020D2 	 ≤⃒

 	 nvlt; 	 U+0003C U+020D2 	 <⃒

 	 nvltrie; 	 U+022B4 U+020D2 	 ⊴⃒

 	 nvrArr; 	 U+02903 	 ⤃

 	 nvrtrie; 	 U+022B5 U+020D2 	 ⊵⃒

 	 nvsim; 	 U+0223C U+020D2 	 ∼⃒

 	 nwarhk; 	 U+02923 	 ⤣

 	 nwArr; 	 U+021D6 	 ⇖

 	 nwarr; 	 U+02196 	 ↖

 	 nwarrow; 	 U+02196 	 ↖

 	 nwnear; 	 U+02927 	 ⤧

 	 Oacute; 	 U+000D3 	 Ó

 	 Oacute 	 U+000D3 	 Ó

 	 oacute; 	 U+000F3 	 ó

 	 oacute 	 U+000F3 	 ó

 	 oast; 	 U+0229B 	 ⊛

 	 ocir; 	 U+0229A 	 ⊚

 	 Ocirc; 	 U+000D4 	 Ô

 	 Ocirc 	 U+000D4 	 Ô

 	 ocirc; 	 U+000F4 	 ô

 	 ocirc 	 U+000F4 	 ô

 	 Ocy; 	 U+0041E 	 О

 	 ocy; 	 U+0043E 	 о

 	 odash; 	 U+0229D 	 ⊝

 	 Odblac; 	 U+00150 	 Ő

 	 odblac; 	 U+00151 	 ő

 	 odiv; 	 U+02A38 	 ⨸

 	 odot; 	 U+02299 	 ⊙

 	 odsold; 	 U+029BC 	 ⦼

 	 OElig; 	 U+00152 	 Œ

 	 oelig; 	 U+00153 	 œ

 	 ofcir; 	 U+029BF 	 ⦿

 	 Ofr; 	 U+1D512 	 𝔒

 	 ofr; 	 U+1D52C 	 𝔬

 	 ogon; 	 U+002DB 	 ˛

 	 Ograve; 	 U+000D2 	 Ò

 	 Ograve 	 U+000D2 	 Ò

 	 ograve; 	 U+000F2 	 ò

 	 ograve 	 U+000F2 	 ò

 	 ogt; 	 U+029C1 	 ⧁

 	 ohbar; 	 U+029B5 	 ⦵

 	 ohm; 	 U+003A9 	 Ω

 	 oint; 	 U+0222E 	 ∮

 	 olarr; 	 U+021BA 	 ↺

 	 olcir; 	 U+029BE 	 ⦾

 	 olcross; 	 U+029BB 	 ⦻

 	 oline; 	 U+0203E 	 ‾

 	 olt; 	 U+029C0 	 ⧀

 	 Omacr; 	 U+0014C 	 Ō

 	 omacr; 	 U+0014D 	 ō

 	 Omega; 	 U+003A9 	 Ω

 	 omega; 	 U+003C9 	 ω

 	 Omicron; 	 U+0039F 	 Ο

 	 omicron; 	 U+003BF 	 ο

 	 omid; 	 U+029B6 	 ⦶

 	 ominus; 	 U+02296 	 ⊖

 	 Oopf; 	 U+1D546 	 𝕆

 	 oopf; 	 U+1D560 	 𝕠

 	 opar; 	 U+029B7 	 ⦷

 	 OpenCurlyDoubleQuote; 	 U+0201C 	 “

 	 OpenCurlyQuote; 	 U+02018 	 ‘

 	 operp; 	 U+029B9 	 ⦹

 	 oplus; 	 U+02295 	 ⊕

 	 Or; 	 U+02A54 	 ⩔

 	 or; 	 U+02228 	 ∨

 	 orarr; 	 U+021BB 	 ↻

 	 ord; 	 U+02A5D 	 ⩝

 	 order; 	 U+02134 	 ℴ

 	 orderof; 	 U+02134 	 ℴ

 	 ordf; 	 U+000AA 	 ª

 	 ordf 	 U+000AA 	 ª

 	 ordm; 	 U+000BA 	 º

 	 ordm 	 U+000BA 	 º

 	 origof; 	 U+022B6 	 ⊶

 	 oror; 	 U+02A56 	 ⩖

 	 orslope; 	 U+02A57 	 ⩗

 	 orv; 	 U+02A5B 	 ⩛

 	 oS; 	 U+024C8 	 Ⓢ

 	 Oscr; 	 U+1D4AA 	 𝒪

 	 oscr; 	 U+02134 	 ℴ

 	 Oslash; 	 U+000D8 	 Ø

 	 Oslash 	 U+000D8 	 Ø

 	 oslash; 	 U+000F8 	 ø

 	 oslash 	 U+000F8 	 ø

 	 osol; 	 U+02298 	 ⊘

 	 Otilde; 	 U+000D5 	 Õ

 	 Otilde 	 U+000D5 	 Õ

 	 otilde; 	 U+000F5 	 õ

 	 otilde 	 U+000F5 	 õ

 	 Otimes; 	 U+02A37 	 ⨷

 	 otimes; 	 U+02297 	 ⊗

 	 otimesas; 	 U+02A36 	 ⨶

 	 Ouml; 	 U+000D6 	 Ö

 	 Ouml 	 U+000D6 	 Ö

 	 ouml; 	 U+000F6 	 ö

 	 ouml 	 U+000F6 	 ö

 	 ovbar; 	 U+0233D 	 ⌽

 	 OverBar; 	 U+0203E 	 ‾

 	 OverBrace; 	 U+023DE 	 ⏞

 	 OverBracket; 	 U+023B4 	 ⎴

 	 OverParenthesis; 	 U+023DC 	 ⏜

 	 par; 	 U+02225 	 ∥

 	 para; 	 U+000B6 	 ¶

 	 para 	 U+000B6 	 ¶

 	 parallel; 	 U+02225 	 ∥

 	 parsim; 	 U+02AF3 	 ⫳

 	 parsl; 	 U+02AFD 	 ⫽

 	 part; 	 U+02202 	 ∂

 	 PartialD; 	 U+02202 	 ∂

 	 Pcy; 	 U+0041F 	 П

 	 pcy; 	 U+0043F 	 п

 	 percnt; 	 U+00025 	 %

 	 period; 	 U+0002E 	 .

 	 permil; 	 U+02030 	 ‰

 	 perp; 	 U+022A5 	 ⊥

 	 pertenk; 	 U+02031 	 ‱

 	 Pfr; 	 U+1D513 	 𝔓

 	 pfr; 	 U+1D52D 	 𝔭

 	 Phi; 	 U+003A6 	 Φ

 	 phi; 	 U+003C6 	 φ

 	 phiv; 	 U+003D5 	 ϕ

 	 phmmat; 	 U+02133 	 ℳ

 	 phone; 	 U+0260E 	 ☎

 	 Pi; 	 U+003A0 	 Π

 	 pi; 	 U+003C0 	 π

 	 pitchfork; 	 U+022D4 	 ⋔

 	 piv; 	 U+003D6 	 ϖ

 	 planck; 	 U+0210F 	 ℏ

 	 planckh; 	 U+0210E 	 ℎ

 	 plankv; 	 U+0210F 	 ℏ

 	 plus; 	 U+0002B 	 +

 	 plusacir; 	 U+02A23 	 ⨣

 	 plusb; 	 U+0229E 	 ⊞

 	 pluscir; 	 U+02A22 	 ⨢

 	 plusdo; 	 U+02214 	 ∔

 	 plusdu; 	 U+02A25 	 ⨥

 	 pluse; 	 U+02A72 	 ⩲

 	 PlusMinus; 	 U+000B1 	 ±

 	 plusmn; 	 U+000B1 	 ±

 	 plusmn 	 U+000B1 	 ±

 	 plussim; 	 U+02A26 	 ⨦

 	 plustwo; 	 U+02A27 	 ⨧

 	 pm; 	 U+000B1 	 ±

 	 Poincareplane; 	 U+0210C 	 ℌ

 	 pointint; 	 U+02A15 	 ⨕

 	 Popf; 	 U+02119 	 ℙ

 	 popf; 	 U+1D561 	 𝕡

 	 pound; 	 U+000A3 	 £

 	 pound 	 U+000A3 	 £

 	 Pr; 	 U+02ABB 	 ⪻

 	 pr; 	 U+0227A 	 ≺

 	 prap; 	 U+02AB7 	 ⪷

 	 prcue; 	 U+0227C 	 ≼

 	 prE; 	 U+02AB3 	 ⪳

 	 pre; 	 U+02AAF 	 ⪯

 	 prec; 	 U+0227A 	 ≺

 	 precapprox; 	 U+02AB7 	 ⪷

 	 preccurlyeq; 	 U+0227C 	 ≼

 	 Precedes; 	 U+0227A 	 ≺

 	 PrecedesEqual; 	 U+02AAF 	 ⪯

 	 PrecedesSlantEqual; 	 U+0227C 	 ≼

 	 PrecedesTilde; 	 U+0227E 	 ≾

 	 preceq; 	 U+02AAF 	 ⪯

 	 precnapprox; 	 U+02AB9 	 ⪹

 	 precneqq; 	 U+02AB5 	 ⪵

 	 precnsim; 	 U+022E8 	 ⋨

 	 precsim; 	 U+0227E 	 ≾

 	 Prime; 	 U+02033 	 ″

 	 prime; 	 U+02032 	 ′

 	 primes; 	 U+02119 	 ℙ

 	 prnap; 	 U+02AB9 	 ⪹

 	 prnE; 	 U+02AB5 	 ⪵

 	 prnsim; 	 U+022E8 	 ⋨

 	 prod; 	 U+0220F 	 ∏

 	 Product; 	 U+0220F 	 ∏

 	 profalar; 	 U+0232E 	 ⌮

 	 profline; 	 U+02312 	 ⌒

 	 profsurf; 	 U+02313 	 ⌓

 	 prop; 	 U+0221D 	 ∝

 	 Proportion; 	 U+02237 	 ∷

 	 Proportional; 	 U+0221D 	 ∝

 	 propto; 	 U+0221D 	 ∝

 	 prsim; 	 U+0227E 	 ≾

 	 prurel; 	 U+022B0 	 ⊰

 	 Pscr; 	 U+1D4AB 	 𝒫

 	 pscr; 	 U+1D4C5 	 𝓅

 	 Psi; 	 U+003A8 	 Ψ

 	 psi; 	 U+003C8 	 ψ

 	 puncsp; 	 U+02008 	  

 	 Qfr; 	 U+1D514 	 𝔔

 	 qfr; 	 U+1D52E 	 𝔮

 	 qint; 	 U+02A0C 	 ⨌

 	 Qopf; 	 U+0211A 	 ℚ

 	 qopf; 	 U+1D562 	 𝕢

 	 qprime; 	 U+02057 	 ⁗

 	 Qscr; 	 U+1D4AC 	 𝒬

 	 qscr; 	 U+1D4C6 	 𝓆

 	 quaternions; 	 U+0210D 	 ℍ

 	 quatint; 	 U+02A16 	 ⨖

 	 quest; 	 U+0003F 	 ?

 	 questeq; 	 U+0225F 	 ≟

 	 QUOT; 	 U+00022 	 "

 	 QUOT 	 U+00022 	 "

 	 quot; 	 U+00022 	 "

 	 quot 	 U+00022 	 "

 	 rAarr; 	 U+021DB 	 ⇛

 	 race; 	 U+0223D U+00331 	 ∽̱

 	 Racute; 	 U+00154 	 Ŕ

 	 racute; 	 U+00155 	 ŕ

 	 radic; 	 U+0221A 	 √

 	 raemptyv; 	 U+029B3 	 ⦳

 	 Rang; 	 U+027EB 	 ⟫

 	 rang; 	 U+027E9 	 ⟩

 	 rangd; 	 U+02992 	 ⦒

 	 range; 	 U+029A5 	 ⦥

 	 rangle; 	 U+027E9 	 〉

 	 raquo; 	 U+000BB 	 »

 	 raquo 	 U+000BB 	 »

 	 Rarr; 	 U+021A0 	 ↠

 	 rArr; 	 U+021D2 	 ⇒

 	 rarr; 	 U+02192 	 →

 	 rarrap; 	 U+02975 	 ⥵

 	 rarrb; 	 U+021E5 	 ⇥

 	 rarrbfs; 	 U+02920 	 ⤠

 	 rarrc; 	 U+02933 	 ⤳

 	 rarrfs; 	 U+0291E 	 ⤞

 	 rarrhk; 	 U+021AA 	 ↪

 	 rarrlp; 	 U+021AC 	 ↬

 	 rarrpl; 	 U+02945 	 ⥅

 	 rarrsim; 	 U+02974 	 ⥴

 	 Rarrtl; 	 U+02916 	 ⤖

 	 rarrtl; 	 U+021A3 	 ↣

 	 rarrw; 	 U+0219D 	 ↝

 	 rAtail; 	 U+0291C 	 ⤜

 	 ratail; 	 U+0291A 	 ⤚

 	 ratio; 	 U+02236 	 ∶

 	 rationals; 	 U+0211A 	 ℚ

 	 RBarr; 	 U+02910 	 ⤐

 	 rBarr; 	 U+0290F 	 ⤏

 	 rbarr; 	 U+0290D 	 ⤍

 	 rbbrk; 	 U+02773 	 ❳

 	 rbrace; 	 U+0007D 	 }

 	 rbrack; 	 U+0005D]

 	 rbrke; 	 U+0298C 	 ⦌

 	 rbrksld; 	 U+0298E 	 ⦎

 	 rbrkslu; 	 U+02990 	 ⦐

 	 Rcaron; 	 U+00158 	 Ř

 	 rcaron; 	 U+00159 	 ř

 	 Rcedil; 	 U+00156 	 Ŗ

 	 rcedil; 	 U+00157 	 ŗ

 	 rceil; 	 U+02309 	 ⌉

 	 rcub; 	 U+0007D 	 }

 	 Rcy; 	 U+00420 	 Р

 	 rcy; 	 U+00440 	 р

 	 rdca; 	 U+02937 	 ⤷

 	 rdldhar; 	 U+02969 	 ⥩

 	 rdquo; 	 U+0201D 	 ”

 	 rdquor; 	 U+0201D 	 ”

 	 rdsh; 	 U+021B3 	 ↳

 	 Re; 	 U+0211C 	 ℜ

 	 real; 	 U+0211C 	 ℜ

 	 realine; 	 U+0211B 	 ℛ

 	 realpart; 	 U+0211C 	 ℜ

 	 reals; 	 U+0211D 	 ℝ

 	 rect; 	 U+025AD 	 ▭

 	 REG; 	 U+000AE 	 ®

 	 REG 	 U+000AE 	 ®

 	 reg; 	 U+000AE 	 ®

 	 reg 	 U+000AE 	 ®

 	 ReverseElement; 	 U+0220B 	 ∋

 	 ReverseEquilibrium; 	 U+021CB 	 ⇋

 	 ReverseUpEquilibrium; 	 U+0296F 	 ⥯

 	 rfisht; 	 U+0297D 	 ⥽

 	 rfloor; 	 U+0230B 	 ⌋

 	 Rfr; 	 U+0211C 	 ℜ

 	 rfr; 	 U+1D52F 	 𝔯

 	 rHar; 	 U+02964 	 ⥤

 	 rhard; 	 U+021C1 	 ⇁

 	 rharu; 	 U+021C0 	 ⇀

 	 rharul; 	 U+0296C 	 ⥬

 	 Rho; 	 U+003A1 	 Ρ

 	 rho; 	 U+003C1 	 ρ

 	 rhov; 	 U+003F1 	 ϱ

 	 RightAngleBracket; 	 U+027E9 	 〉

 	 RightArrow; 	 U+02192 	 →

 	 Rightarrow; 	 U+021D2 	 ⇒

 	 rightarrow; 	 U+02192 	 →

 	 RightArrowBar; 	 U+021E5 	 ⇥

 	 RightArrowLeftArrow; 	 U+021C4 	 ⇄

 	 rightarrowtail; 	 U+021A3 	 ↣

 	 RightCeiling; 	 U+02309 	 ⌉

 	 RightDoubleBracket; 	 U+027E7 	 ⟧

 	 RightDownTeeVector; 	 U+0295D 	 ⥝

 	 RightDownVector; 	 U+021C2 	 ⇂

 	 RightDownVectorBar; 	 U+02955 	 ⥕

 	 RightFloor; 	 U+0230B 	 ⌋

 	 rightharpoondown; 	 U+021C1 	 ⇁

 	 rightharpoonup; 	 U+021C0 	 ⇀

 	 rightleftarrows; 	 U+021C4 	 ⇄

 	 rightleftharpoons; 	 U+021CC 	 ⇌

 	 rightrightarrows; 	 U+021C9 	 ⇉

 	 rightsquigarrow; 	 U+0219D 	 ↝

 	 RightTee; 	 U+022A2 	 ⊢

 	 RightTeeArrow; 	 U+021A6 	 ↦

 	 RightTeeVector; 	 U+0295B 	 ⥛

 	 rightthreetimes; 	 U+022CC 	 ⋌

 	 RightTriangle; 	 U+022B3 	 ⊳

 	 RightTriangleBar; 	 U+029D0 	 ⧐

 	 RightTriangleEqual; 	 U+022B5 	 ⊵

 	 RightUpDownVector; 	 U+0294F 	 ⥏

 	 RightUpTeeVector; 	 U+0295C 	 ⥜

 	 RightUpVector; 	 U+021BE 	 ↾

 	 RightUpVectorBar; 	 U+02954 	 ⥔

 	 RightVector; 	 U+021C0 	 ⇀

 	 RightVectorBar; 	 U+02953 	 ⥓

 	 ring; 	 U+002DA 	 ˚

 	 risingdotseq; 	 U+02253 	 ≓

 	 rlarr; 	 U+021C4 	 ⇄

 	 rlhar; 	 U+021CC 	 ⇌

 	 rlm; 	 U+0200F 	 ‏

 	 rmoust; 	 U+023B1 	 ⎱

 	 rmoustache; 	 U+023B1 	 ⎱

 	 rnmid; 	 U+02AEE 	 ⫮

 	 roang; 	 U+027ED 	 ⟭

 	 roarr; 	 U+021FE 	 ⇾

 	 robrk; 	 U+027E7 	 ⟧

 	 ropar; 	 U+02986 	 ⦆

 	 Ropf; 	 U+0211D 	 ℝ

 	 ropf; 	 U+1D563 	 𝕣

 	 roplus; 	 U+02A2E 	 ⨮

 	 rotimes; 	 U+02A35 	 ⨵

 	 RoundImplies; 	 U+02970 	 ⥰

 	 rpar; 	 U+00029)

 	 rpargt; 	 U+02994 	 ⦔

 	 rppolint; 	 U+02A12 	 ⨒

 	 rrarr; 	 U+021C9 	 ⇉

 	 Rrightarrow; 	 U+021DB 	 ⇛

 	 rsaquo; 	 U+0203A 	 ›

 	 Rscr; 	 U+0211B 	 ℛ

 	 rscr; 	 U+1D4C7 	 𝓇

 	 Rsh; 	 U+021B1 	 ↱

 	 rsh; 	 U+021B1 	 ↱

 	 rsqb; 	 U+0005D]

 	 rsquo; 	 U+02019 	 ’

 	 rsquor; 	 U+02019 	 ’

 	 rthree; 	 U+022CC 	 ⋌

 	 rtimes; 	 U+022CA 	 ⋊

 	 rtri; 	 U+025B9 	 ▹

 	 rtrie; 	 U+022B5 	 ⊵

 	 rtrif; 	 U+025B8 	 ▸

 	 rtriltri; 	 U+029CE 	 ⧎

 	 RuleDelayed; 	 U+029F4 	 ⧴

 	 ruluhar; 	 U+02968 	 ⥨

 	 rx; 	 U+0211E 	 ℞

 	 Sacute; 	 U+0015A 	 Ś

 	 sacute; 	 U+0015B 	 ś

 	 sbquo; 	 U+0201A 	 ‚

 	 Sc; 	 U+02ABC 	 ⪼

 	 sc; 	 U+0227B 	 ≻

 	 scap; 	 U+02AB8 	 ⪸

 	 Scaron; 	 U+00160 	 Š

 	 scaron; 	 U+00161 	 š

 	 sccue; 	 U+0227D 	 ≽

 	 scE; 	 U+02AB4 	 ⪴

 	 sce; 	 U+02AB0 	 ⪰

 	 Scedil; 	 U+0015E 	 Ş

 	 scedil; 	 U+0015F 	 ş

 	 Scirc; 	 U+0015C 	 Ŝ

 	 scirc; 	 U+0015D 	 ŝ

 	 scnap; 	 U+02ABA 	 ⪺

 	 scnE; 	 U+02AB6 	 ⪶

 	 scnsim; 	 U+022E9 	 ⋩

 	 scpolint; 	 U+02A13 	 ⨓

 	 scsim; 	 U+0227F 	 ≿

 	 Scy; 	 U+00421 	 С

 	 scy; 	 U+00441 	 с

 	 sdot; 	 U+022C5 	 ⋅

 	 sdotb; 	 U+022A1 	 ⊡

 	 sdote; 	 U+02A66 	 ⩦

 	 searhk; 	 U+02925 	 ⤥

 	 seArr; 	 U+021D8 	 ⇘

 	 searr; 	 U+02198 	 ↘

 	 searrow; 	 U+02198 	 ↘

 	 sect; 	 U+000A7 	 §

 	 sect 	 U+000A7 	 §

 	 semi; 	 U+0003B 	 ;

