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Abstract

Subdivision rules have traditionally been designed to generate
smooth surfaces from polygonal meshes. In this paper we
propose to employ subdivision rules as a polygonal modeling
tool, specifically to add additional level of detail to meshes.
However, existing subdivision schemes have several undesirable
properties making them ill suitedfor polygonal modeling. In this
paper we propose a general set ofsubdivision rules which



provides users with more control over the subdivision process.
Most existing subdivision schemes are special cases. Inparticular,
we provide subdivision rules which blend approximating spline
based schemes with interpolatory ones. Also, we generalize
subdivision to allow any number ofrefinements to be performed
in a single step.

1. Introduction

Subdivision surfaces have recently emerged as the most pop-
ular modeling tool in computer graphics. This is not surpris-
ing since these surfaces combine the benefits ofboth polygo-
nal and spline NURBS modeling. Subdivision surfaces, like
NURBS, allow users to model smooth surfaces by manipu-
lating a small set of control vertices. Unlike NURBS, how-
ever, there is no constraint on the connectivity of the control
vertices.

The first subdivision schemes were proposed in the late
seventies i.3 while later research has focused generally on
the properties of the limit surface, such as smoothness 14, 19
and evaluation itr. Properties of subdivision surfaces are now
well understood, making them attractive in design applica-
tions. But, subdivision is rarely used as a polygonal model-
ing tool. Very little attention has been devoted to the influ-



ence ofthe first couple of subdivision steps on the final shape
ofthe surface. However, inpractice it turns out that the initial
subdivision steps greatly influence the shape of the surface.
In this paper we address this problem by adding more pa-
rameterS to the subdivision rules thus providing more user
control. This is in contrast with previous research where the
shape of the surface was improved by changing the initial
control mesh, not the subdivision rules themselves 6.

An important application of our new subdivision rules is
the generation of level ofdetail on arbitrary meshes. We will
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Fig.1-afig.1-bfig.l-c
Figure 1: Each refinement step of the Catmull-Clark algo-
rithm shrinks the convex areas, The difference between two



levels is strongest along the silhouette ofthe models.

demonstrate that our schemes can efficiently compress such
models for transfers over small bandwidth networks.

2. Motivation

Current subdivision rules applied to the problem of generat-
ing level of detail suffer from two major limitations. Firstly,
the most popular spline-based schemes i' 3, 13 produce sur-
faces that approximate the base mesh. The limit surface,
especially in locally convex areas, is smaller than the base
mesh. This is because the refined control meshes progres-
sively shrink towards the limit surface. Consequently, no-
ticeable    Popping effects" occur when switching between
meshes at different levels of resolution.
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Figure 2: Each Catmull-Clark refinement increases the
number offaces by four, thus making few levels of detail
available inpractice.

Figure lshows one (l-a) and two (1-b) Catmull-Clark re-
finements applied to the same cube. Figure i-c shows the
difference between these two meshes. Dark areas correspond
to larger differences and are mainly concentrated near the
silhouette of the mesh. The difference is even larger if we
compare the initial cube with the first subdivision level (3-
d). Although the differences are less important between finer
levels of subdivision, they remain substantial for the first few
levels.

Interpolatory schemes have also been proposed 5, 9, ll, but
they suffer from the opposite problem. Limit surfaces tend



to bulge out of the polygonal control mesh, and successive
subdivision steps converge to a surface that is too big. They
also introduce undesirable undulations in the refined meshes.

Another problem with current subdivision schemes is that
the number of refined faces grows exponentially with the
number of subdivisions. In many applications, we want to
increase the number of faces by an arbitrary number instead
of some power offour (Catmull-Clark) as shown inFigure 2.
This problem was partially addressed with the introduction

of v/j-subdivision schemes 10. ll,where the number of trian-
gles increases only by a factor of three at each subdivision
step. However, in these schemes the number of triangles still
increases exponentially by a power of three and they do not
seem to extend to quadrilaterals or schemes of higher de-
gree. Finally, these schemes do not preserve the initial tri-
angle boundaries, which leads to a sudden change in color
or texture interpolation between two consecutive subdivision
levels. In practice, this means that even a simple object can
only be refined three or four times before the level of detail
database becomes too large. It turns out that this constraint
on the number of refinements is generally too small to efii-
ciently control the geometry's resolution in a real time ren-
dering application.



