
ReVive: Cost-Effective Architectural Support for Rollback Recovery
in Shared-Memory Multiprocessors *

Milos Prvulovic, Zheng Zhang:~ t, Josep Torrellas
Univers i ty o f I l l inois at U r b a n a - C h a m p a i g n

Hewle t t -Packa rd Labora to r i es

h t tp : / / i acoma.cs .u iuc .edu

Abstract

This paper presents ReVive, a novel general-purpose rollback
recovery mechanism for shared-memory multiprocessors. ReVive
carefully balances the conflicting requirements of availability, per-
formance, and hardware cost. ReVive performs checkpointing,
logging, and distributed parity protection, all memory-based. It
enables recovery from a wide class of errors, including the perma-
nent loss of an entire node. To maintain high performance, ReVive
includes specialized hardware that performs frequent operations in
the background, such as log and parity updates. To keep the cost
low, more complex checkpointing and recovery functions are per-
formed in software, while the hardware modifications are limited
to the directory controllers of the machine. Our simulation results
on a 16-processor system indicate that the average error-free ex-
ecution time overhead of using ReVive is only 6.3%, while the
achieved availability is better than 99.999% even when the errors
occur as often as once per day.

1 Introduction

Cache-coherent shared-memory multiproeessors are seeing wi-
despread use in commercial, technical, and scientific applications.
In recent years, fault-tolerance has become an increasingly impor-
tant feature of such systems. In some commercial applications,
high availabilizy is needed, as business transactions are being pro-
cessed by the system. Some applications execute for a long time
and require a highly reliable execution environment. Examples
of such applications are those that mine large data sets and many
simulations. Unfortunately, both availability and reliability are dif-
ficult to achieve in modern large systems. Improvements in silicon
technology result in smaller feature sizes, while power dissipation
constraints result in lower operating voltages. Both of these make
modern integrated circuits prone to transient and permanent faults.
In large systems the problem is worse, as those systems contain
many interacting components that must all operate correctly.

To deal with these problems, much work has been done in er-
ror recovery. Typically, error recovery mechanisms are categorized
into Forward and Backward Error Recovery (FER and BER). With
FER, hardware redundancy is added to the system, which makes
it possible to determine the correct outcome of an operation, even

*This work was supported in part by the National Science Founda-
tion under grants CCR-9970488, EIA-0081307, EIA-0072102, and CHE-
0121357; by DARPA under grant F30602-01-C-0078; and by gifts from
IBM, lntel, and Hewlen-Packard.

"tCurrently at Microsoft Research Asia: zzhang@microsoft.com.

if one (or more) of the participating devices fails. It is possible to
design cost-effective FER that targets only a single device, such
as the processor core [3, 28, 30]. However, general-purpose FER
is not cheap. The most popular such method is triple-modular re-
dundancy (TMR), in which each operation is performed by three
identical devices and a majority vote decides the correct result. For
most systems, the cost of TMR is prohibitively high. BER, also
called rollback recovery or checkpointing, can be used in such sys-
tems. With rollback recovery, the system stores information about
its past state. When an error is detected, this information allows the
system to be restored into a previous error-free state. The main ad-
vantage of BER is that no hardware replication is required. How-
ever, it has three disadvantages: the performance overhead during
error-free execution, storage overhead, and the higher recovery la-
tency.

In this paper, we present ReVive, a novel, cost-effective scheme
for rollback recovery in shared-memory multiprocessors with dis-
tributed memory. ReVive is compatible with off-the-shelf proces-
sors, caches, and memory modules. It only requires modifications
to the directory controllers of the machine, to perform memory-
based distributed parity protection and logging in the background.
Both hardware and storage requirements are very modest.

ReVive has both good error-free performance and quick recov-
ery from a wide class of errors, including permanent loss of an
entire node. Our experiments with 12 applications on a simulated
16-processor system show that the average overhead of error-free
execution is only 6.3%. When an error occurs, the system is un-
available for less than half a second on average, including the cor-
rect work lost due to the rollback. The resulting availability is
better than 99.999%, even when errors occur as often as once per
day.

This paper is organized as follows: Section 2 presents a novel
taxonomy of BER schemes for multiprocessors; Section 3 presents
the design of ReVive; Section 4 explains some implementation is-
sues in ReVive; Section 5 presents our evaluation setup; Section 6
contains the evaluation; Section 7 describes related work; finally,
Section 8 concludes.

2 BER in Multiprocessors: A Taxonomy

To understand the design space of BER schemes, we have de-
signed a taxonomy that classifies the schemes according to three
axes: how checkpoint consistency is achieved, how the separation
between the checkpoint and the working data is done, and how
checkpoint storage is protected from errors. Figure 1 shows the
resulting design space. We now consider each axis in turn.

1063-6897/02 $17.00 © 2002 I E E E 111

.... ~ ~ ReVive

Separation ..,,"" ...':'"

F Logging f" i
I i -:S~ sk Storage

Partial [Renaming .: ~

I
[__ Buffering ~x.¢5 kxxx~...::,J

..... ..'

/ ' ~ . , . ,. Y , Consistency
,'" I I

Global I Coordinated Uncoordinated I

Local

Figure 1. Design space of multiprocessor BER schemes.

2.1 Checkpoint Consistency

Since threads executing on different processors interact with
each other, they may create recovery dependences: when one pro-
cessor is rolled back, it may be necessary to also roll back other
processors. To maintain checkpoint consistency, three approaches
are used:

Global. All processors periodically synchronize to create a sin-
gle, global checkpoint [8, 13, 14, 15, 20, 21]. This is the simplest
approach.

Coordinated Local. Each processor periodically creates a local
checkpoint of its own state. If the processor has been interacting
with some other processors, then those other processors are forced
to create their own checkpoints at the same time [1, 4, 5, 25, 32].
The advantage is that independent computations do not synchro-
nize for checkpointing, while a disadvantage is that interactions
must be recorded.

Uncoordinated Local. Each processor periodically creates local
checkpoints. Interactions between processors are recorded but do
not affect checkpoint creation. At recovery time, however, local
checkpoints and interactions are used to find a consistent recovery
line. This approach allows synchronization-free checkpointing,
but runs the risk of the domino effect [22]. Uncoordinated check-
pointing is mostly used in loosely-coupled systems, where com-
munication is infrequent and synchronization expensive [6, 7, 26].
However, it has also been used in tightly-coupled systems [27].

2.2 Checkpoint Separation

We group schemes into four classes based on how checkpoint
data is separated from working data.

Full Separation. Checkpoint data is completely separate from
working data [4, 6, 26]. A naive way to establish a checkpoint is
to copy the entire state of the machine to another area. A better
way is to realize that much of the machine state does not change
between checkpoints. Thus, establishing a new checkpoint con-
sists of merely updating the old one, by copying into it the state
that has changed since the old checkpoint was established. There
are other optimizations to reduce copying, such as m e m o r y exclu-
sion [18].

Partial Separation with Buffering. With partial separation,
checkpoint data and working data are one and the same, except

for those elements that have been modified since the last check-
point. Consequently, less storage is needed [21]. With buffer-
ing, the modified elements are accumulated in a buffer, typically a
cache or a write buffer [1, 5, 32]. When a new checkpoint is cre-
ated, the main state of the machine is typically updated by flushing
the buffer into main memory. While checkpoint generation may
be regularly scheduled, it may also be asynchronously triggered
by buffer overflow.
Partial Separation with Renaming. When a checkpoint is es-
tablished, all state is marked as read-only. An update to a page
causes the page to be copied to a new location, which is marked as
writable and mapped into the working state in place of the original
page. The original page is no longer part of the working state but
remains in the checkpoint state. When a new checkpoint is estab-
lished, all such pages are garbage-collected [8, 15, 20]. In COMA
machines, this approach can be used at the granularity of memory
lines [14, 15].
Partial Separation with Logging. Logging does the opposite of
renaming: the old, checkpoint value, is copied to a log, while the
original location is modified and remains part of the working state
[13, 25, 27, 32]. As a result, logging does not require support to
map and unmap pages or memory lines into and out of the work-
ing state. This makes logging more suitable to fine grain copying,
which minimizes fragmentation. Typically, the log is a contigu-
ous structure which contains data that is needed only for rollback
recovery to a previous checkpoint. Once a new checkpoint is es-
tablished, the log space can be easily reclaimed without requiring
garbage collection mechanisms.

