First extensive testing of noise addition was due to Spruill (Spruill, 1983). (Brand, 2002) gives an overview of these approaches for noise addition as well as more sophisticated techniques. (Domingo-Ferrer *et al.*, 2004) also describes some of the existing methods as well as the difficulties for its application in privacy. In addition to that, there exists a related approach known as multiplicative noise (see e.g. (Kim and Winkler, 2003, Liu *et al.*, 2006) for details).

## PRAM

PRAM, Post-RAndomization Method (Gouweleeuw *et al.*, 1998), is a method for categorical data where categories are replaced according to a given probability.

Formally, it is based on a Markov matrix on the set of categories. Let  $C = \{c_1, ..., c_c\}$  be the set of categories, then *P* is the Markov matrix on *C* when  $P : C \times C \rightarrow [0, 1]$  such that  $\sum_{c_j \in C} P(c_i, c_j) = 1$ . Then, *X'* is constructed from *X* replacing, with probability  $P(c_i, c_j)$ , each  $c_i$  in *X* by a  $c_j$ .

The application of PRAM requires an adequate definition of the probabilities  $P(c_i, c_j)$ . (Gouweleeuw *et al.*, 1998) proposes the Invariant PRAM. Given  $T = (T(c_1) \dots T(c_c))$  the vector of frequencies of categories in *C*, it consists of defining *P* such that frequencies are kept after PRAM. That is,  $\sum_{i=1}^{c} T(c_i)p_{ij} = T(c_j)$  for all *j*. Then, assuming without loss of generality  $T(c_k) \ge T(c_i)$  for all *i*, and given a parameter  $\theta$  such that  $0 < \theta < 1$ ,  $p_{ij}$  is defined as follows:

$$p_{ij} = \begin{cases} 1 - (\theta T(c_k)/T(c_i)) & \text{if } i = j \\ \theta T(c_k)/((k-1)T(c_i)) & \text{if } i \neq j \end{cases}$$

Note that a  $\theta$  equal to zero implies no perturbation, and  $\theta$  equal to 1 implies total perturbation. So,  $\theta$  permits the user to control the degree of distortion suffered by the data set.

(Gross *et al.*, 2004) proposes the computation of matrix *P* from a preference matrix  $W = \{w_{ij}\}$  where  $w_{ij}$  is our degree of preference about replacing category  $c_i$  by category  $c_j$ . Formally, given *W* the probabilities *P* are determined from the following optimization function:

Minimize  $\sum_{i,j} w_{ij} p_{ij}$ Subject to  $p_{ij} \ge 0$  $\sum_j p_{ij} = 1$  $\sum_{i=1}^{c} T(c_i) p_{ij} = T(c_j)$  for all j

(Gross *et al.*, 2004) use integers to express preferences, and  $w_{ij} = 1$  is the most preferred change,  $w_{ij} = 2$  is the second most preferred changes, and so on.

## Lossy Compression

This approach, first proposed in (Domingo-Ferrer and Torra, 2001a), consists of viewing a numerical data file as a grey-level image. Rows are records and columns are attributes. Then, a lossy compression method is applied to the *image*, obtaining a *compressed image*. This *image* is then decompressed and the *decompressed image* corresponds to the masked file.

Different compression rates lead to files with different degrees of distortion. I.e., the more compression, the more distortion. (Domingo-Ferrer and Torra, 2001a) used JPEG, which is based on DCT, for the compression. (Jimenez and Torra, 2009) uses JPEG 2000, which is based on wavelets.