 	 seswar; 	 U+02929 	 ⤩

 	 setminus; 	 U+02216 	 ∖

 	 setmn; 	 U+02216 	 ∖

 	 sext; 	 U+02736 	 ✶

 	 Sfr; 	 U+1D516 	 𝔖

 	 sfr; 	 U+1D530 	 𝔰

 	 sfrown; 	 U+02322 	 ⌢

 	 sharp; 	 U+0266F 	 ♯

 	 SHCHcy; 	 U+00429 	 Щ

 	 shchcy; 	 U+00449 	 щ

 	 SHcy; 	 U+00428 	 Ш

 	 shcy; 	 U+00448 	 ш

 	 ShortDownArrow; 	 U+02193 	 ↓

 	 ShortLeftArrow; 	 U+02190 	 ←

 	 shortmid; 	 U+02223 	 ∣

 	 shortparallel; 	 U+02225 	 ∥

 	 ShortRightArrow; 	 U+02192 	 →

 	 ShortUpArrow; 	 U+02191 	 ↑

 	 shy; 	 U+000AD 	

 	 shy 	 U+000AD 	

 	 Sigma; 	 U+003A3 	 Σ

 	 sigma; 	 U+003C3 	 σ

 	 sigmaf; 	 U+003C2 	 ς

 	 sigmav; 	 U+003C2 	 ς

 	 sim; 	 U+0223C 	 ∼

 	 simdot; 	 U+02A6A 	 ⩪

 	 sime; 	 U+02243 	 ≃

 	 simeq; 	 U+02243 	 ≃

 	 simg; 	 U+02A9E 	 ⪞

 	 simgE; 	 U+02AA0 	 ⪠

 	 siml; 	 U+02A9D 	 ⪝

 	 simlE; 	 U+02A9F 	 ⪟

 	 simne; 	 U+02246 	 ≆

 	 simplus; 	 U+02A24 	 ⨤

 	 simrarr; 	 U+02972 	 ⥲

 	 slarr; 	 U+02190 	 ←

 	 SmallCircle; 	 U+02218 	 ∘

 	 smallsetminus; 	 U+02216 	 ∖

 	 smashp; 	 U+02A33 	 ⨳

 	 smeparsl; 	 U+029E4 	 ⧤

 	 smid; 	 U+02223 	 ∣

 	 smile; 	 U+02323 	 ⌣

 	 smt; 	 U+02AAA 	 ⪪

 	 smte; 	 U+02AAC 	 ⪬

 	 smtes; 	 U+02AAC U+0FE00 	 ⪬︀

 	 SOFTcy; 	 U+0042C 	 Ь

 	 softcy; 	 U+0044C 	 ь

 	 sol; 	 U+0002F 	 /

 	 solb; 	 U+029C4 	 ⧄

 	 solbar; 	 U+0233F 	 ⌿

 	 Sopf; 	 U+1D54A 	 𝕊

 	 sopf; 	 U+1D564 	 𝕤

 	 spades; 	 U+02660 	 ♠

 	 spadesuit; 	 U+02660 	 ♠

 	 spar; 	 U+02225 	 ∥

 	 sqcap; 	 U+02293 	 ⊓

 	 sqcaps; 	 U+02293 U+0FE00 	 ⊓︀

 	 sqcup; 	 U+02294 	 ⊔

 	 sqcups; 	 U+02294 U+0FE00 	 ⊔︀

 	 Sqrt; 	 U+0221A 	 √

 	 sqsub; 	 U+0228F 	 ⊏

 	 sqsube; 	 U+02291 	 ⊑

 	 sqsubset; 	 U+0228F 	 ⊏

 	 sqsubseteq; 	 U+02291 	 ⊑

 	 sqsup; 	 U+02290 	 ⊐

 	 sqsupe; 	 U+02292 	 ⊒

 	 sqsupset; 	 U+02290 	 ⊐

 	 sqsupseteq; 	 U+02292 	 ⊒

 	 squ; 	 U+025A1 	 □

 	 Square; 	 U+025A1 	 □

 	 square; 	 U+025A1 	 □

 	 SquareIntersection; 	 U+02293 	 ⊓

 	 SquareSubset; 	 U+0228F 	 ⊏

 	 SquareSubsetEqual; 	 U+02291 	 ⊑

 	 SquareSuperset; 	 U+02290 	 ⊐

 	 SquareSupersetEqual; 	 U+02292 	 ⊒

 	 SquareUnion; 	 U+02294 	 ⊔

 	 squarf; 	 U+025AA 	 ▪

 	 squf; 	 U+025AA 	 ▪

 	 srarr; 	 U+02192 	 →

 	 Sscr; 	 U+1D4AE 	 𝒮

 	 sscr; 	 U+1D4C8 	 𝓈

 	 ssetmn; 	 U+02216 	 ∖

 	 ssmile; 	 U+02323 	 ⌣

 	 sstarf; 	 U+022C6 	 ⋆

 	 Star; 	 U+022C6 	 ⋆

 	 star; 	 U+02606 	 ☆

 	 starf; 	 U+02605 	 ★

 	 straightepsilon; 	 U+003F5 	 ϵ

 	 straightphi; 	 U+003D5 	 ϕ

 	 strns; 	 U+000AF 	 ¯

 	 Sub; 	 U+022D0 	 ⋐

 	 sub; 	 U+02282 	 ⊂

 	 subdot; 	 U+02ABD 	 ⪽

 	 subE; 	 U+02AC5 	 ⫅

 	 sube; 	 U+02286 	 ⊆

 	 subedot; 	 U+02AC3 	 ⫃

 	 submult; 	 U+02AC1 	 ⫁

 	 subnE; 	 U+02ACB 	 ⫋

 	 subne; 	 U+0228A 	 ⊊

 	 subplus; 	 U+02ABF 	 ⪿

 	 subrarr; 	 U+02979 	 ⥹

 	 Subset; 	 U+022D0 	 ⋐

 	 subset; 	 U+02282 	 ⊂

 	 subseteq; 	 U+02286 	 ⊆

 	 subseteqq; 	 U+02AC5 	 ⫅

 	 SubsetEqual; 	 U+02286 	 ⊆

 	 subsetneq; 	 U+0228A 	 ⊊

 	 subsetneqq; 	 U+02ACB 	 ⫋

 	 subsim; 	 U+02AC7 	 ⫇

 	 subsub; 	 U+02AD5 	 ⫕

 	 subsup; 	 U+02AD3 	 ⫓

 	 succ; 	 U+0227B 	 ≻

 	 succapprox; 	 U+02AB8 	 ⪸

 	 succcurlyeq; 	 U+0227D 	 ≽

 	 Succeeds; 	 U+0227B 	 ≻

 	 SucceedsEqual; 	 U+02AB0 	 ⪰

 	 SucceedsSlantEqual; 	 U+0227D 	 ≽

 	 SucceedsTilde; 	 U+0227F 	 ≿

 	 succeq; 	 U+02AB0 	 ⪰

 	 succnapprox; 	 U+02ABA 	 ⪺

 	 succneqq; 	 U+02AB6 	 ⪶

 	 succnsim; 	 U+022E9 	 ⋩

 	 succsim; 	 U+0227F 	 ≿

 	 SuchThat; 	 U+0220B 	 ∋

 	 Sum; 	 U+02211 	 ∑

 	 sum; 	 U+02211 	 ∑

 	 sung; 	 U+0266A 	 ♪

 	 Sup; 	 U+022D1 	 ⋑

 	 sup; 	 U+02283 	 ⊃

 	 sup1; 	 U+000B9 	 ¹

 	 sup1 	 U+000B9 	 ¹

 	 sup2; 	 U+000B2 	 ²

 	 sup2 	 U+000B2 	 ²

 	 sup3; 	 U+000B3 	 ³

 	 sup3 	 U+000B3 	 ³

 	 supdot; 	 U+02ABE 	 ⪾

 	 supdsub; 	 U+02AD8 	 ⫘

 	 supE; 	 U+02AC6 	 ⫆

 	 supe; 	 U+02287 	 ⊇

 	 supedot; 	 U+02AC4 	 ⫄

 	 Superset; 	 U+02283 	 ⊃

 	 SupersetEqual; 	 U+02287 	 ⊇

 	 suphsol; 	 U+027C9 	 ⟉

 	 suphsub; 	 U+02AD7 	 ⫗

 	 suplarr; 	 U+0297B 	 ⥻

 	 supmult; 	 U+02AC2 	 ⫂

 	 supnE; 	 U+02ACC 	 ⫌

 	 supne; 	 U+0228B 	 ⊋

 	 supplus; 	 U+02AC0 	 ⫀

 	 Supset; 	 U+022D1 	 ⋑

 	 supset; 	 U+02283 	 ⊃

 	 supseteq; 	 U+02287 	 ⊇

 	 supseteqq; 	 U+02AC6 	 ⫆

 	 supsetneq; 	 U+0228B 	 ⊋

 	 supsetneqq; 	 U+02ACC 	 ⫌

 	 supsim; 	 U+02AC8 	 ⫈

 	 supsub; 	 U+02AD4 	 ⫔

 	 supsup; 	 U+02AD6 	 ⫖

 	 swarhk; 	 U+02926 	 ⤦

 	 swArr; 	 U+021D9 	 ⇙

 	 swarr; 	 U+02199 	 ↙

 	 swarrow; 	 U+02199 	 ↙

 	 swnwar; 	 U+0292A 	 ⤪

 	 szlig; 	 U+000DF 	 ß

 	 szlig 	 U+000DF 	 ß

 	 Tab; 	 U+00009 	 ␉

 	 target; 	 U+02316 	 ⌖

 	 Tau; 	 U+003A4 	 Τ

 	 tau; 	 U+003C4 	 τ

 	 tbrk; 	 U+023B4 	 ⎴

 	 Tcaron; 	 U+00164 	 Ť

 	 tcaron; 	 U+00165 	 ť

 	 Tcedil; 	 U+00162 	 Ţ

 	 tcedil; 	 U+00163 	 ţ

 	 Tcy; 	 U+00422 	 Т

 	 tcy; 	 U+00442 	 т

 	 tdot; 	 U+020DB 	 ◌⃛

 	 telrec; 	 U+02315 	 ⌕

 	 Tfr; 	 U+1D517 	 𝔗

 	 tfr; 	 U+1D531 	 𝔱

 	 there4; 	 U+02234 	 ∴

 	 Therefore; 	 U+02234 	 ∴

 	 therefore; 	 U+02234 	 ∴

 	 Theta; 	 U+00398 	 Θ

 	 theta; 	 U+003B8 	 θ

 	 thetasym; 	 U+003D1 	 ϑ

 	 thetav; 	 U+003D1 	 ϑ

 	 thickapprox; 	 U+02248 	 ≈

 	 thicksim; 	 U+0223C 	 ∼

 	 ThickSpace; 	 U+0205F U+0200A 	   

 	 thinsp; 	 U+02009 	  

 	 ThinSpace; 	 U+02009 	  

 	 thkap; 	 U+02248 	 ≈

 	 thksim; 	 U+0223C 	 ∼

 	 THORN; 	 U+000DE 	 Þ

 	 THORN 	 U+000DE 	 Þ

 	 thorn; 	 U+000FE 	 þ

 	 thorn 	 U+000FE 	 þ

 	 Tilde; 	 U+0223C 	 ∼

 	 tilde; 	 U+002DC 	 ˜

 	 TildeEqual; 	 U+02243 	 ≃

 	 TildeFullEqual; 	 U+02245 	 ≅

 	 TildeTilde; 	 U+02248 	 ≈

 	 times; 	 U+000D7 	 ×

 	 times 	 U+000D7 	 ×

 	 timesb; 	 U+022A0 	 ⊠

 	 timesbar; 	 U+02A31 	 ⨱

 	 timesd; 	 U+02A30 	 ⨰

 	 tint; 	 U+0222D 	 ∭

 	 toea; 	 U+02928 	 ⤨

 	 top; 	 U+022A4 	 ⊤

 	 topbot; 	 U+02336 	 ⌶

 	 topcir; 	 U+02AF1 	 ⫱

 	 Topf; 	 U+1D54B 	 𝕋

 	 topf; 	 U+1D565 	 𝕥

 	 topfork; 	 U+02ADA 	 ⫚

 	 tosa; 	 U+02929 	 ⤩

 	 tprime; 	 U+02034 	 ‴

 	 TRADE; 	 U+02122 	 ™

 	 trade; 	 U+02122 	 ™

 	 triangle; 	 U+025B5 	 ▵

 	 triangledown; 	 U+025BF 	 ▿

 	 triangleleft; 	 U+025C3 	 ◃

 	 trianglelefteq; 	 U+022B4 	 ⊴

 	 triangleq; 	 U+0225C 	 ≜

 	 triangleright; 	 U+025B9 	 ▹

 	 trianglerighteq; 	 U+022B5 	 ⊵

 	 tridot; 	 U+025EC 	 ◬

 	 trie; 	 U+0225C 	 ≜

 	 triminus; 	 U+02A3A 	 ⨺

 	 TripleDot; 	 U+020DB 	 ◌⃛

 	 triplus; 	 U+02A39 	 ⨹

 	 trisb; 	 U+029CD 	 ⧍

 	 tritime; 	 U+02A3B 	 ⨻

 	 trpezium; 	 U+023E2 	 ⏢

 	 Tscr; 	 U+1D4AF 	 𝒯

 	 tscr; 	 U+1D4C9 	 𝓉

 	 TScy; 	 U+00426 	 Ц

 	 tscy; 	 U+00446 	 ц

 	 TSHcy; 	 U+0040B 	 Ћ

 	 tshcy; 	 U+0045B 	 ћ

 	 Tstrok; 	 U+00166 	 Ŧ

 	 tstrok; 	 U+00167 	 ŧ

 	 twixt; 	 U+0226C 	 ≬

 	 twoheadleftarrow; 	 U+0219E 	 ↞

 	 twoheadrightarrow; 	 U+021A0 	 ↠

 	 Uacute; 	 U+000DA 	 Ú

 	 Uacute 	 U+000DA 	 Ú

 	 uacute; 	 U+000FA 	 ú

 	 uacute 	 U+000FA 	 ú

 	 Uarr; 	 U+0219F 	 ↟

 	 uArr; 	 U+021D1 	 ⇑

 	 uarr; 	 U+02191 	 ↑

 	 Uarrocir; 	 U+02949 	 ⥉

 	 Ubrcy; 	 U+0040E 	 Ў

 	 ubrcy; 	 U+0045E 	 ў

 	 Ubreve; 	 U+0016C 	 Ŭ

 	 ubreve; 	 U+0016D 	 ŭ

 	 Ucirc; 	 U+000DB 	 Û

 	 Ucirc 	 U+000DB 	 Û

 	 ucirc; 	 U+000FB 	 û

 	 ucirc 	 U+000FB 	 û

 	 Ucy; 	 U+00423 	 У

 	 ucy; 	 U+00443 	 у

 	 udarr; 	 U+021C5 	 ⇅

 	 Udblac; 	 U+00170 	 Ű

 	 udblac; 	 U+00171 	 ű

 	 udhar; 	 U+0296E 	 ⥮

 	 ufisht; 	 U+0297E 	 ⥾

 	 Ufr; 	 U+1D518 	 𝔘

 	 ufr; 	 U+1D532 	 𝔲

 	 Ugrave; 	 U+000D9 	 Ù

 	 Ugrave 	 U+000D9 	 Ù

 	 ugrave; 	 U+000F9 	 ù

 	 ugrave 	 U+000F9 	 ù

 	 uHar; 	 U+02963 	 ⥣

 	 uharl; 	 U+021BF 	 ↿

 	 uharr; 	 U+021BE 	 ↾

 	 uhblk; 	 U+02580 	 ▀

 	 ulcorn; 	 U+0231C 	 ⌜

 	 ulcorner; 	 U+0231C 	 ⌜

 	 ulcrop; 	 U+0230F 	 ⌏

 	 ultri; 	 U+025F8 	 ◸

 	 Umacr; 	 U+0016A 	 Ū

 	 umacr; 	 U+0016B 	 ū

 	 uml; 	 U+000A8 	 ¨

 	 uml 	 U+000A8 	 ¨

 	 UnderBar; 	 U+0005F 	 _

 	 UnderBrace; 	 U+023DF 	 ⏟

 	 UnderBracket; 	 U+023B5 	 ⎵

 	 UnderParenthesis; 	 U+023DD 	 ⏝

 	 Union; 	 U+022C3 	 ⋃

 	 UnionPlus; 	 U+0228E 	 ⊎

 	 Uogon; 	 U+00172 	 Ų

 	 uogon; 	 U+00173 	 ų

 	 Uopf; 	 U+1D54C 	 𝕌

 	 uopf; 	 U+1D566 	 𝕦

 	 UpArrow; 	 U+02191 	 ↑

 	 Uparrow; 	 U+021D1 	 ⇑

 	 uparrow; 	 U+02191 	 ↑

 	 UpArrowBar; 	 U+02912 	 ⤒

 	 UpArrowDownArrow; 	 U+021C5 	 ⇅

 	 UpDownArrow; 	 U+02195 	 ↕

 	 Updownarrow; 	 U+021D5 	 ⇕

 	 updownarrow; 	 U+02195 	 ↕

 	 UpEquilibrium; 	 U+0296E 	 ⥮

 	 upharpoonleft; 	 U+021BF 	 ↿

 	 upharpoonright; 	 U+021BE 	 ↾

 	 uplus; 	 U+0228E 	 ⊎

 	 UpperLeftArrow; 	 U+02196 	 ↖

 	 UpperRightArrow; 	 U+02197 	 ↗

 	 Upsi; 	 U+003D2 	 ϒ

 	 upsi; 	 U+003C5 	 υ

 	 upsih; 	 U+003D2 	 ϒ

 	 Upsilon; 	 U+003A5 	 Υ

 	 upsilon; 	 U+003C5 	 υ

 	 UpTee; 	 U+022A5 	 ⊥

 	 UpTeeArrow; 	 U+021A5 	 ↥

 	 upuparrows; 	 U+021C8 	 ⇈

 	 urcorn; 	 U+0231D 	 ⌝

 	 urcorner; 	 U+0231D 	 ⌝

 	 urcrop; 	 U+0230E 	 ⌎

 	 Uring; 	 U+0016E 	 Ů

 	 uring; 	 U+0016F 	 ů

 	 urtri; 	 U+025F9 	 ◹

 	 Uscr; 	 U+1D4B0 	 𝒰

 	 uscr; 	 U+1D4CA 	 𝓊

 	 utdot; 	 U+022F0 	 ⋰

 	 Utilde; 	 U+00168 	 Ũ

 	 utilde; 	 U+00169 	 ũ

 	 utri; 	 U+025B5 	 ▵

 	 utrif; 	 U+025B4 	 ▴

 	 uuarr; 	 U+021C8 	 ⇈

 	 Uuml; 	 U+000DC 	 Ü

 	 Uuml 	 U+000DC 	 Ü

 	 uuml; 	 U+000FC 	 ü

 	 uuml 	 U+000FC 	 ü

 	 uwangle; 	 U+029A7 	 ⦧

 	 vangrt; 	 U+0299C 	 ⦜

 	 varepsilon; 	 U+003F5 	 ϵ

 	 varkappa; 	 U+003F0 	 ϰ

 	 varnothing; 	 U+02205 	 ∅

 	 varphi; 	 U+003D5 	 ϕ

 	 varpi; 	 U+003D6 	 ϖ

 	 varpropto; 	 U+0221D 	 ∝

 	 vArr; 	 U+021D5 	 ⇕

 	 varr; 	 U+02195 	 ↕

 	 varrho; 	 U+003F1 	 ϱ

 	 varsigma; 	 U+003C2 	 ς

 	 varsubsetneq; 	 U+0228A U+0FE00 	 ⊊︀

 	 varsubsetneqq; 	 U+02ACB U+0FE00 	 ⫋︀

 	 varsupsetneq; 	 U+0228B U+0FE00 	 ⊋︀

 	 varsupsetneqq; 	 U+02ACC U+0FE00 	 ⫌︀

 	 vartheta; 	 U+003D1 	 ϑ

 	 vartriangleleft; 	 U+022B2 	 ⊲

 	 vartriangleright; 	 U+022B3 	 ⊳

 	 Vbar; 	 U+02AEB 	 ⫫

 	 vBar; 	 U+02AE8 	 ⫨

 	 vBarv; 	 U+02AE9 	 ⫩

 	 Vcy; 	 U+00412 	 В

 	 vcy; 	 U+00432 	 в

 	 VDash; 	 U+022AB 	 ⊫

 	 Vdash; 	 U+022A9 	 ⊩

 	 vDash; 	 U+022A8 	 ⊨

 	 vdash; 	 U+022A2 	 ⊢

 	 Vdashl; 	 U+02AE6 	 ⫦

 	 Vee; 	 U+022C1 	 ⋁

 	 vee; 	 U+02228 	 ∨

 	 veebar; 	 U+022BB 	 ⊻

 	 veeeq; 	 U+0225A 	 ≚

 	 vellip; 	 U+022EE 	 ⋮

 	 Verbar; 	 U+02016 	 ‖

 	 verbar; 	 U+0007C 	 |

 	 Vert; 	 U+02016 	 ‖

 	 vert; 	 U+0007C 	 |

 	 VerticalBar; 	 U+02223 	 ∣

 	 VerticalLine; 	 U+0007C 	 |

 	 VerticalSeparator; 	 U+02758 	 ❘

 	 VerticalTilde; 	 U+02240 	 ≀

 	 VeryThinSpace; 	 U+0200A 	  

 	 Vfr; 	 U+1D519 	 𝔙

 	 vfr; 	 U+1D533 	 𝔳

 	 vltri; 	 U+022B2 	 ⊲

 	 vnsub; 	 U+02282 U+020D2 	 ⊂⃒

 	 vnsup; 	 U+02283 U+020D2 	 ⊃⃒

 	 Vopf; 	 U+1D54D 	 𝕍

 	 vopf; 	 U+1D567 	 𝕧

 	 vprop; 	 U+0221D 	 ∝

 	 vrtri; 	 U+022B3 	 ⊳

 	 Vscr; 	 U+1D4B1 	 𝒱

 	 vscr; 	 U+1D4CB 	 𝓋

 	 vsubnE; 	 U+02ACB U+0FE00 	 ⫋︀

 	 vsubne; 	 U+0228A U+0FE00 	 ⊊︀

 	 vsupnE; 	 U+02ACC U+0FE00 	 ⫌︀

 	 vsupne; 	 U+0228B U+0FE00 	 ⊋︀

 	 Vvdash; 	 U+022AA 	 ⊪

 	 vzigzag; 	 U+0299A 	 ⦚

 	 Wcirc; 	 U+00174 	 Ŵ

 	 wcirc; 	 U+00175 	 ŵ

 	 wedbar; 	 U+02A5F 	 ⩟

 	 Wedge; 	 U+022C0 	 ⋀

 	 wedge; 	 U+02227 	 ∧

 	 wedgeq; 	 U+02259 	 ≙

 	 weierp; 	 U+02118 	 ℘

 	 Wfr; 	 U+1D51A 	 𝔚

 	 wfr; 	 U+1D534 	 𝔴

 	 Wopf; 	 U+1D54E 	 𝕎

 	 wopf; 	 U+1D568 	 𝕨

 	 wp; 	 U+02118 	 ℘

 	 wr; 	 U+02240 	 ≀

 	 wreath; 	 U+02240 	 ≀

 	 Wscr; 	 U+1D4B2 	 𝒲

 	 wscr; 	 U+1D4CC 	 𝓌

 	 xcap; 	 U+022C2 	 ⋂

 	 xcirc; 	 U+025EF 	 ◯

 	 xcup; 	 U+022C3 	 ⋃

 	 xdtri; 	 U+025BD 	 ▽

 	 Xfr; 	 U+1D51B 	 𝔛

 	 xfr; 	 U+1D535 	 𝔵

 	 xhArr; 	 U+027FA 	 ⟺

 	 xharr; 	 U+027F7 	 ⟷

 	 Xi; 	 U+0039E 	 Ξ

 	 xi; 	 U+003BE 	 ξ

 	 xlArr; 	 U+027F8 	 ⟸

 	 xlarr; 	 U+027F5 	 ⟵

 	 xmap; 	 U+027FC 	 ⟼

 	 xnis; 	 U+022FB 	 ⋻

 	 xodot; 	 U+02A00 	 ⨀

 	 Xopf; 	 U+1D54F 	 𝕏

 	 xopf; 	 U+1D569 	 𝕩

 	 xoplus; 	 U+02A01 	 ⨁

 	 xotime; 	 U+02A02 	 ⨂

 	 xrArr; 	 U+027F9 	 ⟹

 	 xrarr; 	 U+027F6 	 ⟶

 	 Xscr; 	 U+1D4B3 	 𝒳

 	 xscr; 	 U+1D4CD 	 𝓍

 	 xsqcup; 	 U+02A06 	 ⨆

 	 xuplus; 	 U+02A04 	 ⨄

 	 xutri; 	 U+025B3 	 △

 	 xvee; 	 U+022C1 	 ⋁

 	 xwedge; 	 U+022C0 	 ⋀

 	 Yacute; 	 U+000DD 	 Ý

 	 Yacute 	 U+000DD 	 Ý

 	 yacute; 	 U+000FD 	 ý

 	 yacute 	 U+000FD 	 ý

 	 YAcy; 	 U+0042F 	 Я

 	 yacy; 	 U+0044F 	 я

 	 Ycirc; 	 U+00176 	 Ŷ

 	 ycirc; 	 U+00177 	 ŷ

 	 Ycy; 	 U+0042B 	 Ы

 	 ycy; 	 U+0044B 	 ы

 	 yen; 	 U+000A5 	 ¥

 	 yen 	 U+000A5 	 ¥

 	 Yfr; 	 U+1D51C 	 𝔜

 	 yfr; 	 U+1D536 	 𝔶

 	 YIcy; 	 U+00407 	 Ї

 	 yicy; 	 U+00457 	 ї

 	 Yopf; 	 U+1D550 	 𝕐

 	 yopf; 	 U+1D56A 	 𝕪

 	 Yscr; 	 U+1D4B4 	 𝒴

 	 yscr; 	 U+1D4CE 	 𝓎

 	 YUcy; 	 U+0042E 	 Ю

 	 yucy; 	 U+0044E 	 ю

 	 Yuml; 	 U+00178 	 Ÿ

 	 yuml; 	 U+000FF 	 ÿ

 	 yuml 	 U+000FF 	 ÿ

 	 Zacute; 	 U+00179 	 Ź

 	 zacute; 	 U+0017A 	 ź

 	 Zcaron; 	 U+0017D 	 Ž

 	 zcaron; 	 U+0017E 	 ž

 	 Zcy; 	 U+00417 	 З

 	 zcy; 	 U+00437 	 з

 	 Zdot; 	 U+0017B 	 Ż

 	 zdot; 	 U+0017C 	 ż

 	 zeetrf; 	 U+02128 	 ℨ

 	 ZeroWidthSpace; 	 U+0200B 	

 	 Zeta; 	 U+00396 	 Ζ

 	 zeta; 	 U+003B6 	 ζ

 	 Zfr; 	 U+02128 	 ℨ

 	 zfr; 	 U+1D537 	 𝔷

 	 ZHcy; 	 U+00416 	 Ж

 	 zhcy; 	 U+00436 	 ж

 	 zigrarr; 	 U+021DD 	 ⇝

 	 Zopf; 	 U+02124 	 ℤ

 	 zopf; 	 U+1D56B 	 𝕫

 	 Zscr; 	 U+1D4B5 	 𝒵

 	 zscr; 	 U+1D4CF 	 𝓏

 	 zwj; 	 U+0200D 	 ‍

 	 zwnj; 	 U+0200C 	 ‌

 This data is also available as a JSON
 file.

 The glyphs displayed above are non-normative. Refer to the
 Unicode specifications for formal definitions of the characters
 listed above.

9 The XHTML syntax

 This section only describes the rules for XML
 resources. Rules for text/html resources are discussed
 in the section above entitled "The HTML syntax".

 9.1 Writing XHTML documents

 The syntax for using HTML with XML, whether in XHTML documents or
 embedded in other XML documents, is defined in the XML and
 Namespaces in XML specifications. [XML] [XMLNS]

 This specification does not define any syntax-level requirements
 beyond those defined for XML proper.

 XML documents may contain a DOCTYPE if desired, but
 this is not required to conform to this specification. This
 specification does not define a public or system identifier, nor
 provide a formal DTD.

 According to the XML specification, XML processors
 are not guaranteed to process the external DTD subset referenced in
 the DOCTYPE. This means, for example, that using entity references
 for characters in XHTML documents is unsafe if they are defined in
 an external file (except for <, >, &, " and ').

 9.2 Parsing XHTML documents

 This section describes the relationship between XML and the DOM, with a particular emphasis on
 how this interacts with HTML.

 An XML parser, for the purposes of this specification, is a construct that follows
 the rules given in the XML specification to map a string of bytes or characters into a
 Document object.

 At the time of writing, no such rules actually exist.

 An XML parser is either associated with a Document object when it is
 created, or creates one implicitly.

 This Document must then be populated with DOM nodes that represent the tree
 structure of the input passed to the parser, as defined by the XML specification, the Namespaces
 in XML specification, and the DOM specification. DOM mutation events must not fire for the
 operations that the XML parser performs on the Document's tree, but the
 user agent must act as if elements and attributes were individually appended and set respectively
 so as to trigger rules in this specification regarding what happens when an element is inserted
 into a document or has its attributes set, and the DOM specification's requirements regarding
 mutation observers mean that mutation observers are fired (unlike mutation events). [XML] [XMLNS] [DOM] [DOMEVENTS]

 Between the time an element's start tag is parsed and the time either the element's end tag is
 parsed or the parser detects a well-formedness error, the user agent must act as if the element
 was in a stack of open elements.

 This is used by the object element to avoid instantiating plugins
 before the param element children have been parsed.

 This specification provides the following additional information that user agents should use
 when retrieving an external entity: the public identifiers given in the following list all
 correspond to the URL given by this link. (This
 URL is a DTD containing the entity reference declarations for the names listed in the named
 character references section.)

 	-//W3C//DTD XHTML 1.0 Transitional//EN

 	-//W3C//DTD XHTML 1.1//EN

 	-//W3C//DTD XHTML 1.0 Strict//EN

 	-//W3C//DTD XHTML 1.0 Frameset//EN

 	-//W3C//DTD XHTML Basic 1.0//EN

 	-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN

 	-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN

 	-//W3C//DTD MathML 2.0//EN

 	-//WAPFORUM//DTD XHTML Mobile 1.0//EN

 Furthermore, user agents should attempt to retrieve the above external entity's content when
 one of the above public identifiers is used, and should not attempt to retrieve any other external
 entity's content.

 This is not strictly a violation of the XML
 specification, but it does contradict the spirit of the XML specification's requirements. This is
 motivated by a desire for user agents to all handle entities in an interoperable fashion without
 requiring any network access for handling external subsets. [XML]

 When an XML parser creates a script element, it
 must be marked as being "parser-inserted" and its "force-async" flag
 must be unset. If the parser was originally created for the XML fragment parsing
 algorithm, then the element must be marked as "already started" also. When the
 element's end tag is parsed, the user agent must perform a microtask checkpoint,
 provide a stable state, and then prepare the
 script element. If this causes there to be a pending parsing-blocking
 script, then the user agent must run the following steps:

 	Block this instance of the XML parser, such that the event loop
 will not run tasks that invoke it.

 	Spin the event loop until the parser's Document has no
 style sheet that is blocking scripts and the pending parsing-blocking
 script's "ready to be parser-executed" flag is set.

 	Unblock this instance of the XML parser, such that tasks that invoke it can again be run.

 	Execute the pending parsing-blocking
 script.

 	There is no longer a pending parsing-blocking script.

 Since the document.write() API is not
 available for XML documents, much of the complexity in the HTML parser
 is not needed in the XML parser.

 When an XML parser creates a Node object, its ownerDocument must be set to the Document of
 the node into which the newly created node is to be inserted.

 Certain algorithms in this specification spoon-feed the
 parser characters one string at a time. In such cases, the XML parser must act
 as it would have if faced with a single string consisting of the concatenation of all those
 characters.

 When an XML parser reaches the end of its input, it must stop
 parsing, following the same rules as the HTML parser. An XML
 parser can also be aborted, which must again by done in
 the same way as for an HTML parser.

 For the purposes of conformance checkers, if a resource is determined to be in the XHTML
 syntax, then it is an XML document.

 9.3 Serializing XHTML fragments

 The XML fragment serialization algorithm for a
 Document or Element node either returns a
 fragment of XML that represents that node or throws an
 exception.

 For Documents, the algorithm must return a string in
 the form of a document
 entity, if none of the error cases below apply.

 For Elements, the algorithm must return a string in
 the form of an internal general parsed
 entity, if none of the error cases below apply.

 In both cases, the string returned must be XML
 namespace-well-formed and must be an isomorphic serialization of all
 of that node's relevant child nodes, in tree order. User agents
 may adjust prefixes and namespace declarations in the serialization
 (and indeed might be forced to do so in some cases to obtain
 namespace-well-formed XML). User agents may use a combination of
 regular text and character references to represent
 Text nodes in the DOM.

 A node's relevant child nodes are those that apply given the following rules:

 	For all nodes

 	The relevant child nodes are the child nodes of node itself, if any.

 For Elements, if any of the elements in the
 serialization are in no namespace, the default namespace in scope
 for those elements must be explicitly declared as the empty
 string. (This doesn't
 apply in the Document case.) [XML] [XMLNS]

 For the purposes of this section, an internal general parsed
 entity is considered XML namespace-well-formed if a document
 consisting of an element with no namespace declarations whose
 contents are the internal general parsed entity would itself be XML
 namespace-well-formed.

 If any of the following error cases are found in the DOM subtree
 being serialized, then the algorithm must throw an
 InvalidStateError exception instead of returning a
 string:

 	A Document node with no child element nodes.

 	A DocumentType node that has an external subset
 public identifier that contains characters that are not matched by
 the XML PubidChar production. [XML]

 	A DocumentType node that has an external subset
 system identifier that contains both a """ (U+0022)
 and a "'" (U+0027) or that contains characters that are
 not matched by the XML Char production. [XML]

 	A node with a local name containing a ":" (U+003A).

 	A node with a local name that does not match
 the XML Name production. [XML]

 	An Attr node with no namespace whose local name is
 the lowercase string "xmlns". [XMLNS]

 	An Element node with two or more attributes with
 the same local name and namespace.

 	An Attr node, Text node,
 Comment node, or ProcessingInstruction
 node whose data contains characters that are not matched by the XML
 Char production. [XML]

 	A Comment node whose data contains two adjacent
 "-" (U+002D) characters or ends with such a
 character.

 	A ProcessingInstruction node whose target name is
 an ASCII case-insensitive match for the string "xml".

 	A ProcessingInstruction node whose target name
 contains a ":" (U+003A).

 	A ProcessingInstruction node whose data contains
 the string "?>".

 These are the only ways to make a DOM
 unserializable. The DOM enforces all the other XML constraints; for
 example, trying to append two elements to a Document
 node will throw a HierarchyRequestError exception.

 9.4 Parsing XHTML fragments

 The XML fragment parsing algorithm either returns a
 Document or throws a SyntaxError exception.
 Given a string input and an optional context
 element context, the
 algorithm is as follows:

 	

 Create a new XML parser.

 	

 If there is a context element, feed the
 parser just created the string corresponding to the start tag of that element, declaring
 all the namespace prefixes that are in scope on that element in the DOM, as well as declaring
 the default namespace (if any) that is in scope on that element in the DOM.

 A namespace prefix is in scope if the DOM lookupNamespaceURI() method
 on the element would return a non-null value for that prefix.

 The default namespace is the namespace for which the DOM isDefaultNamespace() method on the element would return true.

 If there is a context element, no
 DOCTYPE is passed to the parser, and therefore no external subset is
 referenced, and therefore no entities will be recognized.

 	

 Feed the parser just created the string input.

 	

 If there is a context element,
 feed the parser just created the string corresponding
 to the end tag of that element.

 	

 If there is an XML well-formedness or XML namespace
 well-formedness error, then throw a SyntaxError
 exception and abort these steps.

 	

 If there is a context element, and the
 root element of the resulting Document has any
 sibling nodes, then throw a SyntaxError exception and
 abort these steps.

 	

 If there is a context element, then
 return the child nodes of the root element of the resulting
 Document, in tree order.

 Otherwise, return the children of the Document
 object, in tree order.

 10 Rendering

 User agents are not required to present HTML documents in any
 particular way. However, this section provides a set of suggestions
 for rendering HTML documents that, if followed, are likely to lead
 to a user experience that closely resembles the experience intended
 by the documents' authors. So as to avoid confusion regarding the
 normativity of this section, RFC2119 terms have not been used.
 Instead, the term "expected" is used to indicate behavior that will
 lead to this experience. For the purposes of conformance for user
 agents designated as supporting the suggested
 default rendering, the term "expected" in this section has the
 same conformance implications as the RFC2119-defined term
 "must".

 10.1 Introduction

 In general, user agents are expected to support CSS, and many of the suggestions in this
 section are expressed in CSS terms. User agents that use other presentation mechanisms can derive
 their expected behavior by translating from the CSS rules given in this section.

 In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents are
 expected to render an element so that it conveys to the user the meaning that the element
 represents, as described by this specification.

 The suggestions in this section generally assume a visual output medium with a resolution of
 96dpi or greater, but HTML is intended to apply to multiple media (it is a
 media-independent language). User agent implementors are encouraged to adapt the
 suggestions in this section to their target media.

 An element is being rendered if it has any associated CSS layout boxes, SVG layout
 boxes, or some equivalent in other styling languages.

 Just being off-screen does not mean the element is not being
 rendered. The presence of the hidden attribute normally
 means the element is not being rendered, though this might be overridden by the style
 sheets.

 User agents that do not honor author-level CSS style sheets are nonetheless expected to act as
 if they applied the CSS rules given in these sections in a manner consistent with this
 specification and the relevant CSS and Unicode specifications. [CSS] [UNICODE] [BIDI]

 This is especially important for issues relating to the 'display', 'unicode-bidi',
 and 'direction' properties.

 10.2 The CSS user agent style sheet and presentational hints

 The CSS rules given in these subsections are, except where
 otherwise specified, expected to be used as part of the user-agent
 level style sheet defaults for all documents that contain HTML
 elements.

 Some rules are intended for the author-level zero-specificity
 presentational hints part of the CSS cascade; these are explicitly
 called out as presentational hints.

 Some of the rules regarding left and right margins are given here
 as appropriate for elements whose 'direction' property is 'ltr', and
 are expected to be flipped around on elements whose 'direction'
 property is 'rtl'. These are marked "LTR-specific".

 These markings only affect the handling of attribute
 values, not attribute names or element names.

 When the text below says that an attribute attribute on an element element
 maps to the pixel length property (or properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value
 using the rules for parsing non-negative integers
 doesn't generate an error, then the user agent is expected to use
 the parsed value as a pixel length for a presentational hint for properties.

 When the text below says that an attribute attribute on an element element
 maps to the dimension property (or properties) properties, it means that if element has an attribute attribute set, and parsing that attribute's value
 using the rules for parsing dimension values doesn't
 generate an error, then the user agent is expected to use the parsed
 dimension as the value for a presentational hint for properties, with the value given as a pixel length if
 the dimension was an integer, and with the value given as a
 percentage if the dimension was a percentage.

 When a user agent is to align descendants of a node,
 the user agent is expected to align only those descendants that have
 both their 'margin-left' and 'margin-right' properties computing to
 a value other than 'auto', that are over-constrained and that have
 one of those two margins with a used value forced to a greater
 value, and that do not themselves have an applicable align attribute. When multiple elements
 are to align a particular
 descendant, the most deeply nested such element is expected to
 override the others. Aligned elements are expected to be aligned by
 having the used values of their left and right margins be set
 accordingly.

 10.3 Non-replaced elements

 10.3.1 Hidden elements

 @namespace url(http://www.w3.org/1999/xhtml);

[hidden], area, base, basefont, datalist, head, input[type=hidden i],
link, meta, noembed, noframes, param, rp, script,
source, style, track, title {
 display: none;
}

embed[hidden] { display: inline; height: 0; width: 0; }

 The user agent is expected to force the 'display' property of noscript elements
 for whom scripting is enabled to compute to 'none',
 irrespective of CSS rules.

 The user agent is expected to force the 'display' property of input elements whose
 type attribute is in the Hidden state to compute to 'none', irrespective of CSS
 rules.

 10.3.2 The page

 @namespace url(http://www.w3.org/1999/xhtml);

html, body { display: block; }

 For each property in the table below, given a body
 element, the first attribute that exists maps to the pixel
 length property on the body element. If none of
 the attributes for a property are found, or if the value of the
 attribute that was found cannot be parsed successfully, then, if the
 body element's Document's browsing
 context does not have its seamless browsing context
 flag set, a default value of 8px is expected to be used for
 that property instead.

 	Property
 	Source

 	'margin-top'
 	body element's marginheight attribute

 	The body element's container frame element's marginheight attribute

 	body element's topmargin attribute

 	'margin-right'
 	body element's marginwidth attribute

 	The body element's container frame element's marginwidth attribute

 	body element's rightmargin attribute

 	'margin-bottom'
 	body element's marginheight attribute

 	The body element's container frame element's marginheight attribute

 	body element's bottommargin attribute

 	'margin-left'
 	body element's marginwidth attribute

 	The body element's container frame element's marginwidth attribute

 	body element's leftmargin attribute

 If the body element's Document's
 browsing context is a nested browsing
 context, and the browsing context container of
 that nested browsing context is a frame or
 iframe element, then the container frame
 element of the body element is that
 frame or iframe element. Otherwise, there
 is no container frame element.

 The above requirements imply that a page can
 change the margins of another page (including one from another
 origin) using, for example, an
 iframe. This is potentially a security risk, as it
 might in some cases allow an attack to contrive a situation in which
 a page is rendered not as the author intended, possibly for the
 purposes of phishing or otherwise misleading the user.

 If the Document has a root element, and
 the Document's browsing context is a
 nested browsing context, and the browsing context
 container of that nested browsing context is a
 frame or iframe element, and that element
 has a scrolling
 attribute, then the user agent is expected to compare the value of
 the attribute in an ASCII case-insensitive manner to
 the values in the first column of the following table, and if one of
 them matches, then the user agent is expected to treat that
 attribute as a presentational
 hint for the aforementioned root element's 'overflow'
 property, setting it to the value given in the corresponding cell on
 the same row in the second column:

 	 Attribute value
 	 'overflow' value

 	on
 	'scroll'

 	scroll
 	'scroll'

 	yes
 	'scroll'

 	off
 	'hidden'

 	noscroll
 	'hidden'

 	no
 	'hidden'

 	auto
 	'auto'

 When a body element has a background attribute set to a
 non-empty value, the new value is expected to be resolved relative to the element, and
 if this is successful, the user agent is expected to treat the
 attribute as a presentational
 hint setting the element's 'background-image' property to the
 resulting absolute URL.

 When a body element has a bgcolor attribute set, the new
 value is expected to be parsed using the rules for parsing a
 legacy color value, and if that does not return an error, the
 user agent is expected to treat the attribute as a presentational hint setting the
 element's 'background-color' property to the resulting color.

 When a body element has a text attribute, its value is expected
 to be parsed using the rules for parsing a legacy color
 value, and if that does not return an error, the user
 agent is expected to treat the attribute as a presentational hint setting the
 element's 'color' property to the resulting color.

 When a body element has a link attribute, its value is expected
 to be parsed using the rules for parsing a legacy color
 value, and if that does not return an error, the user agent
 is expected to treat the attribute as a presentational hint setting the 'color' property of
 any element in the Document matching the ':link'
 pseudo-class to the resulting color.

 When a body element has a vlink attribute, its value is
 expected to be parsed using the rules for parsing a legacy
 color value, and if that does not return an error, the user
 agent is expected to treat the attribute as a presentational hint setting the
 'color' property of any element in the Document
 matching the ':visited' pseudo-class to the resulting color.

 When a body element has a alink attribute, its value is
 expected to be parsed using the rules for parsing a legacy
 color value, and if that does not return an error, the user
 agent is expected to treat the attribute as a presentational hint setting the
 'color' property of any element in the Document
 matching the ':active' pseudo-class and either the ':link'
 pseudo-class or the ':visited' pseudo-class to the resulting
 color.

 10.3.3 Flow content

 @namespace url(http://www.w3.org/1999/xhtml);

address, blockquote, center, div, figure, figcaption, footer, form,
header, hr, legend, listing, p, plaintext, pre, summary, xmp {
 display: block;
}

blockquote, figure, listing, p, plaintext, pre, xmp {
 margin-top: 1em; margin-bottom: 1em;
}

blockquote, figure { margin-left: 40px; margin-right: 40px; }

address { font-style: italic; }
listing, plaintext, pre, xmp {
 font-family: monospace; white-space: pre;
}

dialog:not([open]) { display: none; }
dialog {
 position: absolute;
 left: 0; right: 0;
 margin: auto;
 border: solid;
 padding: 1em;
 background: white;
 color: black;
}
dialog::backdrop { background: rgba(0,0,0,0.1); }

 The following rules are also expected to apply, as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

pre[wrap] { white-space: pre-wrap; }

 In quirks mode, the following rules are also
 expected to apply:

 @namespace url(http://www.w3.org/1999/xhtml);

form { margin-bottom: 1em; }

 The center element, and the div element
 when it has an align attribute
 whose value is an ASCII case-insensitive match for
 either the string "center" or the string
 "middle", are expected to center text within
 themselves, as if they had their 'text-align' property set to
 'center' in a presentational
 hint, and to align descendants to the
 center.

 The div element, when it has an align attribute whose value is an
 ASCII case-insensitive match for the string "left", is expected to left-align text within itself,
 as if it had its 'text-align' property set to 'left' in a presentational hint, and to
 align descendants to the left.

 The div element, when it has an align attribute whose value is an
 ASCII case-insensitive match for the string "right", is expected to right-align text within
 itself, as if it had its 'text-align' property set to 'right' in a
 presentational hint, and
 to align descendants to the right.

 The div element, when it has an align attribute whose value is an
 ASCII case-insensitive match for the string "justify", is expected to full-justify text within
 itself, as if it had its 'text-align' property set to 'justify' in a
 presentational hint, and
 to align descendants to the left.

 10.3.4 Phrasing content

 @namespace url(http://www.w3.org/1999/xhtml);

cite, dfn, em, i, var { font-style: italic; }
b, strong { font-weight: bolder; }
code, kbd, samp, tt { font-family: monospace; }
big { font-size: larger; }
small { font-size: smaller; }

sub { vertical-align: sub; }
sup { vertical-align: super; }
sub, sup { line-height: normal; font-size: smaller; }

ruby { display: ruby; }
rt { display: ruby-text; }

:link { color: #0000EE; }
:visited { color: #551A8B; }
:link, :visited { text-decoration: underline; }
a:link[rel~=help], a:visited[rel~=help],
area:link[rel~=help], area:visited[rel~=help] { cursor: help; }

:focus { outline: auto; }

mark { background: yellow; color: black; } /* this color is just a suggestion and can be changed based on implementation feedback */

abbr[title], acronym[title] { text-decoration: dotted underline; }
ins, u { text-decoration: underline; }
del, s, strike { text-decoration: line-through; }
blink { text-decoration: blink; }

q::before { content: open-quote; }
q::after { content: close-quote; }

br { content: '\A'; white-space: pre; }
nobr { white-space: nowrap; }
wbr { content: '\200B'; }
nobr wbr { white-space: normal; }

 The following rules are also expected to apply, as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

br[clear=left i] { clear: left; }
br[clear=right i] { clear: right; }
br[clear=all i], br[clear=both i] { clear: both; }

 For the purposes of the CSS ruby model, runs of children of
 ruby elements that are not rt or
 rp elements are expected to be wrapped in anonymous
 boxes whose 'display' property has the value 'ruby-base'. [CSSRUBY]

 When a particular part of a ruby has more than one annotation,
 the annotations should be distributed on both sides of the base text
 so as to minimize the stacking of ruby annotations on one side.

 When it becomes possible to do so, the preceding
 requirement will be updated to be expressed in terms of CSS ruby.
 (Currently, CSS ruby does not handle nested ruby
 elements or multiple sequential rt elements, which is
 how this semantic is expressed.)

 User agents that do not support correct ruby rendering are
 expected to render parentheses around the text of rt
 elements in the absence of rp elements.

 User agents are expected to
 support the 'clear' property on inline elements (in order to render
 br elements with clear attributes) in the manner
 described in the non-normative note to this effect in CSS2.1.

 The initial value for the 'color' property is expected to be
 black. The initial value for the 'background-color' property is
 expected to be 'transparent'. The canvas' background is expected to
 be white.

 When a font element has a color attribute, its value is
 expected to be parsed using the rules for parsing a legacy
 color value, and if that does not return an error, the user
 agent is expected to treat the attribute as a presentational hint setting the
 element's 'color' property to the resulting color.

 When a font element has a face attribute, the user agent is
 expected to treat the attribute as a presentational hint setting the element's
 'font-family' property to the attribute's value.

 When a font element has a size attribute, the user agent is
 expected to use the following steps, known as the rules for
 parsing a legacy font size, to treat the attribute as a presentational hint setting the
 element's 'font-size' property:

 	Let input be the attribute's
 value.

 	Let position be a pointer into input, initially pointing at the start of the
 string.

 	Skip whitespace.

 	If position is past the end of input, there is no presentational hint. Abort these steps.

 	If the character at position is a "+" (U+002B) character, then let mode be
 relative-plus, and advance position to
 the next character. Otherwise, if the character at position is a "-" (U+002D) character,
 then let mode be relative-minus, and
 advance position to the next
 character. Otherwise, let mode be
 absolute.

 	Collect a sequence of characters that are ASCII digits, and let the
 resulting sequence be digits.