Different separation mechanisms may be used for different
parts of a machine's state. For example, both buffering and log-
ging are used in [32].

2.3 Checkpoint Storage Protection

Finally, we group schemes into three classes based on how the
checkpoint storage is protected from errors:
Safe External Storage. The checkpoint is stored in external stor-
age that is assumed to be safe [6, 26]. Typically, such storage is a
disk array. Since RAID can be used to protect disks against most
common errors [17], the assumption of safety is reasonable.
Safe Internal Storage. The checkpoint is stored in main mem-
ory or other internal storage and made safe through redundancy
across the nodes. Checkpoint state can be restored even if storage
on a limited number of nodes (typically one) is damaged. In some
systems, safe internal storage is provided by duplication of Check-
point data in main memory [5, 8, 14, 15]. Alternatively, it can be
provided using N + 1 parity. In this case, lost checkpoint data in
a node can be recovered by examining the memories of the other
N nodes [20, 21]. Checkpointing to main memory is much faster
than checkpointing to external storage [21].
Specialized Fault Class. The checkpoint storage is not pro-
tected with redundancy across nodes. However, the system is
not expected to recover from faults that can damage that stor-
age [1, 4, 13, 25, 27, 32]. For example, a design for recovery from
processor errors can keep the checkpoint in caches or memory
without redundancy, while a system designed for recovery from
cache errors can keep the checkpoint in main memory.

Overall, designs using safe external storage can recover from
even the most general fault, namely loss of the entire machine. The

112

designs using safe internal storage cannot recover if more than a
certain number (typically, one) of internal storage components are
faulty. Finally, the designs with a specialized fault class cannot
recover from even a single error that makes any checkpoint storage
component unavailable.

3 ReVive Des ign

This section presents our cost-effective design for rollback re-
covery. We first discuss the choice of design point (Section 3.1),
then describe the mechanisms supported (Section 3.2), and finally
explain our choice of parameters for the design (Section 3.3).

3.1 Choice of Design Point

Our goal is a cost-effective general-purpose rollback recov-
ery mechanism for high-availability and high-performance shared-
memory multiprocessors. Cost-effectiveness implies that only a
modest amount of extra hardware can be added. General-purpose
implies recovery from a wide class of errors, including permanent
loss of an entire node. High availability requires that system down-
time due to an error be short. Finally, high performance mandates
low overhead during error-free operation.

ReVive is compatible with off-the-shelf processors, caches, and
memorY modules used in modern multiprocessors. For example,
the SGI Origin 2000 [11] uses off-the-shelf processor chips, which
include caches and cache controllers, and can use off-the-shelf
DRAM modules. The major custom-designed components are the
directory controller, the network interface and the memory con-
troller. We keep our hardware modifications limited to the direc-
tory controller (Figure 2).

. , .

Node

Directory Ctrll~~~tJ

~ ~ Interconnect
Interface

J
Module Can recover from

[] Trans errors in N nodes
. , [] [] Trans + perm errors in 1 node

Figure,2. SealabM shared-memory multiproeessor with ReVive.

Our design choice is influenced by the availability require-
ments. The error frequency we expect is from once a day to once a
month [19]. To achieve reliability of 99.999%, our target system's
unavailable time due to an error should be no more than 864 mil-
liseconds 'for the high error frequency range and no more than 24
seconds for the low error frequency range.

In the rest of this section, we discuss which design point in
our taxonomy of Section 2 is most conducive to our goal, give an
overview of our solution, and then explain the types of errors from
which our scheme can recover.
Checkpoint Consistency: Global. Global schemes are the sim-
plest because they do not need to record interactions between

processors. Furthermore, they are suited to shared-memory ma-
chines, where processor communication and synchronization are
efficiently supported. For example, in the Origin 2000, 16 proces-
sors can synchronize at a barrier in 10/is [10].
Checkpoint Separation: Partial Separation with Logging. Par-
tial Separation schemes have low storage overhead and, because
they restore only a fraction of the working state, recover quickly.
Among these schemes, Logging is the most flexible. With Log-
ging, we can choose the checkpoint frequency; with Buffering,
buffer overflows trigger checkpoint generation. With Logging, we
perform fine-grain copying, which has low overhead and mini-
mizes memory fragmentation; with Renaming, the copying can
only be easily done in software at the page granularity. Finally, the
simplicity of logging allows an efficient hardware-assisted imple-
mentation through simple extensions to the directory controller.
Checkpoint Storage: Safe Internal Storage with Distributed
Parity. Given the low speed of disks, using external storage for
checkpoints typically induces a high recovery time. Furthermore,
it dictates a low checkpoint frequency to maintain tolerable over-
head under error-free conditions [21]. For this reason, we store
the checkpoint data in memory. However, since we target a broad
range of errors, we must assume that the contents of main memory
can be damaged and even a node can be lost. Consequently, we
protect memory with parity distributed across memory modules.
This scheme uses much less memory than mirroring. Addition-
ally, instead of having dedicated parity node(s) as in [20], we dis-
tribute the parity pages evenly across the system. This approach
allows all nodes to be used for computation and avoids possible
bottlenecks in the parity node(s). Finally, instead of updating the
parity in software at checkpoint creation time, we extend the di-
rectory controller hardware to automatically update the distributed
parity whenever a memory write occurs. This approach reduces
the overhead of creating a checkpoint.

3.1.1 Overview of Solution

During error-free execution, all processors are periodically in-
terrupted to establish a global checkpoint. Establishing a check-
point involves flushing the caches to memory and performing a
two-phase commit operation [23]. After that, main memory con-
tains the checkpoint state. Between checkpoints, the memory con-
tent is being modified by program execution. When a line of
checkpoint data in main memory is about to be overwritten, the
home directory controller logs its content to save its checkpoint
state. After the next checkpoint is established, the logs can be
freed and their space reused. In practice, sufficient logs are kept
to enable recovery across as many checkpoints as the worst-case
error detection latency requires.

When an error is detected, the logs are used to restore the mem-
ory state at the time of the last checkpoint that precedes the error.
The caches are invalidated to eliminate any data modified since the
checkpoint and the execution can proceed.

To enable recovery from errors that result in lost memory con-
tent, pages from different nodes are organized into parity groups.
Each main memory write is intercepted by the home directory
controller, which triggers an update of the corresponding parity
located in a page on another node. The parity information will
be used when the system detects an error that caused the loss of
memory content in one node (e.g., if a memory module fails or the

113

node is disconnected). Then, the parity and data from the remain-
ing nodes are used to reconstruct the lost memory content, which
includes both the logs and the program state. Logs are recovered
first. Then the regular rollback described above can proceed. Af-
ter that, normal execution can continue, while the remaining lost
memory is reconstructed in the background.

3.1.2 Types of Errors Supported

Error Detection Assumptions. In our system, we assume error
detection support that provides fail-stop behavior [23] for the Re-
Vive hardware in the directory controller (Figure 2). This can be
done with careful design and judicious use of replication in that
module. In addition, parity update messages and their acknowl-
edgments have to be protected by error detection codes. Finally,
the data paths in the memory controllers and memory modules also
have to use error detection codes. All of this is needed to detect
garbled parity or log updates before they damage the checkpoint
state. We do not make any additional fail-stop assumptions. Of
course, error detection latency must have an upper bound of no
more than a few checkpoint intervals, to keep the space require-
ments in the logs reasonably modest. Further discussion of error
detection mechanisms is beyond the scope of this paper.

