EPUB Lightweight Content Protection

Jim Dovey, Digital Content Format Evangelist

Kobo Inc.
Toronto, ON, Canada

<jdovey@kobo.com>

September 5, 2012

Abstract

At present there are a number of different ePub-compatible Reading Systems be-
ing developed by different companies. Each of these is required by content publish-
ers to implement some form of Digital Rights Management (DRM), and each usually
implements either their own form of encryption and rights management. This has
the side-effect of making content from one distributor usable only on that distrib-
utor’s own systems, which runs contrary to the aim of a single universal standard
for electronic publications such as [EPUB3]. As a result the International Digital
Publishing Forum (IDPF), maintainer of the ePub standard, has issued a call for pro-
posals on a lightweight protection system for ePub-based content which could be
implemented by any reading system. This document outlines a proposed protection
system designed by Kobo based on the [OCF3] format described by the IDPF.

CONTENTS i
Contents

Proposal Information vii

1 Preamble 1

1.1 Editorial and Conformance Conventions 1

1.2 Namespaces and Identifiers 0oL, 2

2 Overview 3

2.1 Authentication 3

2.1.1 Authentication Mechanisms 4

2.2 Certificate Chains and Rootof Trust 9

23 ContentSigning L e 10

23.1 NestedSignatures. 11

24 ContentEncryption 13

2.5 Rights Management 14

2.5.1 Usage Information 16

252 Watermarkingo 17

253 BAtING . . . o ot 18

254 Examples 18

3 Authentication Protocol Details 21

3.1 Authentication Core Syntax 21

3.1.1 The AuthenticationElement 21

3.1.2 The MechanismElement 22

3.1.3 The AuthInfoElement 23

3.1.4 The Confirmationvalue Element 24

ii CONTENTS
3.1.5 The UserDisplayValue Type 24

3.1.6 ThePrompt Element 25

3.1.7 TheHintElement 25

3.2 Mechanism Specifiers 25
3.2.1 Device-Keyed Authentication 25

3.2.2 Account-Keyed Authentication 26

3.2.3 User-Input Authentication 26

3.3 Transparent Key Specifiers 26
3.3.1 Machine Address Code (MAC) Address 27

3.3.2 Device Serial Number 27

333 Email Account o 27

3.34 AccountPasswordHash 27

3.3.5 Publication Identifiers, . 28

3.4 Additional XML Transforms 30
341 CaseFolding 30

3.4.2 Japanese Ideograph Canonicalization 31

343 CharacterEncoding, 31

344 MACFormatting, 31

4 Rights Core Syntax 32
4.1 Rights Management Core Syntax 32
41.1 TheDurationSimple Type 32

4.1.2 The Counter Simple Type 33

41.3 The LimitType Complex Type 33

414 The UnitType Attribute Type 33

4.1.5 'The ConsumptionAmount Element Type 35

CONTENTS iii
41.6 TheRightsElement 35

417 TheRightElement 36

4.1.8 'The AuthorizationElement. 37

419 The LifetimeLimitElement. 37
4.1.10 The ExcludedContent Element 37
41.11 TheManifestElement 38
41.12 The Fragment Element 38
4.1.13 The ConsumptionElement 39
41.14 TheUseInfoElement. 39
4.1.15 The Timestamp Element 40
41.16 The Amount Element 40
41.17 The StatusElement 40
4.1.18 The EligibilityPeriodElement 41
4.1.19 The EligibilityDelimiter Type 42
4.1.20 The SharingInfoElement 42

42 RightSpecifiers 44
421 Printing L e 44

422 Copying 44

423 Social Sharing 44

424 Reading 44

425 EAitiNg . . . oo 45

43 LendingDomains 45
43.1 OpenDomain 45

iv

CONTENTS

A Index of Requirements

Al
A2
A3
A4

B Processing Instructions

B.1
B.2
B.3
B.4

C Proposed XML Schemas
C.1 'The LCP-AUTH Schema

C.2 'The LCP-RIGHTS Schema

Authentication

Content Signing

Encryption

Rights Management

Authorization Core Algorithm
Signature Verification
Rights Evaluation

Sharing Evaluation

B.4.1 Date Range Evaluation XPath Expression

References

Index

74

LISTINGS v

Listings
Authentication XML Structure oo 4
Authentication via MAC address, 6
Authentication via account email, with fallback on userinput 7
Two-stage authentication 8
authKeyReferenceExample 11
secFilterExample 12
secFilterBeforeExample o 12
secFilterAfterExample L 12
Rights XML Structure 15
Varied rights.xml contentexample 18
Library loan rights.xmlexample 19
Personal lending rights.xmlexample 20
Authentication schema preamble 000 L. 21
Authenticationschema L o o oL 22
Mechanismschema 0 ... 23
Authlnfoschema 23
ConfirmationValue schema 24
UserDisplayValue schema 24
Promptschema 25
Hintschema 25
Non-ISBN Package Identifier Example 28
ISBN Identifier Example L L 28
Title and Author Example L. 29
Rights schema preamble 32
Durationschema 32
Counter schema e 33
LimitTypeschema 33
UnitTypeschema. 34
ConsumptionAmount schema 35
Rightsschema 35
Rightschema 36
Authorization schema oo 37
LifetimeLimit schema 37
ExcludedContent schema 38
Manifest schema o 38

Fragmentschema 39

vi

LISTINGS

Consumption schema L 39
Uselnfoschema 39
Timestamp schema 40
Amountschema 40
Statusschema 41
EligibilityPeriod schema o .. 41
EligibilityDelimiter schema 42
SharingInfo schema 43
1 WithinDateRange() XQuery Implementation 60
2 WithinDateRange() XSLT Implementation 61
Complete authentication.xmlschema 63

Complete rights.xmlschema 65

LISTINGS vii

Proposal Information

Background

Inspired by a “Read Freely” philosophy and a passion for innovation, Kobo is one of the
world’s fastest-growing eReading services. Read Freely stems from Kobo’s belief that
consumers should have the freedom to read any book, anytime, anyplace — and on any
device. As a result, Kobo has attracted millions of readers from more than 170 countries
and features one of the world’s largest eReading catalogues with over 2.5 million eBook,
newspaper and magazine titles.

Founded in 2009 Kobo is owned by Tokyo-based Rakuten, Japan’s largest eCommerce
operator. Headquartered in Toronto, our over 300 employees are proud of Kobo’s top-
ranked eReading applications for the iPad, iPhone, BlackBerry, Android, Windows and
our own line of eReaders, including the award winning Kobo Touch and Kobo Vox.

Open Standards Support We believe open standards for eBooks are best for consumers,
publishers, retailers and hardware manufacturers. Closed systems stifle innovation and
growth. Kobo proudly supports EPUB and encourages our users to read a Kobo-purchased
eBook on their smartphone, eReader, laptop, or whichever device they choose.

Available on any device Consumers are only just beginning to discover how they want
to read digitally. Some will choose dedicated eReaders, others their smartphone or laptop.
Most will choose all of the above. We support personal preference and are assembling
the world’s best catalogue of eBooks, no matter which device our customers use.

The Proposed System

The system we propose is based entirely on open standards, primarily based around the
ePub Open Container Format (OCF) version 3. Our proposal provides a specification
for authentication and rights management described using custom XML schemas, and
defines how these make use of the content signing and encryption facilities described in
the OCF3 specification.

Our system has been designed from the ground up as an open standard, free from the
encumbrance of commercial licensing concerns. We chose not to try and shoe-horn our

viii LISTINGS

existing pre-ePub3 formats and system into an OCF3-equivalent form. Instead we de-
cided to create a new system which builds upon the open-standards approach of OCF3
and ePub3 and makes the best use of existing technologies. When it comes time to im-
plement this specification, we will be doing so from the same starting point as everyone
else— we will “eat our own dog-food”

We additionally provide recommendations on using an enveloped signature for both the
authentication and rights files to allow these to be signed independently of the rest of
the document; this facilitates both changing authentication as part of a software-based
lending process and the ability to update the META-INF/rights.xml file to keep an audit
trail for the use of each right.

Full details are provided starting in Section 1. What follows is a brief description of the
system’s conformance with the requirements of the RFP.

Requirement 1: Authentication

Authentication takes place on a per-publication basis (satisfying {1.a}), although we antic-
ipate that the most common authentication keys will be account details or device hard-
ware IDs, meaning that the key is usually going to be the same across multiple publica-
tions (satisfying {1.e}). The password is always needed to open the file, but can be cached by
the reading system after entry (satisfying {1.e.iv}). A one-way hashed form of the expected
value is included for quick verification (satisfying {1.f}).

Our system includes means of specifying authentication keys directly from values known
to a Reading System for transparent, interaction-free authentication, as well as details
(satisfying {1.d}) used to request information from users directly, either as the only option
or as a fallback when opened on another device (satisfying {1.c}). The authentication data
is intended to hook directly into the key-retrieval specification of [XML ENC Core] or
[XML DSIG Core].

The authentication system’s output is a Key Encryption Key (KEK) which is then used to
decrypt the real keys used to sign and/or encrypt content (satisfying {1.b}). This alleviates
some potential concerns around the use of [X.509] certificates by encrypting the X.509
data within the META-INF/encryption.xml file, making public keys and certificate chains
available only after successful authentication.

LISTINGS ix

Requirement 2: Configurable limitations on usage

Our rights system uses an extensible set of rights with a core set covering the types
of requests we receive from publishers here at Kobo. This includes printing (satisfying
{2.a}), copying to the clipboard (satisfying {2.b}), editing (satisfying {2.c}), quoting directly
via social networks or email, and more.

It provides for audited rights (those with limits, whether per-action, lifetime, or both), full
permission, and complete denial of any right. It also provides a means to exclude sections
of content from the effect of a particular right limitation. Limits may be specified in a
number of different units, including time ranges (satisfying {2.d}). Password protection
for individual rights may be implemented by referencing an authentication mechanism
within META-INF/authentication.xml by XML ID (satisfying {2.e}).

Requirement 3: Content protection

We advocate the use of only well-known encryption standards: public/private key sys-
tems or an AES symmetric cipher for encryption and signing (satisfying {3.a, 3.b}). While
we recommend the use of AES key wrapping as defined in [RFC3394] to protect the en-
cryption keys, any algorithm supported by [XML ENC Core] is acceptable (satisfying {3.c,
3.d)).

Key revocation and renewability is only supported for the wrapped content protection
keys when they are [X.509] key pairs; in this instance, a Certificate Revocation List (CRL)
may be included in the X.509 eta packet within META-INF/encryption.xml (satisfying

3.e}).

We anticipate that encryption and signing will take place in a single pass, so that the
obfuscated authentication or content protection keys may be embedded as watermarks
in the content before being applied. We take no position on the design of the back-end
systems implementing this, and assume that the watermarking tool will be able to obtain
this information (satisfying {3.f}).

Requirement 4: Client-server interactions

Our proposal requires that all information necessary to obtain authentication and thus
be able to decrypt the content protection keys be embedded within a publication at pro-
duction time (satisfying {4.c}). When a client for a service such as Kobo downloads a pub-
lication, the server is expected to ensure that all information is embedded correctly. The

X LISTINGS

client may provide a unique hardware ID while connecting to support authentication
based on the device (satisfying {4.a, 4.b})

Requirement 5: Format support

Our system is designed purely as an extension to the [OCF3] specification, version 3.0
(satisfying {5.a}).

Requirement 6: Code library

No code library currently exists, though our use of existing encryption [XML ENC Core]
and signing [XML DSIG Core] technologies, paired with a simple XML schema for au-
thentication and rights management, makes our proposed system easy to implement.
Standard implementations of XML encryption and digital signing exist for most major
languages; in particular, there are implementations for C (and thus C++ or Objective-C),
Java, and Ruby, along with bindings to the C libraries for python and other languages.
Thus the burden of implementation lies primarily on the parsing of META-INF/rights.xml
and META-INF/authentication.xml.

Requirement 7: Cost elements

Asnoted above, libraries to handle the difficult tasks of encryption and signing are widely
available. Our use of simple XML schemas should provide little friction to implementors’
efforts. We are prepared to offer up open-source implementations of this specification
for commonly-used platforms (satisfying {7.a, 7.c}).

We envision a fairly simple root-of trust hierarchy based around standard certificates.
An example would have a group such as the IDPF hold a root certificate from which they
provide certificates to publishers and vendors. Vendors might then generate certificates
for each account to use for encryption/signature purposes, using a CRL within the META-
INF/encryption.xml file to distribute revocations of compromised certificates (satisfying

{7.b})

Additionally, as Kobo is dedicated to the use and propagation of open standards in the
eReading market, we do not intend to require any licenses for the use of technologies
described in this specification (satisfying {7.¢e}). Use of only widely-implemented standards
also decreases risks of IP overhang from other sectors (satisfying {7.f}).

1 Preamble 1

1 Preamble

This specfication introduces a system of digitally signing and encrypting Electronic Pub-
lication (ePub) documents, along with a method and schema for describing available user-
authentication mechanisms and DRM usage limitations. It builds on standards and spec-
ifications already developed and with readily-available implementations fir a number of
platforms, primarily the [OCF3] specification from the IDPF and the [XML DSIG Core]
and [XML ENC Core] specifications from the World Wide Web Consortium (W3C).

This specification is organized in six sections:

1. This preamble.

2. A high-level description of the techniques and technologies proposed.

3. Implementation details of the proposed XML documents.

4. Enumeration of all REQUIRED, RECOMMENDED, and OPTIONAL components.
5. Pseudocode detailing the required processing steps.

6. Full listings of the proposed XML schemas.

1.1 Editorial and Conformance Conventions

The specification provides normative XML Schemas [XMLSCHEMA-1] [XMLSCHEMA-2]
for two types of XML data. The full normative grammar is defined by the XSD schemas
and the normative text of this specification. In cases of discrepancy between the stan-
dalone XSD schemas and the portions of them presented in this specification, the stan-
dalone schema is to be considered authoritative.

» <« <« » <« » <« » <« »

The key words “MusT”, “MusT NoT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
Not”, “RECoMMENDED”, “MAY”, and “OpTioNAL” in this document are to be interpreted

as described in [RFC2119]:

“They MusT only be used where it is actually required for interoperation
or to limit behaviour which has potential for causing harm (e.g., limiting
retransmissions)”

2 1.2 Namespaces and Identifiers

We use these capitalized terms to indicate options and requirements which would affect
the interoperability and security of conforming implementations. These words are not
used when describing optional parts of e.g. XML grammar or DRM feature implementa-
tion, but will call out items of important consideration to implementors. For example, it
is optional whether a reading system presents signature, encryption, or DRM details to a
user, but the system’s compliance with the Namespaces in XML specification [XMLNS]
is REQUIRED.

1.2 Namespaces and Identifiers

This specification makes use of XML namespaces, and uses the Uniform Resource Iden-
tifier (URI) format to identify resources, identities, and mechanisms.