 	If digits is the empty string, there is
 no presentational
 hint. Abort these steps.

 	Interpret digits as a base-ten
 integer. Let value be the resulting
 number.

 	

 If mode is relative-plus, then
 increment value by 3. If mode is relative-minus, then let value be the result of subtracting value from 3.

 	If value is greater than 7, let it be
 7.

 	If value is less than 1, let it be
 1.

 	

 Set 'font-size' to the keyword corresponding to the value of
 value according to the following table:

 	value
 	'font-size' keyword
 	Notes

 	1
 	x-small
 	

 	2
 	small
 	

 	3
 	medium
 	

 	4
 	large
 	

 	5
 	x-large
 	

 	6
 	xx-large
 	

 	7
 	xxx-large
 	see below

 The 'xxx-large' value is a non-CSS value used here to
 indicate a font size 50% larger than 'xx-large'.

 10.3.5 Bidirectional text

 @namespace url(http://www.w3.org/1999/xhtml);

[dir]:dir(ltr), bdi:dir(ltr), input[type=tel]:dir(ltr) { direction: ltr; }
[dir]:dir(rtl), bdi:dir(rtl) { direction: rtl; }

address, blockquote, center, div, figure, figcaption, footer, form,
header, hr, legend, listing, p, plaintext, pre, summary, xmp, article,
aside, h1, h2, h3, h4, h5, h6, hgroup, main, nav, section, table, caption,
colgroup, col, thead, tbody, tfoot, tr, td, th, dir, dd, dl, dt,
ol, ul, li {
 unicode-bidi: isolate;
}

:matches([dir=ltr i], [dir=rtl i], [dir=auto i]):not(address):not(blockquote
):not(center):not(div):not(figure):not(figcaption):not(footer):not(form
):not(header):not(hr):not(legend):not(listing):not(main):not(p):not(plaintext):not(pre
):not(summary):not(xmp):not(article):not(aside):not(h1):not(h2):not(h3):not(h4
):not(h5):not(h6):not(hgroup):not(nav):not(section):not(table):not(caption
):not(colgroup):not(col):not(thead):not(tbody):not(tfoot):not(tr):not(td
):not(th):not(dir):not(dd):not(dl):not(dt):not(ol):not(ul):not(li) {
 unicode-bidi: embed;
}

bdi, bdi:matches([dir=ltr i], [dir=rtl i]),
output, output:matches([dir=ltr i], [dir=rtl i]),
[dir=auto i] {
 unicode-bidi: isolate;
}

bdo, bdo:matches([dir=ltr i], [dir=rtl i]) { unicode-bidi: bidi-override; }
bdo[dir=auto i] { unicode-bidi: isolate-override; }

textarea[dir=auto i], pre[dir=auto i] { unicode-bidi: plaintext; }

 Input fields (i.e. textarea elements, and input elements when their
 type attribute is in the Text, Search,
 Telephone, URL,
 or E-mail state) are expected to present an editing
 user interface with a directionality that matches the element's 'direction' property.

 10.3.6 Quotes

 This block is automatically generated from the Unicode Common
 Locale Data Repository. [CLDR]

 User agents are expected to use either the block below (which
 will be regularly updated) or to automatically generate their own
 copy directly from the source material. The language codes are
 derived from the CLDR file names. The quotes are derived from the
 delimiter blocks, with fallback handled as
 specified in the CLDR documentation.

 @namespace url(http://www.w3.org/1999/xhtml);

﻿:root { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(af), :not(:lang(af)) > :lang(af) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(agq), :not(:lang(agq)) > :lang(agq) { quotes: '\201e' '\201d' '\201a' '\2019' } /* „ ” ‚ ’ */
:root:lang(ak), :not(:lang(ak)) > :lang(ak) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(am), :not(:lang(am)) > :lang(am) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(ar), :not(:lang(ar)) > :lang(ar) { quotes: '\201d' '\201c' '\2019' '\2018' } /* ” “ ’ ‘ */
:root:lang(asa), :not(:lang(asa)) > :lang(asa) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(az-Cyrl), :not(:lang(az-Cyrl)) > :lang(az-Cyrl) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(bas), :not(:lang(bas)) > :lang(bas) { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(bem), :not(:lang(bem)) > :lang(bem) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bez), :not(:lang(bez)) > :lang(bez) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bg), :not(:lang(bg)) > :lang(bg) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(bm), :not(:lang(bm)) > :lang(bm) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(bn), :not(:lang(bn)) > :lang(bn) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(br), :not(:lang(br)) > :lang(br) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(brx), :not(:lang(brx)) > :lang(brx) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(bs-Cyrl), :not(:lang(bs-Cyrl)) > :lang(bs-Cyrl) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(ca), :not(:lang(ca)) > :lang(ca) { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(cgg), :not(:lang(cgg)) > :lang(cgg) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(chr), :not(:lang(chr)) > :lang(chr) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(cs), :not(:lang(cs)) > :lang(cs) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(da), :not(:lang(da)) > :lang(da) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(dav), :not(:lang(dav)) > :lang(dav) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(de), :not(:lang(de)) > :lang(de) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(de-CH), :not(:lang(de-CH)) > :lang(de-CH) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(dje), :not(:lang(dje)) > :lang(dje) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(dua), :not(:lang(dua)) > :lang(dua) { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(dyo), :not(:lang(dyo)) > :lang(dyo) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(dz), :not(:lang(dz)) > :lang(dz) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ebu), :not(:lang(ebu)) > :lang(ebu) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ee), :not(:lang(ee)) > :lang(ee) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(el), :not(:lang(el)) > :lang(el) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(en), :not(:lang(en)) > :lang(en) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(es), :not(:lang(es)) > :lang(es) { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(et), :not(:lang(et)) > :lang(et) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(eu), :not(:lang(eu)) > :lang(eu) { quotes: '\201c' '\201d' '\00ab' '\00bb' } /* “ ” « » */
:root:lang(ewo), :not(:lang(ewo)) > :lang(ewo) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(fa), :not(:lang(fa)) > :lang(fa) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(ff), :not(:lang(ff)) > :lang(ff) { quotes: '\201e' '\201d' '\201a' '\2019' } /* „ ” ‚ ’ */
:root:lang(fi), :not(:lang(fi)) > :lang(fi) { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(fr), :not(:lang(fr)) > :lang(fr) { quotes: '\00ab' '\00bb' '\00ab' '\00bb' } /* « » « » */
:root:lang(fr-CA), :not(:lang(fr-CA)) > :lang(fr-CA) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(fr-CH), :not(:lang(fr-CH)) > :lang(fr-CH) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(gsw), :not(:lang(gsw)) > :lang(gsw) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(gu), :not(:lang(gu)) > :lang(gu) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(guz), :not(:lang(guz)) > :lang(guz) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ha), :not(:lang(ha)) > :lang(ha) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(he), :not(:lang(he)) > :lang(he) { quotes: '\0022' '\0022' '\0027' '\0027' } /* " " ' ' */
:root:lang(hi), :not(:lang(hi)) > :lang(hi) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(hr), :not(:lang(hr)) > :lang(hr) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(hu), :not(:lang(hu)) > :lang(hu) { quotes: '\201e' '\201d' '\00bb' '\00ab' } /* „ ” » « */
:root:lang(id), :not(:lang(id)) > :lang(id) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ig), :not(:lang(ig)) > :lang(ig) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(it), :not(:lang(it)) > :lang(it) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(ja), :not(:lang(ja)) > :lang(ja) { quotes: '\300c' '\300d' '\300e' '\300f' } /* 「 」 『 』 */
:root:lang(jgo), :not(:lang(jgo)) > :lang(jgo) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(jmc), :not(:lang(jmc)) > :lang(jmc) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kab), :not(:lang(kab)) > :lang(kab) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(kam), :not(:lang(kam)) > :lang(kam) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kde), :not(:lang(kde)) > :lang(kde) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kea), :not(:lang(kea)) > :lang(kea) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(khq), :not(:lang(khq)) > :lang(khq) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ki), :not(:lang(ki)) > :lang(ki) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kkj), :not(:lang(kkj)) > :lang(kkj) { quotes: '\00ab' '\00bb' '\2039' '\203a' } /* « » ‹ › */
:root:lang(kln), :not(:lang(kln)) > :lang(kln) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(km), :not(:lang(km)) > :lang(km) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(kn), :not(:lang(kn)) > :lang(kn) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ko), :not(:lang(ko)) > :lang(ko) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ksb), :not(:lang(ksb)) > :lang(ksb) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ksf), :not(:lang(ksf)) > :lang(ksf) { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(lag), :not(:lang(lag)) > :lang(lag) { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(lg), :not(:lang(lg)) > :lang(lg) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ln), :not(:lang(ln)) > :lang(ln) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(lo), :not(:lang(lo)) > :lang(lo) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(lt), :not(:lang(lt)) > :lang(lt) { quotes: '\201e' '\201c' '\201e' '\201c' } /* „ “ „ “ */
:root:lang(lu), :not(:lang(lu)) > :lang(lu) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(luo), :not(:lang(luo)) > :lang(luo) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(luy), :not(:lang(luy)) > :lang(luy) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(lv), :not(:lang(lv)) > :lang(lv) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mas), :not(:lang(mas)) > :lang(mas) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mer), :not(:lang(mer)) > :lang(mer) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mfe), :not(:lang(mfe)) > :lang(mfe) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mg), :not(:lang(mg)) > :lang(mg) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(mgo), :not(:lang(mgo)) > :lang(mgo) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mk), :not(:lang(mk)) > :lang(mk) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(ml), :not(:lang(ml)) > :lang(ml) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mr), :not(:lang(mr)) > :lang(mr) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ms), :not(:lang(ms)) > :lang(ms) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(mua), :not(:lang(mua)) > :lang(mua) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(my), :not(:lang(my)) > :lang(my) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(naq), :not(:lang(naq)) > :lang(naq) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nb), :not(:lang(nb)) > :lang(nb) { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(nd), :not(:lang(nd)) > :lang(nd) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nl), :not(:lang(nl)) > :lang(nl) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nmg), :not(:lang(nmg)) > :lang(nmg) { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(nn), :not(:lang(nn)) > :lang(nn) { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(nnh), :not(:lang(nnh)) > :lang(nnh) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(nus), :not(:lang(nus)) > :lang(nus) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(nyn), :not(:lang(nyn)) > :lang(nyn) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(pl), :not(:lang(pl)) > :lang(pl) { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(pt), :not(:lang(pt)) > :lang(pt) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(pt-PT), :not(:lang(pt-PT)) > :lang(pt-PT) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(rn), :not(:lang(rn)) > :lang(rn) { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(ro), :not(:lang(ro)) > :lang(ro) { quotes: '\201e' '\201d' '\00ab' '\00bb' } /* „ ” « » */
:root:lang(rof), :not(:lang(rof)) > :lang(rof) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ru), :not(:lang(ru)) > :lang(ru) { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(rw), :not(:lang(rw)) > :lang(rw) { quotes: '\00ab' '\00bb' '\2018' '\2019' } /* « » ‘ ’ */
:root:lang(rwk), :not(:lang(rwk)) > :lang(rwk) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(saq), :not(:lang(saq)) > :lang(saq) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sbp), :not(:lang(sbp)) > :lang(sbp) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(seh), :not(:lang(seh)) > :lang(seh) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ses), :not(:lang(ses)) > :lang(ses) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sg), :not(:lang(sg)) > :lang(sg) { quotes: '\00ab' '\00bb' '\201c' '\201d' } /* « » “ ” */
:root:lang(shi), :not(:lang(shi)) > :lang(shi) { quotes: '\00ab' '\00bb' '\201e' '\201d' } /* « » „ ” */
:root:lang(shi-Latn), :not(:lang(shi-Latn)) > :lang(shi-Latn) { quotes: '\00ab' '\00bb' '\201e' '\201d' } /* « » „ ” */
:root:lang(si), :not(:lang(si)) > :lang(si) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sk), :not(:lang(sk)) > :lang(sk) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sl), :not(:lang(sl)) > :lang(sl) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sn), :not(:lang(sn)) > :lang(sn) { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(so), :not(:lang(so)) > :lang(so) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(sq), :not(:lang(sq)) > :lang(sq) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sr), :not(:lang(sr)) > :lang(sr) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sr-Latn), :not(:lang(sr-Latn)) > :lang(sr-Latn) { quotes: '\201e' '\201c' '\201a' '\2018' } /* „ “ ‚ ‘ */
:root:lang(sv), :not(:lang(sv)) > :lang(sv) { quotes: '\201d' '\201d' '\2019' '\2019' } /* ” ” ’ ’ */
:root:lang(sw), :not(:lang(sw)) > :lang(sw) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(swc), :not(:lang(swc)) > :lang(swc) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ta), :not(:lang(ta)) > :lang(ta) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(te), :not(:lang(te)) > :lang(te) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(teo), :not(:lang(teo)) > :lang(teo) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(th), :not(:lang(th)) > :lang(th) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(ti-ER), :not(:lang(ti-ER)) > :lang(ti-ER) { quotes: '\2018' '\2019' '\201c' '\201d' } /* ‘ ’ “ ” */
:root:lang(to), :not(:lang(to)) > :lang(to) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(tr), :not(:lang(tr)) > :lang(tr) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(twq), :not(:lang(twq)) > :lang(twq) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(tzm), :not(:lang(tzm)) > :lang(tzm) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(uk), :not(:lang(uk)) > :lang(uk) { quotes: '\00ab' '\00bb' '\201e' '\201c' } /* « » „ “ */
:root:lang(ur), :not(:lang(ur)) > :lang(ur) { quotes: '\201d' '\201c' '\2019' '\2018' } /* ” “ ’ ‘ */
:root:lang(vai), :not(:lang(vai)) > :lang(vai) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vai-Latn), :not(:lang(vai-Latn)) > :lang(vai-Latn) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vi), :not(:lang(vi)) > :lang(vi) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(vun), :not(:lang(vun)) > :lang(vun) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(xh), :not(:lang(xh)) > :lang(xh) { quotes: '\2018' '\2019' '\201c' '\201d' } /* ‘ ’ “ ” */
:root:lang(xog), :not(:lang(xog)) > :lang(xog) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(yav), :not(:lang(yav)) > :lang(yav) { quotes: '\00ab' '\00bb' '\00ab' '\00bb' } /* « » « » */
:root:lang(yo), :not(:lang(yo)) > :lang(yo) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(zh), :not(:lang(zh)) > :lang(zh) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */
:root:lang(zh-Hant), :not(:lang(zh-Hant)) > :lang(zh-Hant) { quotes: '\300c' '\300d' '\300e' '\300f' } /* 「 」 『 』 */
:root:lang(zu), :not(:lang(zu)) > :lang(zu) { quotes: '\201c' '\201d' '\2018' '\2019' } /* “ ” ‘ ’ */

 10.3.7 Sections and headings

 @namespace url(http://www.w3.org/1999/xhtml);

article, aside, h1, h2, h3, h4, h5, h6, hgroup, nav, section {
 display: block;
}

h1 { margin-top: 0.67em; margin-bottom: 0.67em; font-size: 2.00em; font-weight: bold; }
h2 { margin-top: 0.83em; margin-bottom: 0.83em; font-size: 1.50em; font-weight: bold; }
h3 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; font-weight: bold; }
h4 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; font-weight: bold; }
h5 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; font-weight: bold; }
h6 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; font-weight: bold; }

 The article, aside, nav, and section
 elements are expected to affect the margins and font size of h1 elements, as well as
 h2–h5 elements that follow h1 elements in
 hgroup elements, based on the nesting depth. If x is a selector
 that matches elements that are either article, aside, nav,
 or section elements, then the following rules capture what is expected:

 @namespace url(http://www.w3.org/1999/xhtml);

x h1 { margin-top: 0.83em; margin-bottom: 0.83em; font-size: 1.50em; }
x x h1 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; }
x x x h1 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x x x h1 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x x x h1 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h2 { margin-top: 1.00em; margin-bottom: 1.00em; font-size: 1.17em; }
x x hgroup > h1 ~ h2 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x x hgroup > h1 ~ h2 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x x hgroup > h1 ~ h2 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h3 { margin-top: 1.33em; margin-bottom: 1.33em; font-size: 1.00em; }
x x hgroup > h1 ~ h3 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x x hgroup > h1 ~ h3 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h4 { margin-top: 1.67em; margin-bottom: 1.67em; font-size: 0.83em; }
x x hgroup > h1 ~ h4 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

x hgroup > h1 ~ h5 { margin-top: 2.33em; margin-bottom: 2.33em; font-size: 0.67em; }

 10.3.8 Lists

 @namespace url(http://www.w3.org/1999/xhtml);

dir, dd, dl, dt, ol, ul { display: block; }
li { display: list-item; }

dir, dl, ol, ul { margin-top: 1em; margin-bottom: 1em; }

dir dir, dir dl, dir ol, dir ul,
dl dir, dl dl, dl ol, dl ul,
ol dir, ol dl, ol ol, ol ul,
ul dir, ul dl, ul ol, ul ul {
 margin-top: 0; margin-bottom: 0;
}

dd { margin-left: 40px; } /* LTR-specific: use 'margin-right' for rtl elements */
dir, ol, ul { padding-left: 40px; } /* LTR-specific: use 'padding-right' for rtl elements */

ol { list-style-type: decimal; }

dir, ul { list-style-type: disc; }

dir dir, dir ul,
ol dir, ol ul,
ul dir, ul ul {
 list-style-type: circle;
}

dir dir dir, dir dir ul,
dir ol dir, dir ol ul,
dir ul dir, dir ul ul,
ol dir dir, ol dir ul,
ol ol dir, ol ol ul,
ol ul dir, ol ul ul,
ul dir dir, ul dir ul,
ul ol dir, ul ol ul,
ul ul dir, ul ul ul {
 list-style-type: square;
}

 The following rules are also expected to apply, as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

ol[type=1], li[type=1] { list-style-type: decimal; }
ol[type=a], li[type=a] { list-style-type: lower-alpha; }
ol[type=A], li[type=A] { list-style-type: upper-alpha; }
ol[type=i], li[type=i] { list-style-type: lower-roman; }
ol[type=I], li[type=I] { list-style-type: upper-roman; }
ul[type=disc i], li[type=disc i] { list-style-type: disc; }
ul[type=circle i], li[type=circle i] { list-style-type: circle; }
ul[type=square i], li[type=square i] { list-style-type: square; }

 When rendering li elements, non-CSS user agents are expected to use the
 ordinal value of the li element to render the counter in the list item
 marker.

 This specification does not yet define the
 CSS-specific rules for rendering li elements, because CSS doesn't yet provide
 sufficient hooks for this purpose.

 10.3.9 Tables

 @namespace url(http://www.w3.org/1999/xhtml);

table { display: table; }
caption { display: table-caption; }
colgroup, colgroup[hidden] { display: table-column-group; }
col, col[hidden] { display: table-column; }
thead, thead[hidden] { display: table-header-group; }
tbody, tbody[hidden] { display: table-row-group; }
tfoot, tfoot[hidden] { display: table-footer-group; }
tr, tr[hidden] { display: table-row; }
td, th, td[hidden], th[hidden] { display: table-cell; }

colgroup[hidden], col[hidden], thead[hidden], tbody[hidden],
tfoot[hidden], tr[hidden], td[hidden], th[hidden] {
 visibility: collapse;
}

table {
 box-sizing: border-box;
 border-spacing: 2px;
 border-collapse: separate;
 text-indent: initial;
}
td, th { padding: 1px; }
th { font-weight: bold; }

thead, tbody, tfoot, table > tr { vertical-align: middle; }
tr, td, th { vertical-align: inherit; }

table, td, th { border-color: gray; }
thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i], table[frame=void i],
table[frame=above i], table[frame=below i], table[frame=hsides i],
table[frame=lhs i], table[frame=rhs i], table[frame=vsides i],
table[frame=box i], table[frame=border i],
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {
 border-color: black;
}

 The following rules are also expected to apply, as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

table[align=left i] { float: left; }
table[align=right i] { float: right; }
table[align=center i] { margin-left: auto; margin-right: auto; }
thead[align=absmiddle i], tbody[align=absmiddle i], tfoot[align=absmiddle i],
tr[align=absmiddle i], td[align=absmiddle i], th[align=absmiddle i] {
 text-align: center;
}

caption[align=bottom i] { caption-side: bottom; }
p[align=left i], h1[align=left i], h2[align=left i], h3[align=left i],
h4[align=left i], h5[align=left i], h6[align=left i] {
 text-align: left;
}
p[align=right i], h1[align=right i], h2[align=right i], h3[align=right i],
h4[align=right i], h5[align=right i], h6[align=right i] {
 text-align: right;
}
p[align=center i], h1[align=center i], h2[align=center i], h3[align=center i],
h4[align=center i], h5[align=center i], h6[align=center i] {
 text-align: center;
}
p[align=justify i], h1[align=justify i], h2[align=justify i], h3[align=justify i],
h4[align=justify i], h5[align=justify i], h6[align=justify i] {
 text-align: justify;
}
thead[valign=top i], tbody[valign=top i], tfoot[valign=top i],
tr[valign=top i], td[valign=top i], th[valign=top i] {
 vertical-align: top;
}
thead[valign=middle i], tbody[valign=middle i], tfoot[valign=middle i],
tr[valign=middle i], td[valign=middle i], th[valign=middle i] {
 vertical-align: middle;
}
thead[valign=bottom i], tbody[valign=bottom i], tfoot[valign=bottom i],
tr[valign=bottom i], td[valign=bottom i], th[valign=bottom i] {
 vertical-align: bottom;
}
thead[valign=baseline i], tbody[valign=baseline i], tfoot[valign=baseline i],
tr[valign=baseline i], td[valign=baseline i], th[valign=baseline i] {
 vertical-align: baseline;
}

td[nowrap], th[nowrap] { white-space: nowrap; }

table[rules=none i], table[rules=groups i], table[rules=rows i],
table[rules=cols i], table[rules=all i] {
 border-style: hidden;
 border-collapse: collapse;
}
table[border] { border-style: outset; } /* only if border is not equivalent to zero */
table[frame=void i] { border-style: hidden; }
table[frame=above i] { border-style: outset hidden hidden hidden; }
table[frame=below i] { border-style: hidden hidden outset hidden; }
table[frame=hsides i] { border-style: outset hidden outset hidden; }
table[frame=lhs i] { border-style: hidden hidden hidden outset; }
table[frame=rhs i] { border-style: hidden outset hidden hidden; }
table[frame=vsides i] { border-style: hidden outset; }
table[frame=box i], table[frame=border i] { border-style: outset; }

table[border] > tr > td, table[border] > tr > th,
table[border] > thead > tr > td, table[border] > thead > tr > th,
table[border] > tbody > tr > td, table[border] > tbody > tr > th,
table[border] > tfoot > tr > td, table[border] > tfoot > tr > th {
 /* only if border is not equivalent to zero */
 border-width: 1px;
 border-style: inset;
}
table[rules=none i] > tr > td, table[rules=none i] > tr > th,
table[rules=none i] > thead > tr > td, table[rules=none i] > thead > tr > th,
table[rules=none i] > tbody > tr > td, table[rules=none i] > tbody > tr > th,
table[rules=none i] > tfoot > tr > td, table[rules=none i] > tfoot > tr > th,
table[rules=groups i] > tr > td, table[rules=groups i] > tr > th,
table[rules=groups i] > thead > tr > td, table[rules=groups i] > thead > tr > th,
table[rules=groups i] > tbody > tr > td, table[rules=groups i] > tbody > tr > th,
table[rules=groups i] > tfoot > tr > td, table[rules=groups i] > tfoot > tr > th,
table[rules=rows i] > tr > td, table[rules=rows i] > tr > th,
table[rules=rows i] > thead > tr > td, table[rules=rows i] > thead > tr > th,
table[rules=rows i] > tbody > tr > td, table[rules=rows i] > tbody > tr > th,
table[rules=rows i] > tfoot > tr > td, table[rules=rows i] > tfoot > tr > th {
 border-width: 1px;
 border-style: none;
}
table[rules=cols i] > tr > td, table[rules=cols i] > tr > th,
table[rules=cols i] > thead > tr > td, table[rules=cols i] > thead > tr > th,
table[rules=cols i] > tbody > tr > td, table[rules=cols i] > tbody > tr > th,
table[rules=cols i] > tfoot > tr > td, table[rules=cols i] > tfoot > tr > th {
 border-width: 1px;
 border-style: none solid;
}
table[rules=all i] > tr > td, table[rules=all i] > tr > th,
table[rules=all i] > thead > tr > td, table[rules=all i] > thead > tr > th,
table[rules=all i] > tbody > tr > td, table[rules=all i] > tbody > tr > th,
table[rules=all i] > tfoot > tr > td, table[rules=all i] > tfoot > tr > th {
 border-width: 1px;
 border-style: solid;
}

table[rules=groups i] > colgroup {
 border-left-width: 1px;
 border-left-style: solid;
 border-right-width: 1px;
 border-right-style: solid;
}
table[rules=groups i] > thead,
table[rules=groups i] > tbody,
table[rules=groups i] > tfoot {
 border-top-width: 1px;
 border-top-style: solid;
 border-bottom-width: 1px;
 border-bottom-style: solid;
}

table[rules=rows i] > tr, table[rules=rows i] > thead > tr,
table[rules=rows i] > tbody > tr, table[rules=rows i] > tfoot > tr {
 border-top-width: 1px;
 border-top-style: solid;
 border-bottom-width: 1px;
 border-bottom-style: solid;
}

 In quirks mode, the following rules are also
 expected to apply:

 @namespace url(http://www.w3.org/1999/xhtml);

table {
 font-weight: initial;
 font-style: initial;
 font-variant: initial;
 font-size: initial;
 line-height: initial;
 white-space: initial;
 text-align: initial;
}

 For the purposes of the CSS table model, the col
 element is expected to be treated as if it was present as many times
 as its span attribute specifies.

 For the purposes of the CSS table model, the
 colgroup element, if it contains no col
 element, is expected to be treated as if it had as many such
 children as its span
 attribute specifies.

 For the purposes of the CSS table model, the colspan and rowspan attributes on
 td and th elements are expected to provide the
 special knowledge regarding cells spanning rows and
 columns.

 In HTML documents, the user agent is expected to
 force the 'display' property of form elements that are
 children of table, thead,
 tbody, tfoot, or tr elements
 to compute to 'none', irrespective of CSS rules.

 The table element's cellspacing attribute
 maps to the pixel length property 'border-spacing' on the
 element.

 The table element's cellpadding attribute maps to the pixel length
 properties 'padding-top', 'padding-right', 'padding-bottom',
 and 'padding-left' of any td and th
 elements that have corresponding cells in the table corresponding to the
 table element.

 The table element's hspace attribute maps to the dimension properties
 'margin-left' and 'margin-right' on the table
 element.

 The table element's vspace attribute maps to the dimension properties
 'margin-top' and 'margin-bottom' on the table
 element.

 The table element's height attribute maps to the
 dimension property 'height' on the table
 element.

 The table element's width attribute maps to the
 dimension property 'width' on the table
 element.

 The col element's width attribute maps to the
 dimension property 'width' on the col
 element.

 The tr element's height attribute maps to the
 dimension property 'height' on the tr
 element.

 The td and th elements' height attributes map to the dimension property 'height'
 on the element.

 The td and th elements' width attributes map to the dimension property 'width'
 on the element.

 The caption element unless specified otherwise
 below, and the thead, tbody,
 tfoot, tr, td, and
 th elements when they have an align attribute whose value is an
 ASCII case-insensitive match for either the string
 "center" or the string "middle", are expected to center text within
 themselves, as if they had their 'text-align' property set to
 'center' in a presentational
 hint, and to align descendants to the
 center.

 The caption, thead, tbody,
 tfoot, tr, td, and
 th elements, when they have an align attribute whose value is an
 ASCII case-insensitive match for the string "left", are expected to left-align text within
 themselves, as if they had their 'text-align' property set to 'left'
 in a presentational hint,
 and to align descendants to the left.

 The caption, thead, tbody,
 tfoot, tr, td, and
 th elements, when they have an align attribute whose value is an
 ASCII case-insensitive match for the string "right", are expected to right-align text within
 themselves, as if they had their 'text-align' property set to
 'right' in a presentational
 hint, and to align descendants to the right.

 The caption, thead, tbody,
 tfoot, tr, td, and
 th elements, when they have an align attribute whose value is an
 ASCII case-insensitive match for the string "justify", are expected to full-justify text within
 themselves, as if they had their 'text-align' property set to
 'justify' in a presentational
 hint, and to align descendants to the left.

 User agents are expected to have a rule in their user agent
 stylesheet that matches th elements that have a parent
 node whose computed value for the 'text-align' property is its
 initial value, whose declaration block consists of just a single
 declaration that sets the 'text-align' property to the value
 'center'.

 When a table, thead,
 tbody, tfoot, tr,
 td, or th element has a background attribute set to a
 non-empty value, the new value is expected to be resolved relative to the element, and
 if this is successful, the user agent is expected to treat the
 attribute as a presentational
 hint setting the element's 'background-image' property to the
 resulting absolute URL.

 When a table, thead,
 tbody, tfoot, tr,
 td, or th element has a bgcolor attribute set, the new value is expected to
 be parsed using the rules for parsing a legacy color
 value, and if that does not return an error, the user agent
 is expected to treat the attribute as a presentational hint setting the element's
 'background-color' property to the resulting color.

 When a table element has a bordercolor attribute, its
 value is expected to be parsed using the rules for parsing a
 legacy color value, and if that does not return an error, the
 user agent is expected to treat the attribute as a presentational hint setting the
 element's 'border-top-color', 'border-right-color',
 'border-bottom-color', and 'border-right-color' properties to the
 resulting color.

 The table element's border attribute maps to the pixel length
 properties 'border-top-width', 'border-right-width',
 'border-bottom-width', 'border-left-width' on the element. If the
 attribute is present but parsing the attribute's value using the
 rules for parsing non-negative integers generates an
 error, a default value of 1px is expected to be used for that
 property instead.

 Rules marked "only if border is
 not equivalent to zero" in the CSS block above is expected to
 only be applied if the border
 attribute mentioned in the selectors for the rule is not only
 present but, when parsed using the rules for parsing
 non-negative integers, is also found to have a value other
 than zero or to generate an error.

 In quirks mode, a td element or a
 th element that has a nowrap attribute but also has a
 width attribute whose value,
 when parsed using the rules for parsing dimension
 values, is found to be a length (not an error or a number
 classified as a percentage), is expected to have a presentational hint setting the
 element's 'white-space' property to 'normal', overriding the rule in
 the CSS block above that sets it to 'nowrap'.

 10.3.10 Margin collapsing quirks

 A node is substantial if it is a text node
 that is not inter-element whitespace, or if it is an element node.

 A node is blank if it is an element that contains no
 substantial nodes.

 The elements with default margins
 are the following elements: blockquote, dir, dl,
 h1, h2, h3, h4, h5,
 h6, listing, code>multicol, ol,
 p, plaintext, pre, ul, xmp

 In quirks mode, any element
 with default margins that is the child of a body, td, or
 th element and has no substantial
 previous siblings is expected to have a user-agent level style sheet rule that sets its
 'margin-top' property to zero.

 In quirks mode, any element
 with default margins that is the child of a body, td, or
 th element, has no substantial
 previous siblings, and is blank, is expected to have
 a user-agent level style sheet rule that sets its 'margin-bottom' property to zero also.

 In quirks mode, any element
 with default margins that is the child of a td or th element, has
 no substantial following siblings, and is blank, is expected to have a user-agent level style sheet
 rule that sets its 'margin-top' property to zero.

 In quirks mode, any p element that is the child of a td
 or th element and has no substantial following siblings, is expected to have a
 user-agent level style sheet rule that sets its 'margin-bottom' property to zero.

 10.3.11 Form controls

 @namespace url(http://www.w3.org/1999/xhtml);

input, select, option, optgroup, button, textarea, keygen {
 text-indent: initial;
}

textarea { white-space: pre-wrap; }

input[type="radio"], input[type="checkbox"], input[type="reset"], input[type="button"],
input[type="submit"], select, button {
 box-sizing: border-box;
}

 In quirks mode, the following rules are also expected to apply:

 @namespace url(http://www.w3.org/1999/xhtml);

input:not([type=image]), textarea { box-sizing: border-box; }

 Each kind of form control is also given a specific default binding, as described in subsequent
 sections, which implements the look and feel of the control.

 10.3.12 The hr element

 @namespace url(http://www.w3.org/1999/xhtml);

hr { color: gray; border-style: inset; border-width: 1px; margin: 0.5em auto; }

 The following rules are also expected to apply, as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

hr[align=left] { margin-left: 0; margin-right: auto; }
hr[align=right] { margin-left: auto; margin-right: 0; }
hr[align=center] { margin-left: auto; margin-right: auto; }
hr[color], hr[noshade] { border-style: solid; }

 If an hr element has either a color attribute or a noshade attribute, and furthermore
 also has a size attribute, and
 parsing that attribute's value using the rules for parsing
 non-negative integers doesn't generate an error, then the
 user agent is expected to use the parsed value divided by two as a
 pixel length for presentational hints for the properties
 'border-top-width', 'border-right-width', 'border-bottom-width', and
 'border-left-width' on the element.

 Otherwise, if an hr element has neither a color attribute nor a noshade attribute, but does have a
 size attribute, and parsing that
 attribute's value using the rules for parsing non-negative
 integers doesn't generate an error, then: if the parsed value
 is one, then the user agent is expected to use the attribute as a
 presentational hint
 setting the element's 'border-bottom-width' to 0; otherwise, if the
 parsed value is greater than one, then the user agent is expected to
 use the parsed value minus two as a pixel length for
 presentational hints for the 'height' property on the
 element.

 The width attribute on an
 hr element maps to the dimension property
 'width' on the element.

 When an hr element has a color attribute, its value is expected
 to be parsed using the rules for parsing a legacy color
 value, and if that does not return an error, the user agent
 is expected to treat the attribute as a presentational hint setting the element's 'color'
 property to the resulting color.

 10.3.13 The fieldset and legend elements

 @namespace url(http://www.w3.org/1999/xhtml);

fieldset {
 margin-left: 2px; margin-right: 2px;
 border: groove 2px ThreeDFace;
 padding: 0.35em 0.625em 0.75em;
}

legend {
 padding-left: 2px; padding-right: 2px;
}

 The fieldset element is expected to establish a new
 block formatting context.

 If the fieldset element has a child that matches the
 conditions in the list below, then the first such child is the
 fieldset element's rendered legend:

 	The child is a legend element.

 	The child is not out-of-flow (e.g. not absolutely positioned or floated).

 	The child is generating a box (e.g. it is not 'display:none').

 A fieldset element's rendered legend,
 if any, is expected to be rendered over the top border edge of the
 fieldset element as a 'block' box (overriding any
 explicit 'display' value). In the absence of an explicit width, the
 box should shrink-wrap. If the legend element in
 question has an align
 attribute, and its value is an ASCII case-insensitive
 match for one of the strings in the first column of the following
 table, then the legend is expected to be rendered
 horizontally aligned over the border edge in the position given in
 the corresponding cell on the same row in the second column. If the
 attribute is absent or has a value that doesn't match any of the
 cases in the table, then the position is expected to be on the right
 if the 'direction' property on this element has a computed value of
 'rtl', and on the left otherwise.

 	Attribute value
 	Alignment position

 	left
 	On the left

 	right
 	On the right

 	center
 	In the middle

 10.4 Replaced elements

 10.4.1 Embedded content

 The embed, iframe, and video elements are expected to be
 treated as replaced elements.

 A canvas element that represents embedded content is
 expected to be treated as a replaced element; the contents of such elements are the element's
 bitmap, if any, or else a transparent black bitmap with the same intrinsic dimensions as the
 element. Other canvas elements are expected to be treated as ordinary elements in the
 rendering model.

