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• Introduce the notion of margin and support vectors working out directly from the formulation of the
classification problem.

• Objective: build classifiers for data, that is Algorithms for partitioning the data.

• Two main approaches:

– Statistical(parametric/classical): Data to be classified comes from a population whose underlying
distribution (its parameters) are known: this means that we know the probability density/mass
function which can be used for classification of a new data point. However, in real world problems
we do not know the distribution underlying the data. In fact in theoretical studies of proba-
bility/statistics this is a much researched problem. We can say that it is a (machine) learning
problem;

– Non-parametric: Given known classifications (training data) =⇒ derive a rule (decision func-
tions) for classifying unknown/new data points: g(x) In a two class problem we have:







g(x) = 0 boundary
g(x) > 0 class 1
g(x) < 0 class 2

(1)

• We will be concerned with the Non-parametric case.

1 Linear Classifiers

To begin with, we will be concerned only with linear classifiers. This means that we start by assuming that
the data set is linearly separable.

Then, in the case when this is not true, the data set is NOT linearly separable, we will use a device which
makes this data linearly separable. This device maps data implicitly into a higher dimension where it becomes
linearly separable.

In the case of linear classifiers the decision function g(x) is linear in x, that is

g(x) = sign(w · x + b) (2)

where sign (signum)is defined as

sign(a) =







−1 if a < 0
0 if a = 0

+1 if a > 0

The job of the classifier is to find the weight vector w and the constant term b (bias).
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2 Example

Consider the data from figure 1
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Figure 1: A two class example set

How do we separate the two classes represented there? Figure 2 shows three decision functions (lines) for
separating these points.
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Figure 2: Three decision functions (lines) for the data in Figure 1.

Obviously there are infinitely many such decision functions for this data set!!!! So, the question that
arises is which is the best decision function and how to determine it.

The use to the word best suggest that we must come up with some criterion with respect to which a
solution (here a decision function) is judged to be best.

3 Margin

To do this we introduce the concept of margin. Informally we will define the margin as follows: let w · x + b

be the boundary. Then the margin is the width by which the boundary can be increased before hitting a
data point, illustrated in Figure 3.

The data points hit by the margin are called support vectors. Obviously for each decision func-
tion/boundary we have different margins and therefore possibly different support vectors. The maximum
margin linear classifier is the classifier with the largest/widest margin. The resulting classifier is called
Linear Support Vector Machine (LSVM), the simplest kind of SVM.

Next we need to actually find the classifier, which means finding w and b in equation (2).

Remark 1 It is fair to ask why we look for the maximum margin. There are answers both from intuitive point
of view and from theoretical point of view. From intuitive point of view:
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Figure 3: Margin for a two class example set

• it looks like this will give the best behavior with respect to possible mistakes (best generalization error)
for both classes;

• experimental results showed that this works VERY well;

• the model is immune to removal, addition to data points which are outside the margin;

From theoretical point of view the arguments come mainly from the PAC/VC dimension learning theory.

The planes delimiting the margin are actually very similar to the boundary, as shown in figure 4. Let
Dc(x) ≡ w · x + b = c.







the +1 plane: D+1(x)
boundary: D0(x)
the -1 plane: D−1(x)

(3)
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Figure 4: Sketch of D0(x),D+1(x),D−1(x)

The classification is then done according to the following rules: For the unknown vector x0

Class(x0) =







+1 if w · x + b ≥ 1
−1 if w · x + b ≤ −1
can’t tell if −1 < w · x + b < +1

(4)

4 Computing the margin

We want to compute the margin width, M , in terms of w and b.
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Claim 1 The vector w is perpendicular on both D+1 and D−1.

It is easy to see this from computing w · (u − v) for each case, u,v ∈ D+1, and u,v ∈ D−1.
Next let u− ∈ D−1 an arbitrary vector (need not be support vector). Let u+ ∈ D+1 nearest to u−:

Obviously this is on the perpendicular from u− on D+1.

Claim 2 There exists λ such that
u+ = u− + λw

Since the line connecting u+ and u− is perpendicular on all the planes, and w is also perpendicular, to
get from u− to u+ one has to travel some distance in the direction w.

Thus we have
M = |u+ − u−| = u− = |u− + λw − u−| = |λw|

w · u+ + b = +1
=⇒ w · (u− + λw) + b = +1
=⇒ −1 + λw · w = 1
=⇒ λ = 2

w·w

Thus

M = λ|w| = λ
√

w · w =
2
√

w · w
w · w =

2√
w · w

The next issue is how to learn the maximum margin linear classifier. There are several approaches. We
will pursue that using Quadratic Programming(QP).

5 Quadratic Programming

Constrained optimization problems:

• Objective function: the function to be optimized (maximize)

• Constraints: inequalities / equalities

When the objective function is quadratic (degree 2) we call this quadratic optimization problem.
A trivial (quadratic) optimization problem subject to constraints: find the maximum area that can be

surrounded by a fence of fixed length(l): Let L, W be the unknown length and the width of the area we are
looking for: A = L × W . We know that 2(L + W ) = l. The optimization problem is

Maximize A = L × W

subject to
2(L + W ) = l

From the formula for the margin, M = 2
√

w·w
it follows that to maximize M we need to minimize

√
w · w,

or equivalently
Minimize w · w

which is a quadratic (degree 2) expression. Now this minimization is subject to the conditions that the
training points must be correctly classified. That is, if x+ is in the positive class, it must satisfy

D+1(x) = w · x + b ≥ +1

and if it is in the negative class, then

D−1(x) = w · x + b ≤ −1

Now denoting by y = ±1 the label for x in each case, and multiplying the corresponding D with it we obtain
the expression

y(w · x + b) ≥ 1
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Thus, given n training points, we will have the constraints

yi(w · xi + b) ≥ 1 for i = 1, . . . , n

To summarize then, our quadratic programming problem is

Minimize ||w||
subject to
yi(w · xi + b) ≥ 1 for i = 1, . . . , n

5


