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One of the first Z80 microprocessors manufactured; the date stamp is from June 1976.
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A CMOS Z80 in a Quad Flat Package





The Zilog Z80 is an 8-bit microprocessor designed by Zilog and sold from July 1976 onwards. It was widely used both in desktop and embedded computer designs as well as for military purposes. The Z80 and its derivatives and clones make up one of the most commonly used CPU families of all time, and, along with the MOS Technology 6502 family, dominated the 8-bit microcomputer market from the late 1970s to the mid-1980s.

Zilog licensed the Z80 design to several vendors, though many East European (for instance, Russian) manufacturers made unlicensed copies. This enabled a small company's product to gain acceptance in the world market since second sources from far larger companies such as Toshiba started to manufacture the device. Consequently, Zilog has made less than 50% of the Z80s since its conception. In recent decades Zilog has refocused on the ever-growing market for embedded systems (for which the original Z80 and the Z180 were designed) and the most recent Z80-compatible microcontroller family, the fully pipelined 24-bit eZ80 with a linear 16 MB address range, has been successfully introduced alongside the simpler Z180 and Z80 products.

 Brief history and overview
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A May 1976 advertisement for the Zilog Z-80 8-bit microprocessor
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The Z80's original DIL40 chip package pinout





The Z80 came about when Federico Faggin, after working on the 8080, left Intel at the end of 1974 to found Zilog with Ralph Ungermann, and by July 1976 they had the Z80 on the market. It was designed to be binary compatible with the Intel 8080 so that most 8080 code, notably the CP/M operating system, would run unmodified on it. Masatoshi Shima, co-designer of the 4004 and the 8080, also contributed to the development of the Z80.

The Z80 offered many real improvements over the 8080:

	An enhanced instruction set including bit manipulation, block move, block I/O, and byte search instructions

	New IX and IY index registers with instructions for direct base+offset addressing

	A better interrupt system
	A more automatic and general vectorized interrupt system, mode 2, as well as a fixed vector interrupt system, mode 1, for simple systems with minimal hardware (mode 0 being the 8080-compatible mode).

	A non maskable interrupt (NMI) which can be used to respond to power down situations and/or other high priority events (and allowing a minimalistic Z80 system to easily implement a two-level interrupt scheme in mode 1).

	Two separate register files, which could be quickly switched, to speed up response to interrupts




	Less hardware required for power supply, clock generation and interface to memory and I/O
	Single 5 volt power supply (the 8080 needed -5V/+5V/+12V)

	Single-phase 5 V clock (the 8080 needed a two-phase high-amplitude clock generator)

	A built-in DRAM refresh mechanism that would otherwise have to be provided by external circuitry

	Non-multiplexed buses (the 8080 had state-signals multiplexed onto the data bus)





The Z80 took over from the 8080 and its offspring, the 8085, in the processor market, and became one of the most popular 8-bit CPUs. Perhaps a key to the initial success of the Z80 was the built-in DRAM refresh, and other features which allowed systems to be built with fewer support chips (later on, most Z80 systems have been embedded systems, which typically uses static RAM and hence does not need this refresh).

For the original NMOS design, the specified upper clock frequency limit increased successively from the introductory 2.5 MHz, via the well known 4 MHz (Z80A), up to 6 (Z80B) and 8 MHz (Z80H). A CMOS version was also developed with specified frequency limits ranging from 4 MHz up to 20 MHz for the version sold today. The CMOS version also allowed a low-power sleep with internal state retained (having no lower frequency limit). The fully compatible derivatives HD64180/Z180 and eZ80 are currently specified for up to 33 and 50 MHz respectively.

 Technical description

 Programming model and register set

The programming model and register set are conventional and similar to the related x86 family. The 8080 compatible registers AF, BC, DE, HL are duplicated as two separate banks in the Z80, where the processor can quickly switch from one bank to the other; a feature useful for speeding up responses to single-level, high-priority interrupts. This feature was present in the Datapoint 2200 but was not implemented by Intel in the 8008. The dual-register set makes sense as the Z80 (like most microprocessors at the time) was really intended for embedded use, not for personal computers, or the yet-to-be invented home computers. According to one of the designers, Masatoshi Shima, the market focus was on high performance printers, high-end cash registers, and intelligent terminals.[citation needed] It also turned out to be quite useful for heavily optimized manual assembly coding. Some software, especially games for the MSX, Sinclair ZX Spectrum and other Z80 based computers, took Z80 assembly optimization to rather extreme levels, employing the duplicated registers among other things.
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The Z80 architecture





	Registers

	


Like on the 8080, 8-bit registers are typically coupled to provide 16-bit versions. The 8080 compatible registers are:

	AF: 8-bit accumulator (A) and flag bits (F) carry, zero, minus, parity/overflow, half-carry (used for BCD), and an Add/Subtract flag (usually called N) also for BCD

	BC: 16-bit data/address register or two 8-bit registers

	DE: 16-bit data/address register or two 8-bit registers

	HL: 16-bit accumulator/address register or two 8-bit registers

	SP: stack pointer, 16 bits

	PC: program counter, 16 bits


The new registers introduced with the Z80 are:

	IX: 16-bit index or base register for 8-bit immediate offsets

	IY: 16-bit index or base register for 8-bit immediate offsets

	I: interrupt vector base register, 8 bits

	R: DRAM refresh counter, 8 bits (msb does not count)

	AF': alternate (or shadow) accumulator and flags (toggled in and out with EX AF,AF' )

	BC', DE' and HL': alternate (or shadow) registers (toggled in and out with EXX)

	Four bits of interrupt status and interrupt mode status


There is no direct access to the alternate registers; instead, two special instructions, EX AF,AF' and EXX, each toggles one of two multiplexer flip-flops; this enables fast context switches for interrupt service routines: EX AF, AF' may be used alone (for really simple and fast interrupt routines) or together with EXX to swap the whole AF, BC, DE, HL set; still much faster than pushing the same registers on the stack (slower, lower priority, or multi level interrupts normally use the stack to store registers).

The refresh register, R, increments each time the CPU fetches an opcode (or opcode prefix) and has therefore no simple relationship with program execution. This has sometimes been used to generate pseudorandom numbers in games, and also in software protection schemes.[citation needed] It has also been employed as a "hardware" counter in some designs; a famous example of this is the ZX81, which lets it keep track of character positions on the TV screen by triggering an interrupt at wrap around (by connecting INT to A6).

The interrupt vector register, I, is used for the Z80 specific mode 2 interrupts (selected by the IM 2 instruction). It supplies the high byte of the base address for a 128-entry table of service routine addresses which are selected via an index sent to the CPU during an interrupt acknowledge cycle; this index is simply the low byte part of the pointer to the tabulated indirect address pointing to the service routine. The pointer identifies a particular peripheral chip and/or peripheral function or event, where the chips are normally connected in a so-called daisy chain for priority resolution. Like the refresh register, this register has also sometimes been used creatively; in interrupt modes 0 and 1 it can be used as simply another 8-bit data register.