Recovery from Multi-Node Errors . ReVive can recover from
multiple transient errors that occur in the white areas of Figure 2
in multiple nodes simultaneously. For example, consider a glitch
that causes a reset of all the processors in the system and the loss of
all cached data. This leaves the checkpoint and the logs in memory
intact, and so ReVive can recover. Another example when ReVive
recovery is possible is an interconnect glitch that damages several
in-transit messages in different parts of the network or network
interfaces. However, ReVivE cannot recover from multiple errors
that occur in the gray areas of Figure 2 in multiple nodes simul-
taneously. For example, two malfunctioning memory modules on
different nodes may damage a parity group beyond ReVive's abil-
ity to repair.

Recovery from One-Node Errors. ReVive can recover from mul-
tiple permanent or transient errors that occur in a single node. This
includes complete loss of an entire node. For example, this occurs
when a node's network interface permanently fails. In this case,
ReVive performs recovery of the lost memory and a rollback. An-
other example of a one-node error is a single faulty processor that
erroneously modifies memories in several nodes. After this error
is detected, a rollback to a past checkpoint restores the system.

3.2 Mechanisms in ReVive

The new mechanisms are hardware-based distributed parity
protection in memory and hardware-based logging. This section
describes these mechanisms plus how to perform a global check-
point and a rollback.

3.2.1 Distributed Parity Protection in Memory

In Section 3.1, we explained our decision to protect the check-
point data in main memory by using distributed parity. Techni-
cally, parity protection is needed only for checkpoint data, as re-
covery would overwrite non-checkpoint data with checkpoint con-
tents. However, in error-free execution non-checkpoint data later
becomes the new checkpoint data. We speed up the creation of a

Node 0 Node 1 Node 2 Node 3

Figure 3. Distributed parity organization (3+1 parity).

W R B (D ') ~ k ACK ACK(~)

W ~U)

Figure 4. Distributed parity update on a write-back. Messages
are numbered in the chronological order.

new checkpoint by protecting the entire main memory with dis-
tnbuted parity that is updated whenever the memory is updated. In
this way, the distributed parity is already up-to-date when a new
checkpoint is to be created.

Figure 3 shows how memory pages are organized into parity
groups (3 + 1 parity is shown). Figure 4 shows the actions per-
formed when a memory line is written-back to main memory. The
home directory controller intercepts the write-back request D ' . It
first reads the current contents D of the line from memory. Then
the new contents D ' are written. At this time, the write-back can
be acknowledged to the requester, if such an acknowledgment is
required, but the directory entry for the line stays busy. The par-
ity update U = D X O R D' is computed and sent to the home of
the parity. When it arrives there, the directory controller of the par-
ity's home node reads the previous parity P , computes the updated
parity P' = P X O R U = P X O R (D X O R D') , and stores
it back. Then, the parity update is acknowledged to the home of
the data. At such time, the directory entry for the memory line is
marked as no longer busy and other transactions for that memory
line can be processed.

Note that the same hardware can be used to support distributed
memory mirroring (maintaining an exact copy of each page on an-
other node). Mirroring is just a degenerate case of our parity pro-
tection mechanism, when one parity page is used to protect only
one data page. In that case, the two memory reads and and the
X O R operations in Figure 4 can be omitted.

Finally, we note that updating parity (or even mirroring) when-
ever data is written to memory would be prohibitively expensive
if performed in software. However, with our hardware implemen-
tation, these updates are performed in the background while the
processors continue program execution uninterrupted.

3.2.2 Logging

After a checkpoint is established, the checkpoint state consists
of all the data in main memory. Subsequent program execution
modifies this data. To prevent the loss of part of the checkpoint

114

(a)

Da ta~ \RDX ACK_~

I Data Log
Memory I

WRB(D') \ ~ A C K ACK(~)

~ (D ' L ~ t r l O ~ , - X O R ~ - - ~

(b) ~ ~ Memory

Figure 5. Logging and parity updates for (a) read-exclusive and
(b) write-back access to a line that has not already been logged
since the last checkpoint. Only the home node of both the data
and the log is shown.

state, we use logging. Before a line in memory is written for
the first time after a checkpoint, the previous content of the line
is logged. In this way, all checkpoint data that has been over-
written can still be found in the log. Like the parity updates in
Section 3.2.1, the logging is performed by our enhanced directory
controller.

Main memory is modified by write-backs of dirty lines. When a
write-back arrives at the homenode of the data, we check whether
this is the first modification of the line since the last checkpoint.
If it is, the previous content of the line is read from memory and
saved in the log before the new content of the line is written to
memory. Note that the log and the data are in the main memory
of the same node, and that both are protected by distributed parity.
The log and its parity must be fully updated before the data line
can be written.

Fortunately, most often we know that the block will be modified
before the write-back is received by the home. Requests like read-
exclusive or upgrade, which result from write misses in the cache
or write hits on shared lines, signal an intent to modify the block.
Figure 5(a) shows the operations performed by the hardware when
a read-exclusive (RDX) message is received by the memory for a
line that has not yet been logged since the last checkpoint. From
Figure 5(a) we see that the data can be supplied to the requester as
soon as it is read from memory. Alternatively, if an upgrade per-
mission is all that is needed, it can be granted immediately. The
logging is performed in the background by the directory controller.
The directory entry for the block stays busy until the acknowledg-
ment is received for the parity update. This ensures that no new
operation is started for this block until its log entry has been fully
created. When the write-back arrives, the line has already been
logged and the write-back proceeds as shown in Figure 4.

In some cases, the directory controller may not receive a read-
exclusive or upgrade message before it receives the write-back for
a line. For example, this occurs in uncached writes and when the
processor writes to lines in shared-exclusive state. In this case,
the operations on the log and the data are performed as part of
the same transaction. This case is shown in Figure 5(b). Note
that the second read to the line D in memory could be eliminated
if the contents read by the first read are cached by the directory
controller. In our evaluation we do not assume such support, as it
would require a small data cache in the directory controller.

A modified line only needs to be logged once between a pair of
checkpoints. To this end, the directory controller is extended with
one additional state bit for each memory line, which we call the
Logged (L) bit. This bit is used to detect whether a particular line
has already been logged. The L bits of all lines are gang-cleared
after each new checkpoint is established. The L bit of a line is set
when the line is logged, to prevent future logging of that line.

Table 1 summarizes the events that trigger parity updates and
logging, the actions performed, whether the actions are on the crit-
ical path of the processor's execution, the number of additional
memory accesses performed, the number of additional memory
lines accessed and the number of additional inter-node messages
required. As we can see, none of the actions directly affect the
processor's execution, although the most complicated and, fortu-
nately, least frequent case does result in delaying the acknowledg-
ment ofa writeback. We also see that, although the new operations
require 3 to 8 additional memory accesses, they access only 1 to
3 additional memory lines. The remaining additional accesses are
re-accessing already accessed memory locations. Furthermore, the
log is accessed in a sequential manner, and so is its parity. Re-
peated accesses to the same memory line and accesses to consecu-
tive lines can be performed very efficiently in modem DRAMs.

3.2.3 Establishing a Global Checkpoint

Parity updates and logging allow the machine to recover to a
previous checkpoint state. Establishing a new checkpoint essen-
tially commits the work done since the previous checkpoint. Be-
cause the main memory contains the checkpoint state, to create a
new checkpoint we must first ensure that the entire current state of
the machine is in the main memory. This is done by storing the
execution context of each processor to memory and writing-back
all dirty cached data to memory. Each processor waits until all its
outstanding operations are complete. Then, we atomically commit
the global checkpoint on all processors, which we do using a two-
phase commit protocol [23]: all processors synchronize, mark the
state as tentatively committed, synchronize again and fully com-
mit. After the new checkpoint is established, we can free the space
used by logs needed to recover to an old checkpoint that is no
longer needed. If the maximum detection latency is small, we keep
only two most recent checkpoints. This is needed because an er-
ror can occur just before establishing the newest checkpoint, but
be detected after it is already established. In that case we recover
to the second most recent checkpoint. For larger error detection
latencies we can keep sufficient logs to recover to as many past
checkpoints as needed. Support for that can be easily provided
without additional hardware modifications.

Figure 6 shows the time-line of establishing a global check-
point. The timing parameters are discussed in Section 3.3.