 An object element that represents an image, plugin, or nested
 browsing context is expected to be treated as a replaced element. Other object
 elements are expected to be treated as ordinary elements in the rendering model.

 An applet element that represents a plugin is expected
 to be treated as a replaced element. Other applet elements are expected to be treated
 as ordinary elements in the rendering model.

 The audio element, when it is exposing a user interface, is expected to be treated as a replaced element about one
 line high, as wide as is necessary to expose the user agent's user interface features. When an
 audio element is not exposing a
 user interface, the user agent is expected to force its 'display' property to compute to
 'none', irrespective of CSS rules.

 Whether a video element is exposing a user interface is not expected to affect the size of the rendering;
 controls are expected to be overlaid above the page content without causing any layout changes,
 and are expected to disappear when the user does not need them.

 When a video element represents a poster frame or frame of video, the poster frame
 or frame of video is expected to be rendered at the largest size that maintains the aspect ratio
 of that poster frame or frame of video without being taller or wider than the video
 element itself, and is expected to be centered in the video element.

 Any subtitles or captions are expected to be overlayed directly on top of their
 video element, as defined by the relevant rendering rules; for WebVTT,
 those are the rules for updating the display of WebVTT text tracks. [WEBVTT]

 When the user agent starts exposing a user
 interface for a video element, the user agent should run the rules for
 updating the text track rendering of each of the text
 tracks in the video element's list of text tracks that are showing and whose text track kind is one of subtitles or captions (e.g., for text
 tracks based on WebVTT, the rules for updating the display of WebVTT
 text tracks). [WEBVTT]

 Resizing video and canvas elements does not interrupt
 video playback or clear the canvas.

 The following CSS rules are expected to apply:

 @namespace url(http://www.w3.org/1999/xhtml);

iframe:not([seamless]) { border: 2px inset; }
iframe[seamless] { display: block; }
video { object-fit: contain; }

 10.4.2 Images

 When an img element or an input element when its type attribute is in the Image
 Button state represents an image, it is expected to be treated as a replaced
 element.

 When an img element or an input element when its type attribute is in the Image
 Button state does not represent an image, but the element
 already has intrinsic dimensions (e.g. from the dimension attributes or CSS rules),
 and either the user agent has reason to believe that the image will become available and be rendered in due course
 or the Document is in quirks mode, the element is expected to be treated
 as a replaced element whose content is the text that the element represents, if any, optionally
 alongside an icon indicating that the image is being obtained. For input elements,
 the text is expected to appear button-like to indicate that the element is a button.

 When an img element represents some text and the user agent does not
 expect this to change, the element is expected to be treated as a non-replaced phrasing element
 whose content is the text, optionally with an icon indicating that an image is missing, so that
 the user can request the image be displayed or investigate why it is not rendering. In
 non-graphical contexts, such an icon should be omitted.

 When an img element represents nothing and the user agent does not
 expect this to change, the element is expected to not be rendered at all.

 When an img element might be a key part of the content, but neither the image nor
 any kind of alternative text is available, and the user agent does not expect this to change, the
 element is expected to be treated as a non-replaced phrasing element whose content is an icon
 indicating that an image is missing.

 When an input element whose type attribute is
 in the Image Button state does not represent an image and the user agent does not expect this to change,
 the element is expected to be treated as a replaced element consisting of a button whose content
 is the element's alternative text. The intrinsic dimensions of the button are expected to be about
 one line in height and whatever width is necessary to render the text on one line.

 The icons mentioned above are expected to be relatively small so as not to disrupt most text
 but be easily clickable. In a visual environment, for instance, icons could be 16 pixels by 16
 pixels square, or 1em by 1em if the images are scalable. In an audio environment, the icon could
 be a short bleep. The icons are intended to indicate to the user that they can be used to get to
 whatever options the UA provides for images, and, where appropriate, are expected to provide
 access to the context menu that would have come up if the user interacted with the actual
 image.

 All animated images with the same absolute URL and the same image data are
 expected to be rendered synchronized to the same timeline as a group, with the timeline starting
 at the time of the most recent addition to the group.

 In other words, the animation loop of an animated image is restarted each time
 another image with the same absolute URL and image data begins to animate, e.g. after
 being inserted into the document.

 The following CSS rules are expected to apply when the Document is in quirks
 mode:

 @namespace url(http://www.w3.org/1999/xhtml);

img[align=left i] { margin-right: 3px; }
img[align=right i] { margin-left: 3px; }

 10.4.3 Attributes for embedded content and images

 The following CSS rules are expected to apply as
 presentational hints:

 @namespace url(http://www.w3.org/1999/xhtml);

iframe[frameborder=0], iframe[frameborder=no i] { border: none; }

applet[align=left i], embed[align=left i], iframe[align=left i],
img[align=left i], input[type=image i][align=left i], object[align=left i] {
 float: left;
}

applet[align=right i], embed[align=right i], iframe[align=right i],
img[align=right i], input[type=image i][align=right i], object[align=right i] {
 float: right;
}

applet[align=top i], embed[align=top i], iframe[align=top i],
img[align=top i], input[type=image i][align=top i], object[align=top i] {
 vertical-align: top;
}

applet[align=baseline i], embed[align=baseline i], iframe[align=baseline i],
img[align=baseline i], input[type=image i][align=baseline i], object[align=baseline i] {
 vertical-align: baseline;
}

applet[align=texttop i], embed[align=texttop i], iframe[align=texttop i],
img[align=texttop i], input[type=image i][align=texttop i], object[align=texttop i] {
 vertical-align: text-top;
}

applet[align=absmiddle i], embed[align=absmiddle i], iframe[align=absmiddle i],
img[align=absmiddle i], input[type=image i][align=absmiddle i], object[align=absmiddle i],
applet[align=abscenter i], embed[align=abscenter i], iframe[align=abscenter i],
img[align=abscenter i], input[type=image i][align=abscenter i], object[align=abscenter i] {
 vertical-align: middle;
}

applet[align=bottom i], embed[align=bottom i], iframe[align=bottom i],
img[align=bottom i], input[type=image i][align=bottom i],
object[align=bottom i] {
 vertical-align: bottom;
}

 When an applet, embed,
 iframe, img, or object
 element, or an input element whose type attribute is in the Image Button state, has an
 align attribute whose value is
 an ASCII case-insensitive match for the string "center" or the string "middle", the user agent is expected to act as if the
 element's 'vertical-align' property was set to a value that aligns
 the vertical middle of the element with the parent element's
 baseline.

 The hspace attribute of
 applet, embed, iframe,
 img, or object elements, and
 input elements with a type attribute in the Image Button state, maps to the dimension
 properties 'margin-left' and 'margin-right' on the
 element.

 The vspace attribute of
 applet, embed, iframe,
 img, or object elements, and
 input elements with a type attribute in the Image Button state, maps to the dimension
 properties 'margin-top' and 'margin-bottom' on the
 element.

 When an img element, object element, or
 input element with a type attribute in the Image Button state has a border attribute whose value, when
 parsed using the rules for parsing non-negative
 integers, is found to be a number greater than zero, the user
 agent is expected to use the parsed value for eight
 presentational hints: four setting the parsed value as
 a pixel length for the element's 'border-top-width',
 'border-right-width', 'border-bottom-width', and 'border-left-width'
 properties, and four setting the element's 'border-top-style',
 'border-right-style', 'border-bottom-style', and 'border-left-style'
 properties to the value 'solid'.

 The width and height attributes on applet, embed,
 iframe, object or video elements, and input
 elements with a type attribute in the Image Button state and that either represents an image or
 that the user expects will eventually represent an image, map to the dimension properties 'width' and 'height' on the element
 respectively.

 10.4.4 Image maps

 Shapes on an image map are expected to act, for the
 purpose of the CSS cascade, as elements independent of the original
 area element that happen to match the same style rules
 but inherit from the img or object
 element.

 For the purposes of the rendering, only the 'cursor' property is
 expected to have any effect on the shape.

 Thus, for example, if an area
 element has a style attribute that
 sets the 'cursor' property to 'help', then when the user designates
 that shape, the cursor would change to a Help cursor.

 Similarly, if an area element had a
 CSS rule that set its 'cursor' property to 'inherit' (or if no rule
 setting the 'cursor' property matched the element at all), the
 shape's cursor would be inherited from the img or
 object element of the image map, not from
 the parent of the area element.

 10.5 Bindings

 10.5.1 Introduction

 A number of elements have their rendering defined in terms of the
 'binding' property. [BECSS]

 The CSS snippets below set the 'binding' property to a
 user-agent-defined value, represented below by keywords like button. The rules then described for
 these bindings are only expected to apply if the element's 'binding'
 property has not been overridden (e.g. by the author) to have
 another value.

 Exactly how the bindings are implemented is not specified by this
 specification. User agents are encouraged to make their bindings set
 the 'appearance' CSS property appropriately to achieve
 platform-native appearances for widgets, and are expected to
 implement any relevant animations, etc, that are appropriate for the
 platform. [CSSUI]

 10.5.2 The button element

 @namespace url(http://www.w3.org/1999/xhtml);

button { binding: button; }

 When the button binding applies to a
 button element, the element is expected to render as an
 'inline-block' box rendered as a button whose contents are the
 contents of the element.

 10.5.3 The details element

 @namespace url(http://www.w3.org/1999/xhtml);

details { binding: details; }

 When the details binding applies to a
 details element, the element is expected to render as a
 'block' box with its 'padding-left' property set to '40px' for
 left-to-right elements (LTR-specific) and with its
 'padding-right' property set to '40px' for right-to-left
 elements. The element's shadow tree is expected to take the
 element's first child summary element, if any, and
 place it in a first 'block' box container, and then take the
 element's remaining descendants, if any, and place them in a second
 'block' box container.

 The first container is expected to contain at least one line box,
 and that line box is expected to contain a disclosure widget
 (typically a triangle), horizontally positioned within the left
 padding of the details element. That widget is expected
 to allow the user to request that the details be shown or
 hidden.

 The second container is expected to have its 'overflow' property
 set to 'hidden'. When the details element does not have
 an open attribute, this
 second container is expected to be removed from the rendering.

 10.5.4 The input element as a text entry widget

 @namespace url(http://www.w3.org/1999/xhtml);

input { binding: input-textfield; }
input[type=password i] { binding: input-password; }
/* later rules override this for other values of type="" */

 When the input-textfield binding applies to an
 input element whose type attribute is in the Text, Search, Telephone, URL, or E-mail state, the element is
 expected to render as an 'inline-block' box rendered as a text
 field.

 When the input-password binding applies, to an
 input element whose type attribute is in the Password state, the element
 is expected to render as an 'inline-block' box rendered as a text
 field whose contents are obscured.

 If an input element whose type attribute is in one of the above
 states has a size attribute,
 and parsing that attribute's value using the rules for parsing
 non-negative integers doesn't generate an error, then the
 user agent is expected to use the attribute as a presentational hint for the
 'width' property on the element, with the value obtained from
 applying the converting a character width to pixels
 algorithm to the value of the attribute.

 If an input element whose type attribute is in one of the above
 states does not have a size attribute, then the user agent
 is expected to act as if it had a user-agent-level style sheet rule
 setting the 'width' property on the element to the value obtained
 from applying the converting a character width to
 pixels algorithm to the number 20.

 The converting a character width to pixels algorithm
 returns (size-1)×avg + max, where
 size is the character width to convert, avg is the average character width of the primary
 font for the element for which the algorithm is being run, in
 pixels, and max is the maximum character width
 of that same font, also in pixels. (The element's 'letter-spacing'
 property does not affect the result.)

 10.5.5 The input element as domain-specific widgets

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=datetime i] { binding: input-datetime; }
input[type=date i] { binding: input-date; }
input[type=month i] { binding: input-month; }
input[type=week i] { binding: input-week; }
input[type=time i] { binding: input-time; }
input[type=datetime-local i] { binding: input-datetime-local; }
input[type=number i] { binding: input-number; }

 When the input-datetime binding applies to an
 input element whose type attribute is in the Date and Time state, the
 element is expected to render as an 'inline-block' box depicting a
 Date and Time control.

 When the input-date binding applies to an
 input element whose type attribute is in the Date state, the element is
 expected to render as an 'inline-block' box depicting a Date
 control.

 When the input-month binding applies to an
 input element whose type attribute is in the Month state, the element is
 expected to render as an 'inline-block' box depicting a Month
 control.

 When the input-week binding applies to an
 input element whose type attribute is in the Week state, the element is
 expected to render as an 'inline-block' box depicting a Week
 control.

 When the input-time binding applies to an
 input element whose type attribute is in the Time state, the element is
 expected to render as an 'inline-block' box depicting a Time
 control.

 When the input-datetime-local binding applies to an
 input element whose type attribute is in the Local Date and Time
 state, the element is expected to render as an 'inline-block' box
 depicting a Local Date and Time control.

 When the input-number binding applies to an
 input element whose type attribute is in the Number state, the element is
 expected to render as an 'inline-block' box depicting a Number
 control.

 These controls are all expected to be about one line high, and
 about as wide as necessary to show the widest possible value.

 10.5.6 The input element as a range control

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=range i] { binding: input-range; }

 When the input-range binding applies to an
 input element whose type attribute is in the Range state, the element is
 expected to render as an 'inline-block' box depicting a slider
 control.

 When the control is wider than it is tall (or square), the
 control is expected to be a horizontal slider, with the lowest value
 on the right if the 'direction' property on this element has a
 computed value of 'rtl', and on the left otherwise. When the control
 is taller than it is wide, it is expected to be a vertical slider,
 with the lowest value on the bottom.

 Predefined suggested values (provided by the list attribute) are expected to be
 shown as tick marks on the slider, which the slider can snap to.

 User agents are expected to use the used value of the 'direction'
 property on the element to determine the direction in which the
 slider operates. Typically, a left-to-right ('ltr') horizontal
 control would have the lowest value on the left and the highest
 value on the right, and vice versa.

 10.5.7 The input element as a color well

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=color i] { binding: input-color; }

 When the input-color binding applies to an
 input element whose type attribute is in the Color state, the element is
 expected to render as an 'inline-block' box depicting a color well,
 which, when activated, provides the user with a color picker (e.g. a
 color wheel or color palette) from which the color can be
 changed.

 Predefined suggested values (provided by the list attribute) are expected to be
 shown in the color picker interface, not on the color well
 itself.

 10.5.8 The input element as a checkbox and radio button widgets

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=checkbox i] { binding: input-checkbox; }
input[type=radio i] { binding: input-radio; }

 When the input-checkbox binding applies to an
 input element whose type attribute is in the Checkbox state, the element
 is expected to render as an 'inline-block' box containing a single
 checkbox control, with no label.

 When the input-radio binding applies to an
 input element whose type attribute is in the Radio Button state, the element
 is expected to render as an 'inline-block' box containing a single
 radio button control, with no label.

 10.5.9 The input element as a file upload control

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=file i] { binding: input-file; }

 When the input-file binding applies to an
 input element whose type attribute is in the File Upload state, the element
 is expected to render as an 'inline-block' box containing a span of
 text giving the file name(s) of the selected files, if
 any, followed by a button that, when activated, provides the user
 with a file picker from which the selection can be changed.

 10.5.10 The input element as a button

 @namespace url(http://www.w3.org/1999/xhtml);

input[type=submit i], input[type=reset i], input[type=button i] {
 binding: input-button;
}

 When the input-button binding applies to an
 input element whose type attribute is in the Submit Button, Reset Button, or Button state, the element is
 expected to render as an 'inline-block' box rendered as a button,
 about one line high, containing the contents of the element's value attribute, if any, or text
 derived from the element's type
 attribute in a user-agent-defined (and probably locale-specific)
 fashion, if not.

 10.5.11 The marquee element

 @namespace url(http://www.w3.org/1999/xhtml);

marquee { binding: marquee; }

 When the marquee binding applies to a
 marquee element, while the element is turned on, the element is expected
 to render in an animated fashion according to its attributes as
 follows:

 	If the element's behavior attribute is in the
 scroll state

 	

 Slide the contents of the element in the direction described by
 the direction
 attribute as defined below, such that it begins off the start side
 of the marquee, and ends flush with the inner end
 side.

 For example, if the direction attribute is left (the default),
 then the contents would start such that their left edge are off
 the side of the right edge of the marquee's content
 area, and the contents would then slide up to the point where the
 left edge of the contents are flush with the left inner edge of
 the marquee's content area.

 Once the animation has ended, the user agent is expected to
 increment the marquee current loop index. If the
 element is still turned on
 after this, then the user agent is expected to restart the
 animation.

 	If the element's behavior attribute is in the
 slide state

 	

 Slide the contents of the element in the direction described by
 the direction
 attribute as defined below, such that it begins off the start side
 of the marquee, and ends off the end side of the
 marquee.

 For example, if the direction attribute is left (the default),
 then the contents would start such that their left edge are off
 the side of the right edge of the marquee's content
 area, and the contents would then slide up to the point where the
 right edge of the contents are flush with the left inner
 edge of the marquee's content area.

 Once the animation has ended, the user agent is expected to
 increment the marquee current loop index. If the
 element is still turned on
 after this, then the user agent is expected to restart the
 animation.

 	If the element's behavior attribute is in the
 alternate
 state

 	

 When the marquee current loop index is even (or
 zero), slide the contents of the element in the direction
 described by the direction attribute as
 defined below, such that it begins flush with the start side of
 the marquee, and ends flush with the end side of the
 marquee.

 When the marquee current loop index is odd, slide
 the contents of the element in the opposite direction than that
 described by the direction attribute as
 defined below, such that it begins flush with the end side of the
 marquee, and ends flush with the start side of the
 marquee.

 For example, if the direction attribute is left (the default),
 then the contents would with their right edge flush with the right
 inner edge of the marquee's content area, and the
 contents would then slide up to the point where the left
 edge of the contents are flush with the left inner edge of the
 marquee's content area.

 Once the animation has ended, the user agent is expected to
 increment the marquee current loop index. If the
 element is still turned on
 after this, then the user agent is expected to continue the
 animation.

 The direction
 attribute has the meanings described in the following table:

 	direction attribute state
 	Direction of animation
 	Start edge
 	End edge
 	Opposite direction

 	left
 	← Right to left
 	Right
 	Left
 	→ Left to Right

 	right
 	→ Left to Right
 	Left
 	Right
 	← Right to left

 	up
 	↑ Up (Bottom to Top)
 	Bottom
 	Top
 	↓ Down (Top to Bottom)

 	down
 	↓ Down (Top to Bottom)
 	Top
 	Bottom
 	↑ Up (Bottom to Top)

 In any case, the animation should proceed such that there is a
 delay given by the marquee scroll interval between each
 frame, and such that the content moves at most the distance given by
 the marquee scroll distance with each frame.

 When a marquee element has a bgcolor attribute set, the value
 is expected to be parsed using the rules for parsing a legacy
 color value, and if that does not return an error, the user
 agent is expected to treat the attribute as a presentational hint setting the
 element's 'background-color' property to the resulting color.

 The width and height attributes on a
 marquee element map to the dimension properties 'width' and
 'height' on the element respectively.

 The intrinsic height of a marquee element with its
 direction attribute in
 the up or down states is 200 CSS
 pixels.

 The vspace attribute of
 a marquee element maps to the dimension properties 'margin-top' and
 'margin-bottom' on the element. The hspace attribute of a
 marquee element maps to the dimension properties 'margin-left' and
 'margin-right' on the element.

 The 'overflow' property on the marquee element is
 expected to be ignored; overflow is expected to always be
 hidden.

 10.5.12 The meter element

 @namespace url(http://www.w3.org/1999/xhtml);

meter { binding: meter; }

 When the meter binding applies to a
 meter element, the element is expected to render as an
 'inline-block' box with a 'height' of '1em' and a 'width' of '5em',
 a 'vertical-align' of '-0.2em', and with its contents depicting a
 gauge.

 When the element is wider than it is tall (or square), the
 depiction is expected to be of a horizontal gauge, with the minimum
 value on the right if the 'direction' property on this element has a
 computed value of 'rtl', and on the left otherwise. When the element
 is taller than it is wide, it is expected to depict a vertical
 gauge, with the minimum value on the bottom.

 User agents are expected to use a presentation consistent with
 platform conventions for gauges, if any.

 Requirements for what must be depicted in the gauge
 are included in the definition of the meter
 element.

 10.5.13 The progress element

 @namespace url(http://www.w3.org/1999/xhtml);

progress { binding: progress; }

 When the progress binding applies to a
 progress element, the element is expected to render as
 an 'inline-block' box with a 'height' of '1em' and a 'width' of
 '10em', and a 'vertical-align' of '-0.2em'.

 [image:]
 When the element is wider than it is tall, the element is
 expected to be depicted as a horizontal progress bar, with the start
 on the right and the end on the left if the 'direction' property on
 this element has a computed value of 'rtl', and with the start on
 the left and the end on the right otherwise. When the element is
 taller than it is wide, it is expected to depicted as a vertical
 progress bar, with the lowest value on the bottom. When the element
 is square, it is expected to be depicted as a direction-independent
 progress widget (e.g. a circular progress ring).

 User agents are expected to use a presentation consistent with
 platform conventions for progress bars. In particular, user agents
 are expected to use different presentations for determinate and
 indeterminate progress bars. User agents are also expected to vary
 the presentation based on the dimensions of the element.

 For example, on some platforms for showing
 indeterminate progress there is an asynchronous progress indicator
 with square dimensions, which could be used when the element is
 square, and an indeterminate progress bar, which could be used when
 the element is wide.

 Requirements for how to determine if the progress
 bar is determinate or indeterminate, and what progress a determinate
 progress bar is to show, are included in the definition of the
 progress element.

 10.5.14 The select element

 @namespace url(http://www.w3.org/1999/xhtml);

select { binding: select; }

 When the select binding applies to a
 select element whose multiple attribute is present,
 the element is expected to render as a multi-select list box.

 When the select binding applies to a
 select element whose multiple attribute is absent,
 and the element's display
 size is greater than 1, the element is expected to render as
 a single-select list box.

 When the element renders as a list box, it is expected to render
 as an 'inline-block' box whose 'height' is the height necessary to
 contain as many rows for items as given by the element's display size, or four rows if the
 attribute is absent, and whose 'width' is the width of the
 select's labels plus the width of a
 scrollbar.

 When the select binding applies to a
 select element whose multiple attribute is absent,
 and the element's display
 size is 1, the element is expected to render as a one-line
 drop down box whose width is the width of the
 select's labels.

 In either case (list box or drop-down box), the element's items
 are expected to be the element's list of options, with the
 element's optgroup element children providing headers
 for groups of options where applicable.

 An optgroup element is expected to be rendered by
 displaying the element's label attribute.

 An option element is expected to be rendered by
 displaying the element's label, indented under its
 optgroup element if it has one.

 The width of the select's labels is the
 wider of the width necessary to render the widest
 optgroup, and the width necessary to render the widest
 option element in the element's list of options (including
 its indent, if any).

 If a select element contains a placeholder
 label option, the user agent is expected to render that
 option in a manner that conveys that it is a label,
 rather than a valid option of the control. This can include
 preventing the placeholder label option from being
 explicitly selected by the user. When the placeholder label
 option's selectedness is true, the
 control is expected to be displayed in a fashion that indicates that
 no valid option is currently selected.

 User agents are expected to render the labels in a
 select in such a manner that any alignment remains
 consistent whether the label is being displayed as part of the page
 or in a menu control.

 10.5.15 The textarea element

 @namespace url(http://www.w3.org/1999/xhtml);

textarea { binding: textarea; white-space: pre-wrap; }

 When the textarea binding applies to a
 textarea element, the element is expected to render as
 an 'inline-block' box rendered as a multiline text field.

 If the element has a cols
 attribute, and parsing that attribute's value using the rules
 for parsing non-negative integers doesn't generate an error,
 then the user agent is expected to use the attribute as a presentational hint for the
 'width' property on the element, with the value being the
 textarea effective width (as defined below). Otherwise,
 the user agent is expected to act as if it had a user-agent-level
 style sheet rule setting the 'width' property on the element to the
 textarea effective width.

 The textarea effective width of a
 textarea element is size×avg + sbw, where size is the
 element's character
 width, avg is the average character width
 of the primary font of the element, in CSS pixels, and sbw is the width of a scroll bar, in CSS pixels. (The
 element's 'letter-spacing' property does not affect the result.)

 If the element has a rows
 attribute, and parsing that attribute's value using the rules
 for parsing non-negative integers doesn't generate an error,
 then the user agent is expected to use the attribute as a presentational hint for the
 'height' property on the element, with the value being the
 textarea effective height (as defined
 below). Otherwise, the user agent is expected to act as if it had a
 user-agent-level style sheet rule setting the 'height' property on
 the element to the textarea effective height.

 The textarea effective height of a
 textarea element is the height in CSS pixels of the
 number of lines specified the element's character height, plus the
 height of a scrollbar in CSS pixels.

 User agents are expected to apply the 'white-space' CSS property
 to textarea elements. For historical reasons, if the
 element has a wrap attribute
 whose value is an ASCII case-insensitive match for the
 string "off", then the
 user agent is expected to treat the attribute as a presentational hint setting the
 element's 'white-space' property to 'pre'.

 10.5.16 The keygen element

 @namespace url(http://www.w3.org/1999/xhtml);

keygen { binding: keygen; }

 When the keygen binding applies to a
 keygen element, the element is expected to render as an
 'inline-block' box containing a user interface to configure the key
 pair to be generated.

 10.6 Frames and framesets

 User agent are expected to render frameset elements as a box with the height and
 width of the viewport, with a surface rendered according to the following layout algorithm:

 	

 The cols and rows variables are lists of zero or more
 pairs consisting of a number and a unit, the unit being one of percentage,
 relative, and absolute.

 Use the rules for parsing a list of dimensions to parse the value of the
 element's cols attribute, if there is one. Let cols be the result, or an empty list if there is no such attribute.

 Use the rules for parsing a list of dimensions to parse the value of the
 element's rows attribute, if there is one. Let rows be the result, or an empty list if there is no such attribute.

 	

 For any of the entries in cols or rows that have the
 number zero and the unit relative, change the entry's number to one.

 	

 If cols has no entries, then add a single entry consisting of the value 1
 and the unit relative to cols.

 If rows has no entries, then add a single entry consisting of the value 1
 and the unit relative to rows.

 	

 Invoke the algorithm defined below to convert a list of dimensions to a list of pixel
 values using cols as the input list, and the width of the surface
 that the frameset is being rendered into, in CSS pixels, as the input dimension.
 Let sized cols be the resulting list.

 Invoke the algorithm defined below to convert a list of dimensions to a list of pixel
 values using rows as the input list, and the height of the surface
 that the frameset is being rendered into, in CSS pixels, as the input dimension.
 Let sized rows be the resulting list.

 	

 Split the surface into a grid of w×h rectangles, where w is the number of entries in sized cols and h is the number of entries in sized rows.

 Size the columns so that each column in the grid is as many CSS pixels wide as the
 corresponding entry in the sized cols list.

 Size the rows so that each row in the grid is as many CSS pixels high as the corresponding
 entry in the sized rows list.

 	

 Let children be the list of frame and frameset
 elements that are children of the frameset element for which the algorithm was
 invoked.

 	

 For each row of the grid of rectangles created in the previous step, from top to bottom, run
 these substeps:

 	

 For each rectangle in the row, from left to right, run these substeps:

 	

 If there are any elements left in children, take the first element in
 the list, and assign it to the rectangle.

 If this is a frameset element, then recurse the entire frameset
 layout algorithm for that frameset element, with the rectangle as the
 surface.

 Otherwise, it is a frame element; create a nested browsing
 context sized to fit the rectangle.

 	

 If there are any elements left in children, remove the first element
 from children.

 	

 If the frameset element has a border, draw an outer set of borders
 around the rectangles, using the element's frame border color.

 For each rectangle, if there is an element assigned to that rectangle, and that element
 has a border, draw an inner set of borders around that rectangle, using the
 element's frame border color.

 For each (visible) border that does not abut a rectangle that is assigned a
 frame element with a noresize attribute
 (including rectangles in further nested frameset elements), the user agent is
 expected to allow the user to move the border, resizing the rectangles within, keeping the
 proportions of any nested frameset grids.

 A frameset or frame element has a border if the
 following algorithm returns true:

 	If the element has a frameborder attribute
 whose value is not the empty string and whose first character is either a "1" (U+0031)
 character, a "y" (U+0079) character, or a "Y" (U+0059) character, then return true.

 	Otherwise, if the element has a frameborder
 attribute, return false.

 	Otherwise, if the element has a parent element that is a frameset element,
 then return true if that element has a border, and false if it does
 not.

 	Otherwise, return true.

 The frame border color of a frameset or frame element is
 the color obtained from the following algorithm:

 	If the element has a bordercolor attribute,
 and applying the rules for parsing a legacy color value to that attribute's value
 does not result in an error, then return the color so obtained.

 	Otherwise, if the element has a parent element that is a frameset element,
 then the frame border color of that element.

	Otherwise, return gray.

 The algorithm to convert a list of dimensions to a list of pixel values consists of
 the following steps:

 	

 Let input list be the list of numbers and units passed to the
 algorithm.

 Let output list be a list of numbers the same length as input list, all zero.

 Entries in output list correspond to the entries in input
 list that have the same position.

 	Let input dimension be the size passed to the algorithm.

	

 Let count percentage be the number of entries in input
 list whose unit is percentage.

 Let total percentage be the sum of all the numbers in input
 list whose unit is percentage.

 Let count relative be the number of entries in input
 list whose unit is relative.

 Let total relative be the sum of all the numbers in input
 list whose unit is relative.

 Let count absolute be the number of entries in input
 list whose unit is absolute.

 Let total absolute be the sum of all the numbers in input
 list whose unit is absolute.

 Let remaining space be the value of input
 dimension.

 	

 If total absolute is greater than remaining space,
 then for each entry in input list whose unit is absolute, set the
 corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total absolute. Then, set remaining space to zero.

 Otherwise, for each entry in input list whose unit is absolute,
 set the corresponding value in output list to the number of the entry in
 input list. Then, decrement remaining space by total absolute.

 	

 If total percentage multiplied by the input dimension
 and divided by 100 is greater than remaining space, then for each entry in
 input list whose unit is percentage, set the corresponding value in
 output list to the number of the entry in input list
 multiplied by remaining space and divided by total
 percentage. Then, set remaining space to zero.

 Otherwise, for each entry in input list whose unit is percentage,
 set the corresponding value in output list to the number of the entry in
 input list multiplied by the input dimension and divided
 by 100. Then, decrement remaining space by total
 percentage multiplied by the input dimension and divided by 100.

 	

 For each entry in input list whose unit is relative, set the
 corresponding value in output list to the number of the entry in input list multiplied by remaining space and divided by total relative.

 	Return output list.

 User agents working with integer values for frame widths (as opposed to user agents that can
 lay frames out with subpixel accuracy) are expected to distribute the remainder first to the last
 entry whose unit is relative, then equally (not proportionally) to each entry whose unit is
 percentage, then equally (not proportionally) to each entry whose unit is absolute,
 and finally, failing all else, to the last entry.

 10.7 Interactive media

 10.7.1 Links, forms, and navigation

 User agents are expected to allow the user to control aspects of hyperlink
 activation and form submission, such as which browsing context is to be
 used for the subsequent navigation.

 User agents are expected to allow users to discover the destination of hyperlinks and of forms before triggering their
 navigation.

 User agents may allow users to navigate browsing contexts to the resources indicated by
 the cite attributes on q, blockquote,
 ins, and del elements.

 User agents may surface hyperlinks created by link
 elements in their user interface.

 While link elements that create hyperlinks will match the ':link' or ':visited' pseudo-classes, will
 react to clicks if visible, and so forth, this does not extend to any browser interface constructs
 that expose those same links. Activating a link through the browser's interface, rather than in
 the page itself, does not trigger click events and the like.

 10.7.2 The title attribute

 User agents are expected to expose the advisory
 information of elements upon user request, and to make the
 user aware of the presence of such information.

 On interactive graphical systems where the user can use a
 pointing device, this could take the form of a tooltip. When the
 user is unable to use a pointing device, then the user agent is
 expected to make the content available in some other fashion, e.g.
 by making the element focusable and always displaying the
 advisory information of the currently focused element,
 or by showing the advisory information of the elements
 under the user's finger on a touch device as the user pans around
 the screen.

 "LF" (U+000A) characters are expected to cause line
 breaks in the tooltip; "tab" (U+0009) characters
 are expected to render as a non-zero horizontal shift that lines up
 the next glyph with the next tab stop, with tab stops occurring at
 points that are multiples of 8 times the width of a U+0020 SPACE
 character.

 For example, a visual user agent could make elements with a
 title attribute focusable, and
 could make any focused element with a title attribute show its tooltip under
 the element while the element has focus. This would allow a user to
 tab around the document to find all the advisory text.

 As another example, a screen reader could provide an audio cue
 when reading an element with a tooltip, with an associated key to
 read the last tooltip for which a cue was played.

 10.7.3 Editing hosts

 The current text editing caret (i.e. the active
 range, if it is empty and in an editing host),
 if any, is expected to act like an inline replaced element with the
 vertical dimensions of the caret and with zero width for the
 purposes of the CSS rendering model.

 This means that even an empty block can have the
 caret inside it, and that when the caret is in such an element, it
 prevents margins from collapsing through the element.

 10.7.4 Text rendered in native user interfaces

 User agents are expected to honor the Unicode semantics of text
 that is exposed in user interfaces, for example supporting the
 bidirectional algorithm in text shown in dialogs, title bars, pop-up
 menus, and tooltips. Text from the contents of elements is expected to be rendered in a manner
 that honors the directionality of the element from
 which the text was obtained. Text from attributes is expected to
 be rendered in a manner that honours the directionality of the attribute.

 Consider the following markup, which has Hebrew text asking for
 a programming language, the languages being text for which a
 left-to-right direction is important given the punctuation in some
 of their names:

 <p dir="rtl" lang="he">
 <label>
 בחר שפת תכנות:
 <select>
 <option dir="ltr">C++</option>
 <option dir="ltr">C#</option>
 <option dir="ltr">FreePascal</option>
 <option dir="ltr">F#</option>
 </select>
 </label>
</p>

 If the select element was rendered as a drop down
 box, a correct rendering would ensure that the punctuation was the
 same both in the drop down, and in the box showing the current
 selection.

 [image:]

 The directionality of attributes depends on the attribute and on the element's dir attribute, as the following example demonstrates. Consider this
 markup:

 <table>
 <tr>
 <th abbr="(א" dir=ltr>A
 <th abbr="(א" dir=rtl>A
 <th abbr="(א" dir=auto>A
</table>

 If the abbr attributes are rendered, e.g. in a tooltip or
 other user interface, the first will have a left parenthesis (because the direction is 'ltr'),
 the second will have a right parenthesis (because the direction is 'rtl'), and the third will
 have a right parenthesis (because the direction is determined from the attribute value
 to be 'rtl').

 However, if instead the attribute was not a directionality-capable attribute, the
 results would be different:

 <table>
 <tr>
 <th data-abbr="(א" dir=ltr>A
 <th data-abbr="(א" dir=rtl>A
 <th data-abbr="(א" dir=auto>A
</table>

 In this case, if the user agent were to expose the data-abbr attribute
 in the user interface (e.g. in a debugging environment), the last case would be rendered with a
 left parenthesis, because the direction would be determined from the element's
 contents.