3. From Approximation to Interpolation

In order to address the silhouette problem, we propose a sin-
gle parameterized scheme which is a blend of an approxi-
mating and an interpolating scheme. We will show that these
intermediate rules do a betterjob at preserving the silhouette
and the volume of the meshes.

Fig.3-b

U6



Figure 3: Silhouette improvement using our new scheme.
Figure 3-b was built using Catmull-Clark algorithm,
while 3-b uses our method. The bottom row show the image
difference is both cases.

Our work is based on subdivision rules built as a succeS-

sion of a linear subdivide operator followed by a number
of smoothing steps 17 This framework is general enough to
work for both triangular and quadrilateral meshes, and pro-
duces uniform B-splines of any odd degree P 011 the regular
part of the mesh. We introduce an extra vertex moving step
on the subdivided geometry to handle interpolation.

3.1. The Curve Case

As is usually the case in subdivision papers, we will first
describe our schemes in a curve setting and then generalize
them to surfaces.

3.1.1. Subdivision Into any Number of Pieces



Stam 17 showed that B-splines of odd degree P could be sub-

dividedbyfirstlinearlysubdividingthecontrolmeshand
volves averaging a vertex with its immediate neighbors us-

ing the It lil weights. The novelty over the well known
Lane-Riesenfeld algorithm 12 is that this scheme performs
two averaging steps at once and therefore leaves the control
vertices "in place."

Stam's result relies on the fact that the subdivision masks
are related to the binomial coefficients 2. The binomial coef-
ficients are easily computed using Pascal's triangle:

l M l l
l M l 2 l
l M i 3 3 i
l M l u 6 u l
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Figure 4: Refinement steps J, 2, and limit curve of our
scheme, using degree three interpolation and different a val-
ues. A division value d 2 was usedfor each step.

For example, from the last line we obtain the subdivision



masks for B-spline curves of degree three. Every old vertex

is updated using the It Q %1 weights, while the new vertices

are inserted between the old vertices using the i    ] masks.
The crucial observation is that these two masks are obtained
by simply applying the It l11 mask to the second row, which
corresponds to the subdivision rules of linear subdivision. In
fact, this construction is easily generalized to any number of
subdivisions d. In this case we generalize the Pascal trian-
gle to take the average of the d elements in the row directly
above it:

l l l
l l i l l I...l
l 2 l l 2 3 2 l l 2...d...2 l

This gives us a recipe similar to the one found in
Stam 17 to compute the corresponding masks for these
subdivision schemes. First linearly subdivide each segment
into d pieces, then smooth each vertex using the mask

2 [l,2, Ill,d, '''t 2, ij. In the limit this process generates B-
spline curves of degree 2m + lif the smoothing is applied m
times. See Chui's monograph 2 for a rigorous proof.



3.1.2. Blending Interpolating and Approximating
Schemes

In order to limit the amount of shrinking characteristic of
approximating subdivision schemes, we propose to add an
extra step which updates the position of the vertices after
smoothing. We call this apush-back step: each original ver-
tex is moved back towards its original position by an amount
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controlled by the user. Newly introduced vertices are also
adjusted by linear interpolation of the adjusted original ver-
tices. We denote by Pi the new vertices obtained by subdi-

viding the original vertices Pi'. In the rest of the paper, as,as
denotes assignment, while "vs denotes a true equality of
two quantities. In these notations, the first step is:

Ps Pl (1)

Pdi+k d-kk , 0<k<d (2)