115

of Extra # of Extra # of Extra
Event Actions Critical Path? Memory Lines Network

Accesses Accessed Messages

Write-back to memory, Update data parity No, done after ack to CPU 3 1 2
already logged (L=1). Figure 4.
Read-exclusive or upgrade, Copy data to log No, done after reply to CPU 1 1 0
not yet logged (L=0). Figure 5(a). Update log parity No, done after_reply to CPU 3 1 2
Write-back to memory, Copy data to log No, but ack to CPU delayed 2 1 0
not yet logged (L=0). Update log parity No, but ack to CPU delayed 3 1 2
Figure 5(b). Update data parity No, done after ack to CPU 3 1 : 2

Table 1. Events that trigger parity updates and logging.

Execute Establish Checkpoint

-lOOms i 5 5 u s : - - I ms _ <20u_s} _

~ M M

Timer I [] Program Execution ~ Barrier

Interrupt I [] Cache Flush

Execute

-lOOms - I OOm.~ i

t 5

(5

(5

Time'-
Check

Figure 6. Time-line of establishing a global checkpoint.

Machine Unavailable Degraded
P q = i i Execution

_ lOOms _i 8 0 m s _ : _ 5 0 m s : - l O O m s i_ ~490ms _ i _ -20s _i

i i ~ | i

| iPha,e, Phase2| ,ho,e3 Phase4 i

~ L a t e n c y ; } Lost Logi i Lost Data =:

. . . . I [] Useful Work ~ Barrier
• Self Check, I

pomt Error Rerouting 1 ~ L ° s t W ° r k [~ R e V i v e R e c o v e r y]

Figure 7. Time-line of recovering from node loss.

3 . 2 . 4 R o l l b a c k

Finally, we examine the operat ions performed when an error is
detected and our rol lback mechan i sm is activated. Figure 7 shows
a t ime-l ine of recovery in the worst scenario, in which a node is
permanent ly lost jus t before a new checkpoin t is created I. W h e n
the error is detected, the Phase 1 of recovery involves test ing the
hardware and re-ini t ial izing it. This includes resetting the pro-
cessors, invalidat ing the caches and directory entr ies and, in case
of pe rmanen t errors, routing around the failed component . These

steps are outside the scope of this paper. Phase 2 involves using
the distr ibuted parity to rebuild the contents of the lost node ' s log.
This is needed only if the main memory contents of a node have
been damaged or lost. Phase 3 involves using the logs to restore the
main memory into a checkpoin t state (rollback). Pages to which
checkpoint data is restored are rebuil t on demand, using the dis-
t r ibuted parity. At the end of Phase 3, parity groups affected by

losing a node are marked as inaccessible and the program execu-
t ion can continue. Figure 7 also shows barriers at the end of phases

2 and 3.
Recovery is not complete when the program execut ion contin~

ues. Because memory content has been lost, unavai lable parity
groups must be repaired. This is done by background processes,
as Phase 4 of the recovery. The processes rebuild the miss ing pages
of inaccessible parity groups. In addit ion, if p rogram execut ion at-
tempts to access an inaccessible page, the resul t ing page fault is

handled by immediate ly rebuilding the group ' s miss ing page.
If an ent ire node has been lost, a large amount of memory can

be inaccessible. Specifically, wi th N + 1 parity and M megabytes

1 In reality, this particular error will be detected when the missing node
fails to arrive to the barrier when establishing the checkpoint. To con-
servatively determine the worst-case timing, we ignore this and allow the
remaining processors to establish a faulty checkpoint and continue.

per node, M x N megabytes of data and M megabytes of parity
are inaccessible 2 due to ei ther be ing lost or be longing to a par-
ity group where another page has been lost. This means that the
performance of the machine after the recovery can be degraded for
two reasons: the machine has one less processor and the remain ing
processors are devoting some of their t ime to rebuilding the dam-
aged parity groups. However, the machine is available dur ing this
time, performing useful computa t ion and responding to external
events, a l though with reduced computa t ional capabili t ies.

The t imes shown in Figure 7 are worst -case unavai lable t imes
for the applicat ion that required the longest recovery t ime in our
evaluation (Section 6.3). The unavai lable t ime due to a node loss
in the average case (error half-way into a checkpoint interval) and
on average across the applicat ions we study is only about 350 ms.
We also note that there are many t ransient and even permanent
errors that do not result in the loss of a node ' s memory. For ex-
ample, errors in the processor core or caches of a node may leave
the memory of that node fully operat ional and accessible. In such
cases, no reconstruct ion of any lost pages is needed. Consequent ly,
Phases 2 and 4 in Figure 7 are complete ly e l iminated and Phase 3

is significantly faster. In such cases, the unavai lable t ime in the
average case and on average across the appl icat ions is only about
250 ms, using the same parameters as in Figure 7.

3 . 3 O v e r h e a d s

3.3.1 E r r o r - F r e e E x e c u t i o n

Logg ing a n d P a r i t y M a i n t e n a n c e . These operat ions overlap with
useful computa t ion on the processors. They cause performance
overhead only through increased content ion for memory and the

2Minus those pages already rebuilt because they contained the logs or
the data accessed during the rollback phase.

116

network. In general, the overhead of logging is proportional to
the number of lines written between two checkpoints, while the
overhead of parity maintenance is proportional to the number of
dirty lines displaced from the caches. Consequently, the parity
maintenance overhead depends on whether or not the working set
of the application fits in the L2 cache: if it does not fit, the re-
sulting frequent write-backs can cause a high overhead of parity
maintenance. Finally, note that logging and parity maintenance
are performed by the directory controllers and do not significantly
affect scalability of the system: adding more nodes to the system
results in more logging and parity maintenance, but also adds more
directory controllers to perform these operations.

Establishing Global Checkpoints. When it is time to create a
new checkpoint, a cross-processor interrupt is delivered to all the
processors. This interrupt can be delivered in under 5 #s [24]. Sav-
ing the processor's execution context takes little time. Most of the
overhead in establishing a new checkpoint comes from writing the
dirty cached data back to memory 3. The time this takes depends on
the cache size. Our simulation experiments show this to be on the
order of 100 #s for small (128 Kbyte) caches, and l ms for larger
(2 Mbyte) caches. In Figure 6 we assume 2 Mbyte caches. In the
two-phase commit, most of the overhead comes from two global
barrier synchronizations, which take up to 10 #s each [10]. Re-
claiming the log space only involves moving the log head pointer
and a few bookkeeping operations locally performed by each pro-
cessor, which have negligible overheads. To keep checkpointing
overheads small (about 1% of the execution time), the checkpoints
in Figure 6 are created once every 100 ms.

Table 2 summarizes the overheads in the error-free execution.

Characteristics of the
application's working set
Does not fit in L2
Fits in L2, mostly dirty
Fits in L2, mostly clean

High Checkpoint
Frequency

Low Checkpoint
Frequency

High Overhead High Overhead
High Overhead Low Overhead

Medium Overhead Low Overhead

Table 2. Effect of application behavior and checkpoint frequency
on error-free performance.

3.3.2 Recovery

Recovery. The first phase of recovery is to check the system com-
ponents to determine what happened and, in case of permanent
faults, route around the faulty component. While the implemen-
tation of this phase is outside the scope of this paper, its duration
has to be taken into account. It has been reported in [29] that the
hardware recovery time for Hive/FLASH are about 50 ms for a
16-processor system. This time includes diagnosis, reconfigura-
tion and a reset of the coherence protocol. We assume that a sim-
ilar hardware recovery can be performed in our system in 50 ms.
Phase 2, rebuilding the log pages of the failed node, takes the time
proportional to the size of the log, but can be done in parallel by
the remaining processors. Our experimental results indicate that in
the scenario of Figure 7 this phase takes up to 100 ms, assuming
checkpoint frequency of once every 100 ms. In Phase 3 each pro-
cessor uses the local log to roll back the memory content of its own

3Note that these operations trigger the parity updates and possibly even
logging.

node. If the log entry is to be restored into a page that is unavail-
able, that page's parity group is rebuilt first. The time to perform
the rollback is proportional to the size of the logs, but also depends
on how many lost data pages have to be rebuilt while rolling back.
Rebuilding the parity groups of these pages, if it is needed, takes
more time than the actual copying of data from the log into these
pages. Our experiments indicate that this phase takes up to 490 ms
in the scenario presented in Figure 7.