Implementations of this specification MusT use the following XML namespace URIs:

URI Namespace Prefix
http://www.idpf.org/epub/30/1lcp-auth# default namespace, auth:
http://www.idpf.org/epub/30/1cp-rights# default namespace, rights:

Implementations of this proposal MusT support XML namespaces. The namespace pre-
fixes shown above however are OpTIONAL and are only used in this document for illus-
trative purposes. In the interest of brevity we also define the following XML internal
entities for use in this document:

<!IENTITY auth ”http://www.idfp.org/epub/30/lcp-auth#’>

<!IENTITY rights ”http://www.idfp.org/epub/30/lcp-rights#”’>

Additionally, this specification uses elements and algorithms from the XML Signature
[XML DSIG Core] and XML Encryption [XML ENC Core] namespaces, with the corre-
sponding XML namespaces and internal entities:

URI Namespace Prefix
http://www.w3.0rg/2000/09/xmldsig# ds:
http://www.w3.0rg/2009/xmldsigll# dsi11:
“http://www.w3.0rg/2002/06/xmldsig-filter2” ds-xpath:
http://www.w3.0rg/2001/04/xmlenc# xenc:
http://www.w3.0rg/2009/xmiencll# xencll:

<!IENTITY dsig ”http://www.w3.0rg/2000/09/xmldsig#”’>

<!IENTITY dsigll ”http://www.w3.0rg/2009/xmldsigll#”>

<!IENTITY ds-xpath ”http://www.w3.0rg/2002/06/xmldsig-filter2”>
<!IENTITY xenc ”http://www.w3.0rg/2001/04/xmlenc#”’>

<!IENTITY xencll ”http://www.w3.0rg/2009/xmlencll#”’>

2 Overview 3

2 Overview

This section will describe the primary components of our proposed content protection
system. Here you will find discussions of authentication, encryption, digital signing,
and the different usage limitations supported by the proposed standard. In each area,
references will be given to the location of more detailed information.

2.1 Authentication

Authentication is defined here as the process by which a key’ is obtained which can be
used to decrypt and/or verify the content of a publication. Authentication makes use
of features described by both the [XML DSIG Core] and [XML ENC Core] specifications.
The content signing and encryption facilities are described here in Sections 2.3 and 2.4
respectively.

The key obtained via authentication is used as a KEK. This is then used to decrypt
a key used for signing and/or encrypting the content. The encrypted key would be
stored within either or both of META-INF/signature.xml or META-INF/encryption.xml
through the use of the xenc:EncryptedKey defined in Section 2.2.2 of [XML ENC Core].
It is REcoMMENDED that it be stored only in one place, with a ds:RetrievalMethod tag
referencing it in any other locations the key might be used.

In our proposal, we view authentication as something which should not need to directly
involve user action. For publications acquired from a distributor such as Kobo, we antic-
ipate the password” would be some piece of user-specific information such as that user’s
account name or email. This proposal does not place any limitations on the nature of this
value, but it is RECOMMENDED that a more personal value such as an email address be
used wherever possible; there should be some level of reticence on the part of the user
to disseminate this information widely.

For items which are created independently of a large content-manufacturing system, this
proposal includes an authentication scheme based solely upon a user-enterable password.
Unfortunately no means to specify that a password should be requested from the current
user is defined by the XML Digital Signature or XML Encryption specifications; for that
reason we describe the use of a ds:RetrievalMethod tag whose URI parameter directs

'While we use the word ‘key’ frequently within this proposal, note that in terms of authentication of
public-key cryptography the computed value is likely to be used as an input vector or salt value.
*Where by ‘password’ we in fact mean shared secret in the cryptographic sense.

http://www.w3.org/TR/xmlenc-core1/#sec-Usage

4 2.1 Authentication

the parser to a node within the ePub interface which defines this information. Details
and schema information can be found in Section 3.3.

XML authentication files are represented by the following structure (where “?” denotes
zero or one occurrence; ‘+” denotes one or more occurrences; and “*” denotes zero or
more occurrences):

<Authentication ID?>
(<Mechanism ID?>
<AuthInfo ID?>
(<IdentityKey ID? />)?
(<ds:Transforms>)?
(<ConfirmationValue ID?>
<ds:DigestMethod>
<ds:DigestValue>
</ConfirmationValue>)?
</AuthInfo>
(<Prompt>)?
(<Hint>)?
</Mechanism>)+
</Authentication>

2.1.1 Authentication Mechanisms

The [OCF3] specification describes a number of files useful for recording metadata associ-
ated with a publication. While the META-INF/encryption.xml, META-INF/signature.xml,
and META-INF/rights.xml files all have their place in the protocol we define, the task
of specifying a means of authentication in particular doesn’t quite match with the files
defined by [OCF3]. We could place the information into theMETA-INF/metadata.xml
file, but capabilities such as sharing or lending might require updates (and therefore re-
signing) of that file, which doesn’t really gel with the idea of keeping authentication in-
formation sacrosanct. It is in regards to that, then, that we propose a new file to specify
authentication data, namely META-INF/authentication.xml.

A number of different protocols are defined here, with their details enumerated in Sec-
tion 3. There are two primary avenues of authentication suggested: transparent and in-
teractive. As discussed below, these are not mutually exclusive: a content provider might
provide an interactive authentication mechanism based on a password while defining a
means for prepared devices to obtain via a built-in certificate chain the same password.

2.1 Authentication 5

Transparent Authentication A transparent authentication mechanism is one which
does not (or at least should not) involve any user interaction beyond an intent to access
the protected publication. It is anticipated that content providers that define their own
reading systems should be able to utilize a key-wrapping algorithm for which their
own reading systems hold a decryption key in advance. The reading system would
therefore be able to unwrap a provided content key to perform authentication of the
content and the reader without requiring input from the user.

Interactive Authentication When no transparent authentication protocol is suitable,
or when content is accessed outside of a realm for which a transparent authentication
mechanism is defined, the user must be prompted to enter a password or similar secret
value. This can then be used to unwrap keys used for the decryption or verification
of content. The type of authentication required, along with any messages or hints
to be displayed, is encoded within the META-INF/authentication.xml file using the
Mechanismand AuthInfo tags described in Section 3.1.2 and Section 3.1.3 respectively.

In either case, the end result of the authentication process is the generation of a con-
tent key which is then used to verify the cryptographic signature of the content and if
necessary decrypt it.

The mechanisms defined in this proposal include:

« Device Keyed
The authentication is keyed to a device-specific value, such as a MAC address or
other hardware identifier. A secure hash of the expected value may be provided to
verify the chosen key; this feature is OpTIONAL.

 Account Keyed
The authentication makes use of a user-specific value such as an email address or
account name; if a vendor should keep a user’s password in recoverable form®, the
key might well be the user’s account password.

« User Input
The user is required to enter a key value which is not recorded anywhere in the
content. This type MAy include a hashed form of the key or a known value (for
example, the publication’s identifier) hashed by the key to use as verification; how-
ever it is anticipated that the document will at least be digitally signed using the

*We make no recommendations as to the advisability of this approach; we merely note its possibility.

6 2.1 Authentication

same key, so standard signature verification could be performed to ascertain the
validity of the input value.

In the list above, the device keyed mechanism is suitable only for transparent authentica-
tion, the user input mechanism requires interactive authentication, and the account keyed
mechanism is suitable for either approach. Implementation of all three mechanisms is
REQUIRED.

The following example shows how authentication can be keyed to a single reader device
using the MAC address of its primary network interface.

<?xml version="1.0" encoding="utf-8"?>
<Authentication xmlns="http://www.idpf.org/epub/30/lcp-auth#” xmlns:ds="<>
http://www.w3.0rg/2000/09/xmldsig#”>
<Mechanism Type="”http://www.idpf.org/epub/30/1lcp-auth#device-key”>
<AuthInfo Type="http://www.idpf.org/epub/30/1lcp-auth#mac-address”>
<ds:Transforms>
<!-- MAC address string should include separator characters -->
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«
with-separators” />
<!-- All letters should be lower-case -->
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«
lowercase” />
</ds:Transforms>
<ConfirmationValue>
<l-- SHA-256 digest of the expected value is included for <>
confirmation purposes -->
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#<
sha256” />
<ds:DigestValue>rSXgNiiV4awv7PhcMSWPa37W3pS1YDXAHSFqQccplGIc=</<>
ds:DigestValue>
</ConfirmationValue>
</AuthInfo>
</Mechanism>
</Authentication>

One mechanism can provide a URI referencing a fallback mechanism to use when pro-
cessing fails. The example below attempts to transparently authenticate the user by their
account email; if the correct user is not signed in this will fail, causing the reading system
to prompt the user to enter the correct value manually.

2.1 Authentication 7

<?xml version="1.0" encoding="utf-8"?>
<Authentication xmlns="http://www.idpf.org/epub/30/lcp-auth#” xmlns:ds="<>
http://www.w3.0rg/2000/09/xmldsig#”>
<!-- If this mechanism fails, the Next attribute selects an ¢«
alternative mechanism to try -->
<Mechanism Type="http://www.idpf.org/epub/30/1lcp-auth#account-key” <=
Next="#User”>
<AuthInfo Type="http://www.idpf.org/epub/30/1lcp-auth#account-email”>
<ds:Transforms>
<!-- Ensure email contains only lowercase letters -->
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«
lowercase” />
</ds:Transforms>
</IdentityKey>
<ConfirmationValue>
<!-- SHA-256 digest of the expected value -->
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#<«—
sha256” />
<ds:DigestValue>BSOEZHaZcytkRLoXrWiuwBhznDrC70=</ds:DigestValue>
</ConfirmationValue>
</AuthInfo>
</Mechanism>
<Mechanism Id="User” Type="http://www.idpf.org/epub/30/1lcp-auth#user-<-
input”>
<!-- The Prompt value contains text to be shown e.g. in an input <
dialog -->
<Prompt>Please enter the email address associated with your Kobo <>
account.</Prompt>
<l-- The Hint value provides a small hint to the user: in this case,<>
the account user name -->
<Hint>Jim Dovey</Hint>
<AuthInfo>
<ds:Transforms>
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«
lowercase” />
</ds:Transforms>
<ConfirmationValue>
<l-- Confirmation value is the same here as above: we’re <
requesting the same email -->
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#<
sha256” />

8 2.1 Authentication

<ds:DigestValue>BSOEZHaZcytkRLoXrWiuwBhznDrC7o0=</ds:DigestValue>
</ConfirmationValue>
</AuthInfo>
</Mechanism>
</Authentication>

It is also possible to define multi-stage authentication using this schema. The Mecha-
nismelement’s Append attribute is used to specify an additional mechanism whose output
value is then appended to the ultimate result. For instance, a key may be the concatena-
tion of a device serial number and a use’s account email, as shown below.

<?xml version="1.0" encoding="utf-8"?>
<Authentication xmlns="http://www.idpf.org/epub/30/1lcp-auth#” xmlns:ds="<¢>
http://www.w3.0rg/2000/09/xmldsig#”>
<!-- If this mechanism succeeds, the mechanism identified by the <>
Append attribute runs -->
<Mechanism Type="http://www.idpf.org/epub/30/1lcp-auth#device-key” <>
Append="#Email”>
<AuthInfo Type="http://www.idpf.org/epub/30/1lcp-auth#serial-number”>
<ds:Transforms>
<!-- All letters should be lower-case -->
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«
uppercase” />
</ds:Transforms>
<ConfirmationValue>
<!-- SHA-256 digest of the expected output is included for <
confirmation purposes -->
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#<+
sha256” />
<ds:DigestValue>EqkeSbvtX/@BfHAqQYH3Xj+KFg2Lxpn84rEX8DXPKjHs=< /4>
ds:DigestValue>
</ConfirmationValue>
</AuthInfo>
</Mechanism>
<Mechanism Id="”Email” Type="http://www.idpf.org/epub/30/1lcp-auth#<
account-key”>
<AuthInfo Type="http://www.idpf.org/epub/30/1lcp-auth#account-email”>
<ds:Transforms>
<l-- Ensure email contains only lowercase letters -->
<ds:Transform Algorithm="http://www.idpf.org/epub/30/1lcp-auth#<«

2.2 Certificate Chains and Root of Trust 9

lowercase” />
</ds:Transforms>
</IdentityKey>
<ConfirmationValue>
<!-- SHA-256 digest of the expected value -->
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#<«—
sha256” />
<ds:DigestValue>BSOEZHaZcytkRLoXrWiuwBhznDrC70=</ds:DigestValue>
</ConfirmationValue>
</AuthInfo>
</Mechanism>

More complicated authentication schemes can be implemented using a combination of
these techniques. For instance, a user can be transparently authenticated by a device ID
plus account email, and if this fails they can be asked to input the correct email and/or
a password value, such as the account password associated with the email. Implementa-
tions MAy choose to pre-emptively evaluate appended mechanisms and present multiple
user-input mechanisms in a single pass, such as a dialog asking for both email and pass-
word.

If the DRM settings for a publication allow for sharing or lending of content, then the
contents of META-INF/authentication.xml may be signed using an enveloped signature
as defined in Section 6.6.4 of [XML DSIG Core]. Signing the authentication file in-place
rather than through META-INF/signature.xml enables a book to be given a new authen-
tication key for the purpose of lending to another reader. This is discussed in more detail
in Section 2.5.1.

Detailed information and XML schemas for authentication.xml are presented in Sec-
tion 3, with requirements enumerated in Section A.1.

2.2 Certificate Chains and Root of Trust

In the following two sections we discuss the signing and encryption of content. It is our
recommendation that publishing houses and distributors use [X.509] key-pairs for these
tasks. This section suggests an infrastructure for this.

We envision that a global entity such as the IDPF obtain a root certificate as a Certificate
Authority. Upon application, they would then provide similar CA certificates to pub-
lishers and distributors as children of their own. In this way, the IDPF would be able to

http://www.w3.org/TR/xmldsig-core1/#sec-EnvelopedSignature

10 2.3 Content Signing

revoke those certificates. Distributors and publishers would then create leaf signing/en-
cryption certificates for each account/employee from their CA certificates, which would

be used for signing and publishing.

Signatures would be implemented by using the private key associated with a publish-
er/distributor to digitally sign a publication; the certificate would be included (protected
by the authentication KEK), with the signature being verified using the publisher’s public
key.

Encryption, on the other hand, would work the other way. A user’s certificate would be
included with the bundled certificate chain along with the private key associated with
it. The content would be encrypted by the publisher with the user’s public key, and the
private key would be used to decrypt it.

Should a particular user’s keys or certificate become compromised, the publisher/distrib-
utor can revoke that certificate, disseminating the CRL by embedding it in any books it
publishes or through any other means deemed appropriate.

2.3 Content Signing

Signing of content is implemented according to [XML DSIG Core] and is assembled as
outlined in Section 2.5.6 of the [OCF3] specification, placing its information within META-
INF/signature.xml.

The content as a whole is digitally signed by making secure hashes of each protected
content file— ideally the entire contents of the publication, but only items referenced by
the package manifest [OPF3] are required to be included. Files outside of the META-INF
subfolder of the publication container are processed as simple octet-streams, regardless
their actual content format. Within the META-INF folder, all XML files are processed
with the exception of signature.xml; inclusion of these files is REQUIRED. These files
are additionally canonicalized prior to processing using XML Canonicalization; use of
version 1.1 [XML C14N] of the specification is RECOMMENDED.