 Z80 assembly language

 Datapoint 2200 and Intel 8008

The first Intel 8008 assembly language was based on a very simple (but systematic) syntax inherited from the Datapoint 2200 design. This original syntax was later transformed into a new, somewhat more traditional, assembly language form for this same original 8008 chip. At about the same time, the new assembly language was also extended to accommodate the added addressing possibilities in the more advanced Intel 8080 chip (the 8008 and 8080 shared a language subset without being binary compatible; however, the 8008 was binary compatible with the Datapoint 2200).

In this process, the mnemonic L, for LOAD, was replaced by various abbreviations of the words LOAD, STORE and MOVE, intermixed with other symbolic letters. The mnemonic letter M, for memory (referenced by HL), was lifted out from within the instruction mnemonic to become a syntactically freestanding operand, while registers and combinations of registers became very inconsistently denoted; either by abbreviated operands (MVI D, LXI H and so on), within the instruction mnemonic itself (LDA, LHLD and so on), or both at the same time (LDAX B, STAX D and so on).

	Datapoint 2200 & i8008
	i8080
	Z80
	i8086/i8088

	before ~1973
	~1974
	1976
	1978

	LBC
	MOV B,C
	LD B,C
	MOV BL,CL

	--
	LDAX B
	LD A,(BC)
	MOV AL,[BX]

	LAM
	MOV A,M
	LD A,(HL)
	MOV AL,[BP]

	LBM
	MOV B,M
	LD B,(HL)
	MOV BL,[BP]

	--
	STAX D
	LD (DE),A
	--

	LMA
	MOV M,A
	LD (HL),A
	MOV [BP],AL

	LMC
	MOV M,C
	LD (HL),C
	MOV [BP],CL

	LDI 56
	MVI D,56
	LD D,56
	MOV DL,56

	LMI 56
	MVI M,56
	LD (HL),56
	MOV byte ptr [BP],56

	--
	LDA 1234
	LD A,(1234)
	MOV AL,[1234]

	--
	STA 1234
	LD (1234),A
	MOV [1234],AL

	--
	--
	LD B,(IX+56)
	MOV BL,[SI+56]

	--
	--
	LD (IX+56),C
	MOV [SI+56],CL

	--
	--
	LD (IY+56),78
	MOV byte ptr [DI+56],78

	--
	LXI B,1234
	LD BC,1234
	MOV BX,1234

	--
	LXI H,1234
	LD HL,1234
	MOV BP,1234

	--
	SHLD 1234
	LD (1234),HL
	MOV [1234],BP

	--
	LHLD 1234
	LD HL,(1234)
	MOV BP,[1234]

	--
	--
	LD BC,(1234)
	MOV BX,[1234]

	--
	--
	LD IX,(1234)
	MOV SI,[1234]


Illustration of four syntaxes, using samples of equivalent, or (for 8086) very similar, load and store instructions.

 New syntax

Because Intel had claimed copyright on their assembly mnemonics,[citation needed] a new assembly syntax had to be developed. This time a more systematic approach was used:

	All registers and register pairs are explicitly denoted by their full names

	Parentheses are consistently used to indicate "memory contents at" (indirection, or pointer dereferencing) with the exception of some jump instructions.

	All load and store instructions use the same mnemonic name, LD, for LOAD (a return to the simplistic Datapoint 2200 vocabulary); other common instructions, such as ADD and INC, use the same mnemonic regardless of addressing mode or operand size. This is possible because the operands themselves carry enough information.


These principles made it straightforward to find names and forms for all new Z80 instructions, as well as orthogonalizations of old ones, such as LD BC,(1234).

Apart from naming differences, and despite a certain discrepancy in basic register structure, the Z80 and 8086 syntax are virtually isomorphous for a large portion of instructions. Only quite superficial similarities (such as the word MOV, or the letter X, for extended register) exist between the 8080 and 8086 assembly languages, although 8080 programs can be assembled into 8086 object code using a special assembler or translated to 8086 assembly language by a translator program.

 Instruction set and encoding

The Z80 uses 252 out of the available 256 codes as single byte opcodes ("root instruction"); the four remaining codes are used extensively as opcode prefixes: CB and ED enable extra instructions and DD or FD selects IX+d or IY+d respectively (in some cases without displacement d) in place of HL. This scheme gives the Z80 a large number of permutations of instructions and registers; Zilog categorizes these into 158 different "instruction types", 78 of which are the same as those of the Intel 8080 (allowing operation of 8080 programs on a Z80). The Zilog documentation further groups instructions into the following categories:

	8-bit arithmetic and logic operations

	16-bit arithmetic

	8-bit load

	16-bit load

	Bit set, reset, and test

	Call, return, and restart

	Exchange, block transfer, and search

	General purpose arithmetic and CPU control

	Input and output

	Jump

	Rotate and shift


No multiply instruction is available in the original Z80. Different sizes and variants of additions, shifts, and rotates have somewhat differing effects on flags because the flag-influencing properties of the 8080 were copied. Load instructions do not affect the flags (except for the special purpose I and R register loads).

The index register (IX/IY) instructions can be useful for accessing data organised in fixed structures and can also reduce code size by removing the need for multiple short instructions using non-indexed registers. However, although they may save speed in some contexts when compared to long/complex "equivalent" sequences of simpler operations, they incur a lot of additional CPU time (e.g. 19 T-states to access one indexed memory location vs. as little as 11 to access the same memory using HL and INCrement it to point to the next). Thus, for simple and/or linear accesses of data, IX and IY tend to be slower. Still, they may be useful in cases where the 'main' registers are all occupied, by removing the need to save/restore registers. Their officially undocumented 8-bit halves (see below) can be especially useful in this context, for they incur less slowdown than their 16-bit parents. Similarly, instructions for 16-bit additions are not particularly fast (11 clocks) in the original Z80; nonetheless, they are about twice as fast as performing the same calculations using 8-bit operations, and equally important, they reduce register usage.

The 10-year-newer microcoded Z180 design could initially afford more "chip area", permitting a slightly more efficient implementation (using a wider ALU, among other things), similar things can be said for the Z800, Z280, and Z380. However, it was not until the fully pipelined eZ80 was launched in 2001 that those instructions finally became approximately as cycle-efficient as it is technically possible to make them, i.e. given the Z80 encodings combined with the capability to do an 8-bit read or write every clock cycle.[citation needed]

 Undocumented instructions

The index registers, IX and IY, were intended as flexible 16 bit pointers, enhancing the ability to manipulate memory, stack frames and data structures. Officially, they were treated as 16-bit only. In reality, they were implemented as a pair of 8-bit registers, in the same fashion as the HL register, which is accessible either as 16 bits or separately as the High and Low registers. Even the binary opcodes (machine language) were identical, but preceded by a new opcode prefix. Zilog published the opcodes and related mnemonics for the intended functions, but did not document the fact that every opcode that allowed manipulation of the H and L registers was equally valid for the 8 bit portions of the IX and IY registers. As an example, the opcode 26h followed by an immediate byte value (LD H,n) will load that value into the H register. Preceding this two-byte instruction with the IX register's opcode prefix DD, would instead result in the most significant 8 bits of the IX register being loaded with that same value. A notable exception to this would be instructions similar to LD H,(IX+d) which make use of both the HL and IX or IY registers in the same instruction; in this case the DD prefix is only applied to the (IX+d) portion of the instruction.