Redoing the Work. When an error occurs, rollback recovery re-
stores the system to the checkpoint state that precedes the error.
All work performed between that checkpoint and the activation of
the rollback has to be re-done. On the average, the lost work per-
formed before the error occurs is half of the checkpoint interval's.
Also lost is the work performed until the error is actually detected.
If we assume a checkpointing frequency of once every 100 ms and
error detection latency of 80 ms, the resulting lost work is 130 ms.
The worst case is if the error occurs just before the system estab-
lishes a new checkpoint, in which case 180 ms of work is lost.

Overall, assuming the parameters explained above, the ma-
chine is unavailable for about 820ms in the worst case. The avail-
ability of the machine is A = (TE -- T u) / T E , where TE is mean
time between errors and Tu is the mean time the machine is not
available due to an error. Even assuming TE = 1 day, the resulting
availability with ReVive is A = 99.999%. If most errors do not
result in losing memory contents, the average unavailable time is
only 250 ms, which results in A = 99.9997% availability.

Rebuilding Lost Memory Pages. Our experiments indicate that,
if the lost node had 2GB of memory and 7 + 1 parity was used,
a 16-processor machine requires about 20 seconds to fully rebuild
all affected parity groups, if it devotes half of its computation to
rebuilding the damaged parity groups and the other half to useful
computation. Note that this step is not needed if the error does not
result in losing memory contents.

4 ReVive Implementation Issues

ReVive does not require processor or cache modifications. All
hardware modifications are confined to the directory controller.
Now we discuss these modifications, as well as the possible races.

4.1 Extensions to the Directory Controller

The additional supports required by ReVive are protocol exten-
sions and, optionally, the L bit for each directory entry as described
in Section 3.2.2.

4.1.1 Protocol Extensions

ReVive requires protocol extensions to perform the parity and
log operations described in Sections 3.2.1 and 3.2.2, respectively.
These extensions need new transient states in the directory con-
troller entries and new types of messages. The new transient states
implement the protocols in Figures 4 and Figure 5. The new mes-
sages are the parity update message and its acknowledgment. Only
the directory controller is affected by these changes - the new mes-
sages are communicated between directory controllers and need
not be observed by the caches.

117

4.1.2 Hardware Modifications

Recall that the L bit indicates if the line has already been logged
in this checkpoint interval. Using this bit improves performance,
but is not needed for the correctness of ReVive. Indeed, without it
we simply have to log the previous content of a memory line every
time it the line is written back. However, recovery is still possible
by restoring the log entries back into memory lines in the reverse

order of their insertion into the log.

Since the L bits are optional, we can design the controller so
that they are supported inexpensively. For example, if the system
has a directory cache, then only the entries in that cache need to
have the L bit. When the entry of a line is displaced from the di-
rectory cache, its L bit is lost. As a new entry is allocated, the L

bit is reset to zero. With this approach, a memory line is occa-
sionally logged multiple times between two checkpoints, but the
correctness of ReVive is unaffected.

During the operations on the parity and the log for a line, the
line remains in a new transient state in the directory. Once the
operations are complete, the line reverts to one of the normal co-
herence states. Overall, this support requires only some additional
storage (at most a few additional bits per directory entry) and does
not interfere with the overall design of the directory controller.

4.2 R a c e Condit ions

Most race conditions in our extended protocol can be han-
dled in the same way other similar race conditions are handled
in the baseline protocol without ReVive - by serializing accesses
to the same memory line and sending negative acknowledgments
to avoid deadlocks and livelocks. However, some race conditions
are related to error recovery and need to be carefully considered.
We identify five classes of race conditions. Four are specific to our
protocol, while the fifth one is common to all checkpointing proto-
cols. In the following we assume that D is the checkpoint content
of a data line and that D ' is the modified content of that data line.
Before D is overwritten with D ' , it is logged into a log entry L'.
Creation of L ' overwrites some previous memory content L. The
parities of D, D j, L, and L' are Dp, D~, Lp, and L~, respectively.
Note that if D is lost but D v is still in memory, memory rebuild-
ing using parity groups will restore D, and vice versa. A similar

J ! property holds for D ' and D v, L and Lr,, and L' and L v.

Log-Data Update Race. We do not allow any update to data (or
its parity) before the log (and its parity) are fully updated. In this

I way, if an error occurs before L ' and L v are safely stored, D and
Dp are still in memory. If, on the other hand, an error occurs while
D' or D~ are written to memory, L' and L~ are safely stored and
can be used to roll back to D and Dp.

Atomic Log Update Race. Consider an error that results in a par-
tial update of a log entry. It would be a mistake to use such an entry
to "restore" the data content. Thus, the log entry is created in the
following manner: the log entry is written, followed by a Marker
that validates it. Incomplete entries have no valid Markers and are
not used for recovery. Similarly, the parity update for the log entry
is written before the parity update for the Marker. This prevents an
incomplete parity update from being used in a recovery.

Log-Pari ty Update Race, Consider an error that occurs after log
entry L ' has been written, but before its parity L~ is updated. If

the L' becomes inaccessible, then the memory where it was writ-
ten will be rebuilt using Lp into the L state. Because L does not
contain a valid Marker for the current checkpoint, it will not be
used for recovery. The original checkpoint data D is still unmodi-
fied in memory, so no recovery is needed to restore it. Similarly, if
the node where Lp is stored becomes inaccessible, L ' will be used

t to restore its memory to the Lp state. Then the log entry L ' will
be used to restore D. This operation is unnecessary because the
data memory still contains the checkpoint data D. However, it is
correct.
Data-Par i ty Update Race. An error that occurs after the log and
its parity have been correctly updated does not compromise recov-
ery, even if the write of D ' , D~, or both is incomplete or not per-
formed at all. This is because the checkpoint content D is found
in the log and restored into data memory.
Checkpoint Commit Race. To make sure that checkpoint data
from different checkpoints is cleanly separated, we use a variant of
the two-phase commit protocol [23]. It is implemented with two
barrier synchronizations. Passing the first barrier indicates that all
processors have flushed their caches and all resulting memory up-
dates are complete. After the first barrier, each processor marks in
the local log that the new checkpoint is established. Then, pass-
ing the second barrier means that all processors have marked the
checkpoint as established. Without the second barrier, it would be
possible for a processor X to continue executing before proces-
sor Y has marked its checkpoint as established. As a result, data
stored in Y ' s local memory and modified by X would be logged
as part of the old checkpoint instead of the new one. After creating
the new checkpoint, the log space that is no longer needed can be
reclaimed. For example, assume that the error detection latency is
such that two checkpoints must be kept. After creating checkpoint
N, checkpoint N - 2 is no longer needed. Therefore, log entries
created between checkpoints N - 2 and N - 1 can be reclaimed.