 A string provided by a script (e.g. the argument to window.alert()) is expected to be treated
 as an independent set of one or more bidirectional algorithm
 paragraphs when displayed, as defined by the bidirectional
 algorithm, including, for instance, supporting the
 paragraph-breaking behaviour of "LF" (U+000A) characters.
 For the purposes of determining the paragraph level of such text in
 the bidirectional algorithm, this specification does not
 provide a higher-level override of rules P2 and P3. [BIDI]

 When necessary, authors can enforce a particular direction for a
 given paragraph by starting it with the Unicode U+200E LEFT-TO-RIGHT
 MARK or U+200F RIGHT-TO-LEFT MARK characters.

 Thus, the following script:

 alert('\u05DC\u05DE\u05D3 HTML \u05D4\u05D9\u05D5\u05DD!')

 ...would always result in a message reading
 "למד LMTH היום!"
 (not "דמל HTML םויה!"),
 regardless of the language of the user agent interface or the
 direction of the page or any of its elements.

 For a more complex example, consider the following script:

 /* Warning: this script does not handle right-to-left scripts correctly */
var s;
if (s = prompt('What is your name?')) {
 alert(s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

 When the user enters "Kitty", the user agent would
 alert "Kitty! Ok, Fred, Kitty, and Wilma will get the
 car.". However, if the user enters "لا أفهم",
 then the bidirectional algorithm will determine that the direction
 of the paragraph is right-to-left, and so the output will be the
 following unintended mess: "لا أفهم! derF ,kO, لا أفهم, rac eht teg lliw amliW dna."

 To force an alert that starts with user-provided text (or other
 text of unknown directionality) to render left-to-right, the string
 can be prefixed with a U+200E LEFT-TO-RIGHT MARK character:

 var s;
if (s = prompt('What is your name?')) {
 alert('\u200E' + s + '! Ok, Fred, ' + s + ', and Wilma will get the car.');
}

 10.8 Print media

 User agents are expected to allow the user to request the
 opportunity to obtain a physical form (or a
 representation of a physical form) of a Document. For
 example, selecting the option to print a page or convert it to PDF
 format. [PDF]

 When the user actually obtains a physical form (or a representation of a
 physical form) of a Document, the user agent is
 expected to create a new rendering of the Document for
 the print media.

 10.9 Unstyled XML documents

 HTML user agents may, in certain circumstances, find themselves rendering non-HTML documents
 that use vocabularies for which they lack any built-in knowledge. This section provides for a way
 for user agents to handle such documents in a somewhat useful manner.

 While a Document is an unstyled document, the user agent is expected
 to render an unstyled document view.

 A Document is an unstyled document while it matches the following
 conditions:

 	The Document has no author style sheets (whether referenced by HTTP headers, processing instructions, elements like link, inline elements like style, or any other mechanism).

	None of the elements in the Document have any presentational hints.

	None of the elements in the Document have any CSS styling attributes.

	None of the elements in the Document are in any of the following namespaces: HTML namespace, SVG namespace, MathML namespace

	The Document has no focusable elements (e.g. from XLink).

	The Document has no hyperlinks (e.g. from XLink).

	There exists no script whose document is this Document.

	None of the elements in the Document have any registered event listeners.

 An unstyled document view is one where the DOM is not rendered according to CSS
 (which would, since there are no applicable styles in this context, just result in a wall of
 text), but is instead rendered in a manner that is useful for a developer. This could consist of
 just showing the Document object's source, maybe with syntax highlighting, or it
 could consist of displaying just the DOM tree, or simply a message saying that the page is not a
 styled document.

 If a Document stops being an unstyled document, then the
 conditions above stop applying, and thus a user agent following these requirements will switch to
 using the regular CSS rendering.

11 Obsolete features

 11.1 Obsolete but conforming features

 Features listed in this section will trigger warnings in
 conformance checkers.

 Authors should not specify a border attribute on an
 img element. If the attribute is present, its value
 must be the string "0". CSS should be used
 instead.

 Authors should not specify a language attribute on a
 script element. If the attribute is present, its value
 must be an ASCII case-insensitive match for the string
 "JavaScript" and either the type attribute must be omitted or
 its value must be an ASCII case-insensitive match for
 the string "text/javascript". The attribute
 should be entirely omitted instead (with the value "JavaScript", it has no effect), or replaced with use
 of the type attribute.

 Authors should not specify the name attribute on a
 elements. If the attribute is present, its value must not be the
 empty string and must neither be equal to the value of any of the
 IDs in the element's home
 subtree other than the element's own ID, if any, nor be equal to the value of
 any of the other name attributes on
 a elements in the element's home
 subtree. If this attribute is present and the element has an
 ID, then the attribute's value must
 be equal to the element's ID. In
 earlier versions of the language, this attribute was intended as a
 way to specify possible targets for fragment identifiers in URLs. The id
 attribute should be used instead.

 Authors should not, but may despite requirements to the contrary
 elsewhere in this specification, specify the maxlength and size attributes on input
 elements whose type attributes
 are in the Number state.
 One valid reason for using these attributes regardless is to help
 legacy user agents that do not support input elements
 with type="number" to still render the text
 field with a useful width.

 In the HTML syntax, specifying a DOCTYPE that is an obsolete
 permitted DOCTYPE will also trigger a warning.

 11.1.1 Warnings for obsolete but conforming features

 To ease the transition from HTML4 Transitional documents to the
 language defined in this specification, and to discourage
 certain features that are only allowed in very few circumstances,
 conformance checkers are required to warn the user when the
 following features are used in a document. These are generally old
 obsolete features that have no effect, and are allowed only to
 distinguish between likely mistakes (regular conformance errors) and
 mere vestigial markup or unusual and discouraged practices (these
 warnings).

 The following features must be categorized as described
 above:

 	The presence of an obsolete permitted DOCTYPE
 in an HTML document.

 	The presence of a border attribute on an
 img element if its value is the string "0".

 	The presence of a language attribute on a
 script element if its value is an ASCII
 case-insensitive match for the string "JavaScript" and if there is no type attribute or there is and its
 value is an ASCII case-insensitive match for the
 string "text/javascript".

 	The presence of a name
 attribute on an a element, if its value is not the
 empty string.

 	The presence of a maxlength attribute on an
 input element whose type attribute is in the Number state.

 	The presence of a size attribute on an
 input element whose type attribute is in the Number state.

 Conformance checkers must distinguish between pages that have no
 conformance errors and have none of these obsolete features, and
 pages that have no conformance errors but do have some of these
 obsolete features.

 For example, a validator could report some pages
 as "Valid HTML" and others as "Valid HTML with warnings".

 11.2 Non-conforming features

 Elements in the following list are entirely obsolete, and must not be used by authors:

 	applet

 	Use embed or object instead.

 	acronym

 	Use abbr instead.

 	bgsound

 	Use audio instead.

 	dir

 	Use ul instead.

 	frame

 	frameset

 	noframes

 	Either use iframe and CSS instead, or use server-side includes to generate complete pages with the various invariant parts merged in.

 	hgroup

 	To mark up subheadings, consider putting the subheading into a p element after the h1-h6 element containing the main heading, or putting the subheading directly within the h1-h6 element containing the main heading, but separated from the main heading by punctuation and/or within, for example, a span class="subheading" element with differentiated styling.

 Headings and subheadings, alternative titles, or taglines can be grouped using the header or div elements.

 	isindex

 	Use an explicit form and text field combination instead.

 	listing

 	Use pre and code instead.

 	nextid

 	Use GUIDs instead.

 	noembed

 	Use object instead of embed when fallback is necessary.

 	plaintext

 	Use the "text/plain" MIME type instead.

 	rb

 	Providing the ruby base directly inside the ruby element is sufficient; the rb element is unnecessary. Omit it altogether.

 	strike

 	Use del instead if the element is marking an edit, otherwise use s instead.

 	xmp

 	Use pre and code instead, and escape "<" and "&" characters as "<" and "&" respectively.

 	basefont

 	big

 	blink

 	center

 	font

 	marquee

 	multicol

 	nobr

 	spacer

 	tt

 	

 Use appropriate elements or CSS instead.

 Where the tt element would have been used for marking up keyboard input,
 consider the kbd element; for variables, consider the var element; for
 computer code, consider the code element; and for computer output, consider the
 samp element.

 Similarly, if the big element is being used to denote a heading, consider using
 the h1 element; if it is being used for marking up important passages, consider the
 strong element; and if it is being used for highlighting text for reference
 purposes, consider the mark element.

 See also the text-level semantics usage summary for more
 suggestions with examples.

 The following attributes are obsolete (though the elements are still part of the language), and
 must not be used by authors:

 	charset on a elements

 	charset on link elements

 	Use an HTTP Content-Type header on the linked resource instead.

 	coords on a elements

 	shape on a elements

 	Use area instead of a for image maps.

 	methods on a elements

 	methods on link elements

 	Use the HTTP OPTIONS feature instead.

 	name on a elements (except as noted in the previous section)

 	name on embed elements

 	name on img elements

 	name on option elements

 	Use the id attribute instead.

 	rev on a elements

 	rev on link elements

 	Use the rel
 attribute instead, with an opposite term. (For example, instead of
 rev="made", use rel="author".)

 	urn on a elements

 	urn on link elements

 	Specify the preferred persistent identifier using the href attribute instead.

 	accept on form elements

 	Use the accept attribute directly on the input elements instead.

 	nohref on area elements

 	Omitting the href
 attribute is sufficient; the nohref attribute is
 unnecessary. Omit it altogether.

 	profile on head elements

 	When used for declaring which meta terms are
 used in the document, unnecessary; omit it altogether, and register the names.

 	When used for triggering specific user agent behaviors: use
 a link element instead.

 	version on html elements

 	Unnecessary. Omit it altogether.

 	ismap on input elements

 	Unnecessary. Omit it altogether. All input elements with a type attribute in the Image
 Button state are processed as server-side image maps.

 	usemap on input elements

 	Use img instead of input for image maps.

 	longdesc on iframe elements

 	longdesc on img elements

 	Use a regular a element to link to the
 description, or (in the case of images) use an image
 map to provide a link from the image to the image's
 description.

 	lowsrc on img elements

 	Use a progressive JPEG image (given in the src attribute),
 instead of using two separate images.

 	target on link elements

 	Unnecessary. Omit it altogether.

 	scheme on meta elements

 	Use only one scheme per field, or make the scheme declaration part of the value.

 	archive on object elements

 	classid on object elements

 	code on object elements

 	codebase on object elements

 	codetype on object elements

 	Use the data and type attributes to invoke plugins. To set parameters with these names
 in particular, the param element can be used.

 	declare on object elements

 	Repeat the object element completely each time the resource is to be reused.

 	standby on object elements

 	Optimize the linked resource so that it loads quickly or, at least, incrementally.

 	type on param elements

 	valuetype on param elements

 	Use the name and value attributes without declaring
 value types.

 	language on script elements (except as noted in the previous section)

 	Use the type attribute
 instead.

 	event on script elements

 	for on script elements

 	Use DOM Events mechanisms to register event listeners. [DOM]

 	datapagesize on table elements

 	Unnecessary. Omit it altogether.

 	summary on table elements

 	Use one of the techniques for describing
 tables given in the table section
 instead.

 	axis on td and th elements

 	Use the scope attribute on the relevant th.

	scope on td elements

 	Use th elements for heading cells.

	datasrc on a, applet, button, div, frame, iframe, img, input, label, legend, marquee, object, option, select, span, table, and textarea elements

 	datafld on a, applet, button, div, fieldset, frame, iframe, img, input, label, legend, marquee, object, param, select, span, and textarea elements

 	dataformatas on button, div, input, label, legend, marquee, object, option, select, span, and table elements

 	Use script and a mechanism such as XMLHttpRequest to populate the page dynamically. [XHR]

 	alink on body elements

 	bgcolor on body elements

 	link on body elements

 	marginbottom on body elements

 	marginheight on body elements

 	marginleft on body elements

 	marginright on body elements

 	margintop on body elements

 	marginwidth on body elements

 	text on body elements

 	vlink on body elements

 	clear on br elements

 	align on caption elements

 	align on col elements

 	char on col elements

 	charoff on col elements

 	valign on col elements

 	width on col elements

 	align on div elements

 	compact on dl elements

 	align on embed elements

 	hspace on embed elements

 	vspace on embed elements

 	align on hr elements

 	color on hr elements

 	noshade on hr elements

 	size on hr elements

 	width on hr elements

 	align on h1—h6 elements

 	align on iframe elements

 	allowtransparency on iframe elements

 	frameborder on iframe elements

 	hspace on iframe elements

 	marginheight on iframe elements

 	marginwidth on iframe elements

 	scrolling on iframe elements

 	vspace on iframe elements

 	align on input elements

 	hspace on input elements

 	vspace on input elements

 	align on img elements

 	border on img elements (except as noted in the previous section)

 	hspace on img elements

 	vspace on img elements

 	align on legend elements

 	type on li elements

 	align on object elements

 	border on object elements

 	hspace on object elements

 	vspace on object elements

 	compact on ol elements

 	align on p elements

 	width on pre elements

 	align on table elements

 	bgcolor on table elements

 	cellpadding on table elements

 	cellspacing on table elements

 	frame on table elements

 	rules on table elements

 	width on table elements

 	align on tbody, thead, and tfoot elements

 	char on tbody, thead, and tfoot elements

 	charoff on tbody, thead, and tfoot elements

 	valign on tbody, thead, and tfoot elements

 	align on td and th elements

 	bgcolor on td and th elements

 	char on td and th elements

 	charoff on td and th elements

 	height on td and th elements

 	nowrap on td and th elements

 	valign on td and th elements

 	width on td and th elements

 	align on tr elements

 	bgcolor on tr elements

 	char on tr elements

 	charoff on tr elements

 	valign on tr elements

 	compact on ul elements

 	type on ul elements

 	background on body, table, thead, tbody, tfoot, tr, td, and th elements

 	Use CSS instead.

 The border attribute on
 the table element can be used to provide basic fallback
 styling for the purpose of making tables legible in browsing
 environments where CSS support is limited or absent, such as
 text-based browsers, WYSIWYG editors, and in situations where CSS
 support is disabled or the style sheet is lost. Only the empty
 string and the value "1" may be used as border values for this purpose.
 Other values are considered obsolete. To regulate the thickness of
 such borders, authors should instead use CSS.

 11.3 Requirements for implementations

 11.3.1 The applet element

 The applet element is a Java-specific variant of the embed element.
 The applet element is now obsoleted so that all extension frameworks (Java, .NET,
 Flash, etc) are handled in a consistent manner.

 When the element matches any of the following conditions, it represents its
 contents:

 	The element is still in the stack of open elements of an HTML
 parser or XML parser.

 	The element is not in a Document.

 	The element's Document is not fully active.

 	The element's Document's active sandboxing flag
 set has its sandboxed plugins browsing context flag set.

 	The element has an ancestor media element.

 	The element has an ancestor object element that is not showing its
 fallback content.

 	No Java Language runtime plugin is available.

 	A Java runtime plugin is available but it is disabled.

 Otherwise, the user agent should instantiate a Java Language runtime plugin, and
 should pass the names and values of all the attributes on the element, in the order they were
 added to the element, with the attributes added by the parser being ordered in source order, and
 then a parameter named "PARAM" whose value is null, and then all the names and values of parameters given by param elements that are
 children of the applet element, in tree order, to the
 plugin used. If the plugin supports a scriptable interface, the
 HTMLAppletElement object representing the element should expose that interface. The
 applet element represents the plugin.

 The applet element is unaffected by the CSS 'display' property. The
 Java Language runtime is instantiated even if the element is hidden with a 'display:none' CSS
 style.

 The applet element must implement the HTMLAppletElement
 interface.

 interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute unsigned long hspace;
 attribute DOMString name;
 attribute DOMString _object; // the underscore is not part of the identifier
 attribute unsigned long vspace;
 attribute DOMString width;
};

 The align, alt, archive, code, height, hspace, name, object, vspace, and width IDL attributes must reflect the
 respective content attributes of the same name. For the purposes of reflection, the
 applet element's object content attribute is
 defined as containing a URL.

 The codeBase IDL attribute must
 reflect the codebase content attribute,
 which for the purposes of reflection is defined as containing a URL.

 11.3.2 The marquee element

 The marquee element is a presentational element that animates content. CSS
 transitions and animations are a more appropriate mechanism. [CSSANIMATIONS] [CSSTRANSITIONS]

 The task source for tasks mentioned in this section is the DOM manipulation
 task source.

 The marquee element must implement the HTMLMarqueeElement
 interface.

 interface HTMLMarqueeElement : HTMLElement {
 attribute DOMString behavior;
 attribute DOMString bgColor;
 attribute DOMString direction;
 attribute DOMString height;
 attribute unsigned long hspace;
 attribute long loop;
 attribute unsigned long scrollAmount;
 attribute unsigned long scrollDelay;
 attribute boolean trueSpeed;
 attribute unsigned long vspace;
 attribute DOMString width;

 attribute EventHandler onbounce;
 attribute EventHandler onfinish;
 attribute EventHandler onstart;

 void start();
 void stop();
};

 A marquee element can be turned on or turned off. When it is created, it is turned on.

 When the start() method is called, the
 marquee element must be turned on.

 When the stop() method is called, the
 marquee element must be turned off.

 When a marquee element is created, the user agent must queue a task
 to fire a simple event named start at the
 element.

 The behavior content attribute on
 marquee elements is an enumerated attribute with the following keywords
 (all non-conforming):

 	Keyword
 	State

 	scroll
 	scroll

 	slide
 	slide

 	alternate
 	alternate

 The missing value default is the scroll state.

 The direction content attribute on
 marquee elements is an enumerated attribute with the following keywords
 (all non-conforming):

 	Keyword
 	State

 	left
 	left

 	right
 	right

 	up
 	up

 	down
 	down

 The missing value default is the left
 state.

 The truespeed content attribute on
 marquee elements is a boolean attribute.

 A marquee element has a marquee scroll interval, which is obtained as
 follows:

 	If the element has a scrolldelay attribute,
 and parsing its value using the rules for parsing non-negative integers does not
 return an error, then let delay be the parsed value. Otherwise, let delay be 85.

 	If the element does not have a truespeed
 attribute, and the delay value is less than 60, then let delay be 60 instead.

 	The marquee scroll interval is delay, interpreted in
 milliseconds.

 A marquee element has a marquee scroll distance, which, if the element
 has a scrollamount attribute, and parsing its value
 using the rules for parsing non-negative integers does not return an error, is the
 parsed value interpreted in CSS pixels, and otherwise is 6 CSS pixels.

 A marquee element has a marquee loop count, which, if the element has a
 loop attribute, and parsing its value using the rules
 for parsing integers does not return an error or a number less than 1, is the parsed value,
 and otherwise is −1.

 The loop IDL attribute, on getting, must
 return the element's marquee loop count; and on setting, if the new value is
 different than the element's marquee loop count and either greater than zero or equal
 to −1, must set the element's loop content attribute
 (adding it if necessary) to the valid integer that represents the new value. (Other
 values are ignored.)

 A marquee element also has a marquee current loop index, which is zero
 when the element is created.

 The rendering layer will occasionally increment the marquee current loop index,
 which must cause the following steps to be run:

 	If the marquee loop count is −1, then abort these steps.

	Increment the marquee current loop index by one.

 	

 If the marquee current loop index is now equal to or greater than the element's
 marquee loop count, turn off the
 marquee element and queue a task to fire a simple event
 named finish at the marquee element.

 Otherwise, if the behavior attribute is in the
 alternate state, then queue a
 task to fire a simple event named bounce
 at the marquee element.

 Otherwise, queue a task to fire a simple event named start at the marquee element.

 The following are the event handlers (and their corresponding event handler event types) that must be supported, as content and IDL
 attributes, by marquee elements:

 	Event handler 	Event handler event type

 	onbounce 	 bounce

	onfinish 	 finish

	onstart 	 start

 The behavior, direction, height, hspace, vspace, and width IDL attributes must reflect the
 respective content attributes of the same name.

 The bgColor IDL attribute must
 reflect the bgcolor content attribute.

 The scrollAmount IDL attribute must
 reflect the scrollamount content
 attribute. The default value is 6.

 The scrollDelay IDL attribute must
 reflect the scrolldelay content
 attribute. The default value is 85.

 The trueSpeed IDL attribute must
 reflect the truespeed content
 attribute.

 11.3.3 Frames

 The frameset element acts as the body element in documents
 that use frames.

 The frameset element must implement the HTMLFrameSetElement
 interface.

 interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
};
HTMLFrameSetElement implements WindowEventHandlers;

 The cols and rows IDL attributes of the frameset
 element must reflect the respective content attributes of the same name.

 The frameset element must support the following event handler content
 attributes exposing the event handlers of the Window object:

 	onafterprint

 	onbeforeprint

 	onbeforeunload

 	onhashchange

 	onmessage

 	onoffline

 	ononline

 	onpagehide

 	onpageshow

 	onpopstate

 	onresize

 	onstorage

 	onunload

 The DOM interface also exposes event handler IDL attributes that mirror those on
 the Window element.

 The onblur, onerror, onfocus, onload,
 and onscroll event handlers of the
 Window object, exposed on the frameset element, replace the generic
 event handlers with the same names normally supported by HTML elements.

 The frame element defines a nested browsing context
 similar to the iframe element, but rendered within a frameset
 element.

 A frame element is said to be an active frame element when
 it is in a Document and its parent element, if any, is a
 frameset element.

 When a frame element is created as an active frame
 element, or becomes an active frame element after not having been
 one, the user agent must create a nested browsing context, and then process the
 frame attributes for the first time.

 When a frame element stops being an active frame
 element, the user agent must discard
 the nested browsing context.

 Whenever a frame element with a nested browsing context has its src attribute set, changed, or removed, the user agent must
 process the frame attributes.

 When the user agent is to process the frame attributes, it must run the
 first appropriate steps from the following list:

 	If the element has no src attribute specified, and the
 user agent is processing the frame's attributes for the first time

 	

 Queue a task to fire a simple event named load at the frame element.

 	Otherwise

 	

 	

 If the value of the src attribute is the empty string,
 let url be the string "about:blank".

 Otherwise, resolve the value of the src attribute, relative to the frame element.

 If that is not successful, then let url be the string
 "about:blank". Otherwise, let url be the resulting
 absolute URL.

 	

 Navigate the element's child browsing context
 to url.

 Any navigation required of the user agent in the process
 the frame attributes algorithm must be completed as an explicit
 self-navigation override and with the frame element's document's
 browsing context as the source browsing context.

 Furthermore, if the active document of the element's child browsing
 context before such a navigation was not completely
 loaded at the time of the new navigation, then the navigation must be completed with replacement enabled.

 Similarly, if the child browsing context's session history contained
 only one Document when the process the frame attributes
 algorithm was invoked, and that was the about:blank Document created
 when the child browsing context was created, then any navigation required of the user agent in that algorithm must be completed
 with replacement enabled.

 When the browsing context is created, if a name attribute
 is present, the browsing context name must be set to the value of this attribute;
 otherwise, the browsing context name must be set to the empty string.

 Whenever the name attribute is set, the nested
 browsing context's name must be changed to
 the new value. If the attribute is removed, the browsing context name must be set to
 the empty string.

 When content loads in a frame, after any load
 events are fired within the content itself, the user agent must queue a task to
 fire a simple event named load at the
 frame element. When content fails to load (e.g. due to a network error), then the
 user agent must queue a task to fire a simple event named error at the element instead.

 The task source for the tasks above is the
 DOM manipulation task source.

 When there is an active parser in the frame, and when anything in the
 frame is delaying the load event of the
 frame's browsing context's active document, the
 frame must delay the load event of its document.

 The frame element must implement the HTMLFrameElement interface.

 interface HTMLFrameElement : HTMLElement {
 attribute DOMString name;
 attribute DOMString scrolling;
 attribute DOMString src;
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute boolean noResize;
 readonly attribute Document? contentDocument;
 readonly attribute WindowProxy? contentWindow;

 [TreatNullAs=EmptyString] attribute DOMString marginHeight;
 [TreatNullAs=EmptyString] attribute DOMString marginWidth;
};

 The name, scrolling, and src IDL attributes of the frame element must
 reflect the respective content attributes of the same name. For the purposes of
 reflection, the frame element's src content
 attribute is defined as containing a URL.

 The frameBorder IDL attribute of the
 frame element must reflect the element's frameborder content attribute.

 The longDesc IDL attribute of the
 frame element must reflect the element's longdesc content attribute, which for the purposes of
 reflection is defined as containing a URL.

 The noResize IDL attribute of the
 frame element must reflect the element's noresize content attribute.

 The contentDocument IDL attribute of
 the frame element must return the Document object of the active
 document of the frame element's nested browsing context.

 The contentWindow IDL attribute must
 return the WindowProxy object of the frame element's nested
 browsing context.

 The marginHeight IDL attribute of the
 frame element must reflect the element's marginheight content attribute.

 The marginWidth IDL attribute of the
 frame element must reflect the element's marginwidth content attribute.

 11.3.4 Other elements, attributes and APIs

 User agents must treat acronym elements in a manner
 equivalent to abbr elements in terms of semantics and
 for purposes of rendering.

 partial interface HTMLAnchorElement {
 attribute DOMString coords;
 attribute DOMString charset;
 attribute DOMString name;
 attribute DOMString rev;
 attribute DOMString shape;
};

 The coords, charset, name, rev, and shape IDL attributes of the
 a element must reflect the respective
 content attributes of the same name.

 partial interface HTMLAreaElement {
 attribute boolean noHref;
};

 The noHref IDL
 attribute of the area element must reflect
 the element's nohref content
 attribute.

 partial interface HTMLBodyElement {
 [TreatNullAs=EmptyString] attribute DOMString text;
 [TreatNullAs=EmptyString] attribute DOMString link;
 [TreatNullAs=EmptyString] attribute DOMString vLink;
 [TreatNullAs=EmptyString] attribute DOMString aLink;
 [TreatNullAs=EmptyString] attribute DOMString bgColor;
 attribute DOMString background;
};

 The text IDL
 attribute of the body element must reflect
 the element's text content
 attribute.

 The link IDL
 attribute of the body element must reflect
 the element's link content
 attribute.

 The aLink IDL
 attribute of the body element must reflect
 the element's alink content
 attribute.

 The vLink IDL
 attribute of the body element must reflect
 the element's vlink content
 attribute.

 The bgColor IDL
 attribute of the body element must reflect
 the element's bgcolor content
 attribute.

 The background IDL
 attribute of the body element must reflect
 the element's background
 content attribute. (The background content is not
 defined to contain a URL, despite rules regarding its
 handling in the rendering section above.)

 partial interface HTMLBRElement {
 attribute DOMString clear;
};

 The clear IDL
 attribute of the br element must reflect
 the content attribute of the same name.

 partial interface HTMLTableCaptionElement {
 attribute DOMString align;
};

 The align IDL
 attribute of the caption element must
 reflect the content attribute of the same name.

 partial interface HTMLTableColElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 attribute DOMString width;
};

 The align and width IDL attributes of
 the col element must reflect the
 respective content attributes of the same name.

 The ch IDL attribute
 of the col element must reflect the
 element's char content
 attribute.

 The chOff IDL
 attribute of the col element must reflect
 the element's charoff content
 attribute.

 The vAlign IDL
 attribute of the col element must reflect
 the element's valign content
 attribute.

 User agents must treat dir elements in a manner
 equivalent to ul elements in terms of semantics and for
 purposes of rendering.

 The dir element must implement the
 HTMLDirectoryElement interface.

 interface HTMLDirectoryElement : HTMLElement {
 attribute boolean compact;
};

 The compact IDL
 attribute of the dir element must reflect
 the content attribute of the same name.

 partial interface HTMLDivElement {
 attribute DOMString align;
};

 The align IDL
 attribute of the div element must reflect
 the content attribute of the same name.

 partial interface HTMLDListElement {
 attribute boolean compact;
};

 The compact IDL
 attribute of the dl element must reflect
 the content attribute of the same name.

 partial interface HTMLEmbedElement {
 attribute DOMString align;
 attribute DOMString name;
};

 The name and align IDL attributes of
 the embed element must reflect the
 respective content attributes of the same name.

 The font element must implement the
 HTMLFontElement interface.

 interface HTMLFontElement : HTMLElement {
 [TreatNullAs=EmptyString] attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

 The color,
 face, and size IDL attributes of
 the font element must reflect the
 respective content attributes of the same name.

 partial interface HTMLHeadingElement {
 attribute DOMString align;
};

 The align IDL
 attribute of the h1–h6 elements must
 reflect the content attribute of the same name.

 The profile IDL attribute on
 head elements (with the HTMLHeadElement
 interface) is intentionally omitted. Unless so required by another applicable
 specification, implementations would therefore not support
 this attribute. (It is mentioned here as it was defined in a
 previous version of the DOM specifications.)

 partial interface HTMLHRElement {
 attribute DOMString align;
 attribute DOMString color;
 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

 The align, color, size, and width IDL attributes of the
 hr element must reflect the respective
 content attributes of the same name.

 The noShade IDL
 attribute of the hr element must reflect
 the element's noshade content
 attribute.

 partial interface HTMLHtmlElement {
 attribute DOMString version;
};

 The version IDL
 attribute of the html element must reflect
 the content attribute of the same name.

 partial interface HTMLIFrameElement {
 attribute DOMString align;
 attribute DOMString scrolling;
 attribute DOMString frameBorder;
 attribute DOMString longDesc;

 [TreatNullAs=EmptyString] attribute DOMString marginHeight;
 [TreatNullAs=EmptyString] attribute DOMString marginWidth;
};

 The align and
 scrolling IDL
 attributes of the iframe element must
 reflect the respective content attributes of the same
 name.

 The frameBorder IDL
 attribute of the iframe element must
 reflect the element's frameborder content
 attribute.

 The longDesc
 IDL attribute of the iframe element must
 reflect the element's longdesc content attribute,
 which for the purposes of reflection is defined as containing a
 URL.

 The marginHeight IDL
 attribute of the iframe element must
 reflect the element's marginheight content
 attribute.

 The marginWidth IDL
 attribute of the iframe element must
 reflect the element's marginwidth content
 attribute.

 partial interface HTMLImageElement {
 attribute DOMString name;
 attribute DOMString lowsrc;
 attribute DOMString align;
 attribute unsigned long hspace;
 attribute unsigned long vspace;
 attribute DOMString longDesc;

 [TreatNullAs=EmptyString] attribute DOMString border;
};

 The name, align, border, hspace, and vspace IDL attributes of
 the img element must reflect the
 respective content attributes of the same name.

 The longDesc IDL
 attribute of the img element must reflect
 the element's longdesc
 content attribute, which for the purposes of reflection is defined
 as containing a URL.

 The lowsrc IDL
 attribute of the img element must reflect
 the element's lowsrc
 content attribute, which for the purposes of reflection is defined
 as containing a URL.

 partial interface HTMLInputElement {
 attribute DOMString align;
 attribute DOMString useMap;
};

 The align IDL
 attribute of the input element must reflect
 the content attribute of the same name.

 The useMap IDL
 attribute of the input element must
 reflect the element's usemap content attribute.

 partial interface HTMLLegendElement {
 attribute DOMString align;
};

 The align IDL
 attribute of the legend element must reflect
 the content attribute of the same name.

 partial interface HTMLLIElement {
 attribute DOMString type;
};

 The type IDL
 attribute of the li element must reflect
 the content attribute of the same name.

 partial interface HTMLLinkElement {
 attribute DOMString charset;
 attribute DOMString rev;
 attribute DOMString target;
};

 The charset,
 rev, and target IDL attributes of
 the link element must reflect the
 respective content attributes of the same name.

 User agents must treat listing elements in a manner
 equivalent to pre elements in terms of semantics and
 for purposes of rendering.

 partial interface HTMLMetaElement {
 attribute DOMString scheme;
};

 User agents may treat the scheme content attribute on the
 meta element as an extension of the element's name content attribute when processing
 a meta element with a name attribute whose value is one that
 the user agent recognizes as supporting the scheme attribute.

 User agents are encouraged to ignore the scheme attribute and instead process
 the value given to the metadata name as if it had been specified for
 each expected value of the scheme attribute.

 For example, if the user agent acts on meta
 elements with name attributes
 having the value "eGMS.subject.keyword", and knows that the scheme attribute is used with this
 metadata name, then it could take the scheme attribute into account,
 acting as if it was an extension of the name attribute. Thus the following
 two meta elements could be treated as two elements
 giving values for two different metadata names, one consisting of a
 combination of "eGMS.subject.keyword" and "LGCL", and the other
 consisting of a combination of "eGMS.subject.keyword" and
 "ORLY":

 <!-- this markup is invalid -->
<meta name="eGMS.subject.keyword" scheme="LGCL" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" scheme="ORLY" content="Mah car: kthxbye">

 The suggested processing of this markup, however, would be equivalent to the following:

 <meta name="eGMS.subject.keyword" content="Abandoned vehicles">
<meta name="eGMS.subject.keyword" content="Mah car: kthxbye">

 The scheme IDL
 attribute of the meta element must reflect
 the content attribute of the same name.

 partial interface HTMLObjectElement {
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString code;
 attribute boolean declare;
 attribute unsigned long hspace;
 attribute DOMString standby;
 attribute unsigned long vspace;
 attribute DOMString codeBase;
 attribute DOMString codeType;

 [TreatNullAs=EmptyString] attribute DOMString border;
};

 The align, archive, border, code, declare, hspace, standby, and vspace IDL attributes
 of the object element must reflect the
 respective content attributes of the same name.

 The codeBase
 IDL attribute of the object element must
 reflect the element's codebase content attribute,
 which for the purposes of reflection is defined as containing a
 URL.

 The codeType IDL
 attribute of the object element must reflect
 the element's codetype content
 attribute.

 partial interface HTMLOListElement {
 attribute boolean compact;
};

 The compact IDL
 attribute of the ol element must reflect
 the content attribute of the same name.

 partial interface HTMLParagraphElement {
 attribute DOMString align;
};

 The align IDL
 attribute of the p element must reflect
 the content attribute of the same name.

 partial interface HTMLParamElement {
 attribute DOMString type;
 attribute DOMString valueType;
};

 The type IDL
 attribute of the param element must
 reflect the content attribute of the same name.

 The valueType
 IDL attribute of the param element must
 reflect the element's valuetype content attribute.

 User agents must treat plaintext elements in a
 manner equivalent to pre elements in terms of semantics
 and for purposes of rendering. (The parser has special behavior for
 this element, though.)

 partial interface HTMLPreElement {
 attribute long width;
};

 The width IDL
 attribute of the pre element must reflect
 the content attribute of the same name.

 partial interface HTMLScriptElement {
 attribute DOMString event;
 attribute DOMString htmlFor;
};

 The event and
 htmlFor IDL
 attributes of the script element must return the empty
 string on getting, and do nothing on setting.

 partial interface HTMLTableElement {
 attribute DOMString align;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;

 [TreatNullAs=EmptyString] attribute DOMString bgColor;
 [TreatNullAs=EmptyString] attribute DOMString cellPadding;
 [TreatNullAs=EmptyString] attribute DOMString cellSpacing;
};

 The align, frame, summary, rules, and width, IDL attributes of
 the table element must reflect the
 respective content attributes of the same name.

 The bgColor IDL
 attribute of the table element must reflect
 the element's bgcolor content
 attribute.

 The cellPadding IDL
 attribute of the table element must reflect
 the element's cellpadding content
 attribute.

 The cellSpacing IDL
 attribute of the table element must reflect
 the element's cellspacing content
 attribute.

 partial interface HTMLTableSectionElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
};

 The align IDL
 attribute of the tbody, thead, and
 tfoot elements must reflect the content
 attribute of the same name.

 The ch IDL attribute
 of the tbody, thead, and
 tfoot elements must reflect the elements'
 char content attributes.

 The chOff IDL
 attribute of the tbody, thead, and
 tfoot elements must reflect the elements'
 charoff content attributes.