There are several other undocumented instructions as well. Undocumented or illegal opcodes are not detected by the Z80 and have various effects, some of which are useful. However, as they are not part of the formal definition of the instruction set, different implementations of the Z80 are not guaranteed to work the same way for every undocumented opcode.

 Instruction execution

Each instruction is executed in steps that are usually termed machine cycles (M-cycles), each of which can take between three and six clock periods (T-cycles). Each M-cycle corresponds roughly to one memory access and/or internal operation. Many instructions actually end during the M1 of the next instruction which is known as a fetch/execute overlap.

Examples of typical instructions (R=read, W=write)
	Total
M-cycles


	instruction
	M1
	M2
	M3
	M4
	M5
	M6

	1
	INC BC
	opcode
	
	
	
	
	

	2
	ADD A,n
	opcode
	n
	
	
	
	

	3
	ADD HL,DE
	opcode
	internal
	internal
	
	
	

	4
	SET b,(HL)
	prefix
	opcode
	R(HL), set
	W(HL)
	
	

	5
	LD (IX+d),n
	prefix
	opcode
	d
	n,add
	W(IX+d)
	

	6
	INC (IY+d)
	prefix
	opcode
	d
	add
	R(IY+d),inc
	W(IY+d)


The Z80 machine cycles are sequenced by an internal state machine which builds each M-cycle out of 3, 4, 5 or 6 T-cycles depending on context. This avoids cumbersome asynchronous logic and makes the control signals behave consistently at a wide range of clock frequencies. Naturally, it also means that a higher frequency crystal must be used than without this subdivision of machine cycles (approximately 2–3 times higher). It does not imply tighter requirements on memory access times, however, as a high resolution clock allows more precise control of memory timings and memory therefore can be active in parallel with the CPU to a greater extent (i.e. sitting less idle), allowing more efficient use of available memory bandwidth.[citation needed]

One central example of this is that, for opcode fetch, the Z80 combines two full clock cycles into a memory access period (the M1-signal). In the Z80 this signal therefore lasts for a much larger (relative) part of the typical instruction execution time than in a more asynchronous processor design such as the 6800, 6502, or similar, where this period would typically last only a (rather inprecise) fraction (typically 30-40%) of a clock cycle.[citation needed] With memory chip affordability (i.e. access times around 450-250ns in the 1980s[citation needed]) typically determining the fastest possible access time, this meant that such designs were locked to a significantly longer clock cycle (i.e. lower internal clock speed) than the Z80.

Memory, especially EPROM, but also Flash, were generally slow as compared to the state machine sub-cycles (clock cycles) used in contemporary microprocessors. The shortest machine cycle that could safely be used in embedded designs has therefore often been limited by memory access times, not by the maximum CPU frequency (especially so during the home computer era). However, this relation has slowly changed during the last decades, particularly regarding SRAM; cacheless, single-cycle designs such as the eZ80 have therefore become much more meaningful recently.

 Compatible peripherals

Zilog introduced a number of peripheral parts for the Z80, which all supported the Z80's interrupt handling system and I/O address space. These included the CTC (Counter-Timer-Circuit), the SIO (Serial Input Output), the DMA (Direct Memory Access), the PIO (Parallel Input-Output) and the DART (Dual Asynchronous Receiver Transmitter). As the product line developed, low-power, high-speed and CMOS versions of these chips were produced.

Like the 8080, 8085 and 8086 processors, but unlike processors such as the Motorola 6800 and MOS Technology 6502, the Z80 and 8080 had a separate control line and address space for I/O instructions. While some Z80-based computers used "Motorola-style" memory mapped input/output devices, usually the I/O space was used to address one of the many Zilog peripheral chips compatible with the Z80. Zilog I/O chips supported the Z80's new mode 2 interrupts which simplified interrupt handling for large numbers of peripherals.

 'Undocumented' 16 bit I/O-addressing

The Z80 was officially described as supporting 16-bit (64 KB) memory addressing, and 8-bit (256 ports) I/O-addressing. Looking carefully at the hardware reference manual, it can be seen that all I/O instructions actually assert the entire 16-bit address bus. OUT (C),reg and IN reg,(C) places the contents of the entire 16 bit BC register on the address bus; OUT (n),A and IN A,(n) places the contents of the A register on b8-b15 of the address bus and n on b0-b7 of the address bus. A designer could choose to decode the entire 16 bit address bus on I/O operations in order to take advantage of this feature, or use the high half of the address bus to select subfeatures of the I/O device. This feature has also been used to minimise decoding hardware requirements, such as in the Amstrad CPC/PCW and ZX81.

 Second sources and derivatives

 Second sources
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Mostek's Z80: MK3880
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NEC's μPD780C Z80 second-sourced by NEC
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Sharp's LH0080 Sharp version of the Z80
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The T34BM1, a Russian Z80 clone
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Toshiba TMPZ84C015; a standard Z80 with several Z80-family peripherals on chip in a QFP package
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The Z80 compatible Hitachi HD64180
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Z180 in a PLCC package
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The Z80 compatible R800 in QFP
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The Z280 in a PLCC package





Mostek, who produced the first Z80 for Zilog, offered it as second-source as MK3880. SGS-Thomson (now STMicroelectronics) was a second-source, too, with their Z8400. Sharp and NEC developed second sources for the NMOS Z80, the LH0080 and µPD780C respectively. The µPD780C was used in the Sinclair ZX80 and ZX81, original versions of the ZX Spectrum, and several MSX computers, and in musical synthesizers such as Oberheim OB-8 and others. The LH0080 was used in various home computers and personal computers made by Sharp and other Japanese manufacturers, including Sony MSX computers, and a number of computers in the Sharp MZ series.

Toshiba made a CMOS-version, the TMPZ84C00, which is believed (but not verified) to be the same design also used by Zilog for its own CMOS Z84C00. There were also Z80-chips made by GoldStar (alias LG) and the BU18400 series of Z80-clones (including DMA, PIO, CTC, DART and SIO) in NMOS and CMOS made by ROHM Electronics.

In East Germany, an unlicensed clone of the Z80, known as the U880, was manufactured. It was very popular and was used in Robotron's and VEB Mikroelektronik Mühlhausen's computer systems (such as the KC85-series) and also in many self-made computer systems (such as COMP JU+TER). In Romania another unlicensed clone could be found, named MMN80CPU and produced by Microelectronica, used in home computers like TIM-S, HC, COBRA.

Also, several clones of Z80 were created in the Soviet Union, notable ones being the T34BM1, also called КР1858ВМ1 (parallelling the Russian 8080-clone KR580VM80A) The first marking was used in pre-production series, while the second had to be used for a larger production. Though, due to the collapse of Soviet microelectronics in late 80s, there are many more T34BM1s than КР1858ВМ1s.

 Derivatives

	Compatible with the original Z80


	Hitachi developed the HD64180, a microcoded and partially dynamic Z80 in CMOS, with on chip peripherals and a simple MMU giving a 1 MB address space. It was later second sourced by Zilog, initially as the Z64180, and then in the form of the slightly modified Z180 which has bus protocol and timings better adapted to Z80 peripheral chips. Z180 has been maintained and further developed under Zilog's name, the newest versions being based on the fully static S180/L180 core with very low power draw and EMI (noise).