5 Evaluat ion Environment

Architecture. To evaluate ReVive, we use execution-driven sim-
ulation. Our simulator is based on an extension to MINT that can
model dynamic superscalar processors in detail [9]. The architec-
ture modeled is a CC-NUMA multiprocessor with 16 nodes. Each
node contains a processor, two levels of cache, a directory con-
troller, a network interface, and a portion of the main memory of
the system (Figure 2). The processor is a 6-issue dynamic super-
scalar. The caches are non-blocking and write-back. The system
uses a full-map directory and a cache coherence protocol similar

to that used in DASH [12]. The directory controller is extended to
support logging and distributed parity needed for ReVive, as de-
scribed in Section 3.2. Contention is accurately modeled in the en-
tire system, including the busses, the network and the main mem-
ory. Table 3 lists the main characteristics of the architecture.
Applications. We evaluate our scheme using all 12 applications
from the Splash-2 suite [31]. These applications are representa-
tive of parallel scientific workloads and exhibit a wide variety of
sharing and memory access patterns. Table 4 shows the applica-
tion names and the input sets we used. The data are allocated on
the nodes of the machine according to the first-touch policy. This
results in local allocation of private data, while shared data are al-
located in the memory of the first node that accesses them. Cache
sizes of 16kB for L1 and 128kB for L2 are chosen following [31],

118

Processor I
6-issue dynamic IGHz Int,fp,ld/st FU: 5,3,2
lnst. window: 96 Pending ld,st: 16,16

Memory System
LI: 16KB, 2ns hit, 4-way assoc, 64-B line, write back
L2: 128KB, 12ns hit, 4-way assoc, 64-B line, write back
Bus: 100MHz 64-bit quad-data-rate (Like Pentium 4 system bus)
Memory: 100MHz 16-bank DDR, 128 bits wide, 60ns row miss
(Essentially, two PCI600 DDR SDRAM modules in parallel)
Dir controller latency: 2Ins (pipelined at 333MHz)
Network: 2-D toms, virtual cut-through routing
Message transfer time 30ns + 8ns * # hops
No-contention latency (ns):
2 (LI hit), 14 (L2 hit), 105 (Local Mem), 191 (Neighbor Mem)

Table 3. Architectural characteristics of the system we model.

to produce representative behavior given the relatively small in-
put sets of Splash-2. The working sets of most Splash-2 applica-
tions fit even in relatively small caches [31]. The only exception
is Radix, where about 256kB are needed to accommodate the first
working set. Only FFT, Ocean, and Radix have important second
working sets large enough to overflow our L2 caches. In Radix, we
use 4 million keys instead of the default 256 thousand. In FFT, we
use 1 million complex numbers instead o f the default 64 thousand.
These inputs are needed to get a long enough running time, but
result in larger working sets for these applications. Because both
the first and the second working sets of Radix are larger than our
L2 cache, we expect ReVive to exhibit close to worst-case perfor-
mance on this applicat{on.

Total # of Global
Application Problem Size Instructions L2 Miss Rate
Barnes 16K particles 1230M 0.05%
Cholesky tk29.0 1224M 0.26%
P I-,I 1M points 468M 1.78%
FMM 16K particles 1002M 0.24%
LU 512x512 matrix, 336M 0.07%

16x16 block
Ocean 258x258 grid 270M 2.02%
Radiosity -test 744M 0.15%
Radix 4M keys, 186M 2.51%

radix 1024
Raytrace car 612M 0.26%
Volrend head 984M 0.29%
Water-N2 1000 molecules 1074M 0.02%
Water-Sp 1728 molecules 870M 0.02%

Table 4. Characteristics of the applications.

Overheads in Error-Free Execution. The applications simulated
have smaller problem sizes and run for shorter periods than real-
life workloads. We need to consider how these issues affect the
way we model ReVive error-free overheads, namely maintaining
logs and parities, and establishing checkpoints.

The overhead of keeping logs and parities is dominated by par-
ity updates, which are both more expensive and more frequent.
Parity overhead depends on the rate of write-backs which, to a
large extent, is proportional to the cache miss rate. In our simu-
lations with the small problem sizes of Splash-2, we reduced the
cache sizes to preserve the cache miss rates. Therefore, the logging
and parity overheads that we measure in the simulations should
match those that would be observed in a real system.

As for the overhead of establishing checkpoints, most of it is
due to writing back all the dirty lines in the caches. This over-
head is largely proportional to the size of the L2 cache. Since
we use small caches, we can model the overhead in a real sys-
tem by checkpointing proportionally more often. In Section 3.3.2,
we estimated that a real system needs to checkpoint once every
lOOms to achieve 99.999% availability when error frequency is
once a day. This estimate assumes 2MB L2 caches. According to
Section 3.3.1, the time to establish a checkpoint in a system with
128KB L2 caches is an order o f magnitude smaller than with 2MB
L2 caches. Consequently, our simulated system checkpoints one
order of magnitude more frequently - once every 10ms.

To help isolate the overheads of parity updates and log main-
tenance, we also perform simulations with an infinite checkpoint
interval.

Comparison to Corumercial Workloads , While ReVive targets
commercial , technical, and scientific workloads, the evaluation in
this paper does not include commercial loads. We have focused
on recovering the computational part o f the state o f an application.
Further work is required to fully flesh out the details when ReVive
has to recover in the presence of external network communicat ion
and disk activity. These issues have to be addressed to present
a fair evaluation of ReVive on commercial workloads. We leave
these issues for future work.

Another characteristic of commercial workloads is that they
tend to have high miss rates. As a result, ReVive could induce
high overheads in error-free execution. In practice, the set of ap-
plications used in our evaluation covers a range o f miss rates that
includes those typically found in commercial workloads. Specif-
ically, the number o f L2 misses per 1,000 instructions in our ap-
plications ranges from 0.06 in Water-Sp to 6.4 in Ocean and 9.3
in Radix. This range covers typical miss rates in OLTP and other
commercial applications. As one example, several web server and
OLTP applications have been reported to have around 3 misses
per 1,000 instructions [2]. Consequently, ReVive overheads with
commercial workloads should not be higher than those we report
here.

6 E v a l u a t i o n

To evaluate ReVive, we examine three issues: overhead in
error-free execution, storage requirements, and recovery overhead.

6.1 Overhead in Error-Free Execut ion

To evaluate the impact of ReVive on error-free execution, we
compare ReVive to a baseline system that includes no recovery
support. As explained in Section 3.3.1, the sources o f performance
overhead in error-free execution with ReVive are parity and log up-
dates, and checkpoint generation. For given cache sizes and other
machine parameters, the overhead of parity and log updates mainly
depends on the characteristics of the application being executed.
The overhead of checkpoint generation depends on the frequency
of checkpointing. To better understand these overheads, Figure 8
shows the performance overhead of our mechanism using 7 + 1
parity and with checkpoints performed every 10ms (C p l 0 m s) and
with an infinite checkpoint interval (C p I n f) . For comparison, we
also show the results of our scheme when mirroring is used instead
of parity (as described in Section 3.2.1), for the same checkpoint

119

25%

~ 20%

O~ 15%

r- S lO%
8==
"- ~ 5%

w 0% m ,~

Barnes

i I
_191

mCplOms
[] Cplnf

~ _ ~ OCpl0rnsM
-L OCplnfM

Cholesky FFT FMM LU Ocean Radiosity Radix Raytrace Volrend

Figure 8, Performance overhead of ReVive in error-free execution.

frequencies: once every 10ms (Cpl0msM) and with an infinite
checkpoint interval (CpInfM). The Cplnf and CplnfM bars reveal
the overheads of logging and parity maintenance with 7+1 parity
and mirroring, respectively. The difference between Cpl0ms and
Cplnf, and between Cpl0msM and CplntM, represents the over-
head of establishing checkpoints every 10ms, using 7 + 1 parity
and mirroring, respectively.

The average overhead of logging and parity maintenance is
low, 2.7% for 7+1 parity (Cplnf) and 1% for mirroring (CplnfM).
In applications with important working sets that do not fit in the
L2 cache (FFP, Ocean, and Radix), this overhead can be high. It
reaches 11% in Radix.

The overhead of establishing checkpoints every 10ms is usually
small, but it can be relatively high, as in FFT and Ocean. When the
checkpoint is established in these applications, almost all lines in
their caches are dirty, so the checkpoint takes close to worst case
time. In FFI', this effect combines with the high logging and parity
maintenance overheads for an overall overhead of 22%, the highest
overhead we observe in any of the twelve applications. It is impor-
tant to note that a checkpoint interval of 10ms is the least favorable
end of the spectrum for our scheme. Increasing the checkpoint in-
terval or simply using mirroring instead of parity can reduce the
overhead to 10% in FFT. When mirroring is used and the check-
points are infrequent, the overhead is reduced to 5% on FFT and
1% on the average.

L -7
s / ~ ~1 " nCkpWB ~ [

= 4 / ~ p ~ ~ • j m Exe WB J ~

"~ I | ~ 0 - - ~ I=mm - - , , r ~ t ~ r-'m , ,

Figure 9. Breakdown of network traffic in cp'm 0ms.