 The vAlign IDL
 attribute of the tbody, thead, and
 tfoot element must reflect the elements'
 valign content
 attributes.

 partial interface HTMLTableCellElement {
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString height;
 attribute DOMString width;

 attribute DOMString ch;
 attribute DOMString chOff;
 attribute boolean noWrap;
 attribute DOMString vAlign;

 [TreatNullAs=EmptyString] attribute DOMString bgColor;
};

 The align, axis, height, and width IDL attributes of the td and
 th elements must reflect the respective content attributes of the same
 name.

 The ch IDL
 attribute of the td and th elements must
 reflect the elements' char content attributes.

 The chOff IDL
 attribute of the td and th elements must
 reflect the elements' charoff content attributes.

 The noWrap IDL
 attribute of the td and th elements must
 reflect the elements' nowrap content attributes.

 The vAlign IDL
 attribute of the td and th element must
 reflect the elements' valign content attributes.

 The bgColor IDL
 attribute of the td and th elements must
 reflect the elements' bgcolor content attributes.

 partial interface HTMLTableDataCellElement {
 attribute DOMString abbr;
};

 The abbr IDL attribute of the td
 element must reflect the respective content attributes of the same name.

 partial interface HTMLTableRowElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;

 [TreatNullAs=EmptyString] attribute DOMString bgColor;
};

 The align IDL
 attribute of the tr element must reflect
 the content attribute of the same name.

 The ch IDL attribute of
 the tr element must reflect the element's
 char content attribute.

 The chOff IDL
 attribute of the tr element must reflect
 the element's charoff content
 attribute.

 The vAlign IDL
 attribute of the tr element must reflect
 the element's valign content
 attribute.

 The bgColor IDL
 attribute of the tr element must reflect
 the element's bgcolor content
 attribute.

 partial interface HTMLUListElement {
 attribute boolean compact;
 attribute DOMString type;
};

 The compact and
 type IDL attributes of
 the ul element must reflect the respective
 content attributes of the same name.

 User agents must treat xmp elements in a manner
 equivalent to pre elements in terms of semantics and
 for purposes of rendering. (The parser has special behavior for this
 element though.)

 The blink, bgsound, isindex,
 multicol, nextid, rb, and
 spacer elements must use the
 HTMLUnknownElement interface.

 partial interface Document {
 [TreatNullAs=EmptyString] attribute DOMString fgColor;
 [TreatNullAs=EmptyString] attribute DOMString linkColor;
 [TreatNullAs=EmptyString] attribute DOMString vlinkColor;
 [TreatNullAs=EmptyString] attribute DOMString alinkColor;
 [TreatNullAs=EmptyString] attribute DOMString bgColor;

 readonly attribute HTMLCollection anchors;
 readonly attribute HTMLCollection applets;

 void clear();

 readonly attribute HTMLAllCollection all;
};

 The attributes of the Document object listed in the
 first column of the following table must reflect the
 content attribute on the body element with the name
 given in the corresponding cell in the second column on the same
 row, if the body element is a body element
 (as opposed to a frameset element). When there is no
 body element or if it is a
 frameset element, the attributes must instead return
 the empty string on getting and do nothing on setting.

 	 IDL attribute
 	 Content attribute

 	fgColor
 	text

 	linkColor
 	link

 	vlinkColor
 	vlink

 	alinkColor
 	alink

 	bgColor
 	bgcolor

 The anchors
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only a
 elements with name
 attributes.

 The applets
 attribute must return an HTMLCollection rooted at the
 Document node, whose filter matches only
 applet elements.

 The clear()
 method must do nothing.

 The all
 attribute must return an HTMLAllCollection rooted at the
 Document node, whose filter matches all elements.

 The object returned for all
 has several unusual behaviors:

 	The user agent must act as if the ToBoolean() operator in
 JavaScript converts the object returned for all to the false value.

 	The user agent must act as if, for the purposes of the == and != operators in JavaScript, the object returned for all compares as equal to the undefined and
 null values. (Comparisons using the === operator, and
 comparisons to other values such as strings or objects, are unaffected.)

 	The user agent must act such that the typeof operator in JavaScript returns the string
 undefined when applied to the object returned
 for all.

 These requirements are a willful
 violation of the JavaScript specification current at the time
 of writing (ECMAScript edition 5). The JavaScript specification
 requires that the ToBoolean() operator convert all objects to the
 true value, and does not have provisions for objects acting as if
 they were undefined for the purposes of
 certain operators. This violation is motivated by a desire for
 compatibility with two classes of legacy content: one that uses the
 presence of document.all as a
 way to detect legacy user agents, and one that only supports those
 legacy user agents and uses the document.all object without testing
 for its presence first. [ECMA262]

 The hgroup element does not have strong native semantics
 or default implicit ARIA semantics. User agents must not implement
 accessibility layer semantics for the hgroup element that obfuscates
 or modifies the semantics of its children.

12 IANA considerations

 12.1 text/html

 This registration is for community review and will be submitted to the IESG for review,
 approval, and registration with IANA.

 	Type name:

 	text

 	Subtype name:

 	html

 	Required parameters:

 	No required parameters

 	Optional parameters:

 	

 	charset

 	
 The charset parameter may be provided to definitively specify the
 document's character encoding, overriding any character encoding declarations in the document. The parameter's value
 must be the name of the character
 encoding used to serialize the file. [ENCODING]

 	Encoding considerations:

 	
 8bit (see the section on character encoding declarations)

 	Security considerations:

 	

 Entire novels have been written about the security considerations that apply to HTML
 documents. Many are listed in this document, to which the reader is referred for more details.
 Some general concerns bear mentioning here, however:

 HTML is scripted language, and has a large number of APIs (some of which are described in
 this document). Script can expose the user to potential risks of information leakage, credential
 leakage, cross-site scripting attacks, cross-site request forgeries, and a host of other
 problems. While the designs in this specification are intended to be safe if implemented
 correctly, a full implementation is a massive undertaking and, as with any software, user agents
 are likely to have security bugs.

 Even without scripting, there are specific features in HTML which, for historical reasons,
 are required for broad compatibility with legacy content but that expose the user to unfortunate
 security problems. In particular, the img element can be used in conjunction with
 some other features as a way to effect a port scan from the user's location on the Internet.
 This can expose local network topologies that the attacker would otherwise not be able to
 determine.

 HTML relies on a compartmentalization scheme sometimes known as the same-origin
 policy. An origin in most cases consists of all the pages served from the same
 host, on the same port, using the same protocol.

 It is critical, therefore, to ensure that any untrusted content that forms part of a site be
 hosted on a different origin than any sensitive content on that site. Untrusted
 content can easily spoof any other page on the same origin, read data from that origin, cause
 scripts in that origin to execute, submit forms to and from that origin even if they are
 protected from cross-site request forgery attacks by unique tokens, and make use of any
 third-party resources exposed to or rights granted to that origin.

 	Interoperability considerations:

 	
 Rules for processing both conforming and non-conforming content
 are defined in this specification.

 	Published specification:

 	
 This document is the relevant specification. Labeling a resource
 with the text/html type asserts that the resource is
 an HTML document using
 the HTML syntax.

 	Applications that use this media type:

 	
 Web browsers, tools for processing Web content, HTML authoring
 tools, search engines, validators.

 	Additional information:

 	

 	Magic number(s):

 	No sequence of bytes can uniquely identify an HTML
 document. More information on detecting HTML documents is
 available in the MIME Sniffing specification. [MIMESNIFF]

 	File extension(s):

 	"html" and "htm"
 are commonly, but certainly not exclusively, used as the
 extension for HTML documents.

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Ian Hickson <ian@hixie.ch>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	No restrictions apply.

 	Author:

 	Ian Hickson <ian@hixie.ch>

 	Change controller:

 	W3C

 Fragment identifiers used with text/html resources either refer to the
 indicated part of the document or provide state information for in-page scripts.

 12.2 multipart/x-mixed-replace

 This registration is for community review and will be submitted to the IESG for review,
 approval, and registration with IANA.

 	Type name:

 	multipart

 	Subtype name:

 	x-mixed-replace

 	Required parameters:

 	

 	boundary (defined in RFC2046) [RFC2046]

 	Optional parameters:

 	No optional parameters.

 	Encoding considerations:

 	binary

 	Security considerations:

 	
 Subresources of a multipart/x-mixed-replace
 resource can be of any type, including types with non-trivial
 security implications such as text/html.

 	Interoperability considerations:

 	
 None.

 	Published specification:

 	
 This specification describes processing rules for Web browsers.
 Conformance requirements for generating resources with this type are the same as for multipart/mixed. [RFC2046]

 	Applications that use this media type:

 	
 This type is intended to be used in resources generated by Web servers, for consumption by Web browsers.

 	Additional information:

 	

 	Magic number(s):

 	No sequence of bytes can uniquely identify a multipart/x-mixed-replace resource.

 	File extension(s):

 	No specific file extensions are recommended for this type.

 	Macintosh file type code(s):

 	No specific Macintosh file type codes are recommended for this type.

 	Person & email address to contact for further information:

 	Ian Hickson <ian@hixie.ch>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	No restrictions apply.

 	Author:

 	Ian Hickson <ian@hixie.ch>

 	Change controller:

 	W3C

 Fragment identifiers used with
 multipart/x-mixed-replace resources apply to each body
 part as defined by the type used by that body part.

 12.3 application/xhtml+xml

 This registration is for community review and will be submitted
 to the IESG for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	xhtml+xml

 	Required parameters:

 	Same as for application/xml [RFC3023]

 	Optional parameters:

 	Same as for application/xml [RFC3023]

 	Encoding considerations:

 	Same as for application/xml [RFC3023]

 	Security considerations:

 	Same as for application/xml [RFC3023]

 	Interoperability considerations:

 	Same as for application/xml [RFC3023]

 	Published specification:

 	
 Labeling a resource with the application/xhtml+xml
 type asserts that the resource is an XML document that likely has
 a root element from the HTML namespace. Thus, the
 relevant specifications are the XML specification, the Namespaces
 in XML specification, and this specification. [XML] [XMLNS]

 	Applications that use this media type:

 	Same as for application/xml [RFC3023]

 	Additional information:

 	

 	Magic number(s):

 	Same as for application/xml [RFC3023]

 	File extension(s):

 	"xhtml" and "xht"
 are sometimes used as extensions for XML resources that have a
 root element from the HTML namespace.

 	Macintosh file type code(s):

 	TEXT

 	Person & email address to contact for further information:

 	Ian Hickson <ian@hixie.ch>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	No restrictions apply.

 	Author:

 	Ian Hickson <ian@hixie.ch>

 	Change controller:

 	W3C

 Fragment identifiers used with application/xhtml+xml
 resources have the same semantics as with any XML MIME
 type. [RFC3023]

 12.4 application/x-www-form-urlencoded

 This registration is for community review and will be submitted
 to the IESG for review, approval, and registration with IANA.

 	Type name:

 	application

 	Subtype name:

 	x-www-form-urlencoded

 	Required parameters:

 	No parameters

 	Optional parameters:

 	No parameters

 	Encoding considerations:

 	7bit (US-ASCII encoding of octets that themselves can be encoding text using any ASCII-compatible character encoding)

 	Security considerations:

 	
 In isolation, an application/x-www-form-urlencoded
 payload poses no security risks. However, as this type is usually
 used as part of a form submission, all the risks that apply to
 HTML forms need to be considered in the context of this type.

 	Interoperability considerations:

 	
 Rules for generating and processing
 application/x-www-form-urlencoded payloads are
 defined in this specification.

 	Published specification:

 	
 This document is the relevant specification.
 Algorithms for encoding
 and decoding are defined.

 	Applications that use this media type:

 	
 Web browsers and servers.

 	Additional information:

 	

 	Magic number(s):

 	There is no reliable mechanism for recognising application/x-www-form-urlencoded payloads.

 	File extension(s):

 	Not applicable.

 	Macintosh file type code(s):

 	Not applicable.

 	Person & email address to contact for further information:

 	Ian Hickson <ian@hixie.ch>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	This type is only intended to be used to describe HTML form
 submission payloads.

 	Author:

 	Ian Hickson <ian@hixie.ch>

 	Change controller:

 	W3C

 Fragment identifiers have no meaning with the
 application/x-www-form-urlencoded type.

 12.5 text/cache-manifest

 This registration is for community review and will be submitted
 to the IESG for review, approval, and registration with IANA.

 	Type name:

 	text

 	Subtype name:

 	cache-manifest

 	Required parameters:

 	No parameters

 	Optional parameters:

 	

 	charset

 	

 The charset parameter may be provided.
 The parameter's value must be "utf-8".
 This parameter serves no purpose; it is only allowed for
 compatibility with legacy servers.

 	Encoding considerations:

 	8bit (always UTF-8)

 	Security considerations:

 	
 Cache manifests themselves pose no immediate risk unless
 sensitive information is included within the
 manifest. Implementations, however, are required to follow
 specific rules when populating a cache based on a cache manifest,
 to ensure that certain origin-based restrictions are
 honored. Failure to correctly implement these rules can result in
 information leakage, cross-site scripting attacks, and the
 like.

 	Interoperability considerations:

 	
 Rules for processing both conforming and non-conforming content
 are defined in this specification.

 	Published specification:

 	
 This document is the relevant specification.

 	Applications that use this media type:

 	
 Web browsers.

 	Additional information:

 	

 	Magic number(s):

 	Cache manifests begin with the string "CACHE
 MANIFEST", followed by either a U+0020 SPACE character, a
 "tab" (U+0009) character, a "LF" (U+000A) character, or a "CR" (U+000D) character.

 	File extension(s):

 	"appcache"

 	Macintosh file type code(s):

 	No specific Macintosh file type codes are recommended for this type.

 	Person & email address to contact for further information:

 	Ian Hickson <ian@hixie.ch>

 	Intended usage:

 	Common

 	Restrictions on usage:

 	No restrictions apply.

 	Author:

 	Ian Hickson <ian@hixie.ch>

 	Change controller:

 	W3C

 Fragment identifiers have no meaning with
 text/cache-manifest resources.

 12.6 web+ scheme prefix

 This section describes a convention for use with the IANA URI
 scheme registry. It does not itself register a specific scheme. [RFC4395]

 	URI scheme name:

 	
 Schemes starting with the four characters "web+" followed by one or more letters in the range
 a-z.

 	Status:

 	permanent

 	URI scheme syntax:

 	Scheme-specific.

 	URI scheme semantics:

 	Scheme-specific.

 	Encoding considerations:

 	All "web+" schemes should use UTF-8 encodings where relevant.

 	Applications/protocols that use this URI scheme name:

 	Scheme-specific.

 	Interoperability considerations:

 	The scheme is expected to be used in the context of Web applications.

 	Security considerations:

 	
 Any Web page is able to register a handler for all "web+" schemes. As such, these schemes must not be
 used for features intended to be core platform features (e.g.
 network transfer protocols like HTTP or FTP). Similarly, such
 schemes must not store confidential information in their URLs,
 such as usernames, passwords, personal information, or
 confidential project names.

 	Contact:

 	Ian Hickson <ian@hixie.ch>

 	Author/Change controller:

 	Ian Hickson <ian@hixie.ch>

 	References:

 	
 Custom scheme and content handlers, HTML Living Standard:
 http://www.whatwg.org/specs/web-apps/current-work/#custom-handlers

Index

 The following sections only cover conforming elements and features.

 Elements

 This section is non-normative.

 List of elements

 	 Element
 	 Description
 	 Categories
 	 Parents†
 	 Children
 	 Attributes
 	 Interface

 	a
 	Hyperlink
 	flow;
 phrasing*;
 interactive
 	phrasing
 	transparent*
 	globals;
 href;
 target;
 download;

 rel;
 hreflang;
 type
 	HTMLAnchorElement

 	abbr
 	Abbreviation
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	address
 	Contact information for a page or article element
 	flow
 	flow
 	flow*
 	globals
 	HTMLElement

 	area
 	Hyperlink or dead area on an image map
 	flow;
 phrasing
 	phrasing*
 	empty
 	globals;
 alt;
 coords;
 shape;
 href;
 target;
 download;

 rel;
 hreflang;
 type
 	HTMLAreaElement

 	article
 	Self-contained syndicatable or reusable composition
 	flow;
 sectioning
 	flow
 	flow
 	globals
 	HTMLElement

 	aside
 	Sidebar for tangentially related content
 	flow;
 sectioning
 	flow
 	flow
 	globals
 	HTMLElement

 	audio
 	Audio player
 	flow;
 phrasing;
 embedded;
 interactive
 	phrasing
 	source*;
 transparent*
 	globals;
 src;
 crossorigin;
 preload;
 autoplay;
 mediagroup;
 loop;
 muted;
 controls
 	HTMLAudioElement

 	b
 	Keywords
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	base
 	Base URL and default target browsing context for hyperlinks and forms
 	metadata
 	head
 	empty
 	globals;
 href;
 target
 	HTMLBaseElement

 	bdi
 	Text directionality isolation
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	bdo
 	Text directionality formatting
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	blockquote
 	A section quoted from another source
 	flow;
 sectioning root
 	flow
 	flow
 	globals;
 cite
 	HTMLQuoteElement

 	body
 	Document body
 	sectioning root
 	html
 	flow
 	globals;
 onafterprint;
 onbeforeprint;
 onbeforeunload;
 onhashchange;
 onmessage;
 onoffline;
 ononline;
 onpagehide;
 onpageshow;
 onpopstate;
 onresize;
 onstorage;
 onunload
 	HTMLBodyElement

 	br
 	Line break, e.g. in poem or postal address
 	flow;
 phrasing
 	phrasing
 	empty
 	globals
 	HTMLBRElement

 	button
 	Button control
 	flow;
 phrasing;
 interactive;
 listed;
 labelable;
 submittable;
 reassociateable;
 form-associated
 	phrasing
 	phrasing*
 	globals;
 autofocus;
 disabled;
 form;
 formaction;
 formenctype;
 formmethod;
 formnovalidate;
 formtarget;
 name;
 type;
 value
 	HTMLButtonElement

 	canvas
 	Scriptable bitmap canvas
 	flow;
 phrasing;
 embedded
 	phrasing
 	transparent
 	globals;
 width;
 height
 	HTMLCanvasElement

 	caption
 	Table caption
 	none
 	table
 	flow*
 	globals
 	HTMLTableCaptionElement

 	cite
 	Title of a work
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	code
 	Computer code
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	col
 	Table column
 	none
 	colgroup
 	empty
 	globals;
 span
 	HTMLTableColElement

 	colgroup
 	Group of columns in a table
 	none
 	table
 	col*;
 script-supporting elements*
 	globals;
 span
 	HTMLTableColElement

 	data
 	Machine-readable equivalent
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals;
 value
 	HTMLDataElement

 	datalist
 	Container for options for combo box control
 	flow;
 phrasing
 	phrasing
 	phrasing;
 option
 	globals
 	HTMLDataListElement

 	dd
 	Content for corresponding dt element(s)
 	none
 	dl
 	flow
 	globals
 	HTMLElement

 	del
 	A removal from the document
 	flow;
 phrasing*
 	phrasing
 	transparent
 	globals;
 cite;
 datetime
 	HTMLModElement

 	details
 	Disclosure control for hiding details
 	flow;
 sectioning root;
 interactive
 	flow
 	summary*;
 flow
 	globals;
 open
 	HTMLDetailsElement

 	dfn
 	Defining instance
 	flow;
 phrasing
 	phrasing
 	phrasing*
 	globals
 	HTMLElement

 	dialog
 	Dialog box or window
 	flow;
 sectioning root
 	flow
 	flow
 	globals;
 open
 	HTMLDialogElement

 	div
 	Generic flow container
 	flow
 	flow
 	flow
 	globals
 	HTMLDivElement

 	dl
 	Association list consisting of zero or more name-value groups
 	flow
 	flow
 	dt*;
 dd*;
 script-supporting elements
 	globals
 	HTMLDListElement

 	dt
 	Legend for corresponding dd element(s)
 	none
 	dl
 	flow*
 	globals
 	HTMLElement

 	em
 	Stress emphasis
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	embed
 	Plugin
 	flow;
 phrasing;
 embedded;
 interactive
 	phrasing
 	empty
 	globals;
 src;
 type;
 width;
 height;
 any*
 	HTMLEmbedElement

 	fieldset
 	Group of form controls
 	flow;
 sectioning root;
 listed;
 reassociateable;
 form-associated
 	flow
 	legend*;
 flow
 	globals;
 disabled;
 form;
 name
 	HTMLFieldSetElement

 	figcaption
 	Caption for figure
 	none
 	figure
 	flow
 	globals
 	HTMLElement

 	figure
 	Figure with optional caption
 	flow;
 sectioning root
 	flow
 	figcaption*;
 flow
 	globals
 	HTMLElement

 	footer
 	Footer for a page or section
 	flow
 	flow
 	flow*
 	globals
 	HTMLElement

 	form
 	User-submittable form
 	flow
 	flow
 	flow*
 	globals;
 accept-charset;
 action;
 autocomplete;
 enctype;
 method;
 name;
 novalidate;
 target
 	HTMLFormElement

 	h1, h2, h3, h4, h5, h6
 	Section heading
 	flow;
 heading

 	
 flow

 	phrasing
 	globals
 	HTMLHeadingElement

 	head
 	Container for document metadata
 	none
 	html
 	metadata content*
 	globals
 	HTMLHeadElement

 	header
 	Introductory or navigational aids for a page or section
 	flow
 	flow
 	flow*
 	globals
 	HTMLElement

 	hr
 	Thematic break
 	flow
 	flow
 	empty
 	globals
 	HTMLHRElement

 	html
 	Root element
 	none
 	none*
 	head*;
 body*
 	globals;
 manifest
 	HTMLHtmlElement

 	i
 	Alternate voice
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	iframe
 	Nested browsing context
 	flow;
 phrasing;
 embedded;
 interactive
 	phrasing
 	text*
 	globals;
 src;
 srcdoc;
 name;
 sandbox;
 seamless;
 width;
 height
 	HTMLIFrameElement

 	img
 	Image
 	flow;
 phrasing;
 embedded;
 interactive*;
 form-associated
 	phrasing
 	empty
 	globals;
 alt;
 src;
 crossorigin;
 usemap;
 ismap;
 width;
 height
 	HTMLImageElement

 	input
 	Form control
 	flow;
 phrasing;
 interactive*;
 listed;
 labelable;
 submittable;
 resettable;
 reassociateable;
 form-associated
 	phrasing
 	empty
 	globals;
 accept;
 alt;
 autocomplete;
 autofocus;
 checked;
 dirname;
 disabled;
 form;
 formaction;
 formenctype;
 formmethod;
 formnovalidate;
 formtarget;
 height;
 list;
 max;
 maxlength;
 min;
 multiple;
 name;
 pattern;
 placeholder;
 readonly;
 required;
 size;
 src;
 step;
 type;
 value;
 width
 	HTMLInputElement

 	ins
 	An addition to the document
 	flow;
 phrasing*
 	phrasing
 	transparent
 	globals;
 cite;
 datetime
 	HTMLModElement

 	kbd
 	User input
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	keygen
 	Cryptographic key-pair generator form control
 	flow;
 phrasing;
 interactive;
 listed;
 labelable;
 submittable;
 resettable;
 reassociateable;
 form-associated
 	phrasing
 	empty
 	globals;
 autofocus;
 challenge;
 disabled;
 form;
 keytype;
 name
 	HTMLKeygenElement

 	label
 	Caption for a form control
 	flow;
 phrasing;
 interactive;
 reassociateable;
 form-associated
 	phrasing
 	phrasing*
 	globals;
 form;
 for
 	HTMLLabelElement

 	legend
 	Caption for fieldset
 	none
 	fieldset
 	phrasing
 	globals
 	HTMLLegendElement

 	li
 	List item
 	none
 	ol;
 ul
 	flow
 	globals;
 value*
 	HTMLLIElement

 	link
 	Link metadata
 	metadata;
 flow*;
 phrasing*
 	head;
 noscript*;
 phrasing*
 	empty
 	globals;
 href;
 crossorigin;
 rel;
 media;
 hreflang;
 type;
 sizes
 	HTMLLinkElement

 	main
 	Main content of a document
 	flow
 	flow
 	flow*
 	globals
 	HTMLElement

 	map
 	Image map
 	flow;
 phrasing*
 	phrasing
 	transparent;
 area*
 	globals;
 name
 	HTMLMapElement

 	mark
 	Highlight
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	meta
 	Text metadata
 	metadata;
 flow*;
 phrasing*
 	head;
 noscript*;
 phrasing*
 	empty
 	globals;
 name;
 http-equiv;
 content;
 charset
 	HTMLMetaElement

 	meter
 	Gauge
 	flow;
 phrasing;
 labelable
 	phrasing
 	phrasing*
 	globals;
 value;
 min;
 max;
 low;
 high;
 optimum
 	HTMLMeterElement

 	nav
 	Section with navigational links
 	flow;
 sectioning
 	flow
 	flow
 	globals
 	HTMLElement

 	noscript
 	Fallback content for script
 	metadata;
 flow;
 phrasing
 	head*;
 phrasing*
 	varies*
 	globals
 	HTMLElement

 	object
 	Image, nested browsing context, or plugin
 	flow;
 phrasing;
 embedded;
 interactive*;
 listed;
 submittable;
 reassociateable;
 form-associated
 	phrasing
 	param*;
 transparent
 	globals;
 data;
 type;
 typemustmatch;
 name;
 usemap;
 form;
 width;
 height
 	HTMLObjectElement

 	ol
 	Ordered list
 	flow
 	flow
 	li;
 script-supporting elements
 	globals;
 reversed;
 start;
 type
 	HTMLOListElement

 	optgroup
 	Group of options in a list box
 	none
 	select;
 	option;
 script-supporting elements
 	globals;
 disabled;
 label
 	HTMLOptGroupElement

 	option
 	Option in a list box or combo box control
 	none
 	select;
 datalist;
 optgroup
 	text*
 	globals;
 disabled;
 label;
 selected;
 value
 	HTMLOptionElement

 	output
 	Calculated output value
 	flow;
 phrasing;
 listed;
 labelable;
 resettable;
 reassociateable;
 form-associated
 	phrasing
 	phrasing
 	globals;
 for;
 form;
 name
 	HTMLOutputElement

 	p
 	Paragraph
 	flow
 	flow
 	phrasing
 	globals
 	HTMLParagraphElement

 	param
 	Parameter for object
 	none
 	object
 	empty
 	globals;
 name;
 value
 	HTMLParamElement

 	pre
 	Block of preformatted text
 	flow
 	flow
 	phrasing
 	globals
 	HTMLPreElement

 	progress
 	Progress bar
 	flow;
 phrasing;
 labelable
 	phrasing
 	phrasing*
 	globals;
 value;
 max
 	HTMLProgressElement

 	q
 	Quotation
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals;
 cite
 	HTMLQuoteElement

 	rp
 	Parenthesis for ruby annotation text
 	none
 	ruby
 	phrasing
 	globals
 	HTMLElement

 	rt
 	Ruby annotation text
 	none
 	ruby
 	phrasing
 	globals
 	HTMLElement

 	ruby
 	Ruby annotation(s)
 	flow;
 phrasing
 	phrasing
 	phrasing;
 rt;
 rp*
 	globals
 	HTMLElement

 	s
 	Inaccurate text
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	samp
 	Computer output
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	script
 	Embedded script
 	metadata;
 flow;
 phrasing;
 script-supporting
 	head;
 phrasing;
 script-supporting
 	script, data, or script documentation*
 	globals;
 src;
 type;
 charset;
 async;
 defer;
 crossorigin
 	HTMLScriptElement

 	section
 	Generic document or application section
 	flow;
 sectioning
 	flow
 	flow
 	globals
 	HTMLElement

 	select
 	List box control
 	flow;
 phrasing;
 interactive;
 listed;
 labelable;
 submittable;
 resettable;
 reassociateable;
 form-associated
 	phrasing
 	option, optgroup
 	globals;
 autofocus;
 disabled;
 form;
 multiple;
 name;
 required;
 size
 	HTMLSelectElement

 	small
 	Side comment
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	source
 	Media source for video or audio
 	none
 	video;
 audio
 	empty
 	globals;
 src;
 type;
 media
 	HTMLSourceElement

 	span
 	Generic phrasing container
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLSpanElement

 	strong
 	Importance
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	style
 	Embedded styling information
 	metadata;
 flow
 	head;
 noscript*;
 flow*
 	varies*
 	globals;
 media;
 type;
 scoped
 	HTMLStyleElement

 	sub
 	Subscript
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	summary
 	Caption for details
 	none
 	details
 	phrasing
 	globals
 	HTMLElement

 	sup
 	Superscript
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	table
 	Table
 	flow
 	flow
 	caption*;
 colgroup*;
 thead*;
 tbody*;
 tfoot*;
 tr*;
 script-supporting elements
 	globals;

 border
 	HTMLTableElement

 	tbody
 	Group of rows in a table
 	none
 	table
 	tr;
 script-supporting elements
 	globals
 	HTMLTableSectionElement

 	td
 	Table cell
 	sectioning root
 	tr
 	flow
 	globals;
 colspan;
 rowspan;
 headers
 	HTMLTableDataCellElement

 	textarea
 	Multiline text field
 	flow;
 phrasing;
 interactive;
 listed;
 labelable;
 submittable;
 resettable;
 reassociateable;
 form-associated
 	phrasing
 	text
 	globals;
 autofocus;
 cols;
 dirname;
 disabled;
 form;
 maxlength;
 name;
 placeholder;
 readonly;
 required;
 rows;
 wrap
 	HTMLTextAreaElement

 	tfoot
 	Group of footer rows in a table
 	none
 	table
 	tr;
 script-supporting elements
 	globals
 	HTMLTableSectionElement

 	th
 	Table header cell
 	none
 	tr
 	flow*
 	globals;
 colspan;
 rowspan;
 headers;
 scope;
 abbr
 	HTMLTableHeaderCellElement

 	thead
 	Group of heading rows in a table
 	none
 	table
 	tr;
 script-supporting elements
 	globals
 	HTMLTableSectionElement

 	time
 	Machine-readable equivalent of date- or time-related data
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals;
 datetime
 	HTMLTimeElement

 	title
 	Document title
 	metadata
 	head
 	text*
 	globals
 	HTMLTitleElement

 	tr
 	Table row
 	none
 	table;
 thead;
 tbody;
 tfoot
 	th*;
 td;
 script-supporting elements
 	globals
 	HTMLTableRowElement

 	track
 	Timed text track
 	none
 	audio;
 video
 	empty
 	globals;
 default;
 kind;
 label;
 src;
 srclang
 	HTMLTrackElement

 	u
 	Keywords
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	ul
 	List
 	flow
 	flow
 	li;
 script-supporting elements
 	globals
 	HTMLUListElement

 	var
 	Variable
 	flow;
 phrasing
 	phrasing
 	phrasing
 	globals
 	HTMLElement

 	video
 	Video player
 	flow;
 phrasing;
 embedded;
 interactive
 	phrasing
 	source*;
 transparent*
 	globals;
 src;
 crossorigin;
 poster;
 preload;
 autoplay;
 mediagroup;
 loop;
 muted;
 controls;
 width;
 height
 	HTMLVideoElement

 	wbr
 	Line breaking opportunity
 	flow;
 phrasing
 	phrasing
 	empty
 	globals
 	HTMLElement

 An asterisk (*) in a cell indicates that the actual rules are more
 complicated than indicated in the table above.

 † Categories in the "Parents" column refer to parents that list the given categories in
 their content model, not to elements that themselves are in those categories. For example, the
 a element's "Parents" column says "phrasing", so any element whose content model
 contains the "phrasing" category could be a parent of an a element. Since the "flow"
 category includes all the "phrasing" elements, that means the th element could be a
 parent to an a element.

 Element content categories

 This section is non-normative.

 List of element content categories

 	 Category
 	 Elements
 	 Elements with exceptions

 	 Metadata content
 	
 base;
 link;
 meta;
 noscript;
 script;
 style;
 title
 	
 —

 	 Flow content
 	
 a;
 abbr;
 address;
 article;
 aside;
 audio;
 b;
 bdi;
 bdo;
 blockquote;
 br;
 button;
 canvas;
 cite;
 code;
 data;
 datalist;
 del;
 details;
 dfn;
 dialog;
 div;
 dl;
 em;
 embed;
 fieldset;
 figure;
 footer;
 form;
 h1;
 h2;
 h3;
 h4;
 h5;
 h6;
 header;

 hr;
 i;
 iframe;
 img;
 input;
 ins;
 kbd;
 keygen;
 label;
 main;
 map;
 mark;
 math;
 meter;
 nav;
 noscript;
 object;
 ol;
 output;
 p;
 pre;
 progress;
 q;
 ruby;
 s;
 samp;
 script;
 section;
 select;
 small;
 span;
 strong;
 sub;
 sup;
 svg;
 table;
 textarea;
 time;
 u;
 ul;
 var;
 video;
 wbr;
 Text
 	
 area (if it is a descendant of a map element);
 style (if the scoped attribute is present)

 	 Sectioning content
 	
 article;
 aside;
 nav;
 section
 	
 —

 	 Heading content
 	
 h1;
 h2;
 h3;
 h4;
 h5;
 h6;

 	
 —

 	 Phrasing content
 	
 a;
 abbr;
 audio;
 b;
 bdi;
 bdo;
 br;
 button;
 canvas;
 cite;
 code;
 data;
 datalist;
 del;
 dfn;
 em;
 embed;
 i;
 iframe;
 img;
 input;
 ins;
 kbd;
 keygen;
 label;
 map;
 mark;
 math;
 meter;
 noscript;
 object;
 output;
 progress;
 q;
 ruby;
 s;
 samp;
 script;
 select;
 small;
 span;
 strong;
 sub;
 sup;
 svg;
 textarea;
 time;
 u;
 var;
 video;
 wbr;
 Text
 	
 area (if it is a descendant of a map element);

 	 Embedded content
 	
 audio
 canvas
 embed
 iframe
 img
 math
 object
 svg
 video
 	
 —

 	 Interactive content
 	
 a;
 button;
 details;
 embed;
 iframe;
 keygen;
 label;
 select;
 textarea;
 	
 audio (if the controls attribute is present);
 img (if the usemap attribute is present);
 input (if the type attribute is not in the Hidden state);
 object (if the usemap attribute is present);
 video (if the controls attribute is present)

 	 Sectioning roots
 	
 blockquote;
 body;
 details;
 dialog;
 fieldset;
 figure;
 td
 	
 —

 	 Form-associated elements
 	
 button;
 fieldset;
 input;
 keygen;
 label;
 object;
 output;
 select;
 textarea;
 img
 	
 —

 	 Listed elements
 	
 button;
 fieldset;
 input;
 keygen;
 object;
 output;
 select;
 textarea
 	
 —

 	 Submittable elements
 	
 button;
 input;
 keygen;
 object;
 select;
 textarea
 	
 —

 	 Resettable elements
 	
 input;
 keygen;
 output;
 select;
 textarea
 	
 —

 	 Labelable elements
 	
 button;
 input;
 keygen;
 meter;
 output;
 progress;
 select;
 textarea
 	
 —

 	 Reassociateable elements
 	
 button;
 fieldset;
 input;
 keygen;
 label;
 object;
 output;
 select;
 textarea
 	
 —

 	 Palpable content
 	
 a;
 abbr;
 address;
 article;
 aside;
 b;
 bdi;
 bdo;
 blockquote;
 button;
 canvas;
 cite;
 code;
 data;
 details;
 dfn;
 div;
 em;
 embed;
 fieldset;
 figure;
 footer;
 form;
 h1;
 h2;
 h3;
 h4;
 h5;
 h6;
 header;

 i;
 iframe;
 img;
 ins;
 kbd;
 keygen;
 label;
 main;
 map;
 mark;
 math;
 meter;
 nav;
 object;
 output;
 p;
 pre;
 progress;
 q;
 ruby;
 s;
 samp;
 section;
 select;
 small;
 span;
 strong;
 sub;
 sup;
 svg;
 table;
 textarea;
 time;
 u;
 var;
 video
 	
 audio (if the controls attribute is present);
 dl (if the element's children include at least one name-value group);
 input (if the type attribute is not in the Hidden state);
 ol (if the element's children include at least one li element);
 ul (if the element's children include at least one li element);
 Text that is not inter-element whitespace

 	 Script-supporting elements
 	
 script;
 	
 —

 Attributes

 This section is non-normative.