	Toshiba developed the 84 pin Z84013 / Z84C13 and the 100 pin Z84015 / Z84C15 series of "intelligent peripheral controllers", basically ordinary NMOS and CMOS Z80 cores with Z80 peripherals, watch dog timer, power on reset, and wait state generator on the same chip. Manufactured by Sharp as well as Toshiba. These products are today second sourced by Zilog.

	The 32-bit Z80 compatible Zilog Z380, introduced 1994, is used mainly in telecom equipment.[citation needed]

	Zilog's fully pipelined Z80 compatible eZ80 with an 8/16/24-bit word length and a linear 16 MB address space was introduced in 2001. It exists in versions with on chip SRAM and/or flash memory, as well as with integrated peripherals. One variant has on chip MAC (media access controller), and available software include a TCP/IP stack. In contrast with the Z800 and Z280, there are only a few added instructions (primarily LEAs, PEAs, and variable-address 16/24-bit loads), but instructions are instead executed between 2 and 11 times as clock cycle efficient as on the original Z80 (with a mean value around 3-5 times). It is currently specified for clock frequencies up to 50 MHz.

	Kawasaki developed the binary compatible KL5C8400 which is approximately 1.2-1.3 times as clock cycle efficient as the original Z80 and can be clocked at up to 33 MHz. Kawasaki also produces the KL5C80A1x family, which has peripherals as well as a small RAM on chip; it is approximately as clock cycle efficient as the eZ80 and can be clocked at up to 10 MHz (2006).

	The Chinese Actions Semiconductor's audio processor family of chips (ATJ2085 and others) contains a Z80-compatible MCU together with a 24-bit dedicated DSP processor. These chips are used in many MP3 and media player products.


	Non-compatible


	The Toshiba TLCS 900 series of high volume (mostly OTP) microcontrollers are based on the Z80; they share the same basic BC,DE,HL,IX,IY register structure, and largely the same instructions, but are not binary compatible, while the previous TLCS 90 is Z80-compatible.

	The NEC 78K series microcontrollers are based on the Z80; they share the same basic BC,DE,HL register structure, and has similar (but differently named) instructions; not binary compatible.


	Partly compatible


	Rabbit Semiconductor's Rabbit 2000/3000/4000 microprocessors/microcontrollers are based on the HD64180/Z180 architecture, although they are not fully binary compatible.


	No longer produced


	The ASCII Corporation R800 was a fast 16-bit processor used in MSX TurboR computers; it was software, but not hardware compatible with the Z80 (signal timing, pinout & function of pins differ from the Z80).

	Zilog's NMOS Z800 and CMOS Z280 were 16-bit Z80-implementations (before the HD64180 / Z180) with a 16 MB paged MMU address space; they added many orthogonalizations and addressing modes to the Z80 instruction set. Minicomputer features such as, user and system modes, multiprocessor support, on chip MMU, on chip instruction and data cache and so on was seen rather as more complexity than as functionality and support for the (usually electronics-oriented) embedded systems designer, it also made it very hard to predict instruction execution times.[citation needed]


 Software emulation

Software emulation of the Z80 instruction set is easily possible on modern PCs, since their processors run much faster than any of the original Z80 family. Programs emulating the processor are common and form an essential component of many full-hardware emulators of home computers (such as Amstrad CPC, MSX and Sinclair ZX Spectrum), video game consoles, and arcade game systems (such as MAME); SIMH emulates the MITS Altair 8800 computer with Intel 8080, Zilog Z80, or Intel 8086 processors. Coding a software-based emulation of the Z80 has been done by many people, whether as part of a fuller-featured emulator or as a programming project in its own right.

 Notable uses

 Desktop computers

See also: list of home computers by category#Zilog Z80 and clones

During the late 1970s and early 1980s, the Z80 was used in a great number of fairly anonymous business-oriented machines with the CP/M operating system, a combination that dominated the market at the time.

Two well-known examples of Z80+CP/M business computers are the portable Osborne 1 and the Kaypro series. Research Machines manufactured the 380Z and 480Z microcomputers which were networked with a thin Ethernet type LAN and CP/NET in 1981. Other manufacturers of such systems included Televideo, Xerox (820 range) and a number of more obscure firms. Some systems used multi-tasking operating system software to share the one processor between several concurrent users.

In the U.S., the Radio Shack TRS-80, introduced in 1977, used the Z80, as did the follow on Models II, III, IV and proposed Model V.

In the United Kingdom, Sinclair Research used the Z80 and Z80A in its ZX80, ZX81 and ZX Spectrum home computers. Amstrad used them in their Amstrad CPC range.

The Commodore 128 featured a Z80 processor alongside its MOS Technology 8502 processor for CP/M compatibility. Other 6502 architecture computers on the market at the time, such as the BBC Micro, Apple II and the 6510 based Commodore 64, could make use of the Z80 with an external unit, a plug-in card, or an expansion ROM cartridge. The Microsoft Z-80 SoftCard for the Apple II was a particularly successful add-on card and one of Microsoft's few hardware products of the era.

Acer, formerly Multitech, introduced the Microprofessor I, in 1981. It was designed as a simple and inexpensive training system for the Z80 microprocessor. Currently, it is still being manufactured and sold by Flite Electronics International Limited in Southampton, England.

 Embedded systems and consumer electronics
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Z80 based PABX. The Z80 is third chip in from the left, to the right of the chip with the hand-written white label on it.





The Zilog Z80 has long been a popular microprocessor in embedded systems and microcontroller cores, where it remains in widespread use today. The following list provides examples of such applications of the Z80, including uses in consumer electronics products.

 Industry

	Office equipment such as matrix printers, fax machines, answering machines, and photocopiers are known examples.

	Industrial programmable logic controllers (PLCs) use the Z80 in CPU modules, for auxiliary functions such as analog I/O, or in communication modules.

	It has also been employed in robots, for example for speech recognition and low level tasks such as servo processors in pick and place machines.

	RS232 multiplexers connecting large numbers of old style "terminals" to minicomputers or mainframes used arrays of Z80 CPU/SIO boards.

	Applications such as TV broadcast vision mixers have used the Z80 for embedded real time subtasks.

	It has also been used in Seagate Technology's and other manufacturers' hard disks.

	Credit card consoles controlling fuel pumps used Z80 CPU and PIOs (US patents 4930665, 4962462 and 5602745).

	Several PC expansion cards, such as Adaptecs SCSI boards, have been using the Z80/Z180 and peripheral chips.

	Z80/Z180/Z380 have been used in telecommunication equipment such as telephone switches and various kinds of modems.

	The Stofor message switch, used extensively by banks and brokers in the UK was Z80 based.

	Cash registers and store management systems

	Home automation, wireless sprinkler control and wireless mesh using the N8VEM open source homebrew system.

	Breathalyzer equipment used by law enforcement agencies.


 Consumer electronics

	Z80 was often used in coin-operated arcade games, and was commonly used as the main CPU, sound or video coprocessors. Pac-Man arcade games feature a single Z80 as the main CPU.Galaxian and arcade games such as King & Balloon and Check Man that use the Namco Galaxian boardset also use a Z80 as the main CPU. Other Namco licensed arcade games such as Galaga and other games that use the Namco Galaga boardset such as Bosconian, Dig Dug, Xevious, and Super Xevious use three Z80 microprocessors running in parallel for the main CPU, graphics, and sound.