The signature file is structured as suggested in the OCF 3.0 specification, based on the
[XML DSIG Core] specification. The digests computed for each content file are stored
within the ds:Manifest node in ds:Reference nodes. The ds:Manifest node is then
hashed and its digest stored within the ds:SignedInfo node. This is then cryptographi-
cally signed, with the resulting value placed in the ds:Signaturevalue node.

Details of how to obtain the key used to verify the signature are stored within the ds:KeyInfo
node. This may contain any content described in [XML DSIG Core], but it is anticipated

http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-signatures.xml

2.3 Content Signing 11

that a ds:RetrievalMethod subnode would be provided with a URI referencing an Au-
thInfo node within META-INF/authentication.xml. An example of this can be seen
below.

<ds:KeyInfo>
<ds:RetrievalMethod URI=”./authentication.xml#KEK” />
</ds:KeyInfo>

As specified in [XML DSIG Core], the result of evaluating the ds:RetrievalMethod is an
XML node. However, since the returned node is within the auth: namespacue, it should
be processed using that namespace’s processing rules to obtain the resultant key:.

If a signature cannot be verified, it is REQUIRED that the reading system alert the user to
this fact. It is RecoMMENDED that the publication is not displayed at all, but a reading
system May offer the user the opportunity to do so; note that if the content is additionally
protected by encryption it will not be viewable at all.

2.3.1 Nested Signatures

There are potentially two levels at which content might be digitally signed. The most ob-
vious is to have the distributor sign the package that they provide to end users. However,
given that some ePub documents produced by publishers sometimes need an extra layer
of transliteration before they are distributed—including correction and canonicalization
of some elements of the content documents themselves—there exists the possibility of an-
other signature provided by the content publisher. There two signatures would be used
to verify two separate facts:

« Distributed Content Verification would utilize a signature on the data provided by
the distributor. This would verify that the content has not been altered from the
version shipped to a customer, including alterations to distributor content such as
platform-specific metadata or DRMinformation.

« Authored Content Verification involves a signature of the content as provided by the
publisher, and would verify that the actual text and assets of the publication have
not been altered.

When verifying an author/publisher signature, an [XPath-Filter] can be used to reverse
the changes made by the distributor. One example, which removes any content elements

12 2.3 Content Signing

whose id attribute begins with the string ‘kobo’ while retaining the children of any span
nodes with such an id, would look like this:

<ds:Transform Algorithm="http://www.w3.0rg/2002/06/xmldsig-filter2”>
<ds-xpath:XPath Filter=”subtract” xmlns="http://www.w3.0rg/2002/06/<>
xmldsig-filter2”>
id(”kobo.*”)
</ds-xpath:XPath>
<ds-xpath Filter="intersect” xmlns="http://www.w3.0rg/2002/06/xmldsig-<>
filter2”>
//span[@id="kobo.*”]/*
</ds-xpath:XPath>
</Transform>

This transform could then be applied to the following XHTML document:

<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head>
<meta http-equiv="Content-Type” content="”text/html; charset=UTF-8” />
<title>My Great Book</title>
<link rel=”stylesheet” href="kobo/kobo-stylesheet.css” type="text/css”¢
id="”kobo.css.1” />
</head>
<body>
<p>First sentence. ¢>
Second sentence.</p>
</body>
</html>

The resulting author document for signature verification is then:

<?xml version="1.0" encoding="UTF-8"?>

<html xmlns="http://www.w3.0rg/1999/xhtml”>

<head>
<meta http-equiv="Content-Type” content="text/html; charset=UTF-8” />
<title>My Great Book</title>

</head>

<body>

2.4 Content Encryption 13

<p>First sentence. Second sentence.</p>
</body>
</html>

2.4 Content Encryption

There will be two forms of encryption involved in this proposal. For non-modifiable
content such as purchased books (arguably the majority of the market) an asymmetric
public/private key pair will be at the core of both the encryption and digital signature
algorithms. For editable content a simpler symmetric password system may be used, op-
erating in a manner similar to that common on password-protected PDF and Zip files.
This would enable the user to re-encrypt the file, however see the comments on wa-
termarking in Section 2.5.3 for some additional requirements when dealing with edited
files.

We deem it useful to be able to determine that a publication was signed or encrypted
by a particular entity. For that reason the use of [X.509] certificates is RECOMMENDED
with content being encrypted using a private key associated with an attached certificate.
The X.509 data describing the corresponding certificate chain May itself be encrypted
using the key-wrapping algorithms described in Section 2.1. By using certificate-based
encryption in this way a reading system can use the certificate chain to determine the
original provider of the content.

Additionally, since [XML ENC Core] provides a means of including a CRL within a ds :KeyInfo
node it is possible for a compromised certificate to be revoked purely by opening a pro-
tected publication. Reading systems can then direct their legitimate users to download

a new version of the publication through the appropriate channel, which again can be
inferred from the certificate (or directly encoded therein).

The encryption information is specified in META-INF/encryption.xml as outlined in Sec-
tion 2.5.2 of the [OCF3] specification; this in turn specifies the use of [XML ENC Core].
Our specification for file encryption uses the OCF encryption model unchanged. This in-
cludes the stipulation that files MusT be compressed using the [Deflate] algorithm prior
to encryption, then MusT be placed within the ZIP container in non-compressed format.

It is intended that the encryption key be wrapped using the key obtained through au-
thentication. As a result, the ds:KeyInfo node is expected to direct the reading system
to the authentication information in META-INF/authentication.xml in a similar manner
to digital signatures, as described in Section 2.3.

http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-encryption.xml
http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-encryption.xml

14 2.5 Rights Management

2.5 Rights Management

Rights management is an issue close to the hearts of many publishers. The ease with
which digital data can be transferred and disseminated greatly exceeds the means to do
the same with physical publications. Likewise the medium by which digital publications
are displayed often makes it easy to copy large swathes of text, which would be a labo-
rious operation when done by hand.

Some common requests from publishers include:

« Watermarking publications with customer details— similar to the approach taken
by Pottermore.

+ A limit on printing content from the publication.

+ A limit on the sharing of text using social media channels or similar. This can be
in the form of a character count per share or a percentage limit on the amount of
the book’s contents that can be shared in total (for instance 5%).

« A limit on which sections of a publication allow any form of sharing; for instance
sharing of text from the last chapter of a novel might be restricted to prevent its
resolution being exposed.

« For libraries, a limit on the amount of time the file is accessible (or ‘checked out’).
« The total number of times book can be lent to another person.
« The number of times a book can be simultaneously lent out.

+ A limit on the number of devices on which a book can be read. This is beyond the
scope of this proposal, however, since it would require phoning-home on each new
device, which is prohibited by the scope of the ePub LCP specification.

With regards to a limit on the number of devices, this is largely intended as a function of a
particular reading system’s available devices, such as the Kindle devices or Kobo’s various
applications and eReader platforms. As such, it is anticipated that device limits are to
be applied only to particular devices made by the publication’s distributor rather than
holistically. Where differing platforms are involved it is our belief that the restrictions
on lending and other forms of dissemination are enough to discourage (or at least litigate
against) widespread copyright infringement.

2.5 Rights Management 15

We have defined an XML schema for the META-INF/rights.xml file which covers all
the use cases above, with the exception of the device-count limitation. Our schema is,
however, extendable by distributors so that they could provide information suitable for
that purpose along with any others specific to their systems. We have also included a
means for an individual right to require authorization. To do so, the right provides a URI
to a mechanism within META-INF/authentication.xml which describes the means by
which the authentication should take place.

XML rights management files are represented by the following structure (where “?” de-
notes zero or one occurrence; “+” denotes one or more occurrences; and “*” denotes zero
Or more occurrences):

<Rights>
(<Right ID?>
(<Authorization ID? />)?
(<ExcludedContent>
(<Manifest ID?>)*
(<Fragment ID?>)*
</ExcludedContent>)?
(<LifetimeLimit>)?
<Status>(Permitted|Audited|Denied)</Status>
(<EligibilityPeriod ID?>)?
(<Consumption>
(<UseInfo ID?>
<Timestamp>
(<Amount>)+
</UselInfo>)?
</Consumption>)*
</Right>)+
(<SharingInfo ID?>
<MaxDuration>
(<MinDuration>)?
(<LifetimeLimit>)?
(<Consumption>)*
</Rights>

Our system of identifying individual rights mirrors that used for specifying algorithms in
[XML DSIG Core]. A right is specified using a URI value based on the XML namespace
URI for the rights format, e.g. http://www.idpf.org/epub/30/rights#print. The full
list is enumerated in Section 4.2. Implementations of this proposal are REQUIRED to rec-

16 2.5 Rights Management

ognize all rights specified, although their implementation of restrictions would naturally
be itself limited by the capabilities of the reading system.

2.5.1 Usage Information

Where individual rights are enumerated, they are given a status. This may be one of:

« Permitted to denote that a right is unrestricted.
« Denied to denote that a right is unconditionally prohibited.

+ Audited to denote that a right has some limits on either per-action or lifetime uses.

Any rights not represented within META-INF/rights.xml MusT be implicitly allowed; it
is RECOMMENDED, however, that any known permitted rights be included with an explicit
status of Permitted.

It is possible to exclude individual content documents (or ranges of content documents)
from the effects of a right specification. Entire documents are referenced by their man-
ifest item’s id attribute value, and ranges within a document can be specified using a
ranged [EPUB-CFI]. Content referenced in this way inverts the status of the right: Per-
mitted and Audited rights are Denied within excluded content, while Denied rights be-
come Permitted. This can be used to prevent copying or sharing of content from the
closing stages of a novel, for instance, or it can be used to create previews by denying
access to all chapters but the first. In the latter case, it makes it possible to implement
a preview based on the number of paragraphs rather than full chapters; this can be use-
ful for content where chapters are either inordinately long or short, or where a plain
percentage results in a preview the size of many commercial books.*

Rights may also be restricted using times and dates. This is most obviously useful for
libraries, where access to a publication (its read right) can be limited between an explicit
pair of dates. It could also be used to create embargoes on review copies, preventing
copying or sharing until a predetermined ‘street date’

Personal lending is, by default, Denied. To enable lending, a SharingInfo element is used
to provide information on the limits within which a publication may be lent to other

*Case in point: Under The Dome by Stephen King, where the first 10% of the book is several hundred
pages in length on an iPhone.

2.5 Rights Management 17

readers.” This can be used to specify maximum (and minimum!) loan periods, and the
number of times a copy may be loaned out at one time. It also allows the specification of
exclusive lending, where the original reader is unable to access a publication while it is
lent out.

Lastly, we have defined the means for implementations to record auditing information for
all rights, essentially logging their use within the META-INF/rights.xml file; this applies
both to rights and sharing information. Since this modifies this file, it is RECOMMENDED
that the file be signed using an enveloped signature to keep its integrity verifiable. An
additional benefit of using an enveloped signature is that replacement copies of META-
INF/rights.xml and META-INF/signature.xml may be substituted directly into an ex-
isting publication. This would enable unlocking of the preview described above without
the transfer of a whole new publication but only a new set of access rights and the asso-
ciated signature file.

Full details of the rights management system are provided in Section 4.

2.5.2 Watermarking

Watermarks are a highly-requested feature, particularly as publishers begin to recognize
the burden of maintaining a secure form of use restrictions in the form of ‘traditional’
DRM. There are many formats such watermarking might take: Pottermore, for example,
edits the name of each content file to include a watermark.

The chief use of a digital watermark is to identify a single purchaser. If a publication is
then decrypted and stripped of protection and disseminated widely, the watermark can
be used to determine the originator of this copy. Watermark values can be a number
of different things, but our recommendation, based on the certificate chain outlined in
Section 2.2, would be to include the Subject Name details of the user account’s certificate
in base-64 format along with a base-64-encoded signature (using the publisher’s private
key) of that value. This would then be inserted into the content flies as appropriate for the
file types: as an HTML meta element, as custom EXIF data in images, or custom container
metadata for audio or video files.

As an example, a signature might be encoded in the following manner:
procedure GENERATEWATERMARK(user, key)
user_info < GETSUBJECT(user) > “CN=Kobo Reader: Bob,ON=Bob,0=Bob”
base64 <— BAse64O0r(user_in fo)

°Note that this only applies to personal lending, not library lending.

18 2.5 Rights Management

signed <— S1GN(baseb4, key)
stg < Base640rF(signed)
return base64 + sig

end procedure

2.5.3 Editing

When dealing with editable publications, it is REcOMMENDED that the authentication
mechanism used to access the KEK is a simple password, as this fits more into the use
cases for shared, collaboratively edited content.

For collaborative editing within organizations, we recommend that each user use their
S/MIME signing certificate or PGP key to sign the document after an edit is made; Ad-
ditionally, the edit right can be audited (with a limit of ‘100%’) to enable software to
automatically apply an audit trail within META-INF/rights.xml.

When watermarking editable content, we suggest use of the name of the last editor as a
watermark added to each file they edited.

2.5.4 Examples

Some example rights.xml files demonstrating different use cases are included below.

This example shows a few different rights of varying types.

<?xml version="1.0" encoding="utf-8"?>
<Rights xmlns="http://idpf.org/epub/lcp-rights#”>
<l-- Printing limitation: 2 pages at a time, up to a maximum of <
thirty pages total -->
<Right Unit="page” Type="http://www.idpf.org/epub/30/lcp-rights#<«
print” Limit="2">
<LifetimelLimit Unit="page”>30</LifetimeLimit>
<Status>Audited</Status>
<Consumption>

<!-- none used yet -->
</Consumption>
</Right>
<l-- Social Quoting limitation: 8@ characters per quote, max 5% of <+

book -->

2.5 Rights Management 19

<Right Unit="characters” Type="http://www.idpf.org/epub/30/1lcp-<
rights#social-share” Limit="80">
<ExcludedContent xml:base="../content.opf”>
<!-- exclude the entire last chapter from being shareable <>
with some shorthand -->
<ManifestItem IdRef="chap22” />
<!-- exclude the Big Reveal in the penultimate chapter using<>
a Range CFI -->
<Fragment CFI="epubcfi(/6/4[chap2lref]!/4[body0l]/10[parab5<>
1,/2/1:1,/8/4:57)” />
</ExcludedContent>
<LifetimelLimit Unit="percentage”>5</LifetimeLimit>
<Status>Audited</Status>
<Consumption>
<!-- one share, 42 characters, 0.03% of total -->
<UseInfo Id="”Sociall”>
<Timestamp>2012-08-28712:54:32.0</Timestamp>
<Amount Unit="”character”>42</Amount>
<Amount Unit="percentage”>0.03</Amount>
</UseInfo>
</Consumption>
</Right>
</Rights>

This example shows how a library loan might be implemented using the EligibilityPe-
riod element.

