Understanding Bidirectional (BiDi)

Text in Unicode

By Cal Henderson, March 1st 2009.

9%

The Basics

A little-understood comer of Unicode is its handling
for bidirectional text (The spec is a little dry). While
English languages are read left-to-right, plenty of
scripts (notably Arabic and Hebrew) are read from
right to left. When only a single direction of text is
used in a document, it's fairly straight forward, but
when texts with different directions are mixed in one
document, some difficulty arises in determining
direction. This document attempts to explain how
bidirectional text in Unicode works and what this
means for the web.

In the Unicode standard, characters have a
representational order in memory (which English
speakers tend to think of as left to right, but is really
start-to-finish in a file), which the bidirectional
algorithm then operates on to determine the display
characteristics. If a file contains the codepoint for A
(U+0041) followed by the codepoint for B (U+0042),
they will be displayed with the A to the left of the B.
If a file contains Arabic Alef Wasla (U+0671) followed
by Arabic Tteh (U+0679) then the Alef Wasla wiill
appear on the right and the Tteh on the left.

13%

Note: Many of the examples in this article will only
work on browsers which support bidirectional
rendering and have a font which supports Arabic.

Arabic Alef Wasla U+0671 |

Arabic Tteh U+0679

(v

-n

&,

U+0671 followed by U+0679

But how does this work? Not magic, but science.
Every code point in the Unicode standard has a
directionality assigned to it, along with a strength.
The Latin characters A and B are Strong Left-to-
Right (LTR), while the Arabic characters used in the
example are Strong Right-to-Left (RTL). This tells the
renderer how to order them for display.

18%

The Weak Characters

The Strong characters are easy, but the complexity
comes around the Weak ones (There are also some
Neutral characters, but they are things like
whitespace and punctuation and they take direction
from their surroundings). Weak characters have a
direction which is used when they appear alone, but
they take on special powers when embedded in
Strong characters in the opposite direction - they
don't create a directional boundary, so the
surrounding characters keep their ordering. For an
example, we'll introduce a third Strong Right-to-Left
character, the Arabic Nyeh (U+0683) and use some
Weak Left-to-Right characters, 3 (U+0033) and 7
(U+0037).

Arabic Nyeh U+0683 z

U+0671 'A' 'B' U+0679 U+0683 | |AB5

-
n_.

U+0671 '3' '7' U+0679 U+0683 @371‘

25%

Where the Strong characters meet in the first
example, the text is split into three separate blocks
and each is then rendered (the last two characters
are rendered RTL). When Strong meets Weak, the

Weak characters are rendered in order (LTR), but the
Strong characters remain a single block, rendered
RTL.

But hey, something here is missing. What happens if
we have an A followed by a Nyeh. They are both
Strong, so we render them separately. But once

we've decided how these blocks render (easy! they

only contain one character), what determines their
display order? That's done by the document order,
which is LTR by default on this page. We can change
that in HTML by using the dir="rt1" attribute.
Let's see what happens (I've thrown in a B so you
can see that groups of Strong characters always
maintain their order locally).

A B U+0683
dir="1tr" ABE':

A B U+0683
dir="rtl" EAB

29%

Implicit Markers

Ok! So far so easy. There are some complications,
however, when we embed one direction of text in
another. Imagine we want to embed an Arabic quote
in English text. Our Arabic quote (for simplicity) is
"Alef Wasla, Tteh, Exclamation Mark, Nyeh". Our
English text is 'he said "quote” to her'. The code
points for this are pretty simple and the result is as
you might expect.

he said "U+0671 U+0679 | he said "1&|
| U+0683" to her I
z toher

The whole Arabic quote is RTL, with an embedded
exclamation mark (It's a Neutral, so doesn't have any
ordering). But what happens if we remove the Nyeh
and leave the exclamation mark on the end?