	It was also found in home video game consoles such as the ColecoVision,Sega Master System and Sega Game Gear video game consoles, as an audio co-processor in the Sega Mega Drive and as an audio controller and co-processor to the Motorola 68000 in the SNK Neo-Geo.

	Nintendo's Game Boy and Game Boy Color handheld game systems used a 8080-derived processor with some Z80 instructions added (CB prefix) as well as unique auto-increment/decrement addressing modes. The CPU was a Sharp Corporation LR35902 running at 4.19 MHz in the original and Pocket models, and 8 MHz in the Color model. This processor was later included in the Game Boy Advance / SP / Micro taking up a new role as a co-processor for backwards compatibility with Game Boy / Color games (except Micro) and to add legacy 8-bit sounds to supplement the digital samples in Game Boy Advance games.

	In Russia, Z80 and its clones were widely used in multi-functional land line phones with Caller ID.

	Various scientific and graphing calculators use the Z80, including the Texas Instruments TI-73, TI-81, TI-82, TI-83, TI-83+, TI-84+, TI-85 and TI-86 series.

	The Ericsson GA628 mobile phone uses the Z80 CPU.

	All the S1 MP3 Player type digital audio players use the Z80 instruction set.


 Musical instruments

	MIDI sequencers such as E-mu 4060 Polyphonic Keyboard and Sequencer, Zyklus MPS, and Roland MSQ700 were built around the Z80,[citation needed]

	MIDI controllers and switches such as Waldorf Midi-Bay MB-15 and others.[citation needed]

	Several polyphonic analog synthesizers used it for keyboard-scanning (also wheels, knobs, displays...) and D/A or PWM control of analog levels; in newer designs, sometimes sequencing and/or MIDI-communication. The Z80 was also often involved in the sound generation itself; implementing LFOs, envelope generators and so on. Known examples include:
	Sequential Circuits Prophet 5, Prophet 10,Prophet 600, Six-Trak, Multitrak, MAX, and Split-8

	MemoryMoog six-voice synthesizer

	Oberheim OB-8 eight-voice synthesizer with MIDI

	Roland Jupiter-8 eight-voice synthesizer




	Digital sampling synthesizers such as the Emulator I, Emulator II, and Akai S700 12-bit Sampler,

	as well as drum machines like the E-mu SP-12, E-mu SP-1200, E-mu Drumulator, and the Sequential Circuits Drumtraks, used Z80 processors.

	Many Lexicon reverberators (PCM70, LXP15, LXP1, MPX100) used one or more Z80s for user interface and LFO generation where dedicated hardware provided DSP functions.

	The ADA MP-1. A MIDI controlled, vacuum tube, guitar pre-amplifier.


 See also
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	List of home computers by category
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    Calling convention


In computer science, a calling convention is a scheme for how subroutines receive parameters from their caller and how they return a result; calling conventions can differ in:

	where parameters and return values are placed (in registers; on the call stack; a mix of both)

	the order in which parameters are passed (or parts of a single parameter)

	how the task of setting up for and cleaning up after a function call is divided between the caller and the callee

	which registers that may be directly used by the callee may sometimes also be included (otherwise regarded as an ABI-detail).

	which registers are considered to be volatile v. non-volatile and, if volatile, need not be restored by the callee


Different programming languages use different calling conventions, and so can different platforms (CPU architecture + operating system). This can sometimes cause problems when combining modules written in multiple languages, or when calling operating system or library APIs from a language other than the one in which they are written; in these cases, special care must be taken to coordinate the calling conventions used by caller and callee. Even a program using a single programming language may use multiple calling conventions, either chosen by the compiler, for code optimization, or specified by the programmer.

Architectures almost always have more than one possible calling convention. With many general-purpose registers and other features, the potential number of calling conventions is large, although some architectures are specified to use only one calling convention, supplied by the architect.

 Calling conventions on different platforms

 x86

Main article: x86 calling conventions

The x86 architecture features many different calling conventions. Due to the small number of architectural registers, the x86 calling conventions mostly pass arguments on the stack, while the return value (or a pointer to it) is passed in a register. Some conventions use registers for the first few parameters, which may improve performance for short and simple leaf-routines very frequently invoked (i.e. routines that do not call other routines and do not have to be reentrant).

Example call:


push eAX            ; pass some register result
push byte[eBP+20]   ; pass some memory variable (FASM/TASM syntax)
push 3              ; pass some constant
call calc           ; the returned result is now in eAX


Typical callee structure: (some or all (except ret) of the instructions below may be optimized away in simple procedures)


calc:
 push eBP            ; save old frame pointer
 mov eBP,eSP         ; get new frame pointer
 sub eSP,localsize   ; reserve place for locals
 .
 .                   ; perform calculations, leave result in eAX
 .
 mov eSP,eBP         ; free space for locals
 pop eBP             ; restore old frame pointer
 ret paramsize       ; free parameter space and return


 PowerPC

The PowerPC architecture has a large number of registers so most functions can pass all arguments in registers for single level calls. Additional arguments are passed on the stack, and space for register-based arguments is also always allocated on the stack as a convenience to the called function in case multi-level calls are used (recursive or otherwise) and the registers must be saved. This is also of use in variadic functions, such as printf(), where the function's arguments need to be accessed as an array. A single calling convention is used for all procedural languages.

 MIPS

The most commonly used calling convention for 32 bit MIPS is the O32ABI which passes the first four arguments to a function in the registers $a0-$a3; subsequent arguments are passed on the stack. Space on the stack is reserved for $a0-$a3 in case the callee needs to save its arguments, but the registers are not stored there by the caller. The return value is stored in register $v0; a second return value may be stored in $v1. The 64 bit ABI allows for more arguments in registers for more efficient function calls when there are more than four parameters. There is also the N32 ABI which also allows for more arguments in registers. The return address when a function is called is stored in the $ra register automatically by use of the JAL (jump and link) or JALR (jump and link register) instructions.

The N32 and N64 ABIs pass the first eight arguments to a function in the registers $a0-$a7; subsequent arguments are passed on the stack. The return value (or a pointer to it) is stored in the registers $v0; a second return value may be stored in $v1. In both the N32 and N64 ABIs all registers are considered to be 64-bits wide.

On both O32 and N32/N64 the stack grows downwards, however the N32/N64 ABIs require 64-bit alignment for all stack entries. The frame pointer ($30) is optional and in practice rarely used except when the stack allocation in a function is determined at runtime, for example, by calling alloca().

For N32 and N64, the return address is typically stored 8 bytes before the stack pointer although this may be optional.

For the N32 and N64 ABIs, a function must preserve the $S0-$s7 registers, the global pointer ($gp or $28), the stack pointer ($sp or $29) and the frame pointer ($30). The O32 ABI is the same except the calling function is required to save the $gp register instead of the called function.

For multi-threaded code, the thread local storage pointer is typically stored in special hardware register $29 and is accessed by using the mfhw (move from hardware) instruction. At least one vendor is known to store this information in the $k0 register which is normally reserved for kernel use, but this is not standard.

The $k0 and $k1 registers ($26–$27) are reserved for kernel use and should not be used by applications since these registers can be changed at any time by the kernel due to interrupts, context switches or other events.