<?xml version="1.0" encoding="utf-8"?>
<Rights xmlns="”http://idpf.org/epub/lcp-rights#”>
<l-- Reading limitation: disallows access to content outside META-<>
INF or the OPF file(s) -->
<Right Unit="time” Type="http://www.idpf.org/epub/30/1lcp-rights#read<>
>
<Status>Audited</Status>
<EligibilityPeriod Id=”Loan-2012-08-28">
<Start>2012-08-28700:00:00.0</Start>
<End>2012-09-12:23:59:59.99</End>
</EligibilityPeriod>
</Right>
</Rights>

20 2.5 Rights Management

Ability to lend would be enabled through use of the SharingInfo element as shown here.
Note that if a the SharingInfo element is not present, implementations MusT assume that
lending of content is prohibited.

<?xml version="1.0" encoding="utf-8"?>
<Rights xmlns="http://idpf.org/epub/lcp-rights#”>
<l-- This book can be lent for no more than seven days (168 hours), <
and cannot be read by me until returned -->
<SharingInfo Exclusive=”"true” Domain="http://www.idpf.org/epub/lcp-<>
rights#open”>
<MaxDuration>168:00:00:0.0</MaxDuration>
</SharingInfo>
</Rights>

3 Authentication Protocol Details 21

3 Authentication Protocol Details

In this section we provide normative details of the authentication schema and data. Here
you will find discussions of each element defined by the schema along with instructions
on their use. This is followed with details of the URI specifiers for the various authenti-
cation types and the additional content transforms presented by this specification.

3.1 Authentication Core Syntax

This section provides detailed information on the syntax of the authentication data pro-
vided within META-INF/authentication.xml. All features described here are mandatory
unless noted otherwise. The syntax is defined via [XMLSCHEMA-1] [XMLSCHEMA-2]
with the following XML preamble, declaration, and internal entity:

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE schema PUBLIC ”-//W3C//DTD XMLSchema 200102//EN” “http://www.<>
w3.0rg/2001/XMLSchema.dtd”
[
<IATTLIST schema xmlns:auth CDATA #FIXED “http://www.idpf.org/epub/30/<+>
lcp-auth#”>
<IATTLIST schema xmlns:ds CDATA #FIXED “http://www.w3.0rg/2000/09/<>
xmldsig#”>
<VENTITY auth ”http://www.idpf.org/epub/30/1lcp-auth#”>
<IENTITY dsig “http://www.w3.0rg/2000/09/xmldsig#”>
<IENTITY % p *”>
<IENTITY % s ””>
1>
<schema xmlns:auth="http://www.idpf.org/epub/30/1lcp-auth#” xmlns:ds="<>
http://www.w3.0rg/2000/09/xmldsig#” targetNamespace="http://www.<>
idpf.org/epub/30/1lcp-auth#” version="0.1” elementFormDefault="<>
qualified”>

3.1.1 The Authentication Element
The Authentication element is the root of the META-INF/authentication.xml file. It

MusT contain only Mechanism elements, and all mechanisms must evaluate to the same
end authentication key. The implementation MusT conform to the following schema.

22 3.1 Authentication Core Syntax

<element name=”Authentication” type="auth:AuthenticationType”/>
<complexType name=”AuthenticationType”>
<sequence>
<element ref="ds:Signature”/>
<element ref="auth:Mechanism” maxOccurs="unbounded”/>
</sequence>
<attribute name=”Provider” type=”anyURI” use=”optional”/>
</complexType>

3.1.2 The Mechanism Element

The Mechanism element is the root of a single authentication mechanism description. It
MusT contain a single AuthInfo element to provide information on authentication to
the Reading System, and MAy include either a Prompt element, a Hint element, or both,
containing information about the authentication in a form suitable to present to the user.

The three REQUIRED mechanisms are specified through URIswithin the auth: namespace,
and are enumerated in Section 3.2.

There are two special attributes which may be specified on Mechanism elements:

+ Next is used to identify another Mechanism to use if this one fails for any reason. A
common use case is where an account email mechanism is described for transparent
authentication with a user input mechanism to prompt the user for this informa-
tion. If the transparent mechanism fails either because the reading system does not
have an account email stored or because the stored account email is incorrect, the
reading system will then process to the user input mechanism referenced by this
attribute.

« Append is also used to reference another Mechanism by URL In this case, when one
mechanism succeeds in obtaining the correct value, the referenced mechanism is
also evaluated. If this next mechanism succeeds, its resultant value is appended to
the current result. In this manner implementations can concatenate discrete values
together to obtain the ultimate KEK value. For example a book can be chained to
a single account/device pair by appending an account email mechanism to a device
ID mechanism.

3.1 Authentication Core Syntax 23

<element name="”Mechanism” type="auth:MechanismType”/>
<complexType name=’MechanismType”>
<sequence>
<element ref="auth:AuthInfo”/>
<element ref="auth:Prompt” minOccurs="0"/>
<element ref="auth:Hint” minOccurs="0"/>
<any namespace="##other” minOccurs="0” maxOccurs="unbounded”/>
<!-- (@,unbounded) elements from (1,1) external namespace -->
</sequence>
<attribute name=”Id” type="ID” use="optional”/>
<attribute name="”Type” type="anyURI” use="required”/>
<attribute name=”Next” type="anyURI” use="optional” />
<attribute name=”Append” type="anyURI” use="optional” />
</complexType>

3.1.3 The AuthInfo Element

The structure of an AuthInfo element includes the type of authentication parameter ex-
pected, along with optional information used to canonicalize and verify the obtained key:.
The element’s Type attribute is used to specify an already-known value for transparent
authentication; its presence is REQUIRED for all mechanisms aside from user-input, where
it serves no purpose. Implementations MusT NoT accept an AuthInfo element with no
Type within a transparent-authentication mechanism.

If the key needs to be transformed in any way prior to use as a KEK, a list of transforms
conforming to Section 6.6 of [XML DSIG Core] may be used. However, given that the
key is unlikely to be an XML node-set, we have defined some additional transformations
as URIs within the auth: namespace which we enumerate in Section 3.4.

When dealing with hashed passwords, a salt value is often used. If required, the In-
putVector element allows for this to be provided to the reading system in base-64 format.

The URIs for the predefined and REQUIRED transparent authentication specifiers are enu-
merated in Section 3.3.

<element name="”AuthInfo” type="auth:AuthInfoType”/>
<complexType name=”AuthInfoType”>
<sequence>
<element name=”InputVector” type=”ds:CryptoBinary” minOccurs="0"/>

http://www.w3.org/TR/xmldsig-core1/#sec-TransformAlg

24 3.1 Authentication Core Syntax

<element ref="ds:Transforms” minOccurs="0"/>
<element ref="auth:ConfirmationValue” minOccurs="0"/>
<any namespace="##other” minOccurs="”0"” maxOccurs="unbounded”/>
<!-- (@,unbounded) elements from (1,1) external namespace -->
</sequence>
<attribute name=”Id” type="ID” use="optional”/>
<attribute name="Type” type="anyURI” use="optional”/>
</complexType>

3.1.4 The ConfirmationValue Element

A key obtained through authentication may be quickly verified by computing a digest and
comparing it to an existing value. The value and the digest algorithm used to generate
it are recorded within the Confirmationvalue element. We borrow elements from the
[XML DSIG Core] specification here to define the algorithm and value using the dsig:
namespace.

<element name=”ConfirmationValue” type="auth:ConfirmationVvalue”/>
<complexType name= ConfirmationValue”>
<sequence>
<element ref="ds:DigestMethod”/>
<element ref="ds:DigestValue”/>
</sequence>
<attribute name=”Id” type="ID” use="optional”/>
</complexType>

3.1.5 The UserDisplayValue Type

The UserDisplayValue type is used to incorporate text which may be presented to the
user. As such it is the type used for both the Prompt and Hint elements. Its contents are
a plain string, and it may contain an identifier attribute.

<complexType name=UserDisplayValue”>
<simpleContent>
<extension base="string”>
<attribute name=”Id” type="ID” use=”optional”/>

3.2 Mechanism Specifiers 25

</extension>
</simpleContent>
</complexType>

3.1.6 The Prompt Element

This element contains text presented to the reader of a publication during the authenti-
cation phase. It SHOULD be used to describe the input required and for what it will be
used. For instance: “Please enter the email address associated with your Kobo account to
open this book.”

<element name="”Prompt” type="auth:UserDisplayValue”/>

3.1.7 The Hint Element

This element contains text which might be presented to the user to assist their recall. We
anticipate that this will likely only be used when encrypting or re-encrypting content for
personal distribution. Such use would likely have a password-based form of authentica-
tion similar to that used by Portable Document Format (PDF) documents; in that situation
a password hint would be appropriate, so we include explicit support for it here.

<element name=”Hint” type="auth:UserDisplayValue”/>

3.2 Mechanism Specifiers

A Mechanism specification takes the form of a URI within the auth: namespace. There
are three mechanisms defined in this specification, and all three are REQUIRED.

3.2.1 Device-Keyed Authentication

The device-keyed mechanism performs authentication using a value unique to the device
on which a reading system is running. Examples would include an Ethernet or WiFi MAC
address or a hardware serial number. This mechanism is primarily of use to vendors who

26 3.3 Transparent Key Specifiers

wish to keep track of which devices users are using to read their books; tying fulfilment
to each device gives a way to implement such a scheme.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#device-key

3.2.2 Account-Keyed Authentication

The account-keyed mechanism authenticates an individual reader based on their account
information. Common types would include email addresses, user IDs, or account pass-
words. When using the password approach, it is advised that the key be the result of
digesting the real password. For this reason we have included some digest methods in
our additional content transformations. This way the password can be stored by the
server in hashed form and used as a KEK directly, and the local device can re-hash the
password as entered by the user.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#account-key

3.2.3 User-Input Authentication

The use of a user-input mechanism declares that authorization cannot take place without
direct user input. Ideally a Prompt element is provided which contains some instructions
for the user. Implementations MAy choose to implement their own messages for well-
defined value types (such as those seen in Section 3.3), but SHOULD prefer any value
within a Prompt element.

Identifier:
http://www.idpf.org/epub/30/1cp-auth#user-input

3.3 Transparent Key Specifiers

When implementing transparent authentication, a means is required to specify a value
known to the reading system that it can use to determine a pre-disseminated key value.
The URIs presented here serve as static identifiers for certain values. Implementation of
the following identifiers is REQUIRED, although we anticipate that content distributors
will add their own URIs to this list.

3.3 Transparent Key Specifiers 27

3.3.1 MAC Address

The most frequently used form of machine identification is the MAC address assigned to
its primary Ethernet or WiFi port. Given the prevalence of WiFi interfaces these days,
it’s also frequently available on much smaller single-purpose devices such as dedicated
eReaders. This makes it a good candidate for use in device-keyed authentication. Note
that implementations MusT render the address into hexadecimal format; whether to in-
clude or omit colons between each character pair may be specified using the transforms
described in Section 3.4.4.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#mac-address

3.3.2 Device Serial Number

Many computing devices have access to a unique serial number at the hardware level, not
only on a sticker applied to their packaging. These can also be used to perform device-
keyed authentication.

Identifier:
http://ww.idpf.org/epub/30/1lcp-auth#serial-number

3.3.3 Email Account

Readers with accounts for distributors such as Kobo or Barnes & Noble will usually have
an email address tied to that account. This email address can be used as part of the KEK,
under the assumption that the reader will be reticent to hand out their email address
beyond a relatively small circle of friends. Additionally, it acts as an identifier for this
particular user, meaning it might serve as a watermark value in its own right.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#account-email

3.3.4 Account Password Hash

A user can be made to enter their password which will then be hashed using an optional
input vector to generate an output KEK. The password is something the user would rarely
consent to share with anyone, and then only with their closest friends and family.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#pass-hash

28 3.3 Transparent Key Specifiers

3.3.5 Publication Identifiers

Encrypted key wrapping can be tied to a specific book by appending some book-specific
information to the shared secret during authentication. This can be accomplished using
one of the mechanisms defined below, but implementations MusT NoT generate or accept
one of these as the key specifier if any primary authentication mechanism; it MusT only
be specified through an Append attribute on another Mechanism element.

The publication-id type refers to the value of the element referenced by the unique-
identifier attribute of an [OPF3] package document’s package element. For example,
the value returned from the listing below would be “urn:uuid:2ec5fbf@-2554-012f-
c04e-12313926e17c”.

<?xml version="1.0" encoding="UTF-8” standalone="no”?>
<package xmlns="http://www.idpf.org/2007/0opf” version="3.0" unique-<>
identifier="pub-id”>
<metadata xmlns:dc="http://purl.org/dc/elements/1.1/”>
<dc:identifier id="pub-id”>urn:uuid:2ec5fbf0-2554-012f-c0d4e<+>
-12313926el7c</dc:identifier>

</metadata>
</package>

Specifying the isbn type also selects a publication ID, but it requires that it be a valid
International Standard Book Number (ISBN). In many books this is stored within the
dc:identifier metadata block of a package document (identified with an opf:role at-
tribute of ‘ISBN’), but it may be provided through an additional custom metadata ele-
ment or as an attribute. A frequent practice is to embed it within a Unified Resource
Name (URN), as seen in the example below. In all these cases, the numerical text of the
ISBN itself is the only value to be returned, stripped of any surrounding characters or
other formatting.

<?xml version=”1.0" encoding="UTF-8” standalone="no”?>
<package xmlns="http://www.idpf.org/2007/opf” version="3.0" xml:lang="en<>
” unique-identifier="pub-id”>
<metadata xmlns:dc="http://purl.org/dc/elements/1.1/”>
<dc:identifier id="pub-id”>urn:ISBN:9781118036914</dc:identifier<+>
>

3.3 Transparent Key Specifiers 29

</metadata>
</package>

The title specifier refers to the contents of the dc:title element of the package doc-
ument. The title-and-authors element requires some formatting, which implementations
MusT follow:

« The publication title, as for the title specifier.

 The contents of each dc:creator element within the package document’s meta-
data, according to the ordering declared by display-seq attribute values. If no
display-seq values are available, authors are listed in order of occurrence.

+ Elements will be concatenated, interspersed by a single comma and space.

For example, the value processed from the metadata below would be “The New Wealth
Management, Harold Evensky, Stephen M. Horan, Thomas R. Robinson”.