This step is followed by a smoothing step that modifies
the vertices Pi:



lk<d (3)

Finally, the smoothing step is followed by a push-back of
these new vertices:

At a(e' -Ps) (4)

Pdi Pdi +Ai (5)

Pdi+k d-kk 0<k<d (6)

All evaluations are done in parallel in a "Jacobi manner"
to avoid any side effects. In practice this requires the use
of an intermediate array to store the vertices' positions. The
volumeparameter a controls the transition from approxima-
tion to interpolation. When a 0 there is no push-back step
and the subdivision scheme produces uniform B-splines in
the limit. On the other hand, when a iour schemes are in-
terpolatory. Figure u shows the influence of the parameter (X

on the subdivided control vertices after several refinements.



When the degree P is greater thanthree, the smoothing

and push-back steps are repeated in times. In particular,
when P 3 and d 2, only one smoothing and one push-
back step are performed. In this case we can explicitly write
down the subdivision matrix applied to five consecutive con-
trol vertices:
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Figure 5: Subdivision ofquadrilaterals and triangles. Each
subdivision produces V, E, and F vertex types. Faces with 5
and more vertices use the quadrilateral subdivision rule.

In particular, when a i, the P2i are moved back ex-

actly to their original position A and we obtain the well
known four point interpolation scheme, with iaaaai
weights 4.

3.2. Generalization to Surfaces

The surface case is similar to the curve one: we perform one
bilinear subdivision step followed by a smoothing step.



3.2.1. Binary Subdivisions

We first define our rules for binary subdivision schemes
when d 2. We introduce the following notations. The num-

ber ofelements in a setA is denoted by All. The vertices of
the mesh before a subdivision step are denoted by vi" During
a subdivision step these vertices are transformed into new
vertices Vi. At the same time new vertices Ei are introduced
by splitting each edge, and new vertices F) are introduced
for each face as in Figure 5. Let P be a vertex of the mesh,
then 8(P) is the set containing all the vertices sharing an
edge with P. The set C(P) contains the "corner vertices:" the
vertices sharing a face with P not in S(P). To illustrate these
definitions refer to Figure 5 where 8(V2) (E2, Eres), and
C(E3) {E1,E2).

In the rest of this paper we will focus entirely on quadri-
lateral schemes. However, triangular schemes can be treated
in a similar way, with the exception that there are no face
vertices F), and C(V) is always empty. In fact, our images
were produced from meshes containing simultaneously tri-
angles and quadrilaterals. Only the subdivision step must
distinguish between those two types of faces.



Stam provides different smoothing rules for the vertices
that result in uniform B-spline surfaces in the limit on the
regular part of the mesh i7. The simplest smoothing algo-
rithm which corresponds to "repeated averaging" 20 replaces
each vertex by a weighted average of its direct neighbors:

Ni s(vi))l (8)

Fig.6-afig.6-b.aI0Fig.6-c.a=.7
Fig.6-d.a=0Fig.6-e.a=.7



stacy"CC_.''].:i,-----"N,
Figure 6: Influence ofparameter a on silhouette changes.

Vi iP (9)

Catmull-Clark surfaces are obtained with a different
choice for the weights:

Vi lv--321 (10)



We observe that Formulae 9 and 10 are identical when
Ni 4. This comes as no surprise since both of these
schemes produce uniform B-spline surfaces on regular
meshes (Ni u everywhere). We further observe that, when
Ni at 4, the Catmull-Clark rule can be obtained by follow-
ing Formula 9 with an adjustment of all the extraordinary
vertices:

51 4Nr-l, (ll)

Ni-4 (12)

Vi "+Ya, (13)
The parameter Y allows us to interpolate between the two
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Figure 7: Influence Ofbparameter. The original cube is dis-
played as wireframe.



schemes. Not only does this adjustment unify these two
schemes, but it simplifies the implementation ofthe Catmull-
Clark subdivision: a simple smoothing followed by a vertex
update step.