 SPARC

The SPARC architecture, unlike most RISC architectures, is built on register windows. There are 24 accessible registers in each register window, 8 of them are the "in" registers, 8 are registers for local variables, and 8 are out registers. The in registers are used to pass arguments to the function being called, so any additional arguments need to be pushed onto the stack. However, space is always allocated by the called function to handle a potential register window overflow, local variables, and returning a struct by value. To call a function, one places the arguments for the function to be called in the out registers, when the function is called the out registers become the in registers and the called function accesses the arguments in its in registers. When the called function returns, it places the return value in the first in register, which becomes the first out register when the called function returns.

The System V ABI, which most modern Unix-like systems follow, passes the first six arguments in "in" registers %i0 through %i5, reserving %i6 for the frame pointer and %i7 for the return address.

 ARM

The standard ARM calling convention allocates the 16 ARM registers as:

	r15 is the program counter.

	r14 is the link register. (The BL instruction, used in a subroutine call, stores the return address in this register).

	r13 is the stack pointer. (The Push/Pop instructions in "Thumb" operating mode use this register only).

	r12 is the Intra-Procedure-call scratch register.

	r4 to r11: used to hold local variables.

	r0 to r3: used to hold argument values passed to a subroutine, and also hold results returned from a subroutine.


If the type of value returned is too large to fit in r0 to r3, or whose size cannot be determined statically at compile time, then the caller must allocate space for that value at run time, and pass a pointer to that space in r0.

Subroutines must preserve the contents of r4 to r11 and the stack pointer. (Perhaps by saving them to the stack in the function prolog, then using them as scratch space, then restoring them from the stack in the function epilog). In particular, subroutines that call other subroutines *must* save the return address in the link register r14 to the stack before calling those other subroutines. However, such subroutines do not need to return that value to r14—they merely need to load that value into r15, the program counter, to return.

The ARM stack is full-descending.

This calling convention causes a "typical" ARM subroutine to

	In the prolog, push r4 to r11 to the stack, and push the return address in r14, to the stack. (This can be done with a single STM instruction).

	copy any passed arguments (in r0 to r3) to the local scratch registers (r4 to r11).

	allocate other local variables to the remaining local scratch registers (r4 to r11).

	do calculations and call other subroutines as necessary using BL, assuming r0 to r3, r12 and r14 will not be preserved.

	put the result in r0

	In the epilog, pull r4 to r11 from the stack, and pulls the return address to the program counter r15. (This can be done with a single LDM instruction).


 SuperH

	Register
	Windows CE 5.0
	gcc
	Renesas

	R0
	Serves as a temporary register when expanding assembly language pseudo-instructions, and holds function return values. In addition, R0 serves as an implicit source or destination in byte and 16-bit operations. Not preserved.
	Return value, caller saves
	Variables/temporary. Not guaranteed

	R1
	R1-R3 Serves as temporary registers. Not preserved.
	Return value, caller saves
	Variables/temporary. Not guaranteed

	R2
	R1-R3 Serves as temporary registers. Not preserved.
	Scratch, Caller saves / Large struct return address, caller save (when –mhitachi is not specified)
	Variables/temporary. Not guaranteed

	R3
	R1-R3 Serves as temporary registers. Not preserved.
	Scratch, Caller saves
	Variables/temporary. Not guaranteed

	R4
	R4-R7 Hold the first four words of integer and non-scalar incoming arguments. The argument build area provides space into which R4 through R7 holding arguments may spill. Not preserved.
	Parameter passing, caller saves
	Arguments. Not guaranteed.

	R5
	R4-R7 Hold the first four words of integer and non-scalar incoming arguments. The argument build area provides space into which R4 through R7 holding arguments may spill. Not preserved.
	Parameter passing, caller saves
	Arguments. Not guaranteed.

	R6
	R4-R7 Hold the first four words of integer and non-scalar incoming arguments. The argument build area provides space into which R4 through R7 holding arguments may spill. Not preserved.
	Parameter passing, caller saves
	Arguments. Not guaranteed.

	R7
	R4-R7 Hold the first four words of integer and non-scalar incoming arguments. The argument build area provides space into which R4 through R7 holding arguments may spill. Not preserved.
	Parameter passing, caller saves
	Arguments. Not guaranteed.

	R8
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R9
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R10
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R11
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R12
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R13
	Serves as permanent registers. Preserved.
	Callee Saves
	Variables/temporary. Guaranteed.

	R14
	Serves as the default frame pointer. Any other permanent register may serve as the frame pointer, and leaf routines may use a temporary register as the frame pointer. Preserved.
	Frame Pointer, FP, callee saves
	Variables/temporary. Guaranteed.

	R15
	Serves as the stack pointer or as a permanent register. Preserved.
	Stack Pointer, SP, callee saves
	Stack pointer. Guaranteed.


 Threaded code

Main article: Threaded code

Threaded code places all the responsibility for setting up for and cleaning up after a function call on the called code. The calling code does nothing but list the subroutines to be called. This puts all the function setup and cleanup code in one place—the prolog and epilog of the function—rather than in the many places that function is called. This makes threaded code the most compact calling convention.

Threaded code passes all arguments on the stack. All return values are returned on the stack. This makes naive implementations slower than calling conventions that keep more values in registers. However, threaded code implementations that cache several of the top stack values in registers—in particular, the return address—are usually faster than subroutine calling conventions that always push and pop the return address to the stack.

 See also

	Language binding

	Foreign function interface

	Name mangling

	Application programming interface

	Application binary interface

	Comparison of application virtual machines

	SWIG
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    X86 calling conventions


This article describes the calling conventions used on the x86 architecture.

Calling conventions describe the interface of called code:

	The order in which atomic (scalar) parameters, or individual parts of a complex parameter, are allocated

	How parameters are passed (pushed on the stack, placed in registers, or a mix of both)

	Which registers may be used by the callee without first being saved (i.e. pushed)

	How the task of setting up for and restoring the stack after a function call is divided between the caller and the callee


This is intimately related with the assignment of sizes and formats to programming-language types. Another closely related topic is name mangling, which determines how symbol names in the code map to symbol names used by the linker. Calling conventions, type representations, and name mangling are all part of what is known as an Application Binary Interface (ABI).

There are often subtle differences in how various compilers implement these conventions, so it is often difficult to interface code which is compiled by different compilers. On the other hand, conventions which are used as an API standard (such as stdcall) are very uniformly implemented.

 Historical background

Prior to microcomputers, the machine manufacturer generally provided an operating system and compilers for several programming languages. The calling conventions adopted for the platform were those defined by the manufacturer's software implementation.

Early microcomputers before Apple II Computers generally came "bare" of an OS or compilers, as did the IBM PC. The only hardware standard for IBM PC compatible machines was defined by the Intel processors (8086, 80386) and the literal hardware IBM shipped. Hardware extensions and all software standards (save for a BIOS calling convention) were thrown open to market competition.

A multitude of independent software firms offered operating systems, compilers for many programming languages, and applications. Many different calling schemes were implemented by the firms, often mutually exclusive, based on different requirements, historical practices, and programmer creativity.