<?xml version="1.0" encoding="UTF-8" standalone="no”?>
<package xmlns="http://www.idpf.org/2007/0opf” version="3.0” xml:lang="en<+>
»” unique-identifier="pub-id”>
<metadata xmlns:dc="http://purl.org/dc/elements/1.1/”>

<dc:identifier id="pub-id”>urn:ISBN:9781118036914</dc:identifier<+>
>

<meta refines="#pub-id” property=”identifier-type” scheme="<¢>
xsd:string”>uuid</meta>

<dc:title id="t1”>The New Wealth Management</dc:title>

<meta refines="#t1” property="title-type”>main</meta>

<meta refines="#t1” property="display-seq”>1</meta>

<dc:creator id="creator@l1”>Harold Evensky</dc:creator>

<meta refines="#creator0l” property="role” scheme="”marc:relators<>
”>aut</meta>

<meta refines="#creator0l” property="file-as”>Evensky, Harold</<¢>
meta>

<meta refines="#creatorel” property="~display-seq”>1</meta>

<dc:creator id="creator@©2”>Stephen M. Horan</dc:creator>

<meta refines="#creatore2” property="~role” scheme="marc:relators<>
”>aut</meta>

30 3.4 Additional XML Transforms

<meta refines="#creator02” property="file-as”>Horan, Stephen M.<¢>
/meta>

<meta refines="#creator02” property="display-seq”>2</meta>

<dc:creator id="creator©3”>Thomas R. Robinson</dc:creator>

<meta refines="#creator03” property="role” scheme="”marc:relators<«
”>aut</meta>

<meta refines=”#creatore3” property=~file-as”>Robinson, Thomas R<¢>
.</meta>

<meta refines="#creator03” property="display-seq”>3</meta>

</metadata>
</package>

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#publication-id
http://www.idpf.org/epub/30/1lcp-auth#isbn
http://www.idpf.org/epub/30/1lcp-auth#title
http://www.idpf.org/epub/30/1lcp-auth#title-and-authors

3.4 Additional XML Transforms

With string-based inputs, the usefulness of the transforms provided by [XML DSIG Core]
is somewhat limited— passwords and similar KEK values are unlikely to be XML after all.
The base64 transform retains its usefulness in this new context, but no others can claim
the same fate.

As a result, we present some new transforms here with associated URIs within our
document’s namespace, which will be useful for the canonicalization or transformation
of plain-text values.

3.4.1 Case Folding

With string-based input, it is useful to be able to specify that text should be adjusted to
a known case. In this instance, we consider the [UNICODE] implementation of case-
folding algorithms to be definitive.

Identifier:

http://www.idpf.org/epub/30/1lcp-auth#lowercase
http://www.idpf.org/epub/30/1lcp-auth#uppercase

http://www.w3.org/TR/xmldsig-core1/#sec-Base-64

3.4 Additional XML Transforms 31

3.4.2 Japanese Ideograph Canonicalization

In Japanese, where syllabic letters (kana) exist alongside ideographic characters (kanji),
we provide a transform that stipulates that text be rendered in only characters from one
of the two sets of kana.

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#hiragana
http://www.idpf.org/epub/30/1lcp-authitkatakana

3.4.3 Character Encoding

The issue of text-encoding is likely to raise its head. Though this document assumes the
use of UTF-8 as a primary format, conversion to other [UNICODE] formats is useful,
particularly when considering internationalization. To this end, the following specifiers
allow provide the means to direct the use of a particular UTF character set. For each of
the two wide character sizes we specify three variants: two for explicit byte orders and
one to require the use of the appropriate Byte-Order Mark (BOM).

Identifier:
http://www.idpf.org/epub/30/1lcp-auth#text-utfl6-LE
http://www.idpf.org/epub/30/1lcp-auth#text-utfl6-BE
http://www.idpf.org/epub/30/1lcp-auth#text-utfl6-BOM
http://www.idpf.org/epub/30/1lcp-auth#text-utf32-LE
http://www.idpf.org/epub/30/1lcp-auth#text-utf32-BE
http://www.idpf.org/epub/30/1lcp-auth#text-utf32-BOM

3.44 MAC Formatting

MAC addresses are rendered as ten hexadecimal characters, often with a colon character
separating each pair (each byte). The following transforms can be used to require that
colons be inserted into or stripped from the resultant string.

Identifier:
http://www.idpf.org/epub/30/1cp-auth#with-separators
http://www.idpf.org/epub/30/1lcp-auth#without-separators

32 4 Rights Core Syntax

4 Rights Core Syntax

In this section we provide normative details of the rights-management schema and data.
Here you will find discussions of each element defined by the schema along with instruc-
tions on their use. This is followed with details of the URI specifiers for the various right
types defined by this specification.

4.1 Rights Management Core Syntax

This section provides detailed information on the syntax of the rights management data
provided within META-INF/authentication.xml. All features described here are manda-
tory unless otherwise noted. The syntax is defined via [XMLSCHEMA-1] [XMLSCHEMA-2]

with the following XML preamble, declaration, and internal entity:

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE schema
PUBLIC »”-//W3C//DTD XMLSchema 200102//EN” “http://www.w3.0rg/2001/<>
XMLSchema.dtd”
[
<IATTLIST schema
xmlns:rights CDATA #FIXED “http://www.idpf.org/epub/30/lcp-rights#”<>
>
<IENTITY rights ’http://www.idpf.org/epub/30/1lcp-rights#’>
<!ENTITY % p °’>
<IENTITY % s ’’>
1>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema” xmlns:rights="http://+>
www.idpf.org/epub/30/1lcp-rights#” targetNamespace="http://www.idpf<
.org/epub/30/1lcp-rights#” version="0.1" elementFormDefault="<>
qualified”>

4.1.1 The buration Simple Type

The Duration type defines a time value of one second or longer.

<simpleType name="Duration”>

4.1 Rights Management Core Syntax 33

<restriction base="time”>
<minInclusive value=”00:00:01.0” /> <!-- one minute -->
</restriction>
</simpleType>

4.1.2 The Counter Simple Type

The Counter type defines an integer value in the range 0 — oo.

<complexType name=”LimitType”>
<simpleContent>
<extension base="rights:Counter”>
<attribute name=”Unit” type="rights:UnitType” use="required” />
</extension>
</simpleContent>
</complexType>

4.1.3 The LimitType Complex Type

LimitType defines an element containing a Counter value with a required Unit attribute.

<complexType name="”LimitType”>
<simpleContent>
<extension base="rights:Counter”>
<attribute name=”Unit” type="rights:UnitType” use="required” />
</extension>
</simpleContent>
</complexType>

4.1.4 The UnitType Attribute Type

A UnitType attribute type consists of a token from the following set, and is used to
describe the meaning of any numeric values associated with its parent element.

» “character”
Numbers are to be interpreted as an integral character count.

4.1 Rights Management Core Syntax

« “sentence”
Numbers are to be interpreted as an integral count of complete sentences.

o “paragraph”
Numbers refer to the number of HTML <p>..</p> tags or similar.

° f(pageJJ
Only used when defining limits on printing, this declares that the unit of measure-
ment is the printed page.

» “percentage”
Value is a floating-point type in the range 0 — 100 denoting a percentage of the
total content of a publication, measured in visible characters.

° fftime.”
The associated value is an amount of time, represented as a Duration type. Used
to specify allowed lending durations.

<simpleType name="UnitType”>
<restriction base="token”>
<l-- valid based on visible characters, not bytes or runes of HTML<>
/XML source -->
<enumeration value="character” />
<enumeration value="sentence” />

<!-- valid based on HTML <p> tags or similar -->
<enumeration value="paragraph” />

<!-- only valid for printing limits -->
<enumeration value=”page” />

<l-- percentage of all visible characters -->
<enumeration value="percentage” />

<l-- Used for duration-based limitations such as library lends -->
<enumeration value="time” />
</restriction>
</simpleType>

4.1 Rights Management Core Syntax 35

4.1.5 The ConsumptionAmount Element Type

The ConsumptionAmount element type specifies that an element contains a floating-point
value > 0.0 with a required Unit attribute.

<simpleType name="ConsumptionAmountContent”>
<restriction base="float”>
<minInclusive value=”0.0" />
</restriction>
</simpleType>
<complexType name="ConsumptionAmount”>
<simpleContent>
<extension base="”rights:ConsumptionAmountContent”>
<attribute name="Unit” type="rights:UnitType” use=”required” />
</extension>
</simpleContent>
</complexType>

4.1.6 The Rights Element

The Rights element forms the root of the META-INF/rights.xml file. It MUST contain
only Right or SharingInfo elements. Each Right references a distinct right or limitation,
but many SharingInfo elements may be provided to specify different permissions for
different kinds of sharing.

<element name=”Rights” type="”rights:RightlList” />
<complexType name="”RightList”>
<sequence>
<element ref="rights:Right” maxOccurs="”unbounded” />
<element ref="rights:SharingInfo” minOccurs="0” maxOccurs="<>
unbounded” />
</sequence>
</complexType>

36 4.1 Rights Management Core Syntax

4.1.7 The Right Element

The Right element is used to describe a single right or limitation regarding the use of a
publication. It has two required attributes:

« The Type attribute denotes the actual capability to which this right applies. Exam-
ples include printing, copying and quoting (e.g. on social networks). Its value is a
URI; we specify a group of right URIs within the rights: namespace in Section 4.2
which all implementations MusT support (subject to the limitations of the imple-
mentation’s host device). Vendors may OpTioNALLY implement rights control for
implementation-specific features using URIs within another domain.

« The Unit attribute is used to denote the unit of measurement for audited rights; its
type is UnitType, which is described in Section 4.1.4.

The Right element may optionally contain a Limit attribute; this defines a per-action
limitation on the capability described by the right. The Limit attribute should not be con-
fused with the LifetimeLimit element defined in Section 4.1.9, which puts a maximum
cap on utilization of the right.

A Right element defines restrictions (or the lack thereof) through its child elements
ExcludedContent, LifetimelLimit, Status, and EligibilityPeriod. Where desirable,
use of a right can be recorded within the Consumption element. In addition, implemen-
tations MAy add their own child elements as proves useful.

Lastly, it is possible to reference an auth:Mechanism within the META-INF/authentication.xml
file in order to require manual authentication to perform the action managed by this right.

<element name=”Right” type=”rights:RightType” />
<complexType name=”RightType”>
<sequence>
<element ref="rights:Authorization” minOccurs="0" />
<element ref="rights:ExcludedContent” minOccurs="0" />
<element name=”LifetimelLimit” type="rights:LimitType” minOccurs="0<>
» sy
<element ref="rights:Status” />
<element ref="rights:EligibilityPeriod” minOccurs="0" />
<element ref="rights:Consumption” minOccurs="0"” maxOccurs="<>
unbounded” />

4.1 Rights Management Core Syntax 37

<any namespace="##other” minOccurs="0"” maxOccurs="unbounded” />
<!-- (@,unbounded) elements from (1,1) external namespace -->
</sequence>
<attribute name=”Id” type="ID” use="”optional” />
<attribute name="”Unit” type="rights:UnitType” use="required” />
<attribute name="”Type” type="anyURI” use="required” />
<attribute name=”Limit” type="integer” use="”optional” />
</complexType>

4.1.8 The Authorization Element

This element is used to provide a URI identifying an auth:Mechanism. When the right’s
action takes place, implementations MusT perform the authentication steps described by
that mechanism. It is REcoMmMENDED that the mechanism require direct user input to
authorize the right.

<element name=”Authorization” type="rights:AuthorizationType” />
<complexType name=" AuthorizationType”>

<attribute name="Id” type="ID” use=”optional” />

<attribute name=”URI” type=”anyURI” use="required” />
</complexType>

4.1.9 The LifetimeLimit Element

Places an absolute limit on the uses of a right. This may be expressed in any of the units
defined for the UnitType in Section 4.1.4.

<element name=”LifetimelLimit” type="rights:LimitType” minOccurs="0<>
» />

4.1.10 The ExcludedContent Element

In some cases, a publisher may wish to explicitly deny the ability to perform certain
activities on certain areas of the content. For example, a publisher of mystery novels may
choose to prohibit any sharing or printing of content from the final chapter of the book,

38 4.1 Rights Management Core Syntax

or from any point after the mystery is solved. The ExcludedContent element provides
two means to describe this: entire manifest items can be excluded from a right, such as
whole chapters, or an exclusion may be specified at a more granular level using a ranged
ePub Canonical Fragment Identifier (CFI) [EPUB-CFI].

Where a right’s Status (defined in Section 4.1.17) is set to “Permitted” or “Audited”,
this element is used to imply a “Denied” status for any referenced items or ranges. Where
a right is “Denied”, this element applies a status of “Permitted” to its contents.

<element name=”ExcludedContent” type="rights:ExcludedContentList” />
<complexType name=”ExcludedContentList”>
<sequence>
<element ref="rights:ManifestItem” minOccurs="0" maxOccurs="+<>
unbounded” />
<element ref="rights:Fragment” minOccurs="0" maxOccurs="unbounded”<—
/>
</sequence>
</complexType>

4.1.11 The Manifest Element

The Manifest element has no content and has a required IdRef attribute. This attribute’s
value MusT match the id attribute of a manifest item from an [OPF3] document.

This element denotes that the entire manifest item referenced is excluded from its par-
ent right.

<element name="”Manifest” type="rights:ManifestRef” />
<complexType name=’ManifestRef”>
<attribute name="Id” type="ID” use=”optional” />
<attribute name=”IdRef” type="token” use="”required” />
</complexType>

4.1.12 The Fragment Element

The Fragment element also has no child elements or content. Its required attribute is
CFI, which SHOULD be a valid ranged [EPUB-CFI]; implementations MusT be prepared
to handle erroneous values.

4.1 Rights Management Core Syntax 39

The range specified by the CFI attribute is excluded from the effects of its parent right.

<element name="”Fragment” type="rights:FragmentRef” />
<complexType name= FragmentRef”>
<attribute name="Id” type="ID” use=”optional” />
<attribute name=”CFI” type=”string” use="required” />
</complexType>

4.1.13 The Consumption Element

The Consumption element holds a list of UseInfo elements denoting the times and details
of a right’s use for auditing purposes.

<element name=”Consumption” type="rights:UselList” />
<complexType name="Uselist”>
<sequence>
<element ref="rights:UseInfo” minOccurs="0”" maxOccurs="unbounded” <>
/>
</sequence>
</complexType>

4.1.14 The UseInfo Element

Each UseInfo element details the time at which a user exercised the capability described
by its ancestor Right element along with information on the amounts used, where appli-
cable. For instance, if a user prints two pages, that value will be recorded here. If printing
is limited by a value of a different unit (such as printing at most 10% of a publication) then
implementations MusT also record the same value in that unit as well.

An example of this can be seen in Section 2.5.

<element name=”UseInfo” type=”rights:UseInfoType” />
<complexType name= UseInfoType”>
<sequence>
<element ref="rights:Timestamp” />
<element ref="rights:Amount” maxOccurs="unbounded” />

40 4.1 Rights Management Core Syntax

</sequence>
<attribute name=”Id” type="ID” use="optional” />
</complexType>

4.1.15 The Timestamp Element

A Timestamp element MUST contain a valid XML dateTime value. It is used to record the
time at which an audited right was exercised.

<element name=”Timestamp” type="dateTime” />

4.1.16 The Amount Element

The Amount element is a ConsumptionAmount, specifying an amount used of an audited
right. It requires a Unit attribute to specify the UnitType in which the amount is recorded.

<element name=”Amount” type="rights:ConsumptionAmount” />

41.17 The Status Element

A right’s status, as denoted by this REQUIRED child element, specifies one of three mutually-
exclusive states for a right.