 List of attributes (excluding event handler content attributes)

 	 Attribute
 	 Element(s)
 	 Description
 	 Value

 	 abbr
 	 th
 	 Alternative label to use for the header cell when referencing the cell in other contexts
 	 Text*

 	 accept
 	 input
 	 Hint for expected file type in file upload controls
 	 Set of comma-separated tokens* consisting of valid MIME types with no parameters or audio/*, video/*, or image/*

 	 accept-charset
 	 form
 	 Character encodings to use for form submission
 	 Ordered set of unique space-separated tokens, ASCII case-insensitive, consisting of names of ASCII-compatible character encodings*

 	 accesskey
 	 HTML elements
 	 Keyboard shortcut to activate or focus element
 	 Ordered set of unique space-separated tokens, case-sensitive, consisting of one Unicode code point in length

 	 action
 	 form
 	 URL to use for form submission
 	 Valid non-empty URL potentially surrounded by spaces

 	 alt
 	 area;
 img;
 input
 	 Replacement text for use when images are not available
 	 Text*

 	 async
 	 script
 	 Execute script asynchronously
 	 Boolean attribute

 	 autocomplete
 	 form
 	 Default setting for autofill feature for controls in the form
 	 "on"; "off"

 	 autocomplete
 	 input;
 select;
 textarea
 	 Hint for form autofill feature
 	 Autofill field name and related tokens*

 	 autofocus
 	 button;
 input;
 keygen;
 select;
 textarea
 	 Automatically focus the form control when the page is loaded
 	 Boolean attribute

 	 autoplay
 	 audio;
 video
 	 Hint that the media resource can be started automatically when the page is loaded
 	 Boolean attribute

 	 border
 	 table
 	 Explicit indication that the table element is not being used for layout purposes
 	 The empty string, or "1"

 	 challenge
 	 keygen
 	 String to package with the generated and signed public key
 	 Text

 	 charset
 	 meta
 	 Character encoding declaration
 	 Encoding name*

 	 charset
 	 script
 	 Character encoding of the external script resource
 	 Encoding name*

 	 checked
 	 input
 	 Whether the control is checked
 	 Boolean attribute

 	 cite
 	 blockquote;
 del;
 ins;
 q
 	 Link to the source of the quotation or more information about the edit
 	 Valid URL potentially surrounded by spaces

 	 class
 	 HTML elements
 	 Classes to which the element belongs
 	 Set of space-separated tokens

 	 cols
 	 textarea
 	 Maximum number of characters per line
 	 Valid non-negative integer greater than zero

 	 colspan
 	 td;
 th
 	 Number of columns that the cell is to span
 	 Valid non-negative integer greater than zero

 	 content
 	 meta
 	 Value of the element
 	 Text*

 	 contenteditable
 	 HTML elements
 	 Whether the element is editable
 	 "true"; "false"

 	 controls
 	 audio;
 video
 	 Show user agent controls
 	 Boolean attribute

 	 coords
 	 area
 	 Coordinates for the shape to be created in an image map
 	 Valid list of integers*

 	 crossorigin
 	 audio;
 img;
 link;
 script;
 video
 	 How the element handles crossorigin requests
 	 "anonymous"; "use-credentials"

 	 data
 	 object
 	 Address of the resource
 	 Valid non-empty URL potentially surrounded by spaces

 	 datetime
 	 del;
 ins
 	 Date and (optionally) time of the change
 	 Valid date string with optional time

 	 datetime
 	 time
 	 Machine-readable value
 	 Valid month string,
 valid date string,
 valid yearless date string,
 valid time string,
 valid local date and time string,
 valid time-zone offset string,
 valid global date and time string,
 valid week string,
 valid non-negative integer, or
 valid duration string

 	 default
 	 track
 	 Enable the track if no other text track is more suitable
 	 Boolean attribute

 	 defer
 	 script
 	 Defer script execution
 	 Boolean attribute

 	 dir
 	 HTML elements
 	 The text directionality of the element
 	 "ltr"; "rtl"; "auto"

 	 dirname
 	 input;
 textarea
 	 Name of form field to use for sending the element's directionality in form submission
 	 Text*

 	 disabled
 	 button;
 fieldset;
 input;
 keygen;
 optgroup;
 option;
 select;
 textarea
 	 Whether the form control is disabled
 	 Boolean attribute

 	 download
 	 a;
 area
 	 Whether to download the resource instead of navigating to it, and its file name if so
 	 Text

 	 draggable
 	 HTML elements
 	 Whether the element is draggable
 	 "true"; "false"

 	 dropzone
 	 HTML elements
 	 Accepted item types for drag-and-drop
 	 Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of accepted types and drag feedback*

 	 enctype
 	 form
 	 Form data set encoding type to use for form submission
 	 "application/x-www-form-urlencoded"; "multipart/form-data"; "text/plain"

 	 for
 	 label
 	 Associate the label with form control
 	 ID*

 	 for
 	 output
 	 Specifies controls from which the output was calculated
 	 Unordered set of unique space-separated tokens, case-sensitive, consisting of IDs*

 	 form
 	 button;
 fieldset;
 input;
 keygen;
 label;
 object;
 output;
 select;
 textarea
 	 Associates the control with a form element
 	 ID*

 	 formaction
 	 button;
 input
 	 URL to use for form submission
 	 Valid non-empty URL potentially surrounded by spaces

 	 formenctype
 	 button;
 input
 	 Form data set encoding type to use for form submission
 	 "application/x-www-form-urlencoded"; "multipart/form-data"; "text/plain"

 	 formmethod
 	 button;
 input
 	 HTTP method to use for form submission
 	 "GET"; "POST"

 	 formnovalidate
 	 button;
 input
 	 Bypass form control validation for form submission
 	 Boolean attribute

 	 formtarget
 	 button;
 input
 	 Browsing context for form submission
 	 Valid browsing context name or keyword

 	 headers
 	 td;
 th
 	 The header cells for this cell
 	 Unordered set of unique space-separated tokens, case-sensitive, consisting of IDs*

 	 height
 	 canvas;
 embed;
 iframe;
 img;
 input;
 object;
 video
 	 Vertical dimension
 	 Valid non-negative integer

 	 hidden
 	 HTML elements
 	 Whether the element is relevant
 	 Boolean attribute

 	 high
 	 meter
 	 Low limit of high range
 	 Valid floating-point number*

 	 href
 	 a;
 area
 	 Address of the hyperlink
 	 Valid URL potentially surrounded by spaces

 	 href
 	 link
 	 Address of the hyperlink
 	 Valid non-empty URL potentially surrounded by spaces

 	 href
 	 base
 	 Document base URL
 	 Valid URL potentially surrounded by spaces

 	 hreflang
 	 a;
 area;
 link
 	 Language of the linked resource
 	 Valid BCP 47 language tag

 	 http-equiv
 	 meta
 	 Pragma directive
 	 Text*

 	 id
 	 HTML elements
 	 The element's ID
 	 Text*

 	 ismap
 	 img
 	 Whether the image is a server-side image map
 	 Boolean attribute

 	 keytype
 	 keygen
 	 The type of cryptographic key to generate
 	 Text*

 	 kind
 	 track
 	 The type of text track
 	 "subtitles";
 "captions";
 "descriptions";
 "chapters";
 "metadata"

 	 label
 	 optgroup;
 option;
 track
 	 User-visible label
 	 Text

 	 lang
 	 HTML elements
 	 Language of the element
 	 Valid BCP 47 language tag or the empty string

 	 list
 	 input
 	 List of autocomplete options
 	 ID*

 	 loop
 	 audio;
 video
 	 Whether to loop the media resource
 	 Boolean attribute

 	 low
 	 meter
 	 High limit of low range
 	 Valid floating-point number*

 	 manifest
 	 html
 	 Application cache manifest
 	 Valid non-empty URL potentially surrounded by spaces

 	 max
 	 input
 	 Maximum value
 	 Varies*

 	 max
 	 meter;
 progress
 	 Upper bound of range
 	 Valid floating-point number*

 	 maxlength
 	 input;
 textarea
 	 Maximum length of value
 	 Valid non-negative integer

 	 media
 	 link;
 source;
 style
 	 Applicable media
 	 Valid media query

 	 mediagroup
 	 audio;
 video
 	 Groups media elements together with an implicit MediaController
 	 Text

 	 method
 	 form
 	 HTTP method to use for form submission
 	 "GET";
 "POST";

 	 min
 	 input
 	 Minimum value
 	 Varies*

 	 min
 	 meter
 	 Lower bound of range
 	 Valid floating-point number*

 	 multiple
 	 input;
 select
 	 Whether to allow multiple values
 	 Boolean attribute

 	 muted
 	 audio;
 video
 	 Whether to mute the media resource by default
 	 Boolean attribute

 	 name
 	 button;
 fieldset;
 input;
 keygen;
 output;
 select;
 textarea
 	 Name of form control to use for form submission and in the form.elements API
 	 Text*

 	 name
 	 form
 	 Name of form to use in the document.forms API
 	 Text*

 	 name
 	 iframe;
 object
 	 Name of nested browsing context
 	 Valid browsing context name or keyword

 	 name
 	 map
 	 Name of image map to reference from the usemap attribute
 	 Text*

 	 name
 	 meta
 	 Metadata name
 	 Text*

 	 name
 	 param
 	 Name of parameter
 	 Text

 	 novalidate
 	 form
 	 Bypass form control validation for form submission
 	 Boolean attribute

 	 open
 	 details
 	 Whether the details are visible
 	 Boolean attribute

 	 open
 	 dialog
 	 Whether the dialog box is showing
 	 Boolean attribute

 	 optimum
 	 meter
 	 Optimum value in gauge
 	 Valid floating-point number*

 	 pattern
 	 input
 	 Pattern to be matched by the form control's value
 	 Regular expression matching the JavaScript Pattern production

 	 placeholder
 	 input;
 textarea
 	 User-visible label to be placed within the form control
 	 Text*

 	 poster
 	 video
 	 Poster frame to show prior to video playback
 	 Valid non-empty URL potentially surrounded by spaces

 	 preload
 	 audio;
 video
 	 Hints how much buffering the media resource will likely need
 	 "none";
 "metadata";
 "auto"

 	 readonly
 	 input;
 textarea
 	 Whether to allow the value to be edited by the user
 	 Boolean attribute

 	 rel
 	 a;
 area;
 link
 	 Relationship between the document containing the hyperlink and the destination resource
 	 Set of space-separated tokens*

 	 required
 	 input;
 select;
 textarea
 	 Whether the control is required for form submission
 	 Boolean attribute

 	 reversed
 	 ol
 	 Number the list backwards
 	 Boolean attribute

 	 rows
 	 textarea
 	 Number of lines to show
 	 Valid non-negative integer greater than zero

 	 rowspan
 	 td;
 th
 	 Number of rows that the cell is to span
 	 Valid non-negative integer

 	 sandbox
 	 iframe
 	 Security rules for nested content
 	 Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of
 "allow-forms",
 "allow-pointer-lock",
 "allow-popups",
 "allow-same-origin",
 "allow-scripts and
 "allow-top-navigation"

 	 spellcheck
 	 HTML elements
 	 Whether the element is to have its spelling and grammar checked
 	 "true"; "false"

 	 scope
 	 th
 	 Specifies which cells the header cell applies to
 	 "row";
 "col";
 "rowgroup";
 "colgroup"

 	 scoped
 	 style
 	 Whether the styles apply to the entire document or just the parent subtree
 	 Boolean attribute

 	 seamless
 	 iframe
 	 Whether to apply the document's styles to the nested content
 	 Boolean attribute

 	 selected
 	 option
 	 Whether the option is selected by default
 	 Boolean attribute

 	 shape
 	 area
 	 The kind of shape to be created in an image map
 	 "circle";
 "default";
 "poly";
 "rect"

 	 size
 	 input;
 select
 	 Size of the control
 	 Valid non-negative integer greater than zero

 	 sizes
 	 link
 	 Sizes of the icons (for rel="icon")
 	 Unordered set of unique space-separated tokens, ASCII case-insensitive, consisting of sizes*

 	 span
 	 col;
 colgroup
 	 Number of columns spanned by the element
 	 Valid non-negative integer greater than zero

 	 src
 	 audio;
 embed;
 iframe;
 img;
 input;
 script;
 source;
 track;
 video
 	 Address of the resource
 	 Valid non-empty URL potentially surrounded by spaces

 	 srcdoc
 	 iframe
 	 A document to render in the iframe
 	 The source of an iframe srcdoc document*

 	 srclang
 	 track
 	 Language of the text track
 	 Valid BCP 47 language tag

 	 start
 	 ol
 	 Ordinal value of the first item
 	 Valid integer

 	 step
 	 input
 	 Granularity to be matched by the form control's value
 	 Valid floating-point number greater than zero, or "any"

 	 style
 	 HTML elements
 	 Presentational and formatting instructions
 	 CSS declarations*

 	 tabindex
 	 HTML elements
 	 Whether the element is focusable, and the relative order of the element for the purposes of sequential focus navigation
 	 Valid integer

 	 target
 	 a;
 area
 	 Browsing context for hyperlink navigation
 	 Valid browsing context name or keyword

 	 target
 	 base
 	 Default browsing context for hyperlink navigation and form submission
 	 Valid browsing context name or keyword

 	 target
 	 form
 	 Browsing context for form submission
 	 Valid browsing context name or keyword

 	 title
 	 HTML elements
 	 Advisory information for the element
 	 Text

 	 title
 	 abbr;
 dfn
 	 Full term or expansion of abbreviation
 	 Text

 	 title
 	 link
 	 Title of the link
 	 Text

 	 title
 	 link;
 style
 	 Alternative style sheet set name
 	 Text

 	 translate
 	 HTML elements
 	 Whether the element is to be translated when the page is localized
 	 "yes"; "no"

 	 type
 	 a;
 area;
 link
 	 Hint for the type of the referenced resource
 	 Valid MIME type

 	 type
 	 button
 	 Type of button
 	 "submit";
 "reset";
 "button"

 	 type
 	 embed;
 object;
 script;
 source;
 style
 	 Type of embedded resource
 	 Valid MIME type

 	 type
 	 input
 	 Type of form control
 	 input type keyword

 	 type
 	 ol
 	 Kind of list marker
 	 "1";
 "a";
 "A";
 "i";
 "I"

 	 typemustmatch
 	 object
 	 Whether the type attribute and the Content-Type value need to match for the resource to be used
 	 Boolean attribute

 	 usemap
 	 img;
 object
 	 Name of image map to use
 	 Valid hash-name reference*

 	 value
 	 button;
 option
 	 Value to be used for form submission
 	 Text

 	 value
 	 data
 	 Machine-readable value
 	 Text*

 	 value
 	 input
 	 Value of the form control
 	 Varies*

 	 value
 	 li
 	 Ordinal value of the list item
 	 Valid integer

 	 value
 	 meter;
 progress
 	 Current value of the element
 	 Valid floating-point number

 	 value
 	 param
 	 Value of parameter
 	 Text

 	 width
 	 canvas;
 embed;
 iframe;
 img;
 input;
 object;
 video
 	 Horizontal dimension
 	 Valid non-negative integer

 	 wrap
 	 textarea
 	 How the value of the form control is to be wrapped for form submission
 	 "soft";
 "hard"

 An asterisk (*) in a cell indicates that the actual rules are more
 complicated than indicated in the table above.

 List of event handler content attributes

 	 Attribute
 	 Element(s)
 	 Description
 	 Value

 	 onabort
 	 HTML elements
 	 abort event handler
 	 Event handler content attribute

 	 onafterprint
 	 body
 	 afterprint event handler for Window object
 	 Event handler content attribute

 	 onbeforeprint
 	 body
 	 beforeprint event handler for Window object
 	 Event handler content attribute

 	 onbeforeunload
 	 body
 	 beforeunload event handler for Window object
 	 Event handler content attribute

 	 onblur
 	 HTML elements
 	 blur event handler
 	 Event handler content attribute

 	 oncancel
 	 HTML elements
 	 cancel event handler
 	 Event handler content attribute

 	 oncanplay
 	 HTML elements
 	 canplay event handler
 	 Event handler content attribute

 	 oncanplaythrough
 	 HTML elements
 	 canplaythrough event handler
 	 Event handler content attribute

 	 onchange
 	 HTML elements
 	 change event handler
 	 Event handler content attribute

 	 onclick
 	 HTML elements
 	 click event handler
 	 Event handler content attribute

 	 onclose
 	 HTML elements
 	 close event handler
 	 Event handler content attribute

 	 oncuechange
 	 HTML elements
 	 cuechange event handler
 	 Event handler content attribute

 	 ondblclick
 	 HTML elements
 	 dblclick event handler
 	 Event handler content attribute

 	 ondrag
 	 HTML elements
 	 drag event handler
 	 Event handler content attribute

 	 ondragend
 	 HTML elements
 	 dragend event handler
 	 Event handler content attribute

 	 ondragenter
 	 HTML elements
 	 dragenter event handler
 	 Event handler content attribute

 	 ondragexit
 	 HTML elements
 	 dragexit event handler
 	 Event handler content attribute

 	 ondragleave
 	 HTML elements
 	 dragleave event handler
 	 Event handler content attribute

 	 ondragover
 	 HTML elements
 	 dragover event handler
 	 Event handler content attribute

 	 ondragstart
 	 HTML elements
 	 dragstart event handler
 	 Event handler content attribute

 	 ondrop
 	 HTML elements
 	 drop event handler
 	 Event handler content attribute

 	 ondurationchange
 	 HTML elements
 	 durationchange event handler
 	 Event handler content attribute

 	 onemptied
 	 HTML elements
 	 emptied event handler
 	 Event handler content attribute

 	 onended
 	 HTML elements
 	 ended event handler
 	 Event handler content attribute

 	 onerror
 	 HTML elements
 	 error event handler
 	 Event handler content attribute

 	 onfocus
 	 HTML elements
 	 focus event handler
 	 Event handler content attribute

 	 onhashchange
 	 body
 	 hashchange event handler for Window object
 	 Event handler content attribute

 	 oninput
 	 HTML elements
 	 input event handler
 	 Event handler content attribute

 	 oninvalid
 	 HTML elements
 	 invalid event handler
 	 Event handler content attribute

 	 onkeydown
 	 HTML elements
 	 keydown event handler
 	 Event handler content attribute

 	 onkeypress
 	 HTML elements
 	 keypress event handler
 	 Event handler content attribute

 	 onkeyup
 	 HTML elements
 	 keyup event handler
 	 Event handler content attribute

 	 onload
 	 HTML elements
 	 load event handler
 	 Event handler content attribute

 	 onloadeddata
 	 HTML elements
 	 loadeddata event handler
 	 Event handler content attribute

 	 onloadedmetadata
 	 HTML elements
 	 loadedmetadata event handler
 	 Event handler content attribute

 	 onloadstart
 	 HTML elements
 	 loadstart event handler
 	 Event handler content attribute

 	 onmessage
 	 body
 	 message event handler for Window object
 	 Event handler content attribute

 	 onmousedown
 	 HTML elements
 	 mousedown event handler
 	 Event handler content attribute

 	 onmouseenter
 	 HTML elements
 	 mouseenter event handler
 	 Event handler content attribute

 	 onmouseleave
 	 HTML elements
 	 mouseleave event handler
 	 Event handler content attribute

 	 onmousemove
 	 HTML elements
 	 mousemove event handler
 	 Event handler content attribute

 	 onmouseout
 	 HTML elements
 	 mouseout event handler
 	 Event handler content attribute

 	 onmouseover
 	 HTML elements
 	 mouseover event handler
 	 Event handler content attribute

 	 onmouseup
 	 HTML elements
 	 mouseup event handler
 	 Event handler content attribute

 	 onmousewheel
 	 HTML elements
 	 mousewheel event handler
 	 Event handler content attribute

 	 onoffline
 	 body
 	 offline event handler for Window object
 	 Event handler content attribute

 	 ononline
 	 body
 	 online event handler for Window object
 	 Event handler content attribute

 	 onpagehide
 	 body
 	 pagehide event handler for Window object
 	 Event handler content attribute

 	 onpageshow
 	 body
 	 pageshow event handler for Window object
 	 Event handler content attribute

 	 onpause
 	 HTML elements
 	 pause event handler
 	 Event handler content attribute

 	 onplay
 	 HTML elements
 	 play event handler
 	 Event handler content attribute

 	 onplaying
 	 HTML elements
 	 playing event handler
 	 Event handler content attribute

 	 onpopstate
 	 body
 	 popstate event handler for Window object
 	 Event handler content attribute

 	 onprogress
 	 HTML elements
 	 progress event handler
 	 Event handler content attribute

 	 onratechange
 	 HTML elements
 	 ratechange event handler
 	 Event handler content attribute

 	 onreset
 	 HTML elements
 	 reset event handler
 	 Event handler content attribute

 	 onresize
 	 body
 	 resize event handler for Window object
 	 Event handler content attribute

 	 onscroll
 	 HTML elements
 	 scroll event handler
 	 Event handler content attribute

 	 onseeked
 	 HTML elements
 	 seeked event handler
 	 Event handler content attribute

 	 onseeking
 	 HTML elements
 	 seeking event handler
 	 Event handler content attribute

 	 onselect
 	 HTML elements
 	 select event handler
 	 Event handler content attribute

 	 onshow
 	 HTML elements
 	 show event handler
 	 Event handler content attribute

 	 onstalled
 	 HTML elements
 	 stalled event handler
 	 Event handler content attribute

 	 onstorage
 	 body
 	 storage event handler for Window object
 	 Event handler content attribute

 	 onsubmit
 	 HTML elements
 	 submit event handler
 	 Event handler content attribute

 	 onsuspend
 	 HTML elements
 	 suspend event handler
 	 Event handler content attribute

 	 ontimeupdate
 	 HTML elements
 	 timeupdate event handler
 	 Event handler content attribute

 	 onunload
 	 body
 	 unload event handler for Window object
 	 Event handler content attribute

 	 onvolumechange
 	 HTML elements
 	 volumechange event handler
 	 Event handler content attribute

 	 onwaiting
 	 HTML elements
 	 waiting event handler
 	 Event handler content attribute

 Element Interfaces

 This section is non-normative.

 List of interfaces for elements

 	 Element(s)
 	 Interface(s)

 	 a
 	 HTMLAnchorElement : HTMLElement

 	 abbr
 	 HTMLElement

 	 address
 	 HTMLElement

 	 area
 	 HTMLAreaElement : HTMLElement

 	 article
 	 HTMLElement

 	 aside
 	 HTMLElement

 	 audio
 	 HTMLAudioElement : HTMLMediaElement : HTMLElement

 	 b
 	 HTMLElement

 	 base
 	 HTMLBaseElement : HTMLElement

 	 bdi
 	 HTMLElement

 	 bdo
 	 HTMLElement

 	 blockquote
 	 HTMLQuoteElement : HTMLElement

 	 body
 	 HTMLBodyElement : HTMLElement

 	 br
 	 HTMLBRElement : HTMLElement

 	 button
 	 HTMLButtonElement : HTMLElement

 	 canvas
 	 HTMLCanvasElement : HTMLElement

 	 caption
 	 HTMLTableCaptionElement : HTMLElement

 	 cite
 	 HTMLElement

 	 code
 	 HTMLElement

 	 col
 	 HTMLTableColElement : HTMLElement

 	 colgroup
 	 HTMLTableColElement : HTMLElement

 	 data
 	 HTMLDataElement : HTMLElement

 	 datalist
 	 HTMLDataListElement : HTMLElement

 	 dd
 	 HTMLElement

 	 del
 	 HTMLModElement : HTMLElement

 	 details
 	 HTMLDetailsElement : HTMLElement

 	 dfn
 	 HTMLElement

 	 dialog
 	 HTMLDialogElement : HTMLElement

 	 div
 	 HTMLDivElement : HTMLElement

 	 dl
 	 HTMLDListElement : HTMLElement

 	 dt
 	 HTMLElement

 	 em
 	 HTMLElement

 	 embed
 	 HTMLEmbedElement : HTMLElement

 	 fieldset
 	 HTMLFieldSetElement : HTMLElement

 	 figcaption
 	 HTMLElement

 	 figure
 	 HTMLElement

 	 footer
 	 HTMLElement

 	 form
 	 HTMLFormElement : HTMLElement

 	 h1
 	 HTMLHeadingElement : HTMLElement

 	 h2
 	 HTMLHeadingElement : HTMLElement

 	 h3
 	 HTMLHeadingElement : HTMLElement

 	 h4
 	 HTMLHeadingElement : HTMLElement

 	 h5
 	 HTMLHeadingElement : HTMLElement

 	 h6
 	 HTMLHeadingElement : HTMLElement

 	 head
 	 HTMLHeadElement : HTMLElement

 	 header
 	 HTMLElement

 	 hr
 	 HTMLHRElement : HTMLElement

 	 html
 	 HTMLHtmlElement : HTMLElement

 	 i
 	 HTMLElement

 	 iframe
 	 HTMLIFrameElement : HTMLElement

 	 img
 	 HTMLImageElement : HTMLElement

 	 input
 	 HTMLInputElement : HTMLElement

 	 ins
 	 HTMLModElement : HTMLElement

 	 kbd
 	 HTMLElement

 	 keygen
 	 HTMLKeygenElement : HTMLElement

 	 label
 	 HTMLLabelElement : HTMLElement

 	 legend
 	 HTMLLegendElement : HTMLElement

 	 li
 	 HTMLLIElement : HTMLElement

 	 link
 	 HTMLLinkElement : HTMLElement

 	 main
 	 HTMLElement

 	 map
 	 HTMLMapElement : HTMLElement

 	 mark
 	 HTMLElement

 	 meta
 	 HTMLMetaElement : HTMLElement

 	 meter
 	 HTMLMeterElement : HTMLElement

 	 nav
 	 HTMLElement

 	 noscript
 	 HTMLElement

 	 object
 	 HTMLObjectElement : HTMLElement

 	 ol
 	 HTMLOListElement : HTMLElement

 	 optgroup
 	 HTMLOptGroupElement : HTMLElement

 	 option
 	 HTMLOptionElement : HTMLElement

 	 output
 	 HTMLOutputElement : HTMLElement

 	 p
 	 HTMLParagraphElement : HTMLElement

 	 param
 	 HTMLParamElement : HTMLElement

 	 pre
 	 HTMLPreElement : HTMLElement

 	 progress
 	 HTMLProgressElement : HTMLElement

 	 q
 	 HTMLQuoteElement : HTMLElement

 	 rp
 	 HTMLElement

 	 rt
 	 HTMLElement

 	 ruby
 	 HTMLElement

 	 s
 	 HTMLElement

 	 samp
 	 HTMLElement

 	 script
 	 HTMLScriptElement : HTMLElement

 	 section
 	 HTMLElement

 	 select
 	 HTMLSelectElement : HTMLElement

 	 small
 	 HTMLElement

 	 source
 	 HTMLSourceElement : HTMLElement

 	 span
 	 HTMLSpanElement : HTMLElement

 	 strong
 	 HTMLElement

 	 style
 	 HTMLStyleElement : HTMLElement

 	 sub
 	 HTMLElement

 	 summary
 	 HTMLElement

 	 sup
 	 HTMLElement

 	 table
 	 HTMLTableElement : HTMLElement

 	 tbody
 	 HTMLTableSectionElement : HTMLElement

 	 td
 	 HTMLTableDataCellElement : HTMLTableCellElement : HTMLElement

 	 textarea
 	 HTMLTextAreaElement : HTMLElement

 	 tfoot
 	 HTMLTableSectionElement : HTMLElement

 	 th
 	 HTMLTableHeaderCellElement : HTMLTableCellElement : HTMLElement

 	 thead
 	 HTMLTableSectionElement : HTMLElement

 	 time
 	 HTMLTimeElement : HTMLElement

 	 title
 	 HTMLTitleElement : HTMLElement

 	 tr
 	 HTMLTableRowElement : HTMLElement

 	 track
 	 HTMLTrackElement : HTMLElement

 	 u
 	 HTMLElement

 	 ul
 	 HTMLUListElement : HTMLElement

 	 var
 	 HTMLElement

 	 video
 	 HTMLVideoElement : HTMLMediaElement : HTMLElement

 	 wbr
 	 HTMLElement

 All Interfaces

 This section is non-normative.

 Events

 This section is non-normative.

 List of events

 	 Event
 	 Interface
 	 Description

 	 abort
 	 Event
 	 Fired at the Window when the download was aborted by the user

 	 afterprint
 	 Event
 	 Fired at the Window after printing

 	 beforeprint
 	 Event
 	 Fired at the Window before printing

 	 beforeunload
 	 BeforeUnloadEvent
 	 Fired at the Window when the page is about to be unloaded, in case the page would like to show a warning prompt

 	 blur
 	 Event
 	 Fired at nodes losing focus

 	 change
 	 Event
 	 Fired at controls when the user commits a value change

 	 click
 	 Event
 	 Fired at an element before its activation behavior is run

 	 DOMContentLoaded
 	 Event
 	 Fired at the Document once the parser has finished

 	 error
 	 Event
 	 Fired at elements when network and script errors occur

 	 focus
 	 Event
 	 Fired at nodes gaining focus

 	 hashchange
 	 HashChangeEvent
 	 Fired at the Window when the fragment identifier part of the document's address changes

 	 input
 	 Event
 	 Fired at controls when the user changes the value

 	 invalid
 	 Event
 	 Fired at controls during form validation if they do not satisfy their constraints

 	 load
 	 Event
 	 Fired at the Window when the document has finished loading; fired at an element containing a resource (e.g. img, embed) when its resource has finished loading

 	 message
 	 MessageEvent
 	 Fired at an object when the object receives a message

 	 offline
 	 Event
 	 Fired at the Window when the network connections fails

 	 online
 	 Event
 	 Fired at the Window when the network connections returns

 	 pagehide
 	 PageTransitionEvent
 	 Fired at the Window when the page's entry in the session history stops being the current entry

 	 pageshow
 	 PageTransitionEvent
 	 Fired at the Window when the page's entry in the session history becomes the current entry

 	 popstate
 	 PopStateEvent
 	 Fired at the Window when the user navigates the session history

 	 readystatechange
 	 Event
 	 Fired at the Document when it finishes parsing and again when all its subresources have finished loading

 	 reset
 	 Event
 	 Fired at a form element when it is reset

 	 submit
 	 Event
 	 Fired at a form element when it is submitted

 	 unload
 	 Event
 	 Fired at the Window object when the page is going away

 See also media element
 events, application cache events,
 and drag-and-drop events.

References

 All references are normative unless marked "Non-normative".

 	[ABNF]

 	Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell. IETF.

 	[ABOUT]

 	The 'about' URI scheme, S. Moonesamy. IETF.

 	[AES128CTR]

 	Advanced Encryption Standard (AES). NIST.

 	[AGIF]

 	(Non-normative) GIF Application Extension: NETSCAPE2.0. R. Frazier.

 	[APNG]

 	(Non-normative) APNG Specification. S. Parmenter, V. Vukicevic, A. Smith. Mozilla.

 	[ARIA]

 	Accessible Rich Internet Applications (WAI-ARIA), J. Craig, M. Cooper, L. Pappas, R. Schwerdtfeger, L. Seeman. W3C.

 	[ARIAIMPL]

 	WAI-ARIA 1.0 User Agent Implementation Guide, A. Snow-Weaver, M. Cooper. W3C.

 	[ATAG]

 	(Non-normative) Authoring Tool Accessibility Guidelines (ATAG) 2.0, J. Richards, J. Spellman, J. Treviranus. W3C.

 	[ATOM]

 	(Non-normative) The Atom Syndication Format, M. Nottingham, R. Sayre. IETF.

 	[BCP47]

 	Tags for Identifying Languages; Matching of Language Tags, A. Phillips, M. Davis. IETF.

 	[BECSS]

 	Behavioral Extensions to CSS, I. Hickson. W3C.

 	[BEZIER]

 	Courbes à poles, P. de Casteljau. INPI, 1959.

 	[BIDI]

 	UAX #9: Unicode Bidirectional Algorithm, M. Davis. Unicode Consortium.

 	[BOCU1]

 	(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression, M. Scherer, M. Davis. Unicode Consortium.

 	[CANVAS2D]

 	(Non-normative) HTML Canvas 2D Context, R. Cabanier, E. Graff, J. Munro, T. Wiltzius. W3C.

 	[CESU8]

 	(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT (CESU-8), T. Phipps. Unicode Consortium.

 	[CHARMOD]

 	(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals, M. Dürst, F. Yergeau, R. Ishida, M. Wolf, T. Texin. W3C.

 	[CLDR]

 	Unicode Common Locale Data Repository. Unicode.

 	[COMPUTABLE]

 	(Non-normative) On computable numbers, with an application to the Entscheidungsproblem, A. Turing. In Proceedings of the London Mathematical Society, series 2, volume 42, pages 230-265. London Mathematical Society, 1937.

 	[COOKIES]

 	HTTP State Management Mechanism, A. Barth. IETF.

 	[CORS]

 	Cross-Origin Resource Sharing, A. van Kesteren. WHATWG.

 	[CP50220]

 	(Non-normative) CP50220, Y. Naruse. IANA.

 	[CSP]

 	(Non-normative) Content Security Policy, B. Sterne, A. Barth. W3C.

 	[CSS]

 	Cascading Style Sheets Level 2 Revision 1, B. Bos, T. Çelik, I. Hickson, H. Lie. W3C.

 	[CSSANIMATIONS]

 	(Non-normative) CSS Animations, D. Jackson, D. Hyatt, C. Marrin, S. Galineau, L. Baron. W3C.

 	[CSSATTR]

 	CSS Styling Attribute Syntax, T. Çelik, E. Etemad. W3C.

 	[CSSCOLOR]

 	CSS Color Module Level 3, T. Çelik, C. Lilley, L. Baron. W3C.

 	[CSSFONTS]

 	CSS Fonts Module Level 3, J. Daggett. W3C.

 	[CSSIMAGES]

 	CSS Image Values and Replaced Content Module, E. Etemad, T. Atkins. W3C.

 	[CSSOM]

 	Cascading Style Sheets Object Model (CSSOM), S. Pieters, G. Adams. W3C.

 	[CSSOMVIEW]

 	CSSOM View Module, S. Pieters, G. Adams. W3C.

 	[CSSRUBY]

 	CSS3 Ruby Module, R. Ishida. W3C.

 	[CSSTRANSITIONS]

 	(Non-normative) CSS Transitions, D. Jackson, D. Hyatt, C. Marrin, L. Baron. W3C.

 	[CSSUI]

 	CSS3 Basic User Interface Module, T. Çelik. W3C.

 	[CSSVALUES]

 	CSS3 Values and Units, H. Lie, T. Atkins, E. Etemad. W3C.

 	[DASH]

 	Dynamic adaptive streaming over HTTP (DASH). ISO.

 	[DOM]

 	DOM, A. van Kesteren, A. Gregor, Ms2ger. WHATWG.

 	[DOMEVENTS]

 	Document Object Model (DOM) Level 3 Events Specification, T. Leithead, J. Rossi, D. Schepers, B. Höhrmann, P. Le Hégaret, T. Pixley. W3C.

 	[DOMPARSING]

 	DOM Parsing and Serialization, T. Leithead. Work in Progress. W3C.