he said "U+0671 he said "&[!"
U+0679 !" to her tO her

37%

The exclamation mark isn't RTL and isn't embedded
in the Strong RTL characters, so it inherits direction
from the document. This is where the implicit marker
characters come in - Left-to-Right Mark (U+200E,
LRM) and Right-to-Left Mark (U+200F, RLM). They
act as zero width characters with Strong direction, so
that Neutral and Weak characters between them and
the Strong characters are included in the Strong
character block. Let's put one after the exclamation
mark in the above example and see what happens.

he said "U+0671 U+0679! | he said
U+200F" to her “!bT" tO her

Excellent! Implicit markers are the recommended
way to hint about the direction of Neutral characters
in bidirectional documents.

40%

Explicit Markers

There are two more kinds of direction marker in
Unicode - the Embeds and the Overmrides. The
embeds are the easiest and we'll deal with those
first.

Left-to-Right Embedding (U+202A, LRE) and Right-
to-Left Embedding (U+202B, RLE) are used to mark a
block of text as having a direction, much like the
overall document direction. This then affects Weak
characters at the boundaries which would have
otherwise taken direction from the document. An
embedded block is terminated with a Pop-
Directional-Formatting (U+202C, PDF). As the name
implies, this character 'pops' the state - each LRE
and RLE pushes a state change onto a stack and
each PDF pops one state from the stack (always the
most recently pushed state). This allows nested
blocks. For example:

start{LRE}foo{RLE}bar{PDF}baz{PDF}end

start U+202A foo U+202B bar U+202C baz
U+202C end

47 %
e .

startfoobarbazend

In this example, start and end are outside any
embedding, foo and baz are in a Left-to-Right
embedding and bar is in a Right-To-Left embedding.
Embedding blocks can be used in place of LRM and
RLM markers to ensure that punctuation and other
Neutrals are displayed in the correct order if you
know that an entire span of text needs to have a
certain direction. Use of these embeddings, however,
is discouraged. Because every push must be
matched by a pop, this can lead to confusing
situations when they are not fully balanced.

The second form of explicit markers are the overrides
- Left-to-Right Override (U+202D, LRO) and Right-to-
Left Override (U+202E, RLO). These work in much
the same way as the Embeddings, pushing state
onto the stack which must be popped with a PDF
character. However, the way they affect text within
them is to override the directionality to be Strong in
the indicated direction. The purpose is to allow
things like mixed English and Arabic numbers and
maintain a single direction, but they can also be used
to redirect Strong characters:

51%

U+202E A B C U+202C CBA

U+202D U+0671 U+0679 U+0683 —
U+202C

~

There isn't often any call to use these ovemides, and

their use is discouraged for the same reason as the

embeddings - they must be balanced correctly with
PDFs.

56%

Bidirectional Text in a Nutshell

So there you have it. Unicode mostly takes care of
the direction of text itself, by assigning directions
and strengths to every character. If you know that
your text is mostly RTL, then set dir="rt1" on your
<body> element to ensure that Neutrals at the
borders of Strong character blocks are treated
correctly.

In some odd situations with embedded text with a
different direction, we can use the implicit markers
(U+200E and U+200F) at the start and end of the
embedded text to make sure any Neutral characters
at the borders are set in the cormrect direction. We
could also use embeddings, but these are harder to
use.

If we want even greater control, changing the
direction of non-Neutral characters, we can use
overrides. This is rarely necessary, however.

61%

Filtering User Input

When we write a web-based application which
accepts Unicode text, we need to be careful about
the sequences of codepoints we allow. This is even

more so the case for bidirectional text.

The implicit markers are not generally a big worry,
because they only affect Weak and Neutral
characters that sit adjacent to the user-entered text.
Let's imagine an example, on a LTR site, where we
let users choose a usemame and then we embed it
in an English sentence: "Hello {usemame}, how are
you?". There is a Neutral comma after the usemame,
but any RLM in the name will not affect it since it's
adjacent to the Strong LTR 'h' and the document
order is LTR. Let's take a look:

Usemame: U+0671 U+0679 U+200F

Hello =T, how are you?