Following the curve case, the simplest push-back step is

to compute the differences At between    /il and vi, followed
by a (bi-)linear interpolation ofthese differences for the new
Ei and Ft vertices.

A(Vi) a(r/ Vi) (l4)

A(Ei) c-ysrir-A(ro)) (15)

A(h)) 1EA(Ek) (16)

1EA(Vk) (17)



InFigure 6 we demonstrate how the a parameter improves
the silhouette difference between a polygonal object and its
refinements. Figure 6-a is the original model, while Figures
6-b through 6-e illustrate the first and second refinements for
a 0 (Catmull-Clark) and a .7. Figure 6-f (resp. 6-g) is
the difference between 6-a and 6-d (resp. 6-e). During an
animation, the popping effect can be substantially reduced
by choosing an appropriate a value.

However, close to very sharp corners our scheme tends to
create flat areas around the face centerS. The reason is that
a bilinear interpolation of vectors of the same length with

  The Eurographics Association and Blackwell Publishers 2001

(rri____rc>rieiiiii::c>
d 2 d 3

Figure 8: Eachface is divided in d X d smaller one.



,'ve
by adding one more ring to the previous set.

different angles produces smaller vectors at the center of the
faces. This is a well know artifact ofcertain renderers, which
do not renormalize vertex normals after interpolation, and
consequently produce darker areas in the face centers.

We can fix this problem by introducing a renormalization
step for the interpolation ofthe A vectors. This is achieved by
interpolating the length and direction of the A vectors sepa-
rately. To smooth the transition between these new rules and
the ones without the normalization, we introduce a rounding
factor parameter B.



i(Et) lsllA(1t,),ll/--jrA,,(1h)ll (18)

i(Fi) Fytyi,)-/l1(h)ll (19)

A(Ei) i(E,-)A(Ei) (20)

A(E) i(Fi)A(Fi) (21)

When 13 0 there is no renormalization, while when 13 l
the lengths of the A are exactly interpolated. In the case
13 94 0 our subdivision rules do not reproduce uniform B-
splines on the regular part of the mesh in the limit. This
doesn't matter since we do not use our rules to generate limit
surfaces. Figure 7 illustrates how our meshes are deformed

when B is increased. For a cube, B iproduces the most
"rounded" meshes. Note that in this example we have Y 0
(no Catmull-Clark) to emphasize the flattening problem.



3.2.2. Subdivision Into any Number ofpieces

For regular meshes the corresponding limit surfaces S(s, r)
are equal to a tensor product of uniform B-spline curves.
Therefore, the subdivision scheme for these surfaces is

Maillot & Stam /A Unified Subdivision Schemefor Polygonal Modeling

simply a linear subdivision step followed by a smoothing
step with a mask equal to the tensor product of the mask

651,2,...,d,...,2, 1) derivedin Section 3.1.1.

These rules are naturally extended to irregular regions.
In practice, it turns out that it is easier to decompose the
smoothing step into two simple averaging steps. The averag-
ing step is different depending on whether d is odd or even.
In the odd case we replace each vertex by a simple average

of its k-ring neighborhood, where k d-l When d is even,
each averaging step replaces each face with a vertex that is
the average of the k-ring of vertices surrounding it, where

k: LI The new vertices afterthis step formthe dual ofthe
initial mesh. In practice, however, the dual is never explic-
itly computed since the averaging step is always performed
twice (an even amount in general since we consider only odd



degrees P in this Paper) Indeed, after two dualizations the
vertices are again "in place."

More formally, let V1<(Vi) be the set of all vertices which
can be reached from Vi by traversing at most k faces and let
.7:/<(Vi) denote the corresponding set of the faces traversed.
See figure 9 for some examples. We also define a set of face
neighborhoods by 1)(Fi) Lierivk(V).