« A value of Permitted identifies a right as being allowed without restriction. Mark-
ing a right with this status has the same effect as not listing the right at all (that is,
implementations MUST assume that any recognized right not specified is permitted
without restriction). Including it and marking it as permitted makes the decision
absolute; it is REcoMMENDED that conforming implementations generate entries
for all rights they understand and mark unrestricted ones with this status.

« Marking a right Audited signals to the reading system that there are prescribed
limits on the use of this right. There need not be a lifetime limit applied, but any
limits provided MusT be enforced. Recording an audit trail in the right’s Consump-
tion element is REQUIRED for rights with a LifetimeLimit, but is OpTIONAL for
those without.

4.1 Rights Management Core Syntax 41

+ A value of Denied indicates that a right is to be unequivocally denied. Implemen-
tations SHoOULD NoT edit a right that has met its lifetime limit to this state, but that
will not make the document invalid. It is REcOMMENDED that implementations only
use this status to indicate that a right has been absolutely denied from the outset,
not to denote that a right’s usage quota has been exhausted.

<element name=”Status” type="rights:StatusType” />
<simpleType name=”StatusType”>
<restriction base="token”>

<enumeration value=”Permitted” /> <!-- Permitted without limit -->
<enumeration value="Audited” /> <l-- Permitted only within <
audited limits -->
<enumeration value="Denied” /> <l-- Never permitted -->
</restriction>
</simpleType>

4.1.18 The EligibilityPeriod Element

A right may have an eligibility period attached to it, such that it may only be exercised
during the period indicated.

An eligibility period may contain either a Start element, an End element, or both.
When both are provided, the eligibility period encompasses the provided dates, inclusive
of the start time and exclusive of the end time. When the start time is not specified, the
eligibility period includes every moment preceding the end time; when an end time is
absent, the eligibility period is any moment from that time onwards.

The most common use for an EligibilityPeriod is a library loan— the Start value
would be the date and time at which the item was checked out, and the End value indicates
the time it would be automatically ‘returned’ to the library.

Another potential use might be the enforcement of embargoes, for example on review
copies of highly-anticipated books. All rights to copy, lend, quote, print, and similar
would unlock on the book’s ‘shelf date’ only. In this example, only a Start value need
be provided.

<element name=”EligibilityPeriod” type="rights:EligibilityPeriodType” <>
/>

42 4.1 Rights Management Core Syntax

<complexType name= EligibilityPeriodType”>
<sequence>
<element name=”Start” type="rights:EligibilityDelimiter” minOccurs<>
=70” />
<element name=”End” type="rights:EligibilityDelimiter” minOccurs="<>
0” />
</sequence>
<attribute name=”Id” type="ID” use="optional” />
</complexType>

4.1.19 The EligibilityDelimiter Type

The EligibilityDelimiter type is used to specify start and end dates for an E1igibili-
tyPeriod. It contains an XML dateTime value, and may have an XML identifier attribute.

<complexType name="EligibilityDelimiter”>
<simpleContent>
<extension base="”dateTime”>
<attribute name=”Id” type="ID” use="”optional” />
</extension>
</simpleContent>
</complexType>

4.1.20 The SharingInfo Element

The SharingInfo element is used to specify the means and limitations on lending a pub-
lication to other readers. Note that this does not attempt to prevent Alice from simply
sending the file to Bob along with her account details, password, and any other informa-
tion necessary to open the book as-is. Rather it attempts to provide guidance to software-
assisted lending, where a book’s access keys are re-encrypted using a new KEK, the use
of which would allow the other user to access the book.

The means of providing the copy to another user is not specified as part of this proposal.
Potential systems might be as simple as email or as elaborate as having a cloud-based
repository generate a book for Alice, re-encode the KEK for Bob, update the Consumption
details in the book’s rights.xml with the details of the loan, and adding it directly to
Bob’s library.

4.1 Rights Management Core Syntax 43

Either way, the lent copy MusT be given a ‘Read’ right with an EligibilityPeriod,
and the receiving reading system MusT honour that data.

Sharing can be made to require explicit authorization by referencing an [authorization!schema]Mechanism
element using the Authorization element discussed in Section 4.1.8.

The child elements MinDuration and MaxDuration enable a publisher or distributor to
place limits on the amount of time for which a book may be loaned to another reader,
and a LifetimeLimit child element can place a hard limit on the number of times a book
may be lent out in total.

The Limit attribute provides a means to allow lending more than one copy simultane-
ously; if not specified, implementations MusT assume a value of 1.

The Exclusive attribute, if set to true, will prevent the owner of the book from ac-
cessing their own copy while it is lent to another reader.

The Domain attribute can be used to limit the group of people to whom a book may be
lent. Examples would include ‘anyone’ or ‘other Kobo users’ and so on.

<element name="”SharingInfo” type=rights:SharingInfoType” />

<complexType
<sequence>
<element
<element
<element

>
<element

name="”SharingInfoType”>
ref="rights:Authorization” minOccurs="0" />
name=”MaxDuration” type="rights:Duration” />

name=”MinDuration” type="rights:Duration” minOccurs="0" /<>

name="”LifetimeLimit” type="rights:LimitType” minOccurs="0<>

» />

<element

ref="rights:Consumption” minOccurs="0" maxOccurs="<>

unbounded” />

</sequence>

<attribute
<attribute
<attribute
<attribute

name=”Exclusive” type="”boolean” default="false” />
name="Id” type="ID” use="optional” />

name="”Limit” type="integer” use="optional” default="1" />
name="Domain” type="anyURI” default="http://www.idpf.org/+>

epub/30/1cp-rights#open” />
</complexType>

44 4.2 Right Specifiers

4.2 Right Specifiers

A right specification takes the form of a URL. We define a number of these within the
rights: namespace. Implementation of all rights defined in this specification is RE-
QUIRED.

4.2.1 Printing
Printing can be limited based on the number of pages printed at any one time. A Life-
timeLimit may be based on either a printed-page count or a percentage of the book.

Identifier:
http://www.idpf.org/epub/30/1lcp-rights#print

4.2.2 Copying

Sets limits on the ability to copy selected content to the clipboard.

Identifier:
http://www.idpf.org/epub/30/1lcp-rights#copy

4.2.3 Social Sharing
This specifier identifies the right to share selected text directly as quotes through social
networks or emails.

Identifier:
http://www.idpf.org/epub/30/1lcp-rights#social-share

4.2.4 Reading
Library loans can use this right to apply a time window to the accessibility of the book’s
content.

Identifier:
http://www.idpf.org/epub/30/1lcp-rights#read

4.3 Lending Domains 45

4.2.5 Editing

The right to edit a document is added. When this right’s state is “audited”, we expect
less that there be a useful limit, more that an audit trail be kept. This may obviously be
allowed or denied outright as well, though in a collaboratively-edited document we could
see the ExcludedContent element being used to ‘lock’ particular sections from further
changes once consensus has been reached.

Identifier:
http://www.idpf.org/epub/30/lcp-rights#edit

4.3 Lending Domains

In this specification we define only one domain, which places no restrictions on users
to which a publication may be shared. Other potential domains might include anyone
with an account on the same vendor, such as on the Kobo store or Amazon’s Kindle store.
Another example might be anyone employed by a particular publishing house, allowing
free transfer between employees; access could be based on the domain of the sender’s
and recipient’s email addresses or upon a directory service, e.g. LDAP.

4.3.1 Open Domain

The open domain is used to indicate that a book may be lent without restriction on the
identity of the receiver.

Identifier:
http://www.idpf.org/epub/30/1lcp-rights#open

4.3 Lending Domains

47

48 A Index of Requirements

A Index of Requirements

All components and facilities are laid out here, organized into REQUIRED, RECOMMENDED,
and OPTIONAL sets.

A.1 Authentication

REQUIRED

« The META-INF/authentication.xml file must be included and must specify an au-
thentication mechanism according to the schema in Section 3.1.

+ The META-INF/authentication.xml file must be protected from modification through
use of an [XML DSIG Core] Signature. Placing a signature within the file itself is
OrTIiONAL but enables the modification of the authentication vector when lending;
implementors may simply rely on the signed digest block within META-INF/signature.xml,
but then that file would need to be modified any time the book is lent.

 Implementors MusT NoT evaluate any mechanism without being directed to it
from another location, such as from a right, an encryption key ds : RetrievalMethod,
or another mechanism.

+ Implementations must support all authentication mechanisms defined in this pro-
posal.

« Implementations must adhere to the requirements and recommendations or [XML DSIG Core]
with regards to supported algorithms and their URIs.

 Implementations MusT NoT use a publication ID key specifier in the primary au-
thentication mechanism, and MusT reject any publication whose authentication
does so.

RECOMMENDED

+ We recommend the use of the AES Keywrapping algorithm defined in [RFC3394]
with a KEK size of at least 128 bits, although any algorithm described by [XML DSIG Core]
may be used.

A.2 Content Signing 49

« We recommend the authorization key be constructed from at least two discrete
pieces of data. For example the shared secret obtained through the primary authen-
tication mechanism could be concatenated with the publication’s unique identifier
through an appended mechanism to generate the required signing/encryption key.

A.2 Content Signing

REQUIRED

« Implementations are REQUIRED to conform to the requirements and recommenda-
tions of the [XML DSIG Core] specification.

RECOMMENDED

+ The preferred signing algorithm is RSA-SHA256 as defined in RFC 3447 [PKCS1],
using a public key size of at least 2048 bits. Public keys of 1024 bits or less SHoULD
Not be used, and implementors SHOULD use at least 3072-bit signatures for content
expected to be verified beyond 2030.

« To properly verify publisher/author signatures, implementations SHouLD handle
[XPath] and [XPath-Filter] transformations. Examples can be found in Section 2.3.1.

OPTIONAL

+ An distributor My use an enveloped signature transform when signing content
which already contains a publisher transform. Any implementation of such MusT
conform to the specification in Section 6.6.4 of [XML DSIG Core].

A.3 Encryption
REQUIRED

+ Implementations MusT conform to the requirements and recommendations of the
[XML ENC Core] specification.

http://www.ietf.org/rfc/rfc3447.txt
http://www.w3.org/TR/xmldsig-core1/#sec-EnvelopedSignature

50 A.4 Rights Management

+ The use of an encrypted key is REQUIRED, as is an xenc:RetrievalMethod for the
KEK referencing a Mechanism element inside META-INF/authentication.xml.

 Pursuant to Section 2.5.2 of the [OCF3] specification, all encrypted files MusT be
compressed using the [Deflate] algorithm before encryption and placed into the
ZIP container in uncompressed format.

RECOMMENDED

+ Wfrecommend the use of [X.509] key-pairs to implement code-signing and encryp-
tion. The certificate chain and CRL SHouLD be included within META-INF/encryption.xml.

OPTIONAL

 Implementations MAy choose to include the ancestor nodes of an [X.509] certificate
chain in unencrypted format within META-INF/encryption.xml. The leaf certifi-
cate used to verify/decrypt content MUsT remain encrypted pursuant to the au-
thentication system outlined in Section 2.1.

A.4 Rights Management

REQUIRED

« Implementations MusT recognize all rights specified in this document, although
their implementation of the individual features being restricted are naturally bound
by the capabilities of the reading system itself.

 Implementations MUST treat unspecified rights as implicitly Permitted.

+ If no SharingInfo elements are specified, personal lending MusT be implicitly De-
nied.

RECOMMENDED

« Implementations SHoULD include all known rights when generating the contents
of META-INF/rights.xml, marking unrestricted rights as explicitly Permitted.

« The META-INF/rights.xml file SHOULD be signed using an enveloped signature to
provide independent verification of its contents.

http://idpf.org/epub/30/spec/epub30-ocf.html#sec-container-metainf-encryption.xml

A.4 Rights Management 51

OPTIONAL

+ Implementations MAy implement personal lending as a software-assisted feature,
re-creating the META-INF/signature.xml, META-INF/encryption.xml, META-INF/rights.xml
and META-INF/authentication.xml files as necessary to facilitate the transfer of
content. This is not required, but the rights management system has been designed
with this in mind.

« Implementations are free to declare certain rights as always prohibited, ignoring
any permissions specified for those rights in a publication, but they MusT commu-
nicate this fact to the user.

B Processing Instructions 53

B Processing Instructions

The algorithms defined here represent the envisioned process for each step: opening a
publication and evaluating a right.

B.1 Authorization Core Algorithm

procedure PRoCESSEPUBAUTH(mechanism)
keyString <
while mechanism # nil do
thisKey < nil
mechanismType <— GETATTRIBUTE(mechanism, “Type”)
authInfo < NopeEForRXPaTH(mechanism, “. /AuthInfo”)
authType < GETATTRIBUTE(authIn fo, “Type”)

if mechanismType = ‘device — keyed' then
thisKey < GETDEVICEKEY(authType)

else if mechanismType = ‘account — keyed' then
thisKey <+ GETAccouNTKEY(authType)

else if mechanismType = ‘user — input’ then
prompt <— NopEFOrRXPATH(authIn fo, “./Prompt/text()”)
hint < NopeForRXPaTH(authInfo, “./Hint/text()”)
thisK ey <— PRoMPTUSER(prompt, hint)

end if

if thisKey # nil then > Confirm the key if possible
con firmationV alue <— NopEFORXPATH(mMmechanism, “./Confirmation-
Value”)
if con firmationV alue # nil then
digest Algorithm < NopeEFORXPATH(con firmationV alue, “. /Digest-
Method/@Algorithm”)
digestV alue <— NopEFORXPATH(con firmationV alue, . /DigestVal-
ue/text()”)
if digestValue # CompUuTEDIGEST(this K ey, digest Algorithm) then
thisKey < nil
end if
end if
end if

54 B.2 Signature Verification

if thisKey # nil then
keyString <— keyString + thisKey
appendU RI < GETATTRIBUTE(mechanism,“Append”)
if appendU RI # nil then
mechanism < PARSEXMLATURI(appendU RI)
else
mechanism < nil
end if
else
nextU RI < GETATTRIBUTE(mechanism,“Next”)
if nextU RI # nil then
mechanism <— PARSEXMLATURI(nextU RI)
else
mechanism <— nil
end if
end if
end while
end procedure

B.2 Signature Verification

gAuthNamespace < “http://www.idpf.org/epub/30/lcp-auth#

procedure AUTHORIZEPUBLICATION(pub)
if IsSIGNED(pub) then
if VERIFYSIGNATURE(pub) = false then
return NotAuthorized
end if
end if
return AuthorizationOK
end procedure

procedure IsSIGNED(pub)
if HASFILE(pub, “META-INF/signature.xml”) then
return true
else
return false