The marker here has no effect. We can safely ignore
markers in input text - they can be used to control

68%

-

Neutrals and blocks of Weak characters within the
input text, but won't affect text surrounding it.

However, the embedding markers will affect Neutrals
that follow them. Let's use the above example, but
instead use a RLE at the end of the usemame.

Usemame: U+0671 U+0679 U+202B

-5

Hello how are you? ,&

This treats the rest of the sentence as an embedded
RTL block. It doesn't go past the block (pushed
states only last until the end of the paragraph), but it
still messes up our display. The explicit ovemride
markers cause even more trouble.

Usemame: U+0671 U+0679 U+202E

Hello ?uoy era woh , &0

Here, not only does it apply RTL to the rest of the

1%

sentence, but it overrides the direction of our Strong
English characters. Slightly trippy to see this on your
website, but ultimately bad. So what can we do?
Well, we could disallow these explicit characters
(U+202A-U+202E) which is pretty easy. This does
mean that anybody who wants to use them to
include Neutrals at the edges of their Arabic
usemames will be out of luck - and that sucks more
when it's a comment they're posting, where the
period jumps to the 'beginning’ of the text.

If we want to allow use of these characters, the
solution is fairly simple (if hard to implement): we
need to make sure that every opening marker has a
paired closing marker (PDF) so that the state stack
coming out of the string is at the same state as when
we went in. We also need to be careful that we don't
allow any PDFs to be used without accompanying
push markers, else we can't use any ourselves
outside of the block.

T4%

PHP Filtering Code

Here's a PHP function which does just that when
given a UTF-8 encoded string. It's probably not the
best way to do it, but it works:

function unicode cleanup rtl($data){

#
LRE - U+202A - OxEZ2 0Ox80 OxAA
RLE - U+202B - OxE2 Ox80 OxAB
LRO - U+202D - OxEZ2 Ox80 OxAD
RLO - U+202E - OxEZ2 Ox80 OxAE
#
PDF - U+202C - OxE2 O0x80 O0xAC
#
$explicits = '\xE2\x80\xAA|
\xE2\x80\xAB | \xE2\x80\xAD | \xE2\x80\xAE "' ;
$pdf = '\xE2\x80\xAC'

-
¥

preg match all("!$explicits!",
$data, $ml, PREG OFFSET CAPTURE | PREG_S
ET ORDER);
preg match all("!$pdf!",
$data, $m2, PREG OFFSET CAPTURE | PREG_S
ET ORDER);

81%

82%

$data

if (count($ml) || count($m2)){

$p = array();

foreach ($m1 as $m){ $pl
$m[0][1]] = 'push'; }

foreach ($m2 as $m){ $p[
$m[O0][1]] = 'pop'; 1}

ksort ($p);

$offset = 0;
$stack = 0;
foreach ($p as $pos => §

type){
if ($type == 'pu
sh'){
$stack++
’ }else{
if ($sta
ck){
$stack--;
}else{

we have a pop without a push - remove

it

substr($data, 0, $pos-$offset)

.substr($data, $pos+3-$offset);

$offset += 3;

}
}
now add some pops 1if vy

our stack is bigger than 0
for ($i=0; $i<$stack; $i

++){
$data .= "\xE2\x
80\xAC";
}

return $data;

}

return 3$data;

}

The function works by finding the positions of every
push and pop marker in a string, sorting them into an
ordered list then going through them one by one,
keeping track of the stack size. If we see a PDF
when the stack is empty, we remove it. If we reach
the end of the string and the stack isn't empty, we
append PDFs until it is.

With this function, we can accept RTL user data and
safely display it in a LTR site (or vice-versal) and

84%

know that it won't change direction of any of our own
text. Of course, there's plenty of other bad stuff we
still need to filter out :D

100%

	Disque local
	Understanding Bidirectional (BIDI) Text in Unicode