 	[DOT]

 	(Non-normative) The DOT Language. Graphviz.

 	[E163]

 	Recommendation E.163 — Numbering Plan for The International Telephone Service, CCITT Blue Book, Fascicle II.2, pp. 128-134, November 1988.

 	[ECMA262]

 	ECMAScript Language Specification. ECMA.

 	[ECMA357]

 	(Non-normative) ECMAScript for XML (E4X) Specification. ECMA.

 	[EDITING]

 	HTML Editing APIs, A. Gregor. W3C Editing APIs CG.

 	[ENCODING]

 	Encoding, A. van Kesteren, J. Bell. WHATWG.

 	[EUCKR]

 	Hangul Unix Environment. Korea Industrial Standards Association. Ref. No. KS C 5861-1992.

 	[EUCJP]

 	Definition and Notes of Japanese EUC. UI-OSF-USLP. In English in the abridged translation of the UI-OSF Application Platform Profile for Japanese Environment, Appendix C.

 	[EVENTSOURCE]

 	Server-Sent Events, I. Hickson. W3C.

 	[FILEAPI]

 	File API, A. Ranganathan. W3C.

 	[FILESYSTEMAPI]

 	File API: Directories and System, E. Uhrhane. W3C.

 	[FULLSCREEN]

 	Fullscreen, A. van Kesteren, T. Çelik. W3C.

 	[GBK]

 	Chinese Internal Code Specification. Chinese IT Standardization Technical Committee.

 	[GIF]

 	(Non-normative) Graphics Interchange Format. CompuServe.

 	[GRAPHICS]

 	(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition, J. Foley, A. van Dam, S. Feiner, J. Hughes. Addison-Wesley. ISBN 0-201-84840-6.

 	[GREGORIAN]

 	(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bull, February 1582.

 	[HATOM]

 	(Non-normative) hAtom, D Janes. Microformats.

 	[HMAC]

 	The Keyed-Hash Message Authentication Code (HMAC). NIST.

 	[HPAAIG]

 	HTML to Platform Accessibility APIs Implementation Guide. W3C.

 	[HTML4]

 	(Non-normative) HTML 4.01
 Specification, D. Raggett, A. Le Hors, I. Jacobs. W3C.

 	[HTML5]

 	
 HTML5,
 R. Berjon, T. Leithead, E. Doyle Navara, E. O'Connor, S. Pfeiffer. W3C.

 	[HTML]

 	HTML, I. Hickson. WHATWG.

 	[HTMLALTTECHS]

 	(Non-normative) HTML5: Techniques for providing useful text alternatives, S. Faulkner. W3C.

 	[HTMLDIFF]

 	(Non-normative) HTML5
 differences from HTML4, S. Pieters. W3C.

 	[HTTP]

 	Hypertext Transfer Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee. IETF.

 	[HTTPS]

 	(Non-normative) HTTP Over TLS, E. Rescorla. IETF.

 	[IANALINKTYPE]

 	Link Relations. IANA.

 	[IANAPERMHEADERS]

 	Permanent Message Header Field Names. IANA.

 	[ICE]

 	Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols, J. Rosenberg. IETF.

 	[IEEE754]

 	IEEE Standard for Floating-Point Arithmetic (IEEE 754). IEEE. ISBN 978-0-7381-5753-5.

 	[ISO3166]

 	ISO 3166: Codes for the representation of names of countries and their subdivisions. ISO.

 	[ISO8601]

 	(Non-normative) ISO8601: Data elements and interchange formats — Information interchange — Representation of dates and times. ISO.

 	[JLREQ]

 	Requirements for Japanese Text Layout. W3C.

 	[JPEG]

 	JPEG File Interchange Format, E. Hamilton.

 	[JSON]

 	The application/json Media Type for JavaScript Object Notation (JSON), D. Crockford. IETF.

 	[JSURL]

 	The 'javascript' resource identifier scheme, B. Höhrmann. IETF.
 Work in progress.

 	[MAILTO]

 	(Non-normative) The 'mailto' URI scheme, M. Duerst, L. Masinter, J. Zawinski. IETF.

 	[MATHML]

 	Mathematical Markup Language (MathML), D. Carlisle, P. Ion, R. Miner, N. Poppelier. W3C.

 	[MEDIAFRAG]

 	Media Fragments URI 1.0, R. Troncy, E. Mannens, S. Pfeiffer, D. Van Deursen. W3C CR.

 	[MFREL]

 	Microformats Wiki: existing rel values. Microformats.

 	[MIMESNIFF]

 	MIME Sniffing, G. Hemsley. WHATWG.

 	[MNG]

 	MNG (Multiple-image Network Graphics) Format. G. Randers-Pehrson.

 	[MPEG2]

 	ISO/IEC 13818-1: Information technology — Generic coding of moving pictures and associated audio information: Systems. ISO/IEC.

 	[MPEG4]

 	ISO/IEC 14496-12: ISO base media file format. ISO/IEC.

 	[MQ]

 	Media Queries, H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C.

 	[NPAPI]

 	(Non-normative) Gecko Plugin API Reference. Mozilla.

 	[NPN]

 	Transport Layer Security (TLS) Next Protocol Negotiation Extension, A. Langley. IETF.
 Work in progress.

 	[OGGSKELETONHEADERS]

 	SkeletonHeaders. Xiph.Org.

 	[OPENSEARCH]

 	Autodiscovery in HTML/XHTML. In OpenSearch 1.1 Draft 4, Section 4.6.2. OpenSearch.org.

 	[ORIGIN]

 	The Web Origin Concept, A. Barth. IETF.

 	[PAGEVIS]

 	(Non-normative) Page Visibility, J. Mann, A. Jain. W3C.

 	[PDF]

 	(Non-normative) Document management — Portable document format — Part 1: PDF. ISO.

 	[PNG]

 	Portable Network Graphics (PNG) Specification, D. Duce. W3C.

 	[POINTERLOCK]

 	Pointer Lock, V. Scheib. W3C.

 	[POLYGLOT]

 	(Non-normative) Polyglot
 Markup: HTML-Compatible XHTML Documents, E. Graff.
 W3C.

 	[PORTERDUFF]

 	Compositing Digital Images, T. Porter, T. Duff. In Computer graphics, volume 18, number 3, pp. 253-259. ACM Press, July 1984.

 	[PPUTF8]

 	(Non-normative) The Properties and Promises of UTF-8, M. Dürst. University of Zürich. In Proceedings of the 11th International Unicode Conference.

 	[PSL]

 	Public Suffix List.
 Mozilla Foundation.

 	[RFC1034]

 	Domain Names - Concepts and Facilities, P. Mockapetris. IETF, November 1987.

 	[RFC1123]

 	Requirements for Internet Hosts -- Application and Support, R. Braden. IETF, October 1989.

 	[RFC1321]

 	The MD5 Message-Digest Algorithm, R. Rivest. IETF.

 	[RFC1345]

 	(Non-normative) Character Mnemonics and Character Sets, K. Simonsen. IETF.

 	[RFC1468]

 	(Non-normative) Japanese Character Encoding for Internet Messages, J. Murai, M. Crispin, E. van der Poel. IETF.

 	[RFC1494]

 	(Non-normative) Equivalences between 1988 X.400 and RFC-822 Message Bodies, H. Alvestrand, S. Thompson. IETF.

 	[RFC1554]

 	(Non-normative) ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP, M. Ohta, K. Handa. IETF.

 	[RFC1557]

 	(Non-normative) Korean Character Encoding for Internet Messages, U. Choi, K. Chon, H. Park. IETF.

 	[RFC1842]

 	(Non-normative) ASCII Printable Characters-Based Chinese Character Encoding for Internet Messages, Y. Wei, Y. Zhang, J. Li, J. Ding, Y. Jiang. IETF.

 	[RFC1922]

 	(Non-normative) Chinese Character Encoding for Internet Messages, HF. Zhu, DY. Hu, ZG. Wang, TC. Kao, WCH. Chang, M. Crispin. IETF.

 	[RFC2045]

 	Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies, N. Freed, N. Borenstein. IETF.

 	[RFC2046]

 	Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N. Borenstein. IETF.

 	[RFC2119]

 	Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF.

 	[RFC2237]

 	(Non-normative) Japanese Character Encoding for Internet Messages, K. Tamaru. IETF.

 	[RFC2246]

 	The TLS Protocol Version 1.0, T. Dierks, C. Allen. IETF.

 	[RFC2313]

 	PKCS #1: RSA Encryption, B. Kaliski. IETF.

 	[RFC2318]

 	The text/css Media Type, H. Lie, B. Bos, C. Lilley. IETF.

 	[RFC2388]

 	Returning Values from Forms: multipart/form-data, L. Masinter. IETF.

 	[RFC2397]

 	The "data" URL scheme, L. Masinter. IETF.

 	[RFC2445]

 	Internet Calendaring and Scheduling Core Object Specification (iCalendar), F. Dawson, D. Stenerson. IETF.

 	[RFC2483]

 	URI Resolution Services Necessary for URN Resolution, M. Mealling, R. Daniel. IETF.

 	[RFC3676]

 	The Text/Plain Format and DelSp Parameters, R. Gellens. IETF.

 	[RFC2806]

 	(Non-normative) URLs for Telephone Calls, A. Vaha-Sipila. IETF.

 	[RFC3023]

 	XML Media Types, M. Murata, S. St. Laurent, D. Kohn. IETF.

 	[RFC3279]

 	Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, W. Polk, R. Housley, L. Bassham. IETF.

 	[RFC3490]

 	Internationalizing Domain Names in Applications (IDNA), P. Faltstrom, P. Hoffman, A. Costello. IETF.

 	[RFC3629]

 	UTF-8, a transformation format of ISO 10646, F. Yergeau. IETF.

 	[RFC3864]

 	Registration Procedures for Message Header Fields, G. Klyne, M. Nottingham, J. Mogul. IETF.

 	[RFC4281]

 	The Codecs Parameter for "Bucket" Media Types, R. Gellens, D. Singer, P. Frojdh. IETF.

 	[RFC4329]

 	(Non-normative) Scripting Media Types, B. Höhrmann. IETF.

 	[RFC4366]

 	Transport Layer Security (TLS) Extensions, S. Blake-Wilson, M. Nystrom, D. Hopwood, J. Mikkelsen, T. Wright. IETF.

 	[RFC4395]

 	Guidelines and Registration Procedures for New URI Schemes, T. Hansen, T. Hardie, L. Masinter. IETF.

 	[RFC4648]

 	The Base16, Base32, and Base64 Data Encodings, S. Josefsson. IETF.

 	[RFC5280]

 	Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk. IETF.

 	[RFC5322]

 	Internet Message Format, P. Resnick. IETF.

 	[RFC5724]

 	URI Scheme for Global System for Mobile Communications (GSM) Short Message Service (SMS), E. Wilde, A. Vaha-Sipila. IETF.

 	[RFC6266]

 	Use of the Content-Disposition Header Field in the Hypertext Transfer Protocol (HTTP), J. Reschke. IETF.

 	[RFC6350]

 	vCard Format Specification, S. Perreault. IETF.

 	[SCSU]

 	(Non-normative) UTR #6: A Standard Compression Scheme For Unicode, M. Wolf, K. Whistler, C. Wicksteed, M. Davis, A. Freytag, M. Scherer. Unicode Consortium.

 	[SDP]

 	SDP: Session Description Protocol, M. Handley, V. Jacobson, C. Perkins. IETF.

 	[SDPLABEL]

 	The Session Description Protocol (SDP) Label Attribute, O. Levin, G. Camarillo. IETF.

 	[SDPOFFERANSWER]

 	An Offer/Answer Model with the Session Description Protocol (SDP), J. Rosenberg, H. Schulzrinne. IETF.

 	[SELECTORS]

 	Selectors, E. Etemad, T. Çelik, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C.

 	[SHA1]

 	Secure Hash Standard. NIST.

 	[SHIFTJIS]

 	JIS X0208: 7-bit and 8-bit double byte coded KANJI sets
 for information interchange. Japanese Industrial Standards Committee.

 	[SRGB]

 	IEC 61966-2-1: Multimedia systems and equipment — Colour measurement and management — Part 2-1: Colour management — Default RGB colour space — sRGB. IEC.

 	[STUN]

 	Session Traversal Utilities for NAT (STUN), J. Rosenberg, R. Mahy, P. Matthews, D. Wing. IETF.

 	[SVG]

 	Scalable Vector Graphics (SVG) Tiny 1.2 Specification, O. Andersson, R. Berjon, E. Dahlström, A. Emmons, J. Ferraiolo, A. Grasso, V. Hardy, S. Hayman, D. Jackson, C. Lilley, C. McCormack, A. Neumann, C. Northway, A. Quint, N. Ramani, D. Schepers, A. Shellshear. W3C.

 	[TIS620]

 	UDC 681.3.04:003.62. Thai Industrial Standards Institute, Ministry of Industry, Royal Thai Government. ISBN 974-606-153-4.

 	[TURN]

 	Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN), R. Mahy, P. Matthews, J. Rosenberg. IETF.

 	[TIMEZONES]

 	(Non-normative) Working with Time Zones, A. Phillips, N. Lindenberg, M. Davis, M.J. Dürst, F. Sasaki, R. Ishida. W3C.

 	[TYPEDARRAY]

 	Typed Array Specification, D. Herman, K. Russell. Khronos.

 	[TZDATABASE]

 	Time Zone Database. IANA.

 	[UAAG]

 	(Non-normative) User Agent Accessibility Guidelines (UAAG) 2.0, J. Allan, K. Ford, J. Richards, J. Spellman. W3C.

 	[UCA]

 	UTR #10: Unicode Collation Algorithm, M. Davis, K. Whistler. Unicode Consortium.

 	[UNDO]

 	UndoManager and DOM Transaction, R. Niwa.

 	[UNICODE]

 	The Unicode Standard. Unicode Consortium.

 	[UNIVCHARDET]

 	(Non-normative) A composite approach to language/encoding detection, S. Li, K. Momoi. Netscape. In Proceedings of the 19th International Unicode Conference.

 	[URL]

 	URL, A. van Kesteren. WHATWG.

 	[UTF7]

 	(Non-normative) UTF-7: A Mail-Safe Transformation Format of Unicode, D. Goldsmith, M. Davis. IETF.

 	[UTF8DET]

 	(Non-normative) Multilingual form encoding, M. Dürst. W3C.

 	[UTR36]

 	(Non-normative) UTR #36: Unicode Security Considerations, M. Davis, M. Suignard. Unicode Consortium.

 	[WCAG]

 	(Non-normative) Web Content Accessibility Guidelines (WCAG) 2.0, B. Caldwell, M. Cooper, L. Reid, G. Vanderheiden. W3C.

 	[WEBGL]

 	WebGL Specification, D. Jackson. Khronos Group.

 	[WEBIDL]

 	Web IDL, C. McCormack. W3C.

 	[WEBLINK]

 	Web Linking, M. Nottingham. IETF.

 	[WEBMCG]

 	WebM Container Guidelines. The WebM Project.

 	[WEBSOCKET]

 	The WebSocket API, I. Hickson. W3C.

 	[WEBSTORAGE]

 	Web Storage, I. Hickson. W3C.

 	[WEBVTT]

 	WebVTT, I. Hickson. W3C.

 	[WEBWORKERS]

 	Web Workers, I. Hickson. W3C.

 	[WHATWGBLOG]

 	The WHATWG Blog. WHATWG.

 	[WHATWGWIKI]

 	The WHATWG Wiki. WHATWG.

 	[WIN1252]

 	Windows 1252. Microsoft.

 	[WIN1254]

 	Windows 1254. Microsoft.

 	[WIN31J]

 	Windows Codepage 932. Microsoft.

 	[WIN874]

 	Windows 874. Microsoft.

 	[WIN949]

 	Windows Codepage 949. Microsoft.

 	[WSP]

 	The WebSocket protocol, I. Fette, A. Melnikov. IETF.

 	[X121]

 	Recommendation X.121 — International Numbering Plan for Public Data Networks, CCITT Blue Book, Fascicle VIII.3, pp. 317-332.

 	[X690]

 	Recommendation X.690 — Information Technology — ASN.1 Encoding Rules — Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding Rules (DER). International Telecommunication Union.

 	[XFN]

 	XFN 1.1 profile, T. Çelik, M. Mullenweg, E. Meyer. GMPG.

 	[XHR]

 	XMLHttpRequest, A. van Kesteren. WHATWG.

 	[XHTML1]

 	XHTML(TM) 1.0 The Extensible HyperText Markup Language (Second Edition). W3C.

 	[XHTMLMOD]

 	Modularization of XHTML(TM), M. Altheim, F. Boumphrey, S. Dooley, S. McCarron, S. Schnitzenbaumer, T. Wugofski. W3C.

 	[XML]

 	Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau. W3C.

 	[XMLBASE]

 	XML Base, J. Marsh, R. Tobin. W3C.

 	[XMLNS]

 	Namespaces in XML, T. Bray, D. Hollander, A. Layman, R. Tobin. W3C.

 	[XPATH10]

 	XML Path Language (XPath) Version 1.0, J. Clark, S. DeRose. W3C.

 	[XSLT10]

 	(Non-normative) XSL Transformations (XSLT) Version 1.0, J. Clark. W3C.

Acknowledgements

 Thanks to Tim Berners-Lee for inventing HTML, without which none
 of this would exist.

 Thanks to

 Aankhen,
 Aaron Boodman,
 Aaron Leventhal,
 Adam Barth,
 Adam de Boor,
 Adam Hepton,
 Adam Klein,
 Adam Roben,
 Addison Phillips,
 Adele Peterson,
 Adrian Bateman,
 Adrian Sutton,
 Agustín Fernández,
 Aharon (Vladimir) Lanin,
 Ajai Tirumali,
 Akatsuki Kitamura,
 Alan Plum,
 Alastair Campbell,
 Alejandro G. Castro,
 Alex Bishop,
 Alex Nicolaou,
 Alex Rousskov,
 Alexander Farkas,
 Alexander J. Vincent,
 Alexandre Morgaut,
 Alexey Feldgendler,
 Алексей Проскуряков (Alexey Proskuryakov),
 Alexis Deveria,
 Allan Clements,
 Amos Jeffries,
 Anders Carlsson,
 Andreas,
 Andreas Kling,
 Andrei Popescu,
 André E. Veltstra,
 Andrew Barfield,
 Andrew Clover,
 Andrew Gove,
 Andrew Grieve,
 Andrew Oakley,
 Andrew Sidwell,
 Andrew Simons,
 Andrew Smith,
 Andrew W. Hagen,
 Andrey V. Lukyanov,
 Andy Heydon,
 Andy Palay,
 Anne van Kesteren,
 Anthony Boyd,
 Anthony Bryan,
 Anthony Hickson,
 Anthony Ricaud,
 Antti Koivisto,
 Arne Thomassen,
 Aron Spohr,
 Arphen Lin,
 Arun Patole,
 Aryeh Gregor,
 Asbjørn Ulsberg,
 Ashley Gullen,
 Ashley Sheridan,
 Atsushi Takayama,
 Aurelien Levy,
 Ave Wrigley,
 Axel Dahmen,
 Ben Boyle,
 Ben Godfrey,
 Ben Lerner,
 Ben Leslie,
 Ben Meadowcroft,
 Ben Millard,
 Benjamin Carl Wiley Sittler,
 Benjamin Hawkes-Lewis,
 Benoit Ren,
 Bert Bos,
 Bijan Parsia,
 Bil Corry,
 Bill Mason,
 Bill McCoy,
 Billy Wong,
 Bjartur Thorlacius,
 Björn Höhrmann,
 Blake Frantz,
 Bob Lund,
 Bob Owen,
 Boris Zbarsky,
 Brad Fults,
 Brad Neuberg,
 Brad Spencer,
 Brady Eidson,
 Brendan Eich,
 Brenton Simpson,
 Brett Wilson,
 Brett Zamir,
 Brian Campbell,
 Brian Korver,
 Brian Kuhn,
 Brian M. Dube,
 Brian Ryner,
 Brian Smith,
 Brian Wilson,
 Bryan Sullivan,
 Bruce D'Arcus,
 Bruce Lawson,
 Bruce Miller,
 C. Williams,
 Cameron McCormack,
 Cameron Zemek,
 Cao Yipeng,
 Carlos Gabriel Cardona,
 Carlos Perelló Marín,
 Chao Cai,
 윤석찬 (Channy Yun),
 Charl van Niekerk,
 Charles Iliya Krempeaux,
 Charles McCathieNevile,
 Chris Apers,
 Chris Cressman,
 Chris Evans,
 Chris Morris,
 Chris Pearce,
 Chris Weber,
 Christian Biesinger,
 Christian Johansen,
 Christian Schmidt,
 Christoph Päper,
 Christopher Aillon,
 Christopher Ferris,
 Chriswa,
 Clark Buehler,
 Cole Robison,
 Colin Fine,
 Collin Jackson,
 Corprew Reed,
 Craig Cockburn,
 Csaba Gabor,
 Csaba Marton,
 Cynthia Shelly,
 Dan Yoder,
 Daniel Barclay,
 Daniel Bratell,
 Daniel Brooks,
 Daniel Brumbaugh Keeney,
 Daniel Cheng,
 Daniel Davis,
 Daniel Glazman,
 Daniel Peng,
 Daniel Schattenkirchner,
 Daniel Spång,
 Daniel Steinberg,
 Danny Sullivan,
 Darin Adler,
 Darin Fisher,
 Darxus,
 Dave Camp,
 Dave Hodder,
 Dave Lampton,
 Dave Singer,
 Dave Townsend,
 David Baron,
 David Bloom,
 David Bruant,
 David Carlisle,
 David E. Cleary,
 David Egan Evans,
 David Flanagan,
 David Gerard,
 David Håsäther,
 David Hyatt,
 David I. Lehn,
 David John Burrowes,
 David Kendal,
 David Matja,
 David Remahl,
 David Smith,
 David Woolley,
 DeWitt Clinton,
 Dean Edridge,
 Dean Edwards,
 Debi Orton,
 Derek Featherstone,
 Devdatta,
 Dimitri Glazkov,
 Dimitry Golubovsky,
 Dirk Pranke,
 Dirkjan Ochtman,
 Divya Manian,
 Dmitry Titov,
 dolphinling,
 Dominique Hazaël-Massieux,
 Don Brutzman,
 Doron Rosenberg,
 Doug Kramer,
 Doug Simpkinson,
 Drew Wilson,
 Edmund Lai,
 Eduard Pascual,
 Eduardo Vela,
 Edward O'Connor,
 Edward Welbourne,
 Edward Z. Yang,
 Ehsan Akhgari,
 Eira Monstad,
 Eitan Adler,
 Eliot Graff,
 Elisabeth Robson,
 Elizabeth Castro,
 Elliott Sprehn,
 Elliotte Harold,
 Eric Carlson,
 Eric Lawrence,
 Eric Rescorla,
 Eric Semling,
 Erik Arvidsson,
 Erik Rose,
 Evan Martin,
 Evan Prodromou,
 Evert,
 fantasai,
 Felix Sasaki,
 Francesco Schwarz,
 Francis Brosnan Blazquez,
 Franck 'Shift' Quélain,
 Frank Barchard,
 鵜飼文敏 (Fumitoshi Ukai),
 Futomi Hatano,
 Gavin Carothers,
 Gavin Kistner,
 Gareth Rees,
 Garrett Smith,
 Geoff Richards,
 Geoffrey Garen,
 Geoffrey Sneddon,
 Gez Lemon,
 George Lund,
 Gianmarco Armellin,
 Giovanni Campagna,
 Giuseppe Pascale,
 Glenn Adams,
 Glenn Maynard,
 Graham Klyne,
 Greg Botten,
 Greg Houston,
 Greg Wilkins,
 Gregg Tavares,
 Gregory J. Rosmaita,
 Grey,
 Guilherme Johansson Tramontina,
 Gytis Jakutonis,
 Håkon Wium Lie,
 Hallvord Reiar Michaelsen Steen,
 Hans S. Tømmerhalt,
 Hans Stimer,
 Harald Alvestrand,
 Henri Sivonen,
 Henrik Lied,
 Henry Mason,
 Heydon Pickering,
 Hugh Guiney,
 Hugh Winkler,
 Ian Bicking,
 Ian Clelland,
 Ian Davis,
 Ian Fette,
 Ido Green,
 Ignacio Javier,
 Ivan Enderlin,
 Ivo Emanuel Gonçalves,
 J. King,
 Jacob Davies,
 Jacques Distler,
 Jake Verbaten,
 James Craig,
 James Graham,
 James Justin Harrell,
 James Kozianski,
 James M Snell,
 James Perrett,
 James Robinson,
 Jamie Lokier,
 Janusz Majnert,
 Jan-Klaas Kollhof,
 Jason Duell,
 Jason Kersey,
 Jason Lustig,
 Jason White,
 Jasper Bryant-Greene,
 Jasper St. Pierre,
 Jatinder Mann,
 Jed Hartman,
 Jeff Balogh,
 Jeff Cutsinger,
 Jeff Schiller,
 Jeff Walden,
 Jeffrey Zeldman,
 胡慧鋒 (Jennifer Braithwaite),
 Jens Bannmann,
 Jens Fendler,
 Jens Lindström,
 Jens Meiert,
 Jeremey Hustman,
 Jeremy Keith,
 Jeremy Orlow,
 Jeroen van der Meer,
 Jian Li,
 Jim Jewett,
 Jim Ley,
 Jim Meehan,
 Jim Michaels,
 Jirka Kosek,
 Jjgod Jiang,
 João Eiras,
 Joe Clark,
 Joe Gregorio,
 Joel Spolsky,
 Johan Herland,
 John Boyer,
 John Bussjaeger,
 John Carpenter,
 John Daggett,
 John Fallows,
 John Foliot,
 John Harding,
 John Keiser,
 John Snyders,
 John Stockton,
 John-Mark Bell,
 Johnny Stenback,
 Jon Ferraiolo,
 Jon Gibbins,
 Jon Perlow,
 Jonas Sicking,
 Jonathan Cook,
 Jonathan Rees,
 Jonathan Watt,
 Jonathan Worent,
 Jonny Axelsson,
 Jordan Tucker,
 Jorgen Horstink,
 Jorunn Danielsen Newth,
 Joseph Kesselman,
 Joseph Mansfield,
 Joseph Pecoraro,
 Josh Aas,
 Josh Hart,
 Josh Levenberg,
 Joshua Bell,
 Joshua Randall,
 Jukka K. Korpela,
 Jules Clément-Ripoche,
 Julian Reschke,
 Jürgen Jeka,
 Justin Lebar,
 Justin Novosad,
 Justin Schuh,
 Justin Sinclair,
 Kai Hendry,
 呂康豪 (KangHao Lu),
 Kartikaya Gupta,
 Kathy Walton,
 Kelly Ford,
 Kelly Norton,
 Kevin Benson,
 Kevin Gadd,
 Kevin Cole,
 Kornél Pál,
 Kornel Lesinski,
 Kris Northfield,
 Kristof Zelechovski,
 Krzysztof Maczyński,
 黒澤剛志 (Kurosawa Takeshi),
 Kyle Barnhart,
 Kyle Hofmann,
 Kyle Huey,
 Léonard Bouchet,
 Léonie Watson,
 Lachlan Hunt,
 Larry Masinter,
 Larry Page,
 Lars Gunther,
 Lars Solberg,
 Laura Carlson,
 Laura Granka,
 Laura L. Carlson,
 Laura Wisewell,
 Laurens Holst,
 Lawrence Forooghian,
 Lee Kowalkowski,
 Leif Halvard Silli,
 Lenny Domnitser,
 Leonard Rosenthol,
 Leonie Watson,
 Leons Petrazickis,
 Lobotom Dysmon,
 Logan,
 Loune,
 Luke Kenneth Casson Leighton,
 Maciej Stachowiak,
 Magnus Kristiansen,
 Maik Merten,
 Malcolm Rowe,
 Manish Tripathi,
 Marcus Bointon,
 Mark Birbeck,
 Mark Davis,
 Mark Miller,
 Mark Nottingham,
 Mark Pilgrim,
 Mark Rowe,
 Mark Schenk,
 Mark Vickers,
 Mark Wilton-Jones,
 Martijn Wargers,
 Martin Atkins,
 Martin Dürst,
 Martin Honnen,
 Martin Janecke,
 Martin Kutschker,
 Martin Nilsson,
 Martin Thomson,
 Masataka Yakura,
 Matt May,
 Mathias Bynens,
 Mathieu Henri,
 Matias Larsson,
 Matt Falkenhagen,
 Matt Schmidt,
 Matt Wright,
 Matthew Gregan,
 Matthew Mastracci,
 Matthew Raymond,
 Matthew Thomas,
 Mattias Waldau,
 Max Romantschuk,
 Menno van Slooten,
 Micah Dubinko,
 Michael 'Ratt' Iannarelli,
 Michael A. Nachbaur,
 Michael A. Puls II,
 Michael Carter,
 Michael Daskalov,
 Michael Day,
 Michael Dyck,
 Michael Enright,
 Michael Gratton,
 Michael Nordman,
 Michael Powers,
 Michael Rakowski,
 Michael(tm) Smith,
 Michal Zalewski,
 Michel Fortin,
 Michelangelo De Simone,
 Michiel van der Blonk,
 Mihai Şucan,
 Mihai Parparita,
 Mike Brown,
 Mike Dierken,
 Mike Dixon,
 Mike Hearn,
 Mike Schinkel,
 Mike Shaver,
 Mikko Rantalainen,
 Mohamed Zergaoui,
 Mohammad Al Houssami,
 Mounir Lamouri,
 Ms2ger,
 NARUSE Yui,
 Neil Deakin,
 Neil Rashbrook,
 Neil Soiffer,
 Nicholas Shanks,
 Nicholas Stimpson,
 Nicholas Zakas,
 Nickolay Ponomarev,
 Nicolas Gallagher,
 Noah Mendelsohn,
 Noah Slater,
 Noel Gordon,
 NoozNooz42,
 Norbert Lindenberg,
 Ojan Vafai,
 Olaf Hoffmann,
 Olav Junker Kjær,
 Oldřich Vetešník,
 Oli Studholme,
 Oliver Hunt,
 Oliver Rigby,
 Olivier Gendrin,
 Olli Pettay,
 oSand,
 Pablo Flouret,
 Patrick Garies,
 Patrick H. Lauke,
 Patrik Persson,
 Paul Adenot,
 Paul Norman,
 Per-Erik Brodin,
 Perry Smith,
 Peter Beverloo,
 Peter Karlsson,
 Peter Kasting,
 Peter Moulder,
 Peter Occil,
 Peter Stark,
 Peter Van der Beken,
 Peter-Paul Koch,
 Phil Pickering,
 Philip Jägenstedt,
 Philip Taylor,
 Philip TAYLOR,
 Philippe De Ryck,
 Prateek Rungta,
 Pravir Gupta,
 李普君 (Pujun Li),
 Rachid Finge,
 Rafael Weinstein,
 Rafał Miłecki,
 Raj Doshi,
 Rajas Moonka,
 Ralf Stoltze,
 Ralph Giles,
 Raphael Champeimont,
 Remci Mizkur,
 Remco,
 Remy Sharp,
 Rene Saarsoo,
 Rene Stach,
 Ric Hardacre,
 Rich Clark,
 Rich Doughty,
 Richard Ishida,
 Rigo Wenning,
 Rikkert Koppes,
 Rimantas Liubertas,
 Riona Macnamara,
 Rob Ennals,
 Rob Jellinghaus,
 Rob S,
 Robert Blaut,
 Robert Collins,
 Robert Kieffer,
 Robert Millan,
 Robert O'Callahan,
 Robert Sayre,
 Robin Berjon,
 Rodger Combs,
 Roland Steiner,
 Roma Matusevich,
 Roman Ivanov,
 Roy Fielding,
 Ruud Steltenpool,
 Ryan King,
 Ryosuke Niwa,
 S. Mike Dierken,
 Salvatore Loreto,
 Sam Dutton,
 Sam Kuper,
 Sam Ruby,
 Sam Weinig,
 Samuel Bronson,
 Samy Kamkar,
 Sander van Lambalgen,
 Sarven Capadisli,
 Scott González,
 Scott Hess,
 Sean Fraser,
 Sean Hayes,
 Sean Hogan,
 Sean Knapp,
 Sebastian Markbåge,
 Sebastian Schnitzenbaumer,
 Seth Call,
 Seth Dillingham,
 Shanti Rao,
 Shaun Inman,
 Shiki Okasaka,
 Sierk Bornemann,
 Sigbjørn Vik,
 Silver Ghost,
 Silvia Pfeiffer,
 Šime Vidas,
 Simon Montagu,
 Simon Pieters,
 Simon Spiegel,
 skeww,
 Smylers,
 Stanton McCandlish,
 Stefan Håkansson,
 Stefan Haustein,
 Stefan Santesson,
 Stefan Weiss,
 Steffen Meschkat,
 Stephen Ma,
 Stephen White,
 Steve Comstock,
 Steve Faulkner,
 Steve Runyon,
 Steven Bennett,
 Steven Garrity,
 Steven Tate,
 Stewart Brodie,
 Stuart Ballard,
 Stuart Langridge,
 Stuart Parmenter,
 Subramanian Peruvemba,
 Sunava Dutta,
 Susan Borgrink,
 Susan Lesch,
 Sylvain Pasche,
 T. J. Crowder,
 Tab Atkins,
 Takeshi Yoshino,
 Tantek Çelik,
 田村健人 (TAMURA Kent),
 Ted Mielczarek,
 Terrence Wood,
 Thomas Broyer,
 Thomas Koetter,
 Thomas O'Connor,
 Tim Altman,
 Tim Johansson,
 TJ VanToll,
 Toby Inkster,
 Todd Moody,
 Tom Baker,
 Tom Pike,
 Tommy Thorsen,
 Tony Ross,
 Travis Leithead,
 Tyler Close,
 Victor Carbune,
 Vladimir Katardjiev,
 Vladimir Vukićević,
 voracity,
 Wakaba,
 Wayne Carr,
 Wayne Pollock,
 Wellington Fernando de Macedo,
 Weston Ruter,
 Wilhelm Joys Andersen,
 Will Levine,
 William Swanson,
 Wladimir Palant,
 Wojciech Mach,
 Wolfram Kriesing,
 Xan Gregg,
 Yang Chen,
 Ye-Kui Wang,
 Yehuda Katz,
 Yi-An Huang,
 Yngve Nysaeter Pettersen,
 Yonathan Randolph,
 Yuzo Fujishima,
 Zhenbin Xu,
 Zoltan Herczeg,
 and
 Øistein E. Andersen,

 for their useful comments, both large and small, that have led to
 changes to this specification over the years.

 Thanks also to everyone who has ever posted about HTML to their
 blogs, public mailing lists, or forums, including all the
 contributors to the various W3C HTML WG
 lists and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first
 implementation of canvas in Safari, from which the
 canvas feature was designed.

 Special thanks also to the Microsoft employees who first
 implemented the event-based drag-and-drop mechanism, contenteditable, and other
 features first widely deployed by the Windows Internet Explorer
 browser.

 Thanks to the participants of the microdata usability study for
 allowing us to use their mistakes as a guide for designing the
 microdata feature.

 Special thanks and $10,000 to David Hyatt who came up with a
 broken implementation of the adoption
 agency algorithm that the editor had to reverse engineer and fix
 before using it in the parsing section.

 Thanks to the many sources that provided inspiration for the
 examples used in the specification.

 Thanks also to the Microsoft blogging community for some ideas,
 to the attendees of the W3C Workshop on Web Applications and
 Compound Documents for inspiration, to the #mrt crew, the #mrt.no
 crew, and the #whatwg crew, and to Pillar and Hedral for their ideas
 and support.

cover_image.jpg
HTML5

=
=4
[a's)
—
—
5