Using these definitions we can explicitly state the smooth-

ingsteps.Whendisodd,weapplythefollowingrulep-l

Vi ;EV1 (22)

When d is even the procedure only works for odd de-

grees p. We set the neighborhood to k iand we apply

therule(23) P;1 timesfollowedby (24):



F) LEV1 (23)

" LEF) (24)

Inpractice, we limited our application to odd degrees only
SO that no constraint is necessary on the number of subdivi-
sions d.

3.3. Catmull-Clark Correction

The Catmull-Clark correction step defined by Formula li
was introduced for the case d 2 and is only applied to the
extraordinary vertices of the mesh. For arbitrary divisions d
we observe that this correction only influences a small neigh-
borhood around each extraordinary vertex. More precisely,
this correction never propagates further than two rings of
faces around the extraordinary vertex as shown in Figure IO.



3624600
steps, along the %<v.-   Vi) vector. Weights in the right
image are meant to be divided by 64.

In addition, the correction is only noticeable in the first
couple of subdivision steps. The first subdivision step pro-
duces the most visible change which from Formula iiis

equal to Ci M-4 (vg Vi). Subsequent subdivisions pro-
duce changes, wici, which are proportional to the first one
by a weight wi. It is possible to compute these weights ex-
actly for the first couple of subdivision steps. These sampled
weights then define a piecewise bilinear function on the unit
square that can be used to compute the corresponding weight
values when d is a power of two. For more general d values



the weights can be interpolated from this function.

In practice, however, we found that a similar behavior can
be achieved using the push-back step described in the next
section. The effect of the Catmull-Clark correction can be
emulated by using a higher a value and by adjusting the B

parameter. This is apparent in Figure 7, where a value B L
produces a "rounded" spherical shape despite the fact that
Y O.

3.4. Push-back Step

The push-back is similar to the d 2 case described above:
we first compute the A values for the original vertices and
then update the newly introduced vertices using bilinear in-
terpolation. In a similar fashion we can use the normalized
interpolation of the A values to keep the lengths equal.

For even d, the push-back step can only be applied after
Rules (23) and (24) have been applied. This is because it
doesn't make any sense to apply the push-back to the "in-
termediate" vertices Fi which are only used temporarily to
compute the new vertex positions. To make our algorithm
consistent for every number of divisions d, we restrict our



algorithm to only perform the push-back for odd d when
Rule (22) is applied twice.

We first intended to use a smoother interpolation of the A
values, but after some experimentation with higher order in-
terpolation schemes we concluded that the differences were
too small to justify a more expensive interpolant.
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4. Application to Level of Detail

The motivation behind our work was to provide users with
a simple smoothing tool for polygonal meshes. The smooth-
ing operation allows users to create refined versions of their
models. Crucial to the success of such a model is that the
transitions between the different resolutions of the meshes
are almost imperceptible.

In practice, we found that our new subdivision scheme



worked best when we used a push-back step with a i
B Iandy-- 0. Indeed, these are the default values ofour
smoothing tool. Of course, we expose these parameters to
the artist who can freely explore the effect of varying the pa-
rameterS to meet her particular needs. Although this might
be tricky, it is a huge improvement over current practice,
where artists sometimes have to adjust individual vertices at
each level of refinement. With our model, on the other hand,
artists only have to worry about a few parameters at each
level.

Sending the different levels of detail of the mesh to a re-
mote viewer is also much more efficient with our representa-
tion. Instead of sending the coarse mesh and the updates for
each level of resolution as in the progressive meshes com-
pression scheme 8 we only require a few numerical param-
eters to be sent for each level. Consequently, remote viewers
can almost instantly view any level of the mesh refinement.
Of course our scheme is not as general as the progressive
meshes compression scheme, but we found that in practice it
applies to many interesting shapes.

Even when the higher resolution meshes are supple-
mented with a set of detail offsets for each vertex we believe
that our approach offers a better starting point for the base



meshes and results in substantial savings in both memory
and speed.