After the IBM compatible market shakeout, Microsoft operating systems and programming tools (with differing conventions) predominated, while second tier firms like Borland and Novell, and open source projects like GCC, still maintained their own standards. Provisions for inter-operability between vendors and products were eventually adopted, simplifying the problem of choosing a viable convention.

 Caller clean-up

In these conventions the caller cleans the arguments from the stack, which allows for variable argument lists; e.g., printf().

 cdecl

The cdecl (which stands for C declaration) is a calling convention that originates from the C programming language and is used by many C compilers for the x86 architecture. In cdecl, subroutine arguments are passed on the stack. Integer values and memory addresses are returned in the EAX register, floating point values—in the ST0 x87 register. Registers EAX, ECX, and EDX are caller-saved, and the rest are callee-saved.

In context of the C programming language, function arguments are pushed on the stack in the reverse order. In GNU/Linux, GCC sets the de facto standard for calling conventions. Since GCC version 4.5, the stack must be aligned to a 16-byte boundary when calling a function (previous versions only required a 4-byte alignment.)[citation needed]

Consider the following C source code snippet:




int callee(int, int, int);
 
int caller(void)
{
        register int ret;
 
        ret = callee(1, 2, 3);
        ret += 5;
        return ret;
}





On x86, it will produce the following assembly code (AT&T syntax):




        .globl  caller
caller:
        pushl   %ebp
        movl    %esp,%ebp
        pushl   $3
        pushl   $2
        pushl   $1
        call    callee
        addl    $12,%esp
        addl    $5,%eax
        leave
        ret





The calling function cleans the stack after the function call returns.

There are some variations in the interpretation of cdecl, particularly in how to return values. As a result, x86 programs compiled for different operating system platforms and/or by different compilers can be incompatible, even if they both use the "cdecl" convention and do not call out to the underlying environment. Some compilers return simple data structures with a length of 2 registers or less in the register pair EAX:EDX, and larger structures and class objects requiring special treatment by the exception handler (e.g., a defined constructor, destructor, or assignment) are returned in memory. To pass "in memory", the caller allocates memory and passes a pointer to it as a hidden first parameter; the callee populates the memory and returns the pointer, popping the hidden pointer when returning.

In Linux/GCC, double/floating point values should be pushed on the stack via the x87 pseudo-stack. Like so:




        sub esp, 8      ; make room for the double
        fld [ebp + x]   ; load our double onto the floating point stack
        fstp [esp]      ; push our double onto the stack
        call funct
        add esp, 8





Using this method ensures it is pushed on the stack in the correct format.

The cdecl calling convention is usually the default calling convention for x86 C compilers, although many compilers provide options to automatically change the calling conventions used. To manually define a function to be cdecl, some support the following syntax:




void _cdecl funct();





The _cdecl modifier must be included in the function prototype, and in the function declaration to override any other settings that might be in place.

 syscall

This is similar to cdecl in that arguments are pushed right to left. EAX, ECX, and EDX are not preserved. The size of the parameter list in doublewords is passed in AL.

Syscall is the standard calling convention for 32 bit OS/2 API.

 optlink

Arguments are pushed right to left. The three lexically first (leftmost) arguments are passed in EAX, EDX, and ECX and up to four floating-point arguments are passed in ST(0) through ST(3), although space for them is reserved in the argument list on the stack. Results are returned in EAX or ST(0). Registers EBP, EBX, ESI, and EDI are preserved.

Optlink is used by the IBM VisualAge compilers.

 Callee clean-up

When the callee cleans the arguments from the stack it needs to be known at compile time how many bytes the stack needs to be adjusted. Therefore, these calling conventions are not compatible with variable argument lists, e.g. printf(). They may be, however, more space efficient, as the code needed to unwind the stack does not need to be generated for each call.

Functions which utilize these conventions are easy to recognize in ASM code because they will unwind the stack prior to returning. The x86 ret instruction allows an optional 16-bit parameter that specifies the number of stack bytes to unwind before returning to the caller. Such code looks like this:




 ret 12





 pascal

Based on the Pascal programming language's calling convention, the parameters are pushed on the stack in left-to-right order (opposite of cdecl), and the callee is responsible for balancing the stack before return.

This calling convention was common in the following 16-bit APIs: OS/2 1.x, Microsoft Windows 3.x, and Borland Delphi version 1.x.

 register

An alias for Borland fastcall.

 stdcall

The stdcall calling convention is a variation on the Pascal calling convention in which the callee is responsible for cleaning up the stack, but the parameters are pushed onto the stack in right-to-left order, as in the _cdecl calling convention. Registers EAX, ECX, and EDX are designated for use within the function. Return values are stored in the EAX register.

stdcall is the standard calling convention for the Microsoft Win32 API and for Open Watcom C++.

 fastcall

Conventions entitled fastcall have not been standardized, and have been implemented differently, depending on the compiler vendor. Typically fastcall calling conventions pass one or more arguments in registers which reduces the number of memory accesses required for the call.

 Microsoft fastcall

Microsoft or GCC__fastcall convention (aka __msfastcall) passes the first two arguments (evaluated left to right) that fit into ECX and EDX. Remaining arguments are pushed onto the stack from right to left.

 Borland fastcall

Evaluating arguments from left to right, it passes three arguments via EAX, EDX, ECX. Remaining arguments are pushed onto the stack, also left to right.

It is the default calling convention of the 32 bit compiler of Embarcadero Delphi, where it is known as register.

Some versions of Linux kernel use this convention on i386.

 Watcom register based calling convention

Watcom does not support the __fastcall keyword except to alias it to null. The register calling convention may be selected by command line switch. (However, IDA uses __fastcall anyway for uniformity)

Up to 4 registers are assigned to arguments in the order eax, edx, ebx, ecx. Arguments are assigned to registers from left to right. If any argument cannot be assigned to a register (say it is too large) it, and all subsequent arguments, are assigned to the stack. Arguments assigned to the stack are pushed from right to left. Names are mangled by adding a suffixed underscore.

Variadic functions fall back to the Watcom stack based calling convention.

The Watcom C/C++ compiler also uses the #pragma aux directive that allows the user to specify his own calling convention. As its manual states, "Very few users are likely to need this method, but if it is needed, it can be a lifesaver".

 TopSpeed / Clarion / JPI

The first four integer parameters are passed in registers eax, ebx, ecx and edx. Floating point parameters are passed on the floating point stack – registers st0, st1, st2, st3, st4, st5 and st6. Structure parameters are always passed on the stack. Additional parameters are passed on the stack after registers are exhausted. Integer values are returned in eax, pointers in edx and floating point types in st0.

 safecall

In Embarcadero Delphi and Free Pascal on Microsoft Windows, the safecall calling convention encapsulates COM (Component Object Model) error handling, thus exceptions aren't leaked out to the caller, but are reported in the HRESULT return value, as required by COM/OLE. When calling a safecall function from Delphi code, Delphi also automatically checks the returned HRESULT and raises an exception if necessary.