14 i

=~ ,o !~ WB

i.~ 4 W ~ 1 ~ i O RD'RDX |

F|gure 10. Breakdown of memory traffic in Op1Oms.

In na

Water-N2 Water-Sp
L
Average

ReVive can be designed to be configured at boot time to support
parity or mirroring. If the machine is mostly going to run appli-
cations that exhibit good caching behavior, the performance over-
heads are small and parity should be used to reduce the memory
space overhead (Section 6.2). For applications with poorer caching
behavior, a tradeoff exists between memory space overheads and
performance: mirroring is faster but uses more memory. In real-
ity, parity and mirroring need not be used in a mutually exclusive
fashion. For example, a small part of the memory can be protected
by mirroring, while the rest is protected by parity. Careful alloca-
tion of frequently used pages into the mirrored region should result
in low overheads, as most of the memory modifications result in
mirroring updates, while reducing the memory space overheads,
as most of the memory space is uses the efficient parity approach.

To help understand the overheads observed, Figures 9 and 10
show the network and memory traffic in the machine with the
CplOms configuration. The breakdown of the traffic is as fol-
lows: RD/RDX represents the traffic due to supplying the data on
cache misses; Exe WB is the traffic due to writing back dirty lines
to memory in regular execution; Ckp WB is the traffic due to writ-
ing back dirty lines when checkpoints are established; LOG is the
traffic of writing data to the logs; PAR is the traffic due to parity
updates (for both data and logs). Traffic shown as RD/RDX and
Exe WE is the same as in the baseline system. Traffic shown as
Ckp WB, LOG, and PAR is caused by ReVive. If mirroring was
used instead of parity, the network traffic would stay the same as
in Figure 9; the memory traffic would change only in that PAR
would shrink to one-third of its size.

Figures 9 and 10 show that, for most of the applications, both
the network and the memory traffic are low, without or with Re-
Vive. The exceptions are FFT, Ocean, and Radix, where traffic is
already high in the baseline system. For these three applications,
the additional traffic, mostly resulting from parity maintenance,
further degrades the already poor performance.

6.2 Storage Requirements

ReVive requires additional memory space to store distributed
parity and logs.

Parity Storage Requirements. To keep the hardware simple, the
number of nodes should be a multiple of the parity group size. In
addition, the latter should be a power of two, so that to determine
which node has the parity page for a given group, we can use a
trivial implementation of the mod operation. With 7 + 1 parity,
88% of the main memory is used for data, while 12% is used for
parity. We can reduce this requirement by employing larger parity
groups. However, doing so slows down recovery and increases

120

the risk of contention in the home of a parity page belonging to a
particularly popular parity group. If mirroring is used instead of
parity, the overhead is 50% of the memory.
Log storage requirements. Figure 11 shows the maximum log
size for different applications for the Cpl0ms configuration, as-
suming that logs for two most recent checkpoints are kept. As
we can see, the largest log is about 2.5MB. With the conservative
assumption of a log growing proportionally to the checkpoint in-
terval, that yields 25MB for a checkpoint interval of lOOms. In
reality, we expect the actual size to be significantly less, as longer
intervals allow more filtering out of redundant log entries (Sec-
tion 3.2.2).

3.6 T . t

2.o

~ o.s
~ 0 . 0 r " - - 1 r"--i ~

o gE

Figure 11. Maximum log size in the CplOms configuration.

Overall, if we assume 2GB of DRAM memory per node and a
checkpoint interval of lOOms, each node needs 256MB for parity
and 25MB for logs, bringing the total memory overhead of ReVive
to 14%. Increasing the checkpoint interval to one second would
result in up to 25% memory overhead. In comparison, using mir-
roring instead of parity could result in as much as 62% of memory
overhead.

6.3 R e c o v e r y O v e r h e a d

To estimate the unavailability due to an error, we trigger the
error recovery mechanism in each benchmark 8 ms after the sec-
ond checkpoint in CplOms is committed. With a checkpoint inter-
val of 100 ms this corresponds to an error that occurs just before
the second checkpoint is established, and is detected 80 ms later.
As discussed in Section 3.3.2, this results in maximum lost work
and maximum ReVive recovery time. Figure 12 shows the result-
ing ReVive recovery time during which the machine is unavailable
(Phases 2 and 3 in Figure 7). The longest such time is 59ms (in
Radix), while the average is 17ms. This corresponds to 590ms and
170ms with a lOOms checkpoint interval. After adding 180 ms for
lost work and 50 ms for hardware recovery, the resulting unavail-
able time is 820 ms for Radix and 400 ms on average. If errors
occur one per day and all arc worst-case node losses, this results
in 99.999% availability for Radix and 99.9995% on average.

7 0 ..

40 I • Reconstruct Mere

30 ~ i [] Reconstruct Log
W -~ 2O

• • m 40
Z O, m ~ i - - i ~ l , - - - - m - - I l l l ,

~ . ~ ©

Figure 12. Breakdown of the unavailable time due to an error
in the CplOms configuration.

7 Related Work

The work most related to our distributed parity mechanism is
[20], which implements a software-only checkpointing mechanism
where special nodes store parity information. Our work differs
from [20] in several important aspects. First, we use hardware to
maintain the parity, which significantly reduces the performance
overhead. Second, we overlap parity maintenance with useful ex-
ecution, while [20] performs all parity maintenance while estab-
lishing a checkpoint. As a result, the time needed to establish a
checkpoint in [20] is a few seconds, instead of a few milliseconds
with ReVive. Third, we distribute our parity across the system,
rather than keeping it on a few dedicated nodes that can become
potential bottlenecks in [20]. Fourth, our parity is updated at a
memory line granularity, as opposed to the page granularity used
in [20]. Finally, we protect the entire main memory with our par-
ity, rather than just the checkpoint data as in [20]. Protecting the
entire memory could make it easier to prevent loss of information
about recent external I/O operations when an error occurs.

The work most related to our log-based rollback mechanism
is [13], where a snooping device is attached to the bus to inter-
cept write-back and write-miss operations and log previous values
of modified memory lines. Our mechanism differs from the one
proposed in [13] in several important ways. First, ReVive allows
recovery from errors that occur anywhere in the system, while the
design in [13] recovers from errors in the processor and cache,
as well as from some operating system errors. Second, we use
main memory to store the logs, whereas the logs in [13] are stored
on their dedicated bus-snooping device. Our approach results in
higher flexibility in choosing how much memory is dedicated to
logging, while allowing us to store the logs in the cost-effective
high-capacity memory modules together with other data. Finally,
using hardware-maintained distributed parity with a logging de-
vice like that in [13] would be difficult.

Concurrently to our work, a system called SafetyNet that tar-
gets some classes of system-wide transient faults has been pro-
posed in [25]. While both ReVive and SafetyNet use log-based
rollback mechanisms, Revive differs from SafetyNet in several
important ways. First, ReVive enables recovery from permanent
faults such as losing a node, in addition to the transient faults that
can be tolerated by SafetyNet. Second, ReVive does not require
any changes to the processor's caches. In SafetNet, each line in
the cache is augmented with a checkpoint number, which is then
checked whenever the line is modified by the processor. Further-
more, SafetyNet adds a 256-512KB checkpoint log buffer to the
cache. Third, the error detection latency that SafetyNet can toler-
ate is largely determined by the size of the checkpoint log buffers.
In contrast, ReVive uses the main memory to store its logs and, as
a result, can tolerate longer detection latencies. Finally, because
of ReVive's more general fault model, ReVive causes more net-
work and memory traffic, which may result in larger performance
overheads than with SafetyNet.

While we target errors whose effect modifies the system-wide
state, other work has targeted errors that can be contained within
a single device such as a processor [3, 16, 28, 30]. Our scheme is
fully compatible with such mechanisms. The lightweight recovery
of a device-specific mechanism would be used for such device-
specific errors. Errors whose effect escapes the device and errors

121

not covered by device-specific mechan i sms would be recovered
using ReVive.