5. Results

The images in Figure li show meshes of a game charac-
ter at different levels of detail. The first image shows the
base mesh. Subsequent images are created using our new
subdivision scheme with different resolutions, ranging from
d 2 to d 7. In each case we set our parameters to
a .5, B 0,Y: 0,P 3. Notice that there is very little dif-
ference in the silhouette between the levels. Applying stan-
dard approximating subdivision schemes to the base mesh
would have resulted in more shrinking and restricted US to
only three different levels due to the exponential increase in
the number of vertices with each subdivision.

We also performed some animation tests where we inter-
actively switch between different levels of detail depending
on the distance of the model to the camera. The dog images
in the color plate were extracted from one such test. Com-
pare the sequence computed using the standard Catmull-
Clark (left column) to the ones computed using our new
scheme (right column).
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The bottom two images in the Color Plate demonstrate
that texture coordinates can be interpolated in the same man-
ner. These models were used in an actual game where low
resolution textures are crucial to keep the texture memory
consumption as low as possible.

6. Conclusion

In this paper we have presented a novel set of subdivision
rules specifically designed for the problem of creating dif-
ferent levels of detail for meshes. Our models depend on a
few parameters that an artist can adjust to achieve various ef-
fects. Existing approximating and interpolating subdivision



schemes are special cases of our new scheme. The advan-
tages of our new scheme over existing ones is that (1) we
provide user control over the amount of shrinking and (2)
we allow arbitrary refinements which do not grow exponen-
tially. These two features make subdivision schemes more
attractive in the realm of polygonal modeling.

Our new rules are quite easy to implement. The entire
subdivision system was coded as a MAYA plug-in in only
roughly 500 lines of C++ code. We were able to interact in
real time with our models on a relatively modest desktop ma-

chine (O2 R5000). Of course, this was true only when our
division number d was approximately between 2 and 6.

Our subdivision schemes allow both quadrilaterals and tri-
angles to co-exist in a mesh and its refined versions. This is
in contrast to existing subdivision schemes which generate
meshes which are either all triangles or all quadrilaterals.
Artists often want to keep both triangles and quadrilater-
als in their models. Also it is well known that triangles in
a base mesh create artifacts in the refined meshes when a
quad-based subdivision scheme is used. The reason that we
can incorporate both triangles and quadrilaterals simultane-
ously in our subdivision scheme is that our scheme is based
on a decomposition of the rules into a linear step followed



by smoothing.

7. Future work

A straightforward extension of our model is to allow our pa-
rameterS to vary on the mesh. These values could be painted
onto the mesh by the artist for additional control, for exam-
ple. However, we found that our current scheme provided
enough flexibility with the a, 13 and Y parameters fixed for
each level. On the other hand, allowing the parameters to
vary in very localized regions could still be helpful in cer-
tain applications.

In this paper we have ignored the properties of the limit
surfaces generated by our schemes. The reason for this omis-
sion is that we are interested solely in the shape of a fi-
nite number ofintermediate meshes, not in the limit surface.
On the other hand our new schemes might be useful in sur-
face design as well. In this case it is important to study the

smoothness of the limit surface. At this point it is not clear
how the smoothness depends on our parameters. We leave
this as an open problem for future research.

Also, we did not pay much attention to creases and ob-



ject boundaries. Boundaries and creases can be dealt with
by applying our curve rules to the corresponding polylines.
Vertex creases are more difficult to handle. This is because
creased vertices are not updated during our smoothing step.
Consequently the push-back vertex is always zero, resulting
in undesirable wrinkles in the meshes. More work is needed
in this case to improve the behavior of the refined shape.

Finally, we found that the optimal set of parameters, es-
pecially (X, depends on the camera position. This is partic-
ularly visible for a simple object like a cube, where larger
values of a are required when viewed from the side. One so-
lution would be to allow the user to specify different values
of a for different views of an object. Our system would then
automatically interpolate a values for intermediate viewing
positions as the Camera moves.
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