The safecall calling convention is the same as the stdcall calling convention, except that exceptions are passed back to the caller in EAX as a HResult (instead of in FS:[0]), while the function result is passed by reference on the stack as though it were a final "out" parameter. When calling a Delphi function from Delphi this calling convention will appear just like any other calling convention, because although exceptions are passed back in EAX, they are automatically converted back to proper exceptions by the caller. When using COM objects created in other languages, the HResults will be automatically raised as exceptions, and the result for Get functions is in the result rather than a parameter. When creating COM objects in Delphi with safecall, there is no need to worry about HResults, as exceptions can be raised as normal but will be seen as HResults in other languages.




function function_name(a: DWORD): DWORD; safecall;





Returns a result and raises exceptions like a normal Delphi function, but it passes values and exceptions as though it was:




function function_name(a: DWORD; out Result: DWORD): HResult; stdcall;





 Either caller or callee clean-up

 thiscall

This calling convention is used for calling C++ non-static member functions. There are two primary versions of thiscall used depending on the compiler and whether or not the function uses variable arguments.

For the GCC compiler, thiscall is almost identical to cdecl: the calling function cleans the stack, and the parameters are passed in right-to-left order. The difference is the addition of the this pointer, which is pushed onto the stack last, as if it were the first parameter in the function prototype.

On the Microsoft Visual C++ compiler, the this pointer is passed in ECX and it is the callee that cleans the stack, mirroring the stdcall convention used in C for this compiler and in Windows API functions. When functions use a variable number of arguments, it is the caller that cleans the stack (cf. cdecl).

The thiscall calling convention can only be explicitly specified on Microsoft Visual C++ 2005 and later. On any other compiler thiscall is not a keyword. (Disassemblers like IDA, however, have to specify it anyway. So IDA uses keyword __thiscall for this.)

 Intel ABI

According to the Intel ABI, the EAX, EDX, and ECX are to be free for use within a procedure or function, and need not be preserved.

 x86-64 calling conventions

x86-64 calling conventions take advantage of the additional register space to pass more arguments in registers. Also, the number of incompatible calling conventions has been reduced, but unfortunately there are still two in common use.

 Microsoft x64 calling convention

The Microsoft x64 calling convention (for long mode on x86-64) uses registers RCX, RDX, R8, R9 are used for the first four integer or pointer arguments (in that order left to right), and XMM0, XMM1, XMM2, XMM3 are used for floating point arguments. Additional arguments are pushed onto the stack (right to left). Integer return values (similar to x86) are returned in RAX if 64 bits or less. Floating point return values are returned in XMM0. Parameters less than 64 bits long are not zero extended; the high bits contain garbage.

When compiling for the x64 architecture in a Windows context (whether using Microsoft or non-Microsoft tools), there is only one calling convention — the one described here, so that stdcall, thiscall, cdecl, fastcall, etc., are now all one and the same.

In the Microsoft x64 calling convention, it's the caller's responsibility to allocate 32 bytes of "shadow space" on the stack right before calling the function (regardless of the actual number of parameters used), and to pop the stack after the call. The shadow space is used to spill RCX, RDX, R8, and R9, but must be made available to all functions, even those with fewer than four parameters.

For example, a function taking 5 integer arguments will take the first to fourth in registers, and the fifth will be pushed on the top of the shadow space. So when the called function is entered, the stack will be composed (in ascendant order) the return address, by the shadow space (32 bytes) followed by the fifth parameter.

In x86-64, Visual Studio 2008 stores floating point numbers in XMM6 and XMM7 (as well as XMM8 through XMM15); consequently, for x86-64, user-written assembly language routines must preserve XMM6 and XMM7 (as compared to x86 wherein user-written assembly language routines did not need to preserve XMM6 and XMM7). In other words, user-written assembly language routines must be updated to save/restore XMM6 and XMM7 before/after the function when being ported from x86 to x86-64.

 System V AMD64 ABI

The calling convention of the System V AMD64 ABI is followed on Solaris, GNU/Linux, FreeBSD, and other non-Microsoft operating systems. The first six integer or pointer arguments are passed in registers RDI, RSI, RDX, RCX, R8, and R9, while XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6 and XMM7 are used for floating point arguments. For system calls, R10 is used instead of RCX. As in the Microsoft x64 calling convention, additional arguments are passed on the stack and the return value is stored in RAX.

Unlike the Microsoft calling convention, a shadow space is not provided; on function entry, the return value is adjacent to the seventh integer argument on the stack.

 List of x86 calling conventions

This is a list of x86 calling conventions. These are conventions primarily intended for C/C++ compilers (especially the 64-bit part below), and thus largely special cases. Other languages may use other formats and conventions in their implementations.

	Architecture
	Calling convention name
	Operating system, compiler
	Parameters in registers
	Parameter order on stack
	Stack cleanup by
	Notes

	8086
	cdecl
	
	
	RTL (C)
	Caller
	

	Pascal
	
	
	LTR (Pascal)
	Callee
	

	fastcall
	Microsoft (non-member)
	AX, DX, BX
	LTR (Pascal)
	Callee
	Return pointer in BX.

	fastcall
	Microsoft (member function)
	AX, DX
	LTR (Pascal)
	Callee
	“this” on stack low address. Return pointer in AX.

	fastcall
	Borland compiler
	AX, DX, BX
	LTR (Pascal)
	Callee
	“this” on stack low address. Return pointer on stack high address.

	
	Watcom compiler
	AX, DX, BX, CX
	RTL (C)
	Callee
	Return pointer in SI.

	IA-32
	cdecl
	GCC
	
	RTL (C)
	Caller
	When returning struct/class, the calling code allocates space and passes a pointer to this space via a hidden parameter on the stack. The called function writes the return value to this address.

	cdecl
	Microsoft
	
	RTL (C)
	Caller
	When returning struct/class,
	POD return values 32 bits or smaller are in the EAX register

	POD return values 33-64 bits in size are returned via the EAX:EDX registers.

	Non-POD return values or values larger than 64-bits, the calling code will allocate space and passes a pointer to this space via a hidden parameter on the stack. The called function writes the return value to this address.




	stdcall
	
	
	RTL (C)
	Callee
	

	
	GCC
	
	RTL (C)
	Hybrid
	Stack aligned on 16 bytes boundary.

	fastcall
	Microsoft
	ECX, EDX
	RTL (C)
	Callee
	Return pointer on stack if not member function.

	fastcall
	GCC
	ECX, EDX
	RTL (C)
	Callee
	

	fastcall
	Borland/Embarcadero compiler
	EAX, EDX, ECX
	LTR (Pascal)
	Callee
	

	thiscall
	Microsoft
	ECX
	RTL (C)
	Callee
	Default for member functions.

	
	Watcom compiler
	EAX, EDX, EBX, ECX
	RTL (C)
	Callee
	Return pointer in ESI.

	x86-64
	Microsoft x64 calling convention
	Windows (Microsoft Visual C++, Intel C++ Compiler, Embarcadero compiler), UEFI
	RCX/XMM0, RDX/XMM1, R8/XMM2, R9/XMM3
	RTL (C)
	Caller
	Stack aligned on 16 bytes. 32 bytes shadow space on stack. The specified 8 registers can only be used for parameters 1 through 4.

	System V AMD64 ABI
	GNU/Linux, BSD, Mac OS X (GCC, Intel C++ Compiler)
	RDI, RSI, RDX, RCX, R8, R9, XMM0–7
	RTL (C)
	Caller
	Stack aligned on 16 bytes boundary. Red zone below stack.
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