B.2 Signature Verification 55

end if

end procedure

procedure VERIFYSIGNATURE(pub)
xml < PARSEXML(pub, “META-INF/signature.xml”)
if xml = nil then
return false
end if

key < GETSIGNINGKEY(xml)
if key = nil then

return false
end if

stgnedIn fo < NopEFORXPATH(zml, “/Signhature/SignedInfo®)

references < ALLNODESFORXPATH(signedIn fo, “Reference”)

for all ref € references do > Verify all references
valid <— VERIFYREFERENCE(re f) > Implemented as per [XML DSIG Core]
if valid = false then

return false

end if

end for

stgnature <— NODESFORXPATH(zml. “/Signature/SignaturevValue/text()”)
return VALIDATESIGNEDINFO(signedIn fo, key, signature)
end procedure

procedure GETSIGNINGKEY(xml)
keyInfo < NopeForXPaTH(zml, “./Signature/KeyInfo”)
keyV alue <— NopEForRXPATH(keylIn fo, “./KeyValue/text()”)
if keyV alue # nil then
return UNPACKKEY(keyV alue)
end if

key < nal
retrieval M ethod <— NopEFORXPATH(keyIn fo, “./RetrievalMethod”)
if retrieval Method # nil then

uri <— GETATTRIBUTE(retrieval M ethod, “URI”)

56 B.3 Rights Evaluation

target < PARSEXMLATURI(ur7)
if GETNAMESPACE(target) # gAuthNamespace then
trans forms <— NoDpESFORXPATH(retrieval Method, “. /Transforms/Trans-
form”)
return TRANSFORMXML(target, trans forms)
else
return PrRocessEPUBAUTH(tar get)
end if
end if
return nil
end procedure

B.3 Rights Evaluation

Denied <+ —1
Permitted < 0

procedure EvALUATERIGHT(name, mani festltemlID, locationC'FI)
uri <— RIGHTURIFORNAME(name)
if uri = nil then
return Permitted > Unknown rights are implicitly permitted
end if

xml <— PARSEXML(“META-INF/rights.xml1”)
if xml = nil then

return Permitted > No rights.xml means all are permitted
end if

xpath <— FORMATSTRING(“/Rights/[@Type=%s]”, uri)
rightIn fo < NoDEFORXPATH(zml, zpath)
if rightInfo = nil then
return Permitted > No right in file means implicitly permitted
end if

status <— NoDEFORXPATH(rightIn fo, “./Status/text()”)
if status = “Permitted” then
if IsExcLupep(mani festltemlI D, locationC FI, rightIn fo) then
return Denied

B.3 Rights Evaluation 57

else
return Permitted
end if
else if status = “Denied” then
if ISExcLunpep(mani festltemlI D, locationCFI, rightIn fo) then
return Permitted
else
return Denied
end if
else if IsExcLupep(mani festltemlI D, locationC' F'I, rightIn fo) then
return Denied
else > Note that we assume file is valid, so status must be “Audited” here
return EVALUATEAUDITEDRIGHT(rightIn f0)
end if
end procedure

procedure ISExcLuDED(mani festltemlI D, locationC' F'1, rightIn fo)
exclustons <— NoDEFORXPATH(rightIn fo, “./ExcludedContent[1]”)
for all exclusion € CHILDNODES(exclusions) do
name <— ELEMENTNAME(exclusion,)
value <+ ELEMENTVALUE(exclusion)
if name = “Manifest” and value = manifestltemlI D then
return true
else if name = “Fragment” and LocaTioNINRANGE(locationC F'I, value) then
return {rue
end if
end for
return false
end procedure

procedure EVALUATEAUDITEDRIGHT(r2ghtIn f0)
limit < GETATTRIBUTE(rightInfo, “Limit”)
LifetimeLimit < NopEFORXPATH(rightInfo, “./LifetimeLimit/text()”)

authorizationU RI <— NopEFORXPATH(rightIn fo, “./Authorization/@URI”)
if authorizationU RI # nil then

mechanism < PARSEXMLATURI(authorizationU RI)

if mechanism = nil or PROCESSEPUBAUTH(mechanism) = nil then

B.3 Rights Evaluation

return Denied
end if
end if

eligibility Period < NopEFORXPATH(rightInfo, “./EligibilityPeriod’[1]°)
if eligibility Period # nil and WITHINELIGIBILITYPERIOD(Eligibility Period) =
false then
return Denied

end if

if li fetimeLimit = O then
return Limit > No lifetime limit, so per-action limit returned as-is

end if

li fetimeUnit < NoDEFORXPATH(rightInfo,“./LifetimeLimit/@Unit/string()”)

li fetime Remaining < li fetimeLimit
uses < ALLNODESFORXPATH(rightIn fo, . /Consumption/UseInfo®)
for all useInfo € uses do > Accumulate totals

li fetime Remaining < li fetime Remaining— ToTALINUNIT(use, li f etvmeUnait)

end for

if li fetimeRemaining > 0 then
if li fetime Remaining > limit then

return [imit > Use the per-action limit unchanged
else
return li fetime Remaining > Less than per-action limit remaining
end if
else
return Denied > Lifetime limit has been exhausted
end if

end procedure

procedure TotaLINUNIT(useln fo, unit)
xpath <— FORMATSTRING(“./Amount[@Unit=%s]/text()”, unit)
total <+ 0
for all amount € ALLNopeEsFoORXPATH(useln fo, xpath) do
total < total + amount
end for

B.4 Sharing Evaluation 59

return total
end procedure

B.4 Sharing Evaluation

procedure EVALUATESHARE(receiver, requested Duration)
xml < PARSEXML(“META-INF/rights.xml”)
for all sharingInfo € ALLNODESFORXPaTH(zml, “/Rights/SharingInfo”) do
domain < GETATTRIBUTE(sharingIn fo, “Domain”)
if domain # nil and UserRINDomAIN(receiver, domain) = false then
next > Receiver not in domain— go to next SharingInfo

end if

limit < GETATTRIBUTE(sharingln fo, “Limit>)
if limit = nul then
limit < 1 > Default limit is 1 share at a time
end if
li fetimeLimit <— NopEFORXPATH(sharingInfo,“./LifetimeLimit[1]/text())
available < li fetime Limit
if li fetimeLimit = nil then
available < limit
end if

if li fetimeLimit # nil then
li fetimeUnit < NopDEFORXPATH(sharingInfo,“./LifetimeLimit[1]/@Unit/string()”)
uses <— ALLNODESFORXPATH(sharingInfo, “./Consumption/UseInfo”)
current < 0

for all useInfo € uses do > Accumulate totals
available <— available— ToTaLINUNIT(uSeIn fo, li fetimeUnit)
if unit =“time” then > Check for current shares
if UseINPrROGRESS(useln fo) then
next > In progress— look to the next SharingInfo
end if
end if
end for
if li fetimeRemaining < 0 then
next > Exhausted— go to the next SharingInfo

end if

60 B.4 Sharing Evaluation

end if

if available < 0 then
next > No available shares here, go to the next SharingInfo
else
minDuration < NopEFORXPATH(sharingIn fo,“./MinDuration/text()”)
max Duration <— NOoDEFORXPATH(sharingInfo, . /MaxDuration/text()”)
if minDuration # nil and requested Duration < minDuration then
requested Duration <— minDuration
end if
if requestedDuration > maxDuration then
requested Duration < maxDuration

end if
return requestedDuration > Return the allowed duration
end if
end for
return nil > If we get here, sharing is denied

end procedure

procedure UsEINPROGRESs(useln fo)
xpath <— gDate RangeX PathFExpression > XPath defined in Section B.4.1
result < NoDEFORXPATH(useln fo, xpath)
return BOOLEANVALUE(node)

end procedure

B.4.1 Date Range Evaluation XPath Expression

Listing 1: WithinDateRange() XQuery Implementation

declare function rights:within-date-range ($arg as rights:UseInfoType)<+
as xs:boolean

let $start := xs:dateTime($arg/Timestamp/text())
let $end := op:add-dayTimeDuration-to-dateTime($start, xs:<
dayTimeDuration($arg/Amount/text()))
op:dateTime-greater-than($start)
and
op:dateTime-less-than($end)

B.4 Sharing Evaluation 61

Listing 2: WithinDateRange() XSLT Implementation

<xsl:function name=”rights:within-date-range” as="”xs:boolean”>
<xsl:param name="arg” as="rights:UseInfoType”/>
<xsl:variable name="start” as="xs:dateTime” select="$arg/Timestamp/<—
text()”/>
<xsl:variable name="end” select="op:add-dayTimeDuration-to-dateTime<+>
($start, xs:dayTimeDuration($arg/Amount/text()))”/>
<xsl:sequence select="op:dateTime-greater-than($start) and
op:dateTime-less-than($end)”/>
</xsl:function>

20

22

24

C Proposed XML Schemas 63

C Proposed XML Schemas

In this section you can find the complete text of the XML schemas defined by this docu-
ment. For details on implementation, refer to Sections 3 and 4.

C.1 The LCP-AUTH Schema

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE schema PUBLIC ”-//W3C//DTD XMLSchema 200102//EN” *http://www.<>
w3.0org/2001/XMLSchema.dtd”
[
<IATTLIST schema xmlns:auth CDATA #FIXED “http://www.idpf.org/epub/30/<+>
lcp-auth#”>
<IATTLIST schema xmlns:ds CDATA #FIXED “http://www.w3.0rg/2000/09/<
xmldsig#”>
<IENTITY auth *http://www.idpf.org/epub/30/lcp-auth#”’>
<IENTITY dsig ”http://www.w3.0rg/2000/09/xmldsig#”>
<IENTITY % p ””>
<VENTITY % s 77>
1>
<schema xmlns:auth="http://www.idpf.org/epub/30/1lcp-auth#” xmlns:ds="<>
http://www.w3.0rg/2000/09/xmldsig#” targetNamespace="http://www.<>
idpf.org/epub/30/1lcp-auth#” version="0.1" elementFormDefault="<>
qualified”>
<l-- Start Authentication -->
<element name=”Authentication” type="auth:AuthenticationType”/>
<complexType name=”AuthenticationType”>
<sequence>
<element ref=" ds:Signature”/>
<element ref="auth:Mechanism” maxOccurs="unbounded”/>

</sequence>

<attribute name=”Provider” type="anyURI” use="optional”/>
</complexType>
<l-- Start Mechanism -->

<element name="”Mechanism” type="auth:MechanismType”/>
<complexType name=”MechanismType”>
<sequence>
<element ref="auth:AuthInfo”/>

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

C.1 The LCP-AUTH Schema

<element ref="auth:Prompt” minOccurs="0"/>
<element ref="auth:Hint” minOccurs="0"/>
<any namespace="##other” minOccurs="0"” maxOccurs="unbounded”<>

/>

<!-- (@,unbounded) elements from (1,1) external namespace --<>
>
</sequence>

<attribute name=”Id” type="ID” use=”optional”/>
<attribute name="Type” type=”anyURI” use="required”/>
<attribute name=”Next” type="anyURI” use="optional” />
<attribute name="Append” type=”anyURI” use="optional” />
</complexType>
<l-- Start AuthInfo -->
<element name=”AuthInfo” type="auth:AuthInfoType”/>
<complexType name=”AuthInfoType”>
<sequence>
<element name="InputVector” type=”ds:CryptoBinary” minOccurs<>
=70"/>
<element ref=" ds:Transforms” minOccurs="0"/>
<element ref="auth:ConfirmationValue” minOccurs="0"/>
<any namespace="##other” minOccurs="0” maxOccurs="unbounded” <>

/>
<!-- (@,unbounded) elements from (1,1) external namespace --<+
>
</sequence>

<attribute name=”Id” type="ID” use="optional”/>
<attribute name="Type” type="”anyURI” use="required”/>
</complexType>
<l-- Start ConfirmationValue -->
<element name=”ConfirmationValue” type="auth:ConfirmationValue”/>
<complexType name="ConfirmationValue”>
<sequence>
<element ref="ds:DigestMethod”/>
<element ref=" ds:DigestValue”/>

</sequence>

<attribute name="Id” type="ID” use=”optional”/>
</complexType>
<l-- Simple Elements -->

<element name=”Prompt” type="auth:UserDisplayValue”/>
<element name=”Hint” type="auth:UserDisplayValue™/>
<complexType name=UserDisplayValue”>

62

64

66

68

20

22

24

C.2 The LCP-RIGHTS Schema

<simpleContent>
<extension base=”string”>
<attribute name="Id” type="ID” use="”optional”/>
</extension>
</simpleContent>
</complexType>
</schema>

C.2 The LCP-RIGHTS Schema

<?xml version="1.0" encoding="utf-8”?>
<IDOCTYPE schema
PUBLIC »”-//W3C//DTD XMLSchema 200102//EN” *http://www.w3.0rg/2001/<
XMLSchema.dtd”
[

<!ATTLIST schema

xmlns:rights CDATA #FIXED “http://www.idpf.org/epub/30/lcp-rights#”<«>

>
<VENTITY rights ’http://www.idpf.org/epub/30/1lcp-rights#’>
<VENTITY % p °°>
<VENTITY % s °’>
1>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema” xmlns:rights="http://<>

www.idpf.org/epub/30/1lcp-rights#” targetNamespace="http://www.idpf<>

.org/epub/30/1lcp-rights#” version="0.1" elementFormDefault="<>
qualified”>
<l-- Duration type -->
<simpleType name="Duration”>
<restriction base="time”>

<minInclusive value=”00:00:01.0” /> <!-- one minute -->
</restriction>
</simpleType>
<l-- Counter Type -->

<simpleType name="Counter”>
<restriction base="integer”>
<minInclusive value="0"” />
</restriction>
</simpleType>
<l-- Limit Type -->

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

66

C.2 The LCP-RIGHTS Schema

<complexType name=”LimitType”>
<simpleContent>
<extension base="”rights:Counter”>
<attribute name=”Unit” type="rights:UnitType” use="required” />
</extension>
</simpleContent>
</complexType>
<l-- Unit Type -->
<simpleType name="UnitType”>
<restriction base="token”>
<l-- valid based on visible characters, not bytes or runes of HTML<>
/XML source -->
<enumeration value="character” />
<enumeration value=”sentence” />

<l-- valid based on HTML <p> tags or similar -->
<enumeration value="paragraph” />

<!-- only valid for printing limits -->
<enumeration value=”page” />

<l-- percentage of all visible characters -->
<enumeration value="percentage” />

<!-- Used for duration-based limitations such as library lends -->
<enumeration value="time” />
</restriction>
</simpleType>
<l-- Start Rights -->
<element name=”Rights” type="rights:RightlList” />
<complexType name="RightList”>
<sequence>
<element ref="rights:Right” maxOccurs="”unbounded” />
<element ref="rights:SharingInfo” minOccurs="0” maxOccurs="<>
unbounded” />
</sequence>
</complexType>
<l-- Start Right -->
<element name=”Right” type=”rights:RightType” />
<complexType name=”RightType”>
<sequence>

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

C.2 The LCP-RIGHTS Schema

67

<element
<element

ref="rights:Authorization” minOccurs="0" />
ref="rights:ExcludedContent” minOccurs="0" />

<element name=”LifetimelLimit” type="rights:LimitType” minOccurs="0<>

”/
<element
<element
<element

>

ref="rights:Status” />
ref="rights:EligibilityPeriod” minOccurs="0" />
ref="rights:Consumption” minOccurs="0" maxOccurs="<>

unbounded” />

<any name
<l-- (0,u
</sequence>
<attribute
<attribute
<attribute
<attribute
</complexType
<l-- Start Au
<element name
<complexType
<attribute
<attribute
</complexType
<l-- Start Ex