8 Conclusions

This paper presented ReVive, a new cost-effective rol lback re-

covery mechan i sm for shared-memory mult iprocessors . ReVive
performs memory-based checkpoint ing, logging, and distr ibuted
parity maintenance wi thout requir ing any hardware modif icat ion
to the processors or caches. ReVive enables recovery from a wide

range of system-level errors, including total loss of a node. Re-
Vive 's average execution t ime overhead is only 6.3%, even when

establ ishing checkpoints as often as once every lOOms. Assuming
an error detect ion latency of 80 ms, an error results in up to 820ms

unavai lable time, including lost work. The resul t ing availabil i ty is
bet ter than 99.999% even if errors occur as frequently as once per
day. Finally, the main memory space overhead is only 14% of the

main memory, and external storage is not used.

The work is be ing extended in three ways. First, we are ex-
amining mirror ing support for the most f requent ly accessed pages
and N+I parity for all other pages in memory, as suggested in
Section 6.1. Second, we are evaluat ing ReVive with commerc ia l
workloads and with longer run t imes to use realistic checkpoin t ing
frequencies. Third, we are further developing details of ReVive to
support recovery in the presence of I /O activity such as network
or disk access. In general, our distr ibuted parity mechan i sm is a
powerful bui lding block that can be used to protect the I/O buffers.
In the long term, we plan to combine ReVive with error detect ion
schemes to fully evaluate error recovery.

Acknowledgments

This work is partially based on the ideas from [33]. The authors would
like to thank Manohar Prabhu for proposing log updates on read-exclusive

and upgrade requests.

References
[1] R. E. Ahmed, R. C. Frazier, and P. N. Marinos. Cache-Aided

Rollback Error Recovery (CARER) Algorithms for Shared-Memory
Multiprocessor Systems. In Proc. 20th Intl. Syrup. on Fault-Tolerant
Computing Systems, pages 82-88, June 1990.

[2] A. R. Alameldeen et al. Evaluating Non-deterministic Multi-
threaded Commercial Workloads. In 5th Workshop on computer Ar-
chitecture Evaluation using Commercial Workloads, pages 30-38,
Feb. 2002.

[3] T. M. Austin. DIVA: A Reliable Substrate for Deep Submicron Mi-
croarchitecture Design. In Proc. 32rid Annual Intl. Syrup. on Mi-
croarchitecture, pages 196-207, Nov. 1999.

[4] M. Banatre et al. An Architecture for Tolerating Processor Fail-
ures in Shared-Memory Multiprocessors. IEEE Trans. Computers,
45(t0): 1101-1115, Oct. 1996.

[5] M. Banatre and P. Joubert. Cache Management in a Tightly Coupled
Fault Tolerant Multiprocessor. in Proc. 20th Intl. Symp. on Fault-
Tolerant Computing, pages 89-96, June 1990.

[6] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback, and Fast
Output Commit. 1EEE Trans. Computers, 41(5):526 -531, May
1992.

[7] M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A Survey
of Rollback-Recovery Protocols in Message-Passing Systems. Tech.
Rep. CMU-CS-99-148, Carnegie Mellon University, June 1999.

[8] A.-M. Kermarrec et al. A Recoverable Distributed Shared Memory
Integrating Coherence and Recoverability. In Proc. 25th Intl. Symp.
on Fault-Tolerant Computing, pages 289-298, June 1995.

[9] V. Krishnan and J. Torrellas. An Execution-Driven Framework for
Fast and Accurate Simulation of Superscalar Processors. In Proc.
1998 Intl. ConJ~ on Parallel Architectures and Compilation Tech-
niques, pages 286 -293, Oct. 1998.

[10] R. Kufrin. Barrier Synchronization on the Origin 2000.
hnp:llwww.ncsa.uiuc.edul~rkufrin/projects/CompScilBarriersl,
July 1999.

[11] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proc. 24th Intl. Symp. on Computer Architecture,
pages 241-251, June 1997.

[12] D. Lenoski et al. The Stanford Dash Multiprocessor. IEEE Com-
puter, pages 63-79, Mar. 1992. It is Dash, not DASH.

[13] Y. Masubuchi et al. Fault Recovery Mechanism for Multiproces-
sor Servers. In Proc. 27th Intl. Symp. on Fault-Tolerant Computing,
pages 184-193, June 1997.

[14] C. Morin, A. Gefflaut, M. Banatre, and A.-M. Kermarrec. COMA:
an Opportunity for Building Fanit-tolerant Scalable Shared Memory
Multiprocessors. In Proc. 23rd Intl. Symp. on Computer Architec-
ture, pages 56--65, May 1996.

[15] C. Morin, A.-M. Kermarrec, M. Banatre, and A. Geffiaut. An Effi-
cient and Scalable Approach for Implementing Fault-Tolerant DSM
Architectures. IEEE Trans. Computers, 49(5):414-430, May 2000.

[16] S.S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design
and Evaluation of Redundant Multithreading Alternatives. In Proc.
29th Intl. Symp. on Computer Architecture, May 2002.

[17] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redundant
Arrays of Inexpensive Disks (RAID). In Proc. ACM SIGMOD Intl.
Con S on the Management of Data, pages 109-116, June 1988.

[18] J. S. Plank et al. Memory Exclusion: Optimizing the Performance
of Checkpointing Systems. Software - Practice and Experience,
29(2):125-142, Feb. 1999.

[19] J.S. Plank and W. R. Elwasif. Experimental Assessment of Worksta-
tion Failures and Their Impact on Checkpointing Systems. In Proc.
28th Intl. Syrup. on Fault-Tolerant Computing, pages 48-57, June
1998.

[20] J. S. Plank and K. Li. Faster Checkpointing with N + 1 Parity. In
Proc. 24th Intl. Syrup. on Fault-Tolerant Computing, pages 288-297,
June 1994.

[21] J.S. Plank, K. Li, and M. A. Puening. Diskless Checkpointing. IEEE
Trans. Parallel and Distributed Systems, 9(10):972-986, Oct. 1998.

[22] B. Randell. System Structure for Software Fault Tolerance. IEEE
Trans. Soft. Eng., SE-1(2):220-232, June 1975.

[23] A. Silberschatz, H. E Korth, and S. Sudarshan. Database System
Concepts, 3rd edition. McGraw-Hill, 1999.

[24] Silicon Graphics, Inc. REAcTTMin IRIXTM6.4 Technical Report.
http://www.sgi .corn/software/react/react_t r. pd f, 1997.

[25] D.J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood. SafetyNet:
Improving the Availability of Shared Memory Multiprocessors with
Global Checkpoint/Recovery. In Proc. 29th Intl. Symp. on Computer
Architecture, May 2002.

[26] F. Sultan, T. D. Nguyen, and L. lftode. Scalable Fault-Tolerant Dis-
tributed Shared Memory. In Proc. Supercomputing 2000, Nov. 2000.

[27] D, Sunada, D. Glasco, and M. Flynn. Multiprocessor Architecture
Using an Audit Trail for Fault Tolerance. In Proc. 29th Intl. Syrup.
on Fault-Tolerant Computing, pages 40--47, June 1999.

[28] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream Pro-
cessors: Improving both Performance and Fault Tolerance. In Proc.
9th Intl. Conf. on Arch. Support for Prog. Lang. and OS, Nov. 2000.

[29] D. Teodosiu et at. Hardware Fault Containment in Scalable Shared-
Memory Multiprocessors. In Proc, 24th Intl. Symp, on Computer
Arehitecture, pages 73-84, June 1997.

[30] T.N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-Fault Re-
covery Using Simultaneous Multithreading. In Proc. 29th Intl. Syrup.
on Computer Architecture, May 2002.

[31] S. C. Woo et al. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proc. 22nd Intl. Symp. on Com-
puter Architecture, pages 24-38, June 1995.

[32] K.-L. Wu, W. K. Fuchs, and J. H. Patel. Error Recovery in Shared
Memory Multiprocessors Using Private Caches. IEEE Trans. Paral-
lel and Distributed Systems, 1(2):231-240, Apr. 1990.

[33] Z. Zhang. Single system high-availability solutions. Tech. Rep.
HPL-2001-81, Hewlett-Packard Laboratories, Apr. 200 !.

122