<element name=”ExcludedContent” type="rights:ExcludedContentList” />

<complexType
<sequence>

space="##other” minOccurs="0"” maxOccurs="unbounded” />
nbounded) elements from (1,1) external namespace -->

name="Id” type="ID” use="”optional” />

name="Unit” type="rights:UnitType” use="required” />
name="Type” type="anyURI” use="required” />
name=”Limit” type=”integer” use="optional” />

>

thorization -->

=”Authorization” type="rights:AuthorizationType” />
name="”AuthorizationType”>

name="Id” type="ID” use="optional” />

name=”URI” type=”anyURI” use="required” />

>

cludedContent -->

name="ExcludedContentList”>

<element ref="rights:Manifest” minOccurs="0"” maxOccurs="unbounded”<—

/>

<element ref="rights:Fragment” minOccurs="0" maxOccurs="unbounded”<—

/>
</sequence>
</complexType
<l-- Start Ma
<element name
<complexType
<attribute
<attribute
</complexType
<l-- Start Fr
<element name
<complexType

>

nifest -->

=”Manifest” type="”rights:ManifestRef” />
name="ManifestRef”>

name="Id” type="ID” use="”optional” />
name=”IdRef” type="token” use="required” />
>

agment -->

=”Fragment” type="”rights:FragmentRef” />
name="FragmentRef”>

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

68 C.2 The LCP-RIGHTS Schema
<attribute name="Id” type="ID” use=”optional” />
<attribute name=”CFI” type=”string” use="required” />
</complexType>
<l-- Start Consumption -->

<element name="”Consumption” type="rights:UselList” />
<complexType name="Uselist”>
<sequence>
<element ref="rights:UseInfo” minOccurs="0" maxOccurs="unbounded” <>
/>
</sequence>
</complexType>
<l-- Start UseInfo -->
<element name="”UseInfo” type=”rights:UseInfoType” />
<complexType name="”UseInfoType”>
<sequence>
<element ref="rights:Timestamp” />
<element ref="rights:Amount” maxOccurs="unbounded” />
</sequence>
<attribute name=”Id” type="ID” use="”optional” />

</complexType>

<l-- Start Timestamp -->

<element name="Timestamp” type="dateTime” />

<l-- Start Amount -->

<element name=”Amount” type="rights:ConsumptionAmount” />
<!-- Start ConsumptionAmount -->

<simpleType name="ConsumptionAmountContent”>
<restriction base="float”>
<minInclusive value=”0.0" />
</restriction>
</simpleType>
<complexType name="ConsumptionAmount”>
<simpleContent>
<extension base="rights:ConsumptionAmountContent”>
<attribute name="Unit” type="rights:UnitType” use="required” />
</extension>
</simpleContent>
</complexType>
<!-- Start Status -->
<element name=”Status” type="rights:StatusType” />
<simpleType name="StatusType”>
<restriction base="token”>

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

C.2 The LCP-RIGHTS Schema 69

<enumeration value="Permitted” /> <!-- Permitted without limit -->
<enumeration value="Audited” /> <l-- Permitted only within <>
audited limits -->
<enumeration value="Denied” /> <!-- Never permitted -->
</restriction>
</simpleType>
<l-- Start EligibilityPeriod -->
<element name=”EligibilityPeriod” type="rights:EligibilityPeriodType” <>
/>
<complexType name=”EligibilityPeriodType”>
<sequence>
<element name=”Start” type=”rights:EligibilityDelimiter” minOccurs<>
=70 />
<element name=”End” type="rights:EligibilityDelimiter” minOccurs="<>
0” />
</sequence>
<attribute name=”Id” type="ID” use="”optional” />
</complexType>
<complexType name=”EligibilityDelimiter”>
<simpleContent>
<extension base="dateTime”>
<attribute name="Id” type="ID” use=”optional” />
</extension>
</simpleContent>
</complexType>
<l-- Start SharingInfo -->
<element name=”SharingInfo” type=rights:SharingInfoType” />
<complexType name=”SharingInfoType”>
<sequence>
<element ref="rights:Authorization” minOccurs="0" />
<element name=”MaxDuration” type="rights:Duration” />
<element name=”MinDuration” type=”rights:Duration” minOccurs="0” /<>
>
<element name=”LifetimelLimit” type="rights:LimitType” minOccurs="0<>
AN
<element ref="rights:Consumption” minOccurs="”0” maxOccurs="<¢>
unbounded” />
</sequence>
<attribute name=”Exclusive” type=”boolean” default="false” />
<attribute name="Id” type="ID” use=”optional” />
<attribute name=”Limit” type="integer” use="optional” default="1" />

70 C.2 The LCP-RIGHTS Schema

<attribute name="Domain” type=”anyURI” default="http://www.idpf.org/+
epub/30/1cp-rights#open” />
176 </complexType>
</schema>

REFERENCES

71

References

[OCF3]

[OPF3]

[EPUB3]

[EPUB-CFI]

[XML]

[XML DSIG Core]

[XML ENC Core]

[XML SIG Decrypt]

[X.509]

Open Container Format (OCF) 3.0.
J. Pritchett et al., 11 October 2011.
http://idpf.org/epub/30/spec/epub3@-ocf.html

EPUB Publications 3.0.
M. Gylling et al., 11 October 2011.
http://idpf.org/epub/30/spec/epub30-publications.html

EPUB 3.0 Overview.
G. Conboy et al., 11 October 2011.
http://idpf.org/epub/30/spec/

EPUB Canonical Fragment Identifier (epubcfi) Specification.
P. Sorotokin et al., 11 October 2011.
http://idpf.org/epub/linking/cfi/epub-cfi.html

Extensible Markup Language (XML) 1.0 (Fifth Edition).
T. Bray et al., 26 November 2008..
http://www.w3.0rg/TR/2008/REC-xml-20081126/

XML-Signature Syntax and Processing Version 1.1.
M. Bartel et al., 3 March 2011.
http://www.w3.0org/TR/xmldsig-corel/

XML Encryption Syntax and Processing Version 1.1.
D. Eastlake et al., 3 March 2011.
http://www.w3.0rg/TR/xmlenc-corel/

Decryption Transform for XML Signature.
M. Hughes et al., 10 December 2002.
http://www.w3.0org/TR/xmlenc-decrypt

Internet X.509 Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile.

D. Cooper et al., Internet RFC 5280, May 2008.
http://www.ietf.org/rfc/rfc5280.txt

http://idpf.org/epub/30/spec/epub30-ocf.html
http://idpf.org/epub/30/spec/epub30-publications.html
http://idpf.org/epub/30/spec/
http://idpf.org/epub/linking/cfi/epub-cfi.html
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xmldsig-core1/
http://www.w3.org/TR/xmlenc-core1/
http://www.w3.org/TR/xmlenc-decrypt
http://www.ietf.org/rfc/rfc5280.txt

72

REFERENCES

[XMLNS]

[XML C14N]

[RFC3394]

[FIPS-186-3]

[PKCS1]

[XPath]

[XPath-Filter]

[XMLSCHEMA-1]

[XMLSCHEMA-2]

Namespaces in XML 1.0 (Third Edition).

T. Bray, D. Hollander, A. Layman, R. Tobin, H. Thompson, 8 Decem-
ber 2009.

http://www.w3.0rg/TR/xml-names

Canonical XML Version 1.1.
J. Boyer et al., 2 May 2008.
http://www.w3.0rg/TR/2008/REC-xml-c14nl11-20080502/

Advanced Encryption Standard (AES) Key Wrap Algorithm.
J. Schaad and R. Housley, September 2002.
http://www.ietf.org/rfc/rfc3394.txt

FIPS PUB 186-3: Digital Signature Standard (DSS).

U. S. Department of Commerce/National Institute of Standards and
Technology, June 2009.
http://csrc.nist.gov/publications/fips/fips186-3/fips_
186-3.pdf

Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.1.

J. Jonsson and B. Kalinski, RFC 3447 (Informational), February 2003.
http://www.ietf.org/rfc/rfc3447.txt

XML Path Language (XPath) 1.0.
J. Clark and S. DeRose, 16 November 1999.
http://www.w3.0rg/TR/1999/REC-xpath-19991116/

XML-Signature XPath Filter 2.0.
J. Boyer et al., 8 November 2002.
http://www.w3.0rg/TR/2002/REC-xmldsig-filter2-20021108/

XML Schema Part 1: Structures Second Edition.
Henry S. Thompson et al., 28 October 2004.
http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028/

XML Schema Part 2: Datatypes Second Edition.
Paul V. Biron and Ashok Malhotra, 28 October 2004.
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028/

http://www.w3.org/TR/xml-names
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502/
http://www.ietf.org/rfc/rfc3394.txt
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.ietf.org/rfc/rfc3447.txt
http://www.w3.org/TR/1999/REC-xpath-19991116/
http://www.w3.org/TR/2002/REC-xmldsig-filter2-20021108/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

REFERENCES

73

[RFC2119]

[URI]

[UNICODE]

[Deflate]

Key Words for use in RFCs to indicate Requirement Levels.
S. Bradner, Internet RFC 2119, March 1997.
http://www.ietf.org/rfc/rfc2119.txt

Uniform Resource Identifiers (URI): generic syntax.

T. Berners-Lee, R. Fielding, L. Masinter, Internet RFC 3986. January
2005.

http://www.ietf.org/rfc/rfc3986.txt

The Unicode Standard, Version 6.1.0.
The Unicode Consortium, 2012, ISBN 978-1-936213-02-3.
http://www.unicode.org/versions/Unicode6.1.0/

DEFLATE Compressed Data Format Specification version 1.3.
P. Deutsch, Internet RFC 1951, May 1996.
http://www.ietf.org/rfc/rfcl951.txt

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.unicode.org/versions/Unicode6.1.0/
http://www.ietf.org/rfc/rfc1951.txt

Index

authentication, 3-9, 21-31 ds:KeylInfo, 10
Interactive Authentication, 5 ds:RetrievalMethod, 3, 11
Mechanism, 36, 37 nested signatures, 11
mechanisms, 5-6, 26, 25—-26
account-keyed, 5, 26 digital rights management, 1, 2, 9, 11, 17
device-keyed, 5, 25 DRM, see digital rights management

user-input, 5, 26
schema, 21-25
Append, 22
Authentication, 21, 21
Authlnfo, 5, 11, 22, 23, 23
ConfirmationValue, 24, 24
Hint, 22, 24, 25
InputVector, 23
Mechanism, 5, 8, 21, 22, 22, 25, 28, 50

editing, 13

encryption, 13
ds:KeylInfo, 13
ds:RetrievalMethod, 48
xenc:EncryptedKey, 3
xenc:RetrievalMethod, 50

ePub, 1

implementation requirements, 48-51

Next, 22 authentication, 48-49
Prompt, 22, 24, 25, 26 content signing, 49, 50
Type, 23 encryption, 49
UserDisplayValue, 24, 24 rights management, 50-51
transforms, 30-31 ISBN, 28
MAC addresses, 31
case-fold, 30 KEK, see key encryption key
kana, 31 key encryption key, 3, 10, 18, 22, 23, 26, 27,
text encoding, 31 30, 42, 48, 50
Transparent Authentication, 5
transparent key types, 26-30 lending, 14
email, 27 libraries, 14

MAC address, 27
password hash, 27
publication identifiers, 28
serial number, 27

password, 3

printing, 14

processing instructions, 53-61
authorization, 53

certificate chains, 9 date range xpath, 60
content files rights evaluation, 56
authentication.xml, 4, 5 sharing evaluation, 59

content signing signature verification, 54

INDEX 75

rights, 14, 32-45 usage overview, 16—17
editing, 18 watermarking, 14, 17, 27
examples, 18-20 root of trust, 9
lending domains, 45
open, 45 schema}sl, 63.—70'
right specifiers, 44-45 a}lt entication, 63
. rights, 65
copying, 44 harine. 14
editing, 45 shanng,
.. signature, 10-13
printing, 44))
. authored content verification, 11
quoting, 44 . . .
. distributed content verification, 11
reading, 44
schema, 32-43 watermarking, see rights — watermarking

Amount, 40, 40

Authorization, 37, 43
Consumption, 36, 39, 39, 40, 42
ConsumptionAmount, 35, 35, 40
Counter, 33, 33

Duration, 32, 32, 34
EligibilityDelimiter, 42, 42
EligibilityPeriod, 19, 36, 41, 41-43
End, 41

ExcludedContent, 36, 37, 38, 45
Fragment, 38, 38

LifetimeLimit, 36, 37, 40, 43, 44
LimitType, 33, 33

Manifest, 38, 38

MaxDuration, 43

MinDuration, 43

Right, 35, 36, 36, 39

Rights, 35, 35

Sharinglnfo, 16, 20, 35, 42, 42, 50
Start, 41

Status, 36, 38, 40

Timestamp, 40, 40

Unit, 33, 35

unit types, 33

UnitType, 33, 33, 36, 37, 40
Uselnfo, 39, 39

	Proposal Information
	Preamble
	Editorial and Conformance Conventions
	Namespaces and Identifiers

	Overview
	Authentication
	Authentication Mechanisms

	Certificate Chains and Root of Trust
	Content Signing
	Nested Signatures

	Content Encryption
	Rights Management
	Usage Information
	Watermarking
	Editing
	Examples

	Authentication Protocol Details
	Authentication Core Syntax
	The Authentication Element
	The Mechanism Element
	The AuthInfo Element
	The ConfirmationValue Element
	The UserDisplayValue Type
	The Prompt Element
	The Hint Element

	Mechanism Specifiers
	Device-Keyed Authentication
	Account-Keyed Authentication
	User-Input Authentication

	Transparent Key Specifiers
	MAC Address
	Device Serial Number
	Email Account
	Account Password Hash
	Publication Identifiers

	Additional XML Transforms
	Case Folding
	Japanese Ideograph Canonicalization
	Character Encoding
	MAC Formatting

	Rights Core Syntax
	Rights Management Core Syntax
	The Duration Simple Type
	The Counter Simple Type
	The LimitType Complex Type
	The UnitType Attribute Type
	The ConsumptionAmount Element Type
	The Rights Element
	The Right Element
	The Authorization Element
	The LifetimeLimit Element
	The ExcludedContent Element
	The Manifest Element
	The Fragment Element
	The Consumption Element
	The UseInfo Element
	The Timestamp Element
	The Amount Element
	The Status Element
	The EligibilityPeriod Element
	The EligibilityDelimiter Type
	The SharingInfo Element

	Right Specifiers
	Printing
	Copying
	Social Sharing
	Reading
	Editing

	Lending Domains
	Open Domain

	Index of Requirements
	Authentication
	Content Signing
	Encryption
	Rights Management

	Processing Instructions
	Authorization Core Algorithm
	Signature Verification
	Rights Evaluation
	Sharing Evaluation
	Date Range Evaluation XPath Expression

	Proposed XML Schemas
	The LCP-AUTH Schema
	The LCP-RIGHTS Schema

	References
	